1 // SPDX-License-Identifier: GPL-2.0-or-later
3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
10 Abstract: rt2500pci device specific routines.
11 Supported chipsets: RT2560.
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 #include <linux/eeprom_93cx6.h>
20 #include <linux/slab.h>
23 #include "rt2x00mmio.h"
24 #include "rt2x00pci.h"
25 #include "rt2500pci.h"
29 * All access to the CSR registers will go through the methods
30 * rt2x00mmio_register_read and rt2x00mmio_register_write.
31 * BBP and RF register require indirect register access,
32 * and use the CSR registers BBPCSR and RFCSR to achieve this.
33 * These indirect registers work with busy bits,
34 * and we will try maximal REGISTER_BUSY_COUNT times to access
35 * the register while taking a REGISTER_BUSY_DELAY us delay
36 * between each attampt. When the busy bit is still set at that time,
37 * the access attempt is considered to have failed,
38 * and we will print an error.
40 #define WAIT_FOR_BBP(__dev, __reg) \
41 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
42 #define WAIT_FOR_RF(__dev, __reg) \
43 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
45 static void rt2500pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
46 const unsigned int word
, const u8 value
)
50 mutex_lock(&rt2x00dev
->csr_mutex
);
53 * Wait until the BBP becomes available, afterwards we
54 * can safely write the new data into the register.
56 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
58 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
59 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
60 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
61 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
63 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
66 mutex_unlock(&rt2x00dev
->csr_mutex
);
69 static u8
rt2500pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
70 const unsigned int word
)
75 mutex_lock(&rt2x00dev
->csr_mutex
);
78 * Wait until the BBP becomes available, afterwards we
79 * can safely write the read request into the register.
80 * After the data has been written, we wait until hardware
81 * returns the correct value, if at any time the register
82 * doesn't become available in time, reg will be 0xffffffff
83 * which means we return 0xff to the caller.
85 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
87 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
88 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
89 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
91 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
93 WAIT_FOR_BBP(rt2x00dev
, ®
);
96 value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
98 mutex_unlock(&rt2x00dev
->csr_mutex
);
103 static void rt2500pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
104 const unsigned int word
, const u32 value
)
108 mutex_lock(&rt2x00dev
->csr_mutex
);
111 * Wait until the RF becomes available, afterwards we
112 * can safely write the new data into the register.
114 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
116 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
117 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
118 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
119 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
121 rt2x00mmio_register_write(rt2x00dev
, RFCSR
, reg
);
122 rt2x00_rf_write(rt2x00dev
, word
, value
);
125 mutex_unlock(&rt2x00dev
->csr_mutex
);
128 static void rt2500pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
130 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
133 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR21
);
135 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
136 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
137 eeprom
->reg_data_clock
=
138 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
139 eeprom
->reg_chip_select
=
140 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
143 static void rt2500pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
145 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
148 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
149 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
150 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
151 !!eeprom
->reg_data_clock
);
152 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
153 !!eeprom
->reg_chip_select
);
155 rt2x00mmio_register_write(rt2x00dev
, CSR21
, reg
);
158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
159 static const struct rt2x00debug rt2500pci_rt2x00debug
= {
160 .owner
= THIS_MODULE
,
162 .read
= rt2x00mmio_register_read
,
163 .write
= rt2x00mmio_register_write
,
164 .flags
= RT2X00DEBUGFS_OFFSET
,
165 .word_base
= CSR_REG_BASE
,
166 .word_size
= sizeof(u32
),
167 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
170 .read
= rt2x00_eeprom_read
,
171 .write
= rt2x00_eeprom_write
,
172 .word_base
= EEPROM_BASE
,
173 .word_size
= sizeof(u16
),
174 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
177 .read
= rt2500pci_bbp_read
,
178 .write
= rt2500pci_bbp_write
,
179 .word_base
= BBP_BASE
,
180 .word_size
= sizeof(u8
),
181 .word_count
= BBP_SIZE
/ sizeof(u8
),
184 .read
= rt2x00_rf_read
,
185 .write
= rt2500pci_rf_write
,
186 .word_base
= RF_BASE
,
187 .word_size
= sizeof(u32
),
188 .word_count
= RF_SIZE
/ sizeof(u32
),
191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
193 static int rt2500pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
197 reg
= rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
);
198 return rt2x00_get_field32(reg
, GPIOCSR_VAL0
);
201 #ifdef CONFIG_RT2X00_LIB_LEDS
202 static void rt2500pci_brightness_set(struct led_classdev
*led_cdev
,
203 enum led_brightness brightness
)
205 struct rt2x00_led
*led
=
206 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
207 unsigned int enabled
= brightness
!= LED_OFF
;
210 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
);
212 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
213 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
214 else if (led
->type
== LED_TYPE_ACTIVITY
)
215 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
217 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
220 static int rt2500pci_blink_set(struct led_classdev
*led_cdev
,
221 unsigned long *delay_on
,
222 unsigned long *delay_off
)
224 struct rt2x00_led
*led
=
225 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
228 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
);
229 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
230 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
231 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
236 static void rt2500pci_init_led(struct rt2x00_dev
*rt2x00dev
,
237 struct rt2x00_led
*led
,
240 led
->rt2x00dev
= rt2x00dev
;
242 led
->led_dev
.brightness_set
= rt2500pci_brightness_set
;
243 led
->led_dev
.blink_set
= rt2500pci_blink_set
;
244 led
->flags
= LED_INITIALIZED
;
246 #endif /* CONFIG_RT2X00_LIB_LEDS */
249 * Configuration handlers.
251 static void rt2500pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
252 const unsigned int filter_flags
)
257 * Start configuration steps.
258 * Note that the version error will always be dropped
259 * and broadcast frames will always be accepted since
260 * there is no filter for it at this time.
262 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
263 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
264 !(filter_flags
& FIF_FCSFAIL
));
265 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
266 !(filter_flags
& FIF_PLCPFAIL
));
267 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
268 !(filter_flags
& FIF_CONTROL
));
269 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
270 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
271 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
272 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
273 !rt2x00dev
->intf_ap_count
);
274 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
275 rt2x00_set_field32(®
, RXCSR0_DROP_MCAST
,
276 !(filter_flags
& FIF_ALLMULTI
));
277 rt2x00_set_field32(®
, RXCSR0_DROP_BCAST
, 0);
278 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
281 static void rt2500pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
282 struct rt2x00_intf
*intf
,
283 struct rt2x00intf_conf
*conf
,
284 const unsigned int flags
)
286 struct data_queue
*queue
= rt2x00dev
->bcn
;
287 unsigned int bcn_preload
;
290 if (flags
& CONFIG_UPDATE_TYPE
) {
292 * Enable beacon config
294 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
295 reg
= rt2x00mmio_register_read(rt2x00dev
, BCNCSR1
);
296 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
297 rt2x00_set_field32(®
, BCNCSR1_BEACON_CWMIN
, queue
->cw_min
);
298 rt2x00mmio_register_write(rt2x00dev
, BCNCSR1
, reg
);
301 * Enable synchronisation.
303 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
304 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
305 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
308 if (flags
& CONFIG_UPDATE_MAC
)
309 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR3
,
310 conf
->mac
, sizeof(conf
->mac
));
312 if (flags
& CONFIG_UPDATE_BSSID
)
313 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR5
,
314 conf
->bssid
, sizeof(conf
->bssid
));
317 static void rt2500pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
318 struct rt2x00lib_erp
*erp
,
325 * When short preamble is enabled, we should set bit 0x08
327 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
328 preamble_mask
= erp
->short_preamble
<< 3;
330 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR1
);
331 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
, 0x162);
332 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
, 0xa2);
333 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
334 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
335 rt2x00mmio_register_write(rt2x00dev
, TXCSR1
, reg
);
337 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR2
);
338 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00);
339 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
340 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
341 GET_DURATION(ACK_SIZE
, 10));
342 rt2x00mmio_register_write(rt2x00dev
, ARCSR2
, reg
);
344 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR3
);
345 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
346 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
347 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
348 GET_DURATION(ACK_SIZE
, 20));
349 rt2x00mmio_register_write(rt2x00dev
, ARCSR3
, reg
);
351 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR4
);
352 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
353 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
354 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
355 GET_DURATION(ACK_SIZE
, 55));
356 rt2x00mmio_register_write(rt2x00dev
, ARCSR4
, reg
);
358 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR5
);
359 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
360 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
361 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
362 GET_DURATION(ACK_SIZE
, 110));
363 rt2x00mmio_register_write(rt2x00dev
, ARCSR5
, reg
);
366 if (changed
& BSS_CHANGED_BASIC_RATES
)
367 rt2x00mmio_register_write(rt2x00dev
, ARCSR1
, erp
->basic_rates
);
369 if (changed
& BSS_CHANGED_ERP_SLOT
) {
370 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
371 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, erp
->slot_time
);
372 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
374 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR18
);
375 rt2x00_set_field32(®
, CSR18_SIFS
, erp
->sifs
);
376 rt2x00_set_field32(®
, CSR18_PIFS
, erp
->pifs
);
377 rt2x00mmio_register_write(rt2x00dev
, CSR18
, reg
);
379 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR19
);
380 rt2x00_set_field32(®
, CSR19_DIFS
, erp
->difs
);
381 rt2x00_set_field32(®
, CSR19_EIFS
, erp
->eifs
);
382 rt2x00mmio_register_write(rt2x00dev
, CSR19
, reg
);
385 if (changed
& BSS_CHANGED_BEACON_INT
) {
386 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR12
);
387 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
388 erp
->beacon_int
* 16);
389 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
390 erp
->beacon_int
* 16);
391 rt2x00mmio_register_write(rt2x00dev
, CSR12
, reg
);
396 static void rt2500pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
397 struct antenna_setup
*ant
)
404 * We should never come here because rt2x00lib is supposed
405 * to catch this and send us the correct antenna explicitely.
407 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
408 ant
->tx
== ANTENNA_SW_DIVERSITY
);
410 reg
= rt2x00mmio_register_read(rt2x00dev
, BBPCSR1
);
411 r14
= rt2500pci_bbp_read(rt2x00dev
, 14);
412 r2
= rt2500pci_bbp_read(rt2x00dev
, 2);
415 * Configure the TX antenna.
419 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
420 rt2x00_set_field32(®
, BBPCSR1_CCK
, 0);
421 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 0);
425 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
426 rt2x00_set_field32(®
, BBPCSR1_CCK
, 2);
427 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 2);
432 * Configure the RX antenna.
436 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
440 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
445 * RT2525E and RT5222 need to flip TX I/Q
447 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
448 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
449 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 1);
450 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 1);
453 * RT2525E does not need RX I/Q Flip.
455 if (rt2x00_rf(rt2x00dev
, RF2525E
))
456 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
458 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 0);
459 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 0);
462 rt2x00mmio_register_write(rt2x00dev
, BBPCSR1
, reg
);
463 rt2500pci_bbp_write(rt2x00dev
, 14, r14
);
464 rt2500pci_bbp_write(rt2x00dev
, 2, r2
);
467 static void rt2500pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
468 struct rf_channel
*rf
, const int txpower
)
475 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
478 * Switch on tuning bits.
479 * For RT2523 devices we do not need to update the R1 register.
481 if (!rt2x00_rf(rt2x00dev
, RF2523
))
482 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
483 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
486 * For RT2525 we should first set the channel to half band higher.
488 if (rt2x00_rf(rt2x00dev
, RF2525
)) {
489 static const u32 vals
[] = {
490 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
491 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
492 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
493 0x00080d2e, 0x00080d3a
496 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
497 rt2500pci_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
498 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
500 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
503 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
504 rt2500pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
505 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
507 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
510 * Channel 14 requires the Japan filter bit to be set.
513 rt2x00_set_field8(&r70
, BBP_R70_JAPAN_FILTER
, rf
->channel
== 14);
514 rt2500pci_bbp_write(rt2x00dev
, 70, r70
);
519 * Switch off tuning bits.
520 * For RT2523 devices we do not need to update the R1 register.
522 if (!rt2x00_rf(rt2x00dev
, RF2523
)) {
523 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
524 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
527 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
528 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
531 * Clear false CRC during channel switch.
533 rf
->rf1
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
536 static void rt2500pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
541 rf3
= rt2x00_rf_read(rt2x00dev
, 3);
542 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
543 rt2500pci_rf_write(rt2x00dev
, 3, rf3
);
546 static void rt2500pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
547 struct rt2x00lib_conf
*libconf
)
551 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
552 rt2x00_set_field32(®
, CSR11_LONG_RETRY
,
553 libconf
->conf
->long_frame_max_tx_count
);
554 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
,
555 libconf
->conf
->short_frame_max_tx_count
);
556 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
559 static void rt2500pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
560 struct rt2x00lib_conf
*libconf
)
562 enum dev_state state
=
563 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
564 STATE_SLEEP
: STATE_AWAKE
;
567 if (state
== STATE_SLEEP
) {
568 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR20
);
569 rt2x00_set_field32(®
, CSR20_DELAY_AFTER_TBCN
,
570 (rt2x00dev
->beacon_int
- 20) * 16);
571 rt2x00_set_field32(®
, CSR20_TBCN_BEFORE_WAKEUP
,
572 libconf
->conf
->listen_interval
- 1);
574 /* We must first disable autowake before it can be enabled */
575 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
576 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
578 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 1);
579 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
581 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR20
);
582 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
583 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
586 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
589 static void rt2500pci_config(struct rt2x00_dev
*rt2x00dev
,
590 struct rt2x00lib_conf
*libconf
,
591 const unsigned int flags
)
593 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
594 rt2500pci_config_channel(rt2x00dev
, &libconf
->rf
,
595 libconf
->conf
->power_level
);
596 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
597 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
598 rt2500pci_config_txpower(rt2x00dev
,
599 libconf
->conf
->power_level
);
600 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
601 rt2500pci_config_retry_limit(rt2x00dev
, libconf
);
602 if (flags
& IEEE80211_CONF_CHANGE_PS
)
603 rt2500pci_config_ps(rt2x00dev
, libconf
);
609 static void rt2500pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
610 struct link_qual
*qual
)
615 * Update FCS error count from register.
617 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
618 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
621 * Update False CCA count from register.
623 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT3
);
624 qual
->false_cca
= rt2x00_get_field32(reg
, CNT3_FALSE_CCA
);
627 static inline void rt2500pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
628 struct link_qual
*qual
, u8 vgc_level
)
630 if (qual
->vgc_level_reg
!= vgc_level
) {
631 rt2500pci_bbp_write(rt2x00dev
, 17, vgc_level
);
632 qual
->vgc_level
= vgc_level
;
633 qual
->vgc_level_reg
= vgc_level
;
637 static void rt2500pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
638 struct link_qual
*qual
)
640 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x48);
643 static void rt2500pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
644 struct link_qual
*qual
, const u32 count
)
647 * To prevent collisions with MAC ASIC on chipsets
648 * up to version C the link tuning should halt after 20
649 * seconds while being associated.
651 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
&&
652 rt2x00dev
->intf_associated
&& count
> 20)
656 * Chipset versions C and lower should directly continue
657 * to the dynamic CCA tuning. Chipset version D and higher
658 * should go straight to dynamic CCA tuning when they
659 * are not associated.
661 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
||
662 !rt2x00dev
->intf_associated
)
663 goto dynamic_cca_tune
;
666 * A too low RSSI will cause too much false CCA which will
667 * then corrupt the R17 tuning. To remidy this the tuning should
668 * be stopped (While making sure the R17 value will not exceed limits)
670 if (qual
->rssi
< -80 && count
> 20) {
671 if (qual
->vgc_level_reg
>= 0x41)
672 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
677 * Special big-R17 for short distance
679 if (qual
->rssi
>= -58) {
680 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x50);
685 * Special mid-R17 for middle distance
687 if (qual
->rssi
>= -74) {
688 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x41);
693 * Leave short or middle distance condition, restore r17
694 * to the dynamic tuning range.
696 if (qual
->vgc_level_reg
>= 0x41) {
697 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
704 * R17 is inside the dynamic tuning range,
705 * start tuning the link based on the false cca counter.
707 if (qual
->false_cca
> 512 && qual
->vgc_level_reg
< 0x40)
708 rt2500pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level_reg
);
709 else if (qual
->false_cca
< 100 && qual
->vgc_level_reg
> 0x32)
710 rt2500pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level_reg
);
716 static void rt2500pci_start_queue(struct data_queue
*queue
)
718 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
721 switch (queue
->qid
) {
723 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
724 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 0);
725 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
728 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
729 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
730 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
731 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
732 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
739 static void rt2500pci_kick_queue(struct data_queue
*queue
)
741 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
744 switch (queue
->qid
) {
746 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
747 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, 1);
748 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
751 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
752 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, 1);
753 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
756 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
757 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, 1);
758 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
765 static void rt2500pci_stop_queue(struct data_queue
*queue
)
767 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
770 switch (queue
->qid
) {
774 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
775 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
776 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
779 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
780 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 1);
781 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
784 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
785 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
786 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
787 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
788 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
791 * Wait for possibly running tbtt tasklets.
793 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
801 * Initialization functions.
803 static bool rt2500pci_get_entry_state(struct queue_entry
*entry
)
805 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
808 if (entry
->queue
->qid
== QID_RX
) {
809 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
811 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
813 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
815 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
816 rt2x00_get_field32(word
, TXD_W0_VALID
));
820 static void rt2500pci_clear_entry(struct queue_entry
*entry
)
822 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
823 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
826 if (entry
->queue
->qid
== QID_RX
) {
827 word
= rt2x00_desc_read(entry_priv
->desc
, 1);
828 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
829 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
831 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
832 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
833 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
835 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
836 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
837 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
838 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
842 static int rt2500pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
844 struct queue_entry_priv_mmio
*entry_priv
;
848 * Initialize registers.
850 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR2
);
851 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
852 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
853 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->atim
->limit
);
854 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
855 rt2x00mmio_register_write(rt2x00dev
, TXCSR2
, reg
);
857 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
858 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR3
);
859 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
860 entry_priv
->desc_dma
);
861 rt2x00mmio_register_write(rt2x00dev
, TXCSR3
, reg
);
863 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
864 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR5
);
865 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
866 entry_priv
->desc_dma
);
867 rt2x00mmio_register_write(rt2x00dev
, TXCSR5
, reg
);
869 entry_priv
= rt2x00dev
->atim
->entries
[0].priv_data
;
870 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR4
);
871 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
872 entry_priv
->desc_dma
);
873 rt2x00mmio_register_write(rt2x00dev
, TXCSR4
, reg
);
875 entry_priv
= rt2x00dev
->bcn
->entries
[0].priv_data
;
876 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR6
);
877 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
878 entry_priv
->desc_dma
);
879 rt2x00mmio_register_write(rt2x00dev
, TXCSR6
, reg
);
881 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR1
);
882 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
883 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
884 rt2x00mmio_register_write(rt2x00dev
, RXCSR1
, reg
);
886 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
887 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR2
);
888 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
889 entry_priv
->desc_dma
);
890 rt2x00mmio_register_write(rt2x00dev
, RXCSR2
, reg
);
895 static int rt2500pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
899 rt2x00mmio_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
900 rt2x00mmio_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
901 rt2x00mmio_register_write(rt2x00dev
, PSCSR2
, 0x00020002);
902 rt2x00mmio_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
904 reg
= rt2x00mmio_register_read(rt2x00dev
, TIMECSR
);
905 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
906 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
907 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
908 rt2x00mmio_register_write(rt2x00dev
, TIMECSR
, reg
);
910 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR9
);
911 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
912 rt2x00dev
->rx
->data_size
/ 128);
913 rt2x00mmio_register_write(rt2x00dev
, CSR9
, reg
);
916 * Always use CWmin and CWmax set in descriptor.
918 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
919 rt2x00_set_field32(®
, CSR11_CW_SELECT
, 0);
920 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
922 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
923 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
924 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, 0);
925 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
926 rt2x00_set_field32(®
, CSR14_TCFP
, 0);
927 rt2x00_set_field32(®
, CSR14_TATIMW
, 0);
928 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
929 rt2x00_set_field32(®
, CSR14_CFP_COUNT_PRELOAD
, 0);
930 rt2x00_set_field32(®
, CSR14_TBCM_PRELOAD
, 0);
931 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
933 rt2x00mmio_register_write(rt2x00dev
, CNT3
, 0);
935 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR8
);
936 rt2x00_set_field32(®
, TXCSR8_BBP_ID0
, 10);
937 rt2x00_set_field32(®
, TXCSR8_BBP_ID0_VALID
, 1);
938 rt2x00_set_field32(®
, TXCSR8_BBP_ID1
, 11);
939 rt2x00_set_field32(®
, TXCSR8_BBP_ID1_VALID
, 1);
940 rt2x00_set_field32(®
, TXCSR8_BBP_ID2
, 13);
941 rt2x00_set_field32(®
, TXCSR8_BBP_ID2_VALID
, 1);
942 rt2x00_set_field32(®
, TXCSR8_BBP_ID3
, 12);
943 rt2x00_set_field32(®
, TXCSR8_BBP_ID3_VALID
, 1);
944 rt2x00mmio_register_write(rt2x00dev
, TXCSR8
, reg
);
946 reg
= rt2x00mmio_register_read(rt2x00dev
, ARTCSR0
);
947 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_1MBS
, 112);
948 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_2MBS
, 56);
949 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_5_5MBS
, 20);
950 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_11MBS
, 10);
951 rt2x00mmio_register_write(rt2x00dev
, ARTCSR0
, reg
);
953 reg
= rt2x00mmio_register_read(rt2x00dev
, ARTCSR1
);
954 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_6MBS
, 45);
955 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_9MBS
, 37);
956 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_12MBS
, 33);
957 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_18MBS
, 29);
958 rt2x00mmio_register_write(rt2x00dev
, ARTCSR1
, reg
);
960 reg
= rt2x00mmio_register_read(rt2x00dev
, ARTCSR2
);
961 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_24MBS
, 29);
962 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_36MBS
, 25);
963 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_48MBS
, 25);
964 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_54MBS
, 25);
965 rt2x00mmio_register_write(rt2x00dev
, ARTCSR2
, reg
);
967 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR3
);
968 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 47); /* CCK Signal */
969 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
970 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 51); /* Rssi */
971 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
972 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 42); /* OFDM Rate */
973 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
974 rt2x00_set_field32(®
, RXCSR3_BBP_ID3
, 51); /* RSSI */
975 rt2x00_set_field32(®
, RXCSR3_BBP_ID3_VALID
, 1);
976 rt2x00mmio_register_write(rt2x00dev
, RXCSR3
, reg
);
978 reg
= rt2x00mmio_register_read(rt2x00dev
, PCICSR
);
979 rt2x00_set_field32(®
, PCICSR_BIG_ENDIAN
, 0);
980 rt2x00_set_field32(®
, PCICSR_RX_TRESHOLD
, 0);
981 rt2x00_set_field32(®
, PCICSR_TX_TRESHOLD
, 3);
982 rt2x00_set_field32(®
, PCICSR_BURST_LENTH
, 1);
983 rt2x00_set_field32(®
, PCICSR_ENABLE_CLK
, 1);
984 rt2x00_set_field32(®
, PCICSR_READ_MULTIPLE
, 1);
985 rt2x00_set_field32(®
, PCICSR_WRITE_INVALID
, 1);
986 rt2x00mmio_register_write(rt2x00dev
, PCICSR
, reg
);
988 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
990 rt2x00mmio_register_write(rt2x00dev
, GPIOCSR
, 0x0000ff00);
991 rt2x00mmio_register_write(rt2x00dev
, TESTCSR
, 0x000000f0);
993 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
996 rt2x00mmio_register_write(rt2x00dev
, MACCSR0
, 0x00213223);
997 rt2x00mmio_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
999 reg
= rt2x00mmio_register_read(rt2x00dev
, MACCSR2
);
1000 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
1001 rt2x00mmio_register_write(rt2x00dev
, MACCSR2
, reg
);
1003 reg
= rt2x00mmio_register_read(rt2x00dev
, RALINKCSR
);
1004 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
1005 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 26);
1006 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID0
, 1);
1007 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
1008 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 26);
1009 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID1
, 1);
1010 rt2x00mmio_register_write(rt2x00dev
, RALINKCSR
, reg
);
1012 rt2x00mmio_register_write(rt2x00dev
, BBPCSR1
, 0x82188200);
1014 rt2x00mmio_register_write(rt2x00dev
, TXACKCSR0
, 0x00000020);
1016 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR1
);
1017 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
1018 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
1019 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
1020 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
1022 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR1
);
1023 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
1024 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
1025 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
1028 * We must clear the FCS and FIFO error count.
1029 * These registers are cleared on read,
1030 * so we may pass a useless variable to store the value.
1032 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
1033 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT4
);
1038 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1043 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1044 value
= rt2500pci_bbp_read(rt2x00dev
, 0);
1045 if ((value
!= 0xff) && (value
!= 0x00))
1047 udelay(REGISTER_BUSY_DELAY
);
1050 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1054 static int rt2500pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1061 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev
)))
1064 rt2500pci_bbp_write(rt2x00dev
, 3, 0x02);
1065 rt2500pci_bbp_write(rt2x00dev
, 4, 0x19);
1066 rt2500pci_bbp_write(rt2x00dev
, 14, 0x1c);
1067 rt2500pci_bbp_write(rt2x00dev
, 15, 0x30);
1068 rt2500pci_bbp_write(rt2x00dev
, 16, 0xac);
1069 rt2500pci_bbp_write(rt2x00dev
, 18, 0x18);
1070 rt2500pci_bbp_write(rt2x00dev
, 19, 0xff);
1071 rt2500pci_bbp_write(rt2x00dev
, 20, 0x1e);
1072 rt2500pci_bbp_write(rt2x00dev
, 21, 0x08);
1073 rt2500pci_bbp_write(rt2x00dev
, 22, 0x08);
1074 rt2500pci_bbp_write(rt2x00dev
, 23, 0x08);
1075 rt2500pci_bbp_write(rt2x00dev
, 24, 0x70);
1076 rt2500pci_bbp_write(rt2x00dev
, 25, 0x40);
1077 rt2500pci_bbp_write(rt2x00dev
, 26, 0x08);
1078 rt2500pci_bbp_write(rt2x00dev
, 27, 0x23);
1079 rt2500pci_bbp_write(rt2x00dev
, 30, 0x10);
1080 rt2500pci_bbp_write(rt2x00dev
, 31, 0x2b);
1081 rt2500pci_bbp_write(rt2x00dev
, 32, 0xb9);
1082 rt2500pci_bbp_write(rt2x00dev
, 34, 0x12);
1083 rt2500pci_bbp_write(rt2x00dev
, 35, 0x50);
1084 rt2500pci_bbp_write(rt2x00dev
, 39, 0xc4);
1085 rt2500pci_bbp_write(rt2x00dev
, 40, 0x02);
1086 rt2500pci_bbp_write(rt2x00dev
, 41, 0x60);
1087 rt2500pci_bbp_write(rt2x00dev
, 53, 0x10);
1088 rt2500pci_bbp_write(rt2x00dev
, 54, 0x18);
1089 rt2500pci_bbp_write(rt2x00dev
, 56, 0x08);
1090 rt2500pci_bbp_write(rt2x00dev
, 57, 0x10);
1091 rt2500pci_bbp_write(rt2x00dev
, 58, 0x08);
1092 rt2500pci_bbp_write(rt2x00dev
, 61, 0x6d);
1093 rt2500pci_bbp_write(rt2x00dev
, 62, 0x10);
1095 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1096 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
1098 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1099 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1100 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1101 rt2500pci_bbp_write(rt2x00dev
, reg_id
, value
);
1109 * Device state switch handlers.
1111 static void rt2500pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1112 enum dev_state state
)
1114 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1116 unsigned long flags
;
1119 * When interrupts are being enabled, the interrupt registers
1120 * should clear the register to assure a clean state.
1122 if (state
== STATE_RADIO_IRQ_ON
) {
1123 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR7
);
1124 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
1128 * Only toggle the interrupts bits we are going to use.
1129 * Non-checked interrupt bits are disabled by default.
1131 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
1133 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1134 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
1135 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
1136 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
1137 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
1138 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
1139 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1141 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
1143 if (state
== STATE_RADIO_IRQ_OFF
) {
1145 * Ensure that all tasklets are finished.
1147 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1148 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1149 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1153 static int rt2500pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1156 * Initialize all registers.
1158 if (unlikely(rt2500pci_init_queues(rt2x00dev
) ||
1159 rt2500pci_init_registers(rt2x00dev
) ||
1160 rt2500pci_init_bbp(rt2x00dev
)))
1166 static void rt2500pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1171 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0);
1174 static int rt2500pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1175 enum dev_state state
)
1183 put_to_sleep
= (state
!= STATE_AWAKE
);
1185 reg
= rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
);
1186 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1187 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1188 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1189 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1190 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1193 * Device is not guaranteed to be in the requested state yet.
1194 * We must wait until the register indicates that the
1195 * device has entered the correct state.
1197 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1198 reg2
= rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
);
1199 bbp_state
= rt2x00_get_field32(reg2
, PWRCSR1_BBP_CURR_STATE
);
1200 rf_state
= rt2x00_get_field32(reg2
, PWRCSR1_RF_CURR_STATE
);
1201 if (bbp_state
== state
&& rf_state
== state
)
1203 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1210 static int rt2500pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1211 enum dev_state state
)
1216 case STATE_RADIO_ON
:
1217 retval
= rt2500pci_enable_radio(rt2x00dev
);
1219 case STATE_RADIO_OFF
:
1220 rt2500pci_disable_radio(rt2x00dev
);
1222 case STATE_RADIO_IRQ_ON
:
1223 case STATE_RADIO_IRQ_OFF
:
1224 rt2500pci_toggle_irq(rt2x00dev
, state
);
1226 case STATE_DEEP_SLEEP
:
1230 retval
= rt2500pci_set_state(rt2x00dev
, state
);
1237 if (unlikely(retval
))
1238 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1245 * TX descriptor initialization
1247 static void rt2500pci_write_tx_desc(struct queue_entry
*entry
,
1248 struct txentry_desc
*txdesc
)
1250 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1251 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1252 __le32
*txd
= entry_priv
->desc
;
1256 * Start writing the descriptor words.
1258 word
= rt2x00_desc_read(txd
, 1);
1259 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1260 rt2x00_desc_write(txd
, 1, word
);
1262 word
= rt2x00_desc_read(txd
, 2);
1263 rt2x00_set_field32(&word
, TXD_W2_IV_OFFSET
, IEEE80211_HEADER
);
1264 rt2x00_set_field32(&word
, TXD_W2_AIFS
, entry
->queue
->aifs
);
1265 rt2x00_set_field32(&word
, TXD_W2_CWMIN
, entry
->queue
->cw_min
);
1266 rt2x00_set_field32(&word
, TXD_W2_CWMAX
, entry
->queue
->cw_max
);
1267 rt2x00_desc_write(txd
, 2, word
);
1269 word
= rt2x00_desc_read(txd
, 3);
1270 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1271 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1272 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW
,
1273 txdesc
->u
.plcp
.length_low
);
1274 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH
,
1275 txdesc
->u
.plcp
.length_high
);
1276 rt2x00_desc_write(txd
, 3, word
);
1278 word
= rt2x00_desc_read(txd
, 10);
1279 rt2x00_set_field32(&word
, TXD_W10_RTS
,
1280 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1281 rt2x00_desc_write(txd
, 10, word
);
1284 * Writing TXD word 0 must the last to prevent a race condition with
1285 * the device, whereby the device may take hold of the TXD before we
1286 * finished updating it.
1288 word
= rt2x00_desc_read(txd
, 0);
1289 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1290 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1291 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1292 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1293 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1294 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1295 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1296 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1297 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1298 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1299 rt2x00_set_field32(&word
, TXD_W0_CIPHER_OWNER
, 1);
1300 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1301 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1302 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1303 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1304 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1305 rt2x00_desc_write(txd
, 0, word
);
1308 * Register descriptor details in skb frame descriptor.
1310 skbdesc
->desc
= txd
;
1311 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1315 * TX data initialization
1317 static void rt2500pci_write_beacon(struct queue_entry
*entry
,
1318 struct txentry_desc
*txdesc
)
1320 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1324 * Disable beaconing while we are reloading the beacon data,
1325 * otherwise we might be sending out invalid data.
1327 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
1328 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1329 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1331 if (rt2x00queue_map_txskb(entry
)) {
1332 rt2x00_err(rt2x00dev
, "Fail to map beacon, aborting\n");
1337 * Write the TX descriptor for the beacon.
1339 rt2500pci_write_tx_desc(entry
, txdesc
);
1342 * Dump beacon to userspace through debugfs.
1344 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1347 * Enable beaconing again.
1349 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1350 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1354 * RX control handlers
1356 static void rt2500pci_fill_rxdone(struct queue_entry
*entry
,
1357 struct rxdone_entry_desc
*rxdesc
)
1359 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1363 word0
= rt2x00_desc_read(entry_priv
->desc
, 0);
1364 word2
= rt2x00_desc_read(entry_priv
->desc
, 2);
1366 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1367 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1368 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1369 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1372 * Obtain the status about this packet.
1373 * When frame was received with an OFDM bitrate,
1374 * the signal is the PLCP value. If it was received with
1375 * a CCK bitrate the signal is the rate in 100kbit/s.
1377 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
);
1378 rxdesc
->rssi
= rt2x00_get_field32(word2
, RXD_W2_RSSI
) -
1379 entry
->queue
->rt2x00dev
->rssi_offset
;
1380 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1382 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1383 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1385 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1386 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1387 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1391 * Interrupt functions.
1393 static void rt2500pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1394 const enum data_queue_qid queue_idx
)
1396 struct data_queue
*queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
1397 struct queue_entry_priv_mmio
*entry_priv
;
1398 struct queue_entry
*entry
;
1399 struct txdone_entry_desc txdesc
;
1402 while (!rt2x00queue_empty(queue
)) {
1403 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1404 entry_priv
= entry
->priv_data
;
1405 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1407 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1408 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1412 * Obtain the status about this packet.
1415 switch (rt2x00_get_field32(word
, TXD_W0_RESULT
)) {
1416 case 0: /* Success */
1417 case 1: /* Success with retry */
1418 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
1420 case 2: /* Failure, excessive retries */
1421 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
1422 /* Fall through - this is a failed frame! */
1423 default: /* Failure */
1424 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
1426 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1428 rt2x00lib_txdone(entry
, &txdesc
);
1432 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
1433 struct rt2x00_field32 irq_field
)
1438 * Enable a single interrupt. The interrupt mask register
1439 * access needs locking.
1441 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1443 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1444 rt2x00_set_field32(®
, irq_field
, 0);
1445 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1447 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1450 static void rt2500pci_txstatus_tasklet(unsigned long data
)
1452 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1456 * Handle all tx queues.
1458 rt2500pci_txdone(rt2x00dev
, QID_ATIM
);
1459 rt2500pci_txdone(rt2x00dev
, QID_AC_VO
);
1460 rt2500pci_txdone(rt2x00dev
, QID_AC_VI
);
1463 * Enable all TXDONE interrupts again.
1465 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
)) {
1466 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1468 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1469 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, 0);
1470 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, 0);
1471 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, 0);
1472 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1474 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1478 static void rt2500pci_tbtt_tasklet(unsigned long data
)
1480 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1481 rt2x00lib_beacondone(rt2x00dev
);
1482 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1483 rt2500pci_enable_interrupt(rt2x00dev
, CSR8_TBCN_EXPIRE
);
1486 static void rt2500pci_rxdone_tasklet(unsigned long data
)
1488 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1489 if (rt2x00mmio_rxdone(rt2x00dev
))
1490 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1491 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1492 rt2500pci_enable_interrupt(rt2x00dev
, CSR8_RXDONE
);
1495 static irqreturn_t
rt2500pci_interrupt(int irq
, void *dev_instance
)
1497 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1501 * Get the interrupt sources & saved to local variable.
1502 * Write register value back to clear pending interrupts.
1504 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR7
);
1505 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
1510 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1516 * Schedule tasklets for interrupt handling.
1518 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1519 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
1521 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1522 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1524 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
) ||
1525 rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
) ||
1526 rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
)) {
1527 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
1529 * Mask out all txdone interrupts.
1531 rt2x00_set_field32(&mask
, CSR8_TXDONE_TXRING
, 1);
1532 rt2x00_set_field32(&mask
, CSR8_TXDONE_ATIMRING
, 1);
1533 rt2x00_set_field32(&mask
, CSR8_TXDONE_PRIORING
, 1);
1537 * Disable all interrupts for which a tasklet was scheduled right now,
1538 * the tasklet will reenable the appropriate interrupts.
1540 spin_lock(&rt2x00dev
->irqmask_lock
);
1542 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1544 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1546 spin_unlock(&rt2x00dev
->irqmask_lock
);
1552 * Device probe functions.
1554 static int rt2500pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1556 struct eeprom_93cx6 eeprom
;
1561 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR21
);
1563 eeprom
.data
= rt2x00dev
;
1564 eeprom
.register_read
= rt2500pci_eepromregister_read
;
1565 eeprom
.register_write
= rt2500pci_eepromregister_write
;
1566 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1567 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1568 eeprom
.reg_data_in
= 0;
1569 eeprom
.reg_data_out
= 0;
1570 eeprom
.reg_data_clock
= 0;
1571 eeprom
.reg_chip_select
= 0;
1573 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1574 EEPROM_SIZE
/ sizeof(u16
));
1577 * Start validation of the data that has been read.
1579 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1580 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
1582 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1583 if (word
== 0xffff) {
1584 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1585 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1586 ANTENNA_SW_DIVERSITY
);
1587 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1588 ANTENNA_SW_DIVERSITY
);
1589 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1591 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1592 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1593 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1594 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1595 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1598 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
1599 if (word
== 0xffff) {
1600 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1601 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1602 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1603 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1604 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
1607 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
);
1608 if (word
== 0xffff) {
1609 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1610 DEFAULT_RSSI_OFFSET
);
1611 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1612 rt2x00_eeprom_dbg(rt2x00dev
, "Calibrate offset: 0x%04x\n",
1619 static int rt2500pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1626 * Read EEPROM word for configuration.
1628 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1631 * Identify RF chipset.
1633 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1634 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR0
);
1635 rt2x00_set_chip(rt2x00dev
, RT2560
, value
,
1636 rt2x00_get_field32(reg
, CSR0_REVISION
));
1638 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1639 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1640 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1641 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1642 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1643 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1644 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1649 * Identify default antenna configuration.
1651 rt2x00dev
->default_ant
.tx
=
1652 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1653 rt2x00dev
->default_ant
.rx
=
1654 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1657 * Store led mode, for correct led behaviour.
1659 #ifdef CONFIG_RT2X00_LIB_LEDS
1660 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1662 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1663 if (value
== LED_MODE_TXRX_ACTIVITY
||
1664 value
== LED_MODE_DEFAULT
||
1665 value
== LED_MODE_ASUS
)
1666 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1668 #endif /* CONFIG_RT2X00_LIB_LEDS */
1671 * Detect if this device has an hardware controlled radio.
1673 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
)) {
1674 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1676 * On this device RFKILL initialized during probe does not work.
1678 __set_bit(REQUIRE_DELAYED_RFKILL
, &rt2x00dev
->cap_flags
);
1682 * Check if the BBP tuning should be enabled.
1684 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
1685 if (!rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1686 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
1689 * Read the RSSI <-> dBm offset information.
1691 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
);
1692 rt2x00dev
->rssi_offset
=
1693 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1699 * RF value list for RF2522
1702 static const struct rf_channel rf_vals_bg_2522
[] = {
1703 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1704 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1705 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1706 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1707 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1708 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1709 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1710 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1711 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1712 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1713 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1714 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1715 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1716 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1720 * RF value list for RF2523
1723 static const struct rf_channel rf_vals_bg_2523
[] = {
1724 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1725 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1726 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1727 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1728 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1729 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1730 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1731 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1732 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1733 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1734 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1735 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1736 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1737 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1741 * RF value list for RF2524
1744 static const struct rf_channel rf_vals_bg_2524
[] = {
1745 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1746 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1747 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1748 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1749 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1750 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1751 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1752 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1753 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1754 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1755 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1756 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1757 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1758 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1762 * RF value list for RF2525
1765 static const struct rf_channel rf_vals_bg_2525
[] = {
1766 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1767 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1768 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1769 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1770 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1771 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1772 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1773 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1774 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1775 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1776 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1777 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1778 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1779 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1783 * RF value list for RF2525e
1786 static const struct rf_channel rf_vals_bg_2525e
[] = {
1787 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1788 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1789 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1790 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1791 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1792 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1793 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1794 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1795 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1796 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1797 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1798 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1799 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1800 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1804 * RF value list for RF5222
1805 * Supports: 2.4 GHz & 5.2 GHz
1807 static const struct rf_channel rf_vals_5222
[] = {
1808 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1809 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1810 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1811 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1812 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1813 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1814 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1815 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1816 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1817 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1818 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1819 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1820 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1821 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1823 /* 802.11 UNI / HyperLan 2 */
1824 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1825 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1826 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1827 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1828 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1829 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1830 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1831 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1833 /* 802.11 HyperLan 2 */
1834 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1835 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1836 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1837 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1838 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1839 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1840 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1841 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1842 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1843 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1846 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1847 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1848 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1849 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1850 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1853 static int rt2500pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1855 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1856 struct channel_info
*info
;
1861 * Initialize all hw fields.
1863 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
1864 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
1865 ieee80211_hw_set(rt2x00dev
->hw
, HOST_BROADCAST_PS_BUFFERING
);
1866 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
1868 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1869 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1870 rt2x00_eeprom_addr(rt2x00dev
,
1871 EEPROM_MAC_ADDR_0
));
1874 * Disable powersaving as default.
1876 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
1879 * Initialize hw_mode information.
1881 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1882 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1884 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1885 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1886 spec
->channels
= rf_vals_bg_2522
;
1887 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1888 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1889 spec
->channels
= rf_vals_bg_2523
;
1890 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1891 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1892 spec
->channels
= rf_vals_bg_2524
;
1893 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1894 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1895 spec
->channels
= rf_vals_bg_2525
;
1896 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1897 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1898 spec
->channels
= rf_vals_bg_2525e
;
1899 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1900 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1901 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1902 spec
->channels
= rf_vals_5222
;
1906 * Create channel information array
1908 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1912 spec
->channels_info
= info
;
1914 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1915 for (i
= 0; i
< 14; i
++) {
1916 info
[i
].max_power
= MAX_TXPOWER
;
1917 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1920 if (spec
->num_channels
> 14) {
1921 for (i
= 14; i
< spec
->num_channels
; i
++) {
1922 info
[i
].max_power
= MAX_TXPOWER
;
1923 info
[i
].default_power1
= DEFAULT_TXPOWER
;
1930 static int rt2500pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1936 * Allocate eeprom data.
1938 retval
= rt2500pci_validate_eeprom(rt2x00dev
);
1942 retval
= rt2500pci_init_eeprom(rt2x00dev
);
1947 * Enable rfkill polling by setting GPIO direction of the
1948 * rfkill switch GPIO pin correctly.
1950 reg
= rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
);
1951 rt2x00_set_field32(®
, GPIOCSR_DIR0
, 1);
1952 rt2x00mmio_register_write(rt2x00dev
, GPIOCSR
, reg
);
1955 * Initialize hw specifications.
1957 retval
= rt2500pci_probe_hw_mode(rt2x00dev
);
1962 * This device requires the atim queue and DMA-mapped skbs.
1964 __set_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1965 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
1966 __set_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
);
1969 * Set the rssi offset.
1971 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1977 * IEEE80211 stack callback functions.
1979 static u64
rt2500pci_get_tsf(struct ieee80211_hw
*hw
,
1980 struct ieee80211_vif
*vif
)
1982 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1986 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR17
);
1987 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1988 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR16
);
1989 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
1994 static int rt2500pci_tx_last_beacon(struct ieee80211_hw
*hw
)
1996 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1999 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR15
);
2000 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
2003 static const struct ieee80211_ops rt2500pci_mac80211_ops
= {
2005 .start
= rt2x00mac_start
,
2006 .stop
= rt2x00mac_stop
,
2007 .add_interface
= rt2x00mac_add_interface
,
2008 .remove_interface
= rt2x00mac_remove_interface
,
2009 .config
= rt2x00mac_config
,
2010 .configure_filter
= rt2x00mac_configure_filter
,
2011 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2012 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2013 .get_stats
= rt2x00mac_get_stats
,
2014 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2015 .conf_tx
= rt2x00mac_conf_tx
,
2016 .get_tsf
= rt2500pci_get_tsf
,
2017 .tx_last_beacon
= rt2500pci_tx_last_beacon
,
2018 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2019 .flush
= rt2x00mac_flush
,
2020 .set_antenna
= rt2x00mac_set_antenna
,
2021 .get_antenna
= rt2x00mac_get_antenna
,
2022 .get_ringparam
= rt2x00mac_get_ringparam
,
2023 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2026 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops
= {
2027 .irq_handler
= rt2500pci_interrupt
,
2028 .txstatus_tasklet
= rt2500pci_txstatus_tasklet
,
2029 .tbtt_tasklet
= rt2500pci_tbtt_tasklet
,
2030 .rxdone_tasklet
= rt2500pci_rxdone_tasklet
,
2031 .probe_hw
= rt2500pci_probe_hw
,
2032 .initialize
= rt2x00mmio_initialize
,
2033 .uninitialize
= rt2x00mmio_uninitialize
,
2034 .get_entry_state
= rt2500pci_get_entry_state
,
2035 .clear_entry
= rt2500pci_clear_entry
,
2036 .set_device_state
= rt2500pci_set_device_state
,
2037 .rfkill_poll
= rt2500pci_rfkill_poll
,
2038 .link_stats
= rt2500pci_link_stats
,
2039 .reset_tuner
= rt2500pci_reset_tuner
,
2040 .link_tuner
= rt2500pci_link_tuner
,
2041 .start_queue
= rt2500pci_start_queue
,
2042 .kick_queue
= rt2500pci_kick_queue
,
2043 .stop_queue
= rt2500pci_stop_queue
,
2044 .flush_queue
= rt2x00mmio_flush_queue
,
2045 .write_tx_desc
= rt2500pci_write_tx_desc
,
2046 .write_beacon
= rt2500pci_write_beacon
,
2047 .fill_rxdone
= rt2500pci_fill_rxdone
,
2048 .config_filter
= rt2500pci_config_filter
,
2049 .config_intf
= rt2500pci_config_intf
,
2050 .config_erp
= rt2500pci_config_erp
,
2051 .config_ant
= rt2500pci_config_ant
,
2052 .config
= rt2500pci_config
,
2055 static void rt2500pci_queue_init(struct data_queue
*queue
)
2057 switch (queue
->qid
) {
2060 queue
->data_size
= DATA_FRAME_SIZE
;
2061 queue
->desc_size
= RXD_DESC_SIZE
;
2062 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2070 queue
->data_size
= DATA_FRAME_SIZE
;
2071 queue
->desc_size
= TXD_DESC_SIZE
;
2072 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2077 queue
->data_size
= MGMT_FRAME_SIZE
;
2078 queue
->desc_size
= TXD_DESC_SIZE
;
2079 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2084 queue
->data_size
= DATA_FRAME_SIZE
;
2085 queue
->desc_size
= TXD_DESC_SIZE
;
2086 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2095 static const struct rt2x00_ops rt2500pci_ops
= {
2096 .name
= KBUILD_MODNAME
,
2098 .eeprom_size
= EEPROM_SIZE
,
2100 .tx_queues
= NUM_TX_QUEUES
,
2101 .queue_init
= rt2500pci_queue_init
,
2102 .lib
= &rt2500pci_rt2x00_ops
,
2103 .hw
= &rt2500pci_mac80211_ops
,
2104 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2105 .debugfs
= &rt2500pci_rt2x00debug
,
2106 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2110 * RT2500pci module information.
2112 static const struct pci_device_id rt2500pci_device_table
[] = {
2113 { PCI_DEVICE(0x1814, 0x0201) },
2117 MODULE_AUTHOR(DRV_PROJECT
);
2118 MODULE_VERSION(DRV_VERSION
);
2119 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2120 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2121 MODULE_DEVICE_TABLE(pci
, rt2500pci_device_table
);
2122 MODULE_LICENSE("GPL");
2124 static int rt2500pci_probe(struct pci_dev
*pci_dev
,
2125 const struct pci_device_id
*id
)
2127 return rt2x00pci_probe(pci_dev
, &rt2500pci_ops
);
2130 static struct pci_driver rt2500pci_driver
= {
2131 .name
= KBUILD_MODNAME
,
2132 .id_table
= rt2500pci_device_table
,
2133 .probe
= rt2500pci_probe
,
2134 .remove
= rt2x00pci_remove
,
2135 .suspend
= rt2x00pci_suspend
,
2136 .resume
= rt2x00pci_resume
,
2139 module_pci_driver(rt2500pci_driver
);