1 // SPDX-License-Identifier: GPL-2.0-or-later
3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
10 Abstract: rt2500usb device specific routines.
11 Supported chipsets: RT2570.
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/usb.h>
22 #include "rt2x00usb.h"
23 #include "rt2500usb.h"
26 * Allow hardware encryption to be disabled.
28 static bool modparam_nohwcrypt
;
29 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, 0444);
30 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
34 * All access to the CSR registers will go through the methods
35 * rt2500usb_register_read and rt2500usb_register_write.
36 * BBP and RF register require indirect register access,
37 * and use the CSR registers BBPCSR and RFCSR to achieve this.
38 * These indirect registers work with busy bits,
39 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
40 * the register while taking a REGISTER_BUSY_DELAY us delay
41 * between each attampt. When the busy bit is still set at that time,
42 * the access attempt is considered to have failed,
43 * and we will print an error.
44 * If the csr_mutex is already held then the _lock variants must
47 static u16
rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
48 const unsigned int offset
)
51 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
52 USB_VENDOR_REQUEST_IN
, offset
,
54 return le16_to_cpu(reg
);
57 static u16
rt2500usb_register_read_lock(struct rt2x00_dev
*rt2x00dev
,
58 const unsigned int offset
)
61 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_READ
,
62 USB_VENDOR_REQUEST_IN
, offset
,
63 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
64 return le16_to_cpu(reg
);
67 static void rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
68 const unsigned int offset
,
71 __le16 reg
= cpu_to_le16(value
);
72 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
73 USB_VENDOR_REQUEST_OUT
, offset
,
77 static void rt2500usb_register_write_lock(struct rt2x00_dev
*rt2x00dev
,
78 const unsigned int offset
,
81 __le16 reg
= cpu_to_le16(value
);
82 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_WRITE
,
83 USB_VENDOR_REQUEST_OUT
, offset
,
84 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
87 static void rt2500usb_register_multiwrite(struct rt2x00_dev
*rt2x00dev
,
88 const unsigned int offset
,
89 void *value
, const u16 length
)
91 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
92 USB_VENDOR_REQUEST_OUT
, offset
,
96 static int rt2500usb_regbusy_read(struct rt2x00_dev
*rt2x00dev
,
97 const unsigned int offset
,
98 struct rt2x00_field16 field
,
103 for (i
= 0; i
< REGISTER_USB_BUSY_COUNT
; i
++) {
104 *reg
= rt2500usb_register_read_lock(rt2x00dev
, offset
);
105 if (!rt2x00_get_field16(*reg
, field
))
107 udelay(REGISTER_BUSY_DELAY
);
110 rt2x00_err(rt2x00dev
, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
117 #define WAIT_FOR_BBP(__dev, __reg) \
118 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
119 #define WAIT_FOR_RF(__dev, __reg) \
120 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
122 static void rt2500usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
123 const unsigned int word
, const u8 value
)
127 mutex_lock(&rt2x00dev
->csr_mutex
);
130 * Wait until the BBP becomes available, afterwards we
131 * can safely write the new data into the register.
133 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
135 rt2x00_set_field16(®
, PHY_CSR7_DATA
, value
);
136 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
137 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 0);
139 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
142 mutex_unlock(&rt2x00dev
->csr_mutex
);
145 static u8
rt2500usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
146 const unsigned int word
)
151 mutex_lock(&rt2x00dev
->csr_mutex
);
154 * Wait until the BBP becomes available, afterwards we
155 * can safely write the read request into the register.
156 * After the data has been written, we wait until hardware
157 * returns the correct value, if at any time the register
158 * doesn't become available in time, reg will be 0xffffffff
159 * which means we return 0xff to the caller.
161 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
163 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
164 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 1);
166 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
168 if (WAIT_FOR_BBP(rt2x00dev
, ®
))
169 reg
= rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR7
);
172 value
= rt2x00_get_field16(reg
, PHY_CSR7_DATA
);
174 mutex_unlock(&rt2x00dev
->csr_mutex
);
179 static void rt2500usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
180 const unsigned int word
, const u32 value
)
184 mutex_lock(&rt2x00dev
->csr_mutex
);
187 * Wait until the RF becomes available, afterwards we
188 * can safely write the new data into the register.
190 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
192 rt2x00_set_field16(®
, PHY_CSR9_RF_VALUE
, value
);
193 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR9
, reg
);
196 rt2x00_set_field16(®
, PHY_CSR10_RF_VALUE
, value
>> 16);
197 rt2x00_set_field16(®
, PHY_CSR10_RF_NUMBER_OF_BITS
, 20);
198 rt2x00_set_field16(®
, PHY_CSR10_RF_IF_SELECT
, 0);
199 rt2x00_set_field16(®
, PHY_CSR10_RF_BUSY
, 1);
201 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR10
, reg
);
202 rt2x00_rf_write(rt2x00dev
, word
, value
);
205 mutex_unlock(&rt2x00dev
->csr_mutex
);
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
209 static u32
_rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
210 const unsigned int offset
)
212 return rt2500usb_register_read(rt2x00dev
, offset
);
215 static void _rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
216 const unsigned int offset
,
219 rt2500usb_register_write(rt2x00dev
, offset
, value
);
222 static const struct rt2x00debug rt2500usb_rt2x00debug
= {
223 .owner
= THIS_MODULE
,
225 .read
= _rt2500usb_register_read
,
226 .write
= _rt2500usb_register_write
,
227 .flags
= RT2X00DEBUGFS_OFFSET
,
228 .word_base
= CSR_REG_BASE
,
229 .word_size
= sizeof(u16
),
230 .word_count
= CSR_REG_SIZE
/ sizeof(u16
),
233 .read
= rt2x00_eeprom_read
,
234 .write
= rt2x00_eeprom_write
,
235 .word_base
= EEPROM_BASE
,
236 .word_size
= sizeof(u16
),
237 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
240 .read
= rt2500usb_bbp_read
,
241 .write
= rt2500usb_bbp_write
,
242 .word_base
= BBP_BASE
,
243 .word_size
= sizeof(u8
),
244 .word_count
= BBP_SIZE
/ sizeof(u8
),
247 .read
= rt2x00_rf_read
,
248 .write
= rt2500usb_rf_write
,
249 .word_base
= RF_BASE
,
250 .word_size
= sizeof(u32
),
251 .word_count
= RF_SIZE
/ sizeof(u32
),
254 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
256 static int rt2500usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
260 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR19
);
261 return rt2x00_get_field16(reg
, MAC_CSR19_VAL7
);
264 #ifdef CONFIG_RT2X00_LIB_LEDS
265 static void rt2500usb_brightness_set(struct led_classdev
*led_cdev
,
266 enum led_brightness brightness
)
268 struct rt2x00_led
*led
=
269 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
270 unsigned int enabled
= brightness
!= LED_OFF
;
273 reg
= rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR20
);
275 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
276 rt2x00_set_field16(®
, MAC_CSR20_LINK
, enabled
);
277 else if (led
->type
== LED_TYPE_ACTIVITY
)
278 rt2x00_set_field16(®
, MAC_CSR20_ACTIVITY
, enabled
);
280 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR20
, reg
);
283 static int rt2500usb_blink_set(struct led_classdev
*led_cdev
,
284 unsigned long *delay_on
,
285 unsigned long *delay_off
)
287 struct rt2x00_led
*led
=
288 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
291 reg
= rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR21
);
292 rt2x00_set_field16(®
, MAC_CSR21_ON_PERIOD
, *delay_on
);
293 rt2x00_set_field16(®
, MAC_CSR21_OFF_PERIOD
, *delay_off
);
294 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR21
, reg
);
299 static void rt2500usb_init_led(struct rt2x00_dev
*rt2x00dev
,
300 struct rt2x00_led
*led
,
303 led
->rt2x00dev
= rt2x00dev
;
305 led
->led_dev
.brightness_set
= rt2500usb_brightness_set
;
306 led
->led_dev
.blink_set
= rt2500usb_blink_set
;
307 led
->flags
= LED_INITIALIZED
;
309 #endif /* CONFIG_RT2X00_LIB_LEDS */
312 * Configuration handlers.
316 * rt2500usb does not differentiate between shared and pairwise
317 * keys, so we should use the same function for both key types.
319 static int rt2500usb_config_key(struct rt2x00_dev
*rt2x00dev
,
320 struct rt2x00lib_crypto
*crypto
,
321 struct ieee80211_key_conf
*key
)
325 enum cipher curr_cipher
;
327 if (crypto
->cmd
== SET_KEY
) {
329 * Disallow to set WEP key other than with index 0,
330 * it is known that not work at least on some hardware.
331 * SW crypto will be used in that case.
333 if ((key
->cipher
== WLAN_CIPHER_SUITE_WEP40
||
334 key
->cipher
== WLAN_CIPHER_SUITE_WEP104
) &&
339 * Pairwise key will always be entry 0, but this
340 * could collide with a shared key on the same
343 mask
= TXRX_CSR0_KEY_ID
.bit_mask
;
345 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
);
346 curr_cipher
= rt2x00_get_field16(reg
, TXRX_CSR0_ALGORITHM
);
349 if (reg
&& reg
== mask
)
352 reg
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
354 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
356 * Hardware requires that all keys use the same cipher
357 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
358 * If this is not the first key, compare the cipher with the
359 * first one and fall back to SW crypto if not the same.
361 if (key
->hw_key_idx
> 0 && crypto
->cipher
!= curr_cipher
)
364 rt2500usb_register_multiwrite(rt2x00dev
, KEY_ENTRY(key
->hw_key_idx
),
365 crypto
->key
, sizeof(crypto
->key
));
368 * The driver does not support the IV/EIV generation
369 * in hardware. However it demands the data to be provided
370 * both separately as well as inside the frame.
371 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
372 * to ensure rt2x00lib will not strip the data from the
373 * frame after the copy, now we must tell mac80211
374 * to generate the IV/EIV data.
376 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
377 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_MMIC
;
381 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
382 * a particular key is valid.
384 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
);
385 rt2x00_set_field16(®
, TXRX_CSR0_ALGORITHM
, crypto
->cipher
);
386 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
388 mask
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
389 if (crypto
->cmd
== SET_KEY
)
390 mask
|= 1 << key
->hw_key_idx
;
391 else if (crypto
->cmd
== DISABLE_KEY
)
392 mask
&= ~(1 << key
->hw_key_idx
);
393 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, mask
);
394 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
399 static void rt2500usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
400 const unsigned int filter_flags
)
405 * Start configuration steps.
406 * Note that the version error will always be dropped
407 * and broadcast frames will always be accepted since
408 * there is no filter for it at this time.
410 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
);
411 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CRC
,
412 !(filter_flags
& FIF_FCSFAIL
));
413 rt2x00_set_field16(®
, TXRX_CSR2_DROP_PHYSICAL
,
414 !(filter_flags
& FIF_PLCPFAIL
));
415 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CONTROL
,
416 !(filter_flags
& FIF_CONTROL
));
417 rt2x00_set_field16(®
, TXRX_CSR2_DROP_NOT_TO_ME
,
418 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
419 rt2x00_set_field16(®
, TXRX_CSR2_DROP_TODS
,
420 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
421 !rt2x00dev
->intf_ap_count
);
422 rt2x00_set_field16(®
, TXRX_CSR2_DROP_VERSION_ERROR
, 1);
423 rt2x00_set_field16(®
, TXRX_CSR2_DROP_MULTICAST
,
424 !(filter_flags
& FIF_ALLMULTI
));
425 rt2x00_set_field16(®
, TXRX_CSR2_DROP_BROADCAST
, 0);
426 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
429 static void rt2500usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
430 struct rt2x00_intf
*intf
,
431 struct rt2x00intf_conf
*conf
,
432 const unsigned int flags
)
434 unsigned int bcn_preload
;
437 if (flags
& CONFIG_UPDATE_TYPE
) {
439 * Enable beacon config
441 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
442 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR20
);
443 rt2x00_set_field16(®
, TXRX_CSR20_OFFSET
, bcn_preload
>> 6);
444 rt2x00_set_field16(®
, TXRX_CSR20_BCN_EXPECT_WINDOW
,
445 2 * (conf
->type
!= NL80211_IFTYPE_STATION
));
446 rt2500usb_register_write(rt2x00dev
, TXRX_CSR20
, reg
);
449 * Enable synchronisation.
451 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
);
452 rt2x00_set_field16(®
, TXRX_CSR18_OFFSET
, 0);
453 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
455 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
456 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, conf
->sync
);
457 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
460 if (flags
& CONFIG_UPDATE_MAC
)
461 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR2
, conf
->mac
,
462 (3 * sizeof(__le16
)));
464 if (flags
& CONFIG_UPDATE_BSSID
)
465 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR5
, conf
->bssid
,
466 (3 * sizeof(__le16
)));
469 static void rt2500usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
470 struct rt2x00lib_erp
*erp
,
475 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
476 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR10
);
477 rt2x00_set_field16(®
, TXRX_CSR10_AUTORESPOND_PREAMBLE
,
478 !!erp
->short_preamble
);
479 rt2500usb_register_write(rt2x00dev
, TXRX_CSR10
, reg
);
482 if (changed
& BSS_CHANGED_BASIC_RATES
)
483 rt2500usb_register_write(rt2x00dev
, TXRX_CSR11
,
486 if (changed
& BSS_CHANGED_BEACON_INT
) {
487 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
);
488 rt2x00_set_field16(®
, TXRX_CSR18_INTERVAL
,
489 erp
->beacon_int
* 4);
490 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
493 if (changed
& BSS_CHANGED_ERP_SLOT
) {
494 rt2500usb_register_write(rt2x00dev
, MAC_CSR10
, erp
->slot_time
);
495 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, erp
->sifs
);
496 rt2500usb_register_write(rt2x00dev
, MAC_CSR12
, erp
->eifs
);
500 static void rt2500usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
501 struct antenna_setup
*ant
)
509 * We should never come here because rt2x00lib is supposed
510 * to catch this and send us the correct antenna explicitely.
512 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
513 ant
->tx
== ANTENNA_SW_DIVERSITY
);
515 r2
= rt2500usb_bbp_read(rt2x00dev
, 2);
516 r14
= rt2500usb_bbp_read(rt2x00dev
, 14);
517 csr5
= rt2500usb_register_read(rt2x00dev
, PHY_CSR5
);
518 csr6
= rt2500usb_register_read(rt2x00dev
, PHY_CSR6
);
521 * Configure the TX antenna.
524 case ANTENNA_HW_DIVERSITY
:
525 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 1);
526 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 1);
527 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 1);
530 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
531 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 0);
532 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 0);
536 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
537 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 2);
538 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 2);
543 * Configure the RX antenna.
546 case ANTENNA_HW_DIVERSITY
:
547 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 1);
550 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
554 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
559 * RT2525E and RT5222 need to flip TX I/Q
561 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
562 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
563 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 1);
564 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 1);
567 * RT2525E does not need RX I/Q Flip.
569 if (rt2x00_rf(rt2x00dev
, RF2525E
))
570 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
572 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 0);
573 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 0);
576 rt2500usb_bbp_write(rt2x00dev
, 2, r2
);
577 rt2500usb_bbp_write(rt2x00dev
, 14, r14
);
578 rt2500usb_register_write(rt2x00dev
, PHY_CSR5
, csr5
);
579 rt2500usb_register_write(rt2x00dev
, PHY_CSR6
, csr6
);
582 static void rt2500usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
583 struct rf_channel
*rf
, const int txpower
)
588 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
591 * For RT2525E we should first set the channel to half band higher.
593 if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
594 static const u32 vals
[] = {
595 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
596 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
597 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
598 0x00000902, 0x00000906
601 rt2500usb_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
603 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
606 rt2500usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
607 rt2500usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
608 rt2500usb_rf_write(rt2x00dev
, 3, rf
->rf3
);
610 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
613 static void rt2500usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
618 rf3
= rt2x00_rf_read(rt2x00dev
, 3);
619 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
620 rt2500usb_rf_write(rt2x00dev
, 3, rf3
);
623 static void rt2500usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
624 struct rt2x00lib_conf
*libconf
)
626 enum dev_state state
=
627 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
628 STATE_SLEEP
: STATE_AWAKE
;
631 if (state
== STATE_SLEEP
) {
632 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR18
);
633 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
,
634 rt2x00dev
->beacon_int
- 20);
635 rt2x00_set_field16(®
, MAC_CSR18_BEACONS_BEFORE_WAKEUP
,
636 libconf
->conf
->listen_interval
- 1);
638 /* We must first disable autowake before it can be enabled */
639 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 0);
640 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
642 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 1);
643 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
645 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR18
);
646 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 0);
647 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
650 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
653 static void rt2500usb_config(struct rt2x00_dev
*rt2x00dev
,
654 struct rt2x00lib_conf
*libconf
,
655 const unsigned int flags
)
657 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
658 rt2500usb_config_channel(rt2x00dev
, &libconf
->rf
,
659 libconf
->conf
->power_level
);
660 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
661 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
662 rt2500usb_config_txpower(rt2x00dev
,
663 libconf
->conf
->power_level
);
664 if (flags
& IEEE80211_CONF_CHANGE_PS
)
665 rt2500usb_config_ps(rt2x00dev
, libconf
);
671 static void rt2500usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
672 struct link_qual
*qual
)
677 * Update FCS error count from register.
679 reg
= rt2500usb_register_read(rt2x00dev
, STA_CSR0
);
680 qual
->rx_failed
= rt2x00_get_field16(reg
, STA_CSR0_FCS_ERROR
);
683 * Update False CCA count from register.
685 reg
= rt2500usb_register_read(rt2x00dev
, STA_CSR3
);
686 qual
->false_cca
= rt2x00_get_field16(reg
, STA_CSR3_FALSE_CCA_ERROR
);
689 static void rt2500usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
690 struct link_qual
*qual
)
695 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
);
696 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R24_LOW
);
697 rt2500usb_bbp_write(rt2x00dev
, 24, value
);
699 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
);
700 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R25_LOW
);
701 rt2500usb_bbp_write(rt2x00dev
, 25, value
);
703 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
);
704 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R61_LOW
);
705 rt2500usb_bbp_write(rt2x00dev
, 61, value
);
707 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
);
708 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_VGCUPPER
);
709 rt2500usb_bbp_write(rt2x00dev
, 17, value
);
711 qual
->vgc_level
= value
;
717 static void rt2500usb_start_queue(struct data_queue
*queue
)
719 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
722 switch (queue
->qid
) {
724 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
);
725 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 0);
726 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
729 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
730 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
731 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
732 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
733 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
740 static void rt2500usb_stop_queue(struct data_queue
*queue
)
742 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
745 switch (queue
->qid
) {
747 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
);
748 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
749 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
752 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
753 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
754 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
755 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
756 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
764 * Initialization functions.
766 static int rt2500usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
770 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0x0001,
771 USB_MODE_TEST
, REGISTER_TIMEOUT
);
772 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_SINGLE_WRITE
, 0x0308,
773 0x00f0, REGISTER_TIMEOUT
);
775 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
);
776 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
777 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
779 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x1111);
780 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x1e11);
782 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR1
);
783 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 1);
784 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 1);
785 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
786 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
788 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR1
);
789 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
790 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
791 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
792 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
794 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR5
);
795 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0
, 13);
796 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0_VALID
, 1);
797 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1
, 12);
798 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1_VALID
, 1);
799 rt2500usb_register_write(rt2x00dev
, TXRX_CSR5
, reg
);
801 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR6
);
802 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0
, 10);
803 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0_VALID
, 1);
804 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1
, 11);
805 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1_VALID
, 1);
806 rt2500usb_register_write(rt2x00dev
, TXRX_CSR6
, reg
);
808 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR7
);
809 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0
, 7);
810 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0_VALID
, 1);
811 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1
, 6);
812 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1_VALID
, 1);
813 rt2500usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
815 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR8
);
816 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0
, 5);
817 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0_VALID
, 1);
818 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1
, 0);
819 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1_VALID
, 0);
820 rt2500usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
822 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
823 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
824 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, 0);
825 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
826 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
827 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
829 rt2500usb_register_write(rt2x00dev
, TXRX_CSR21
, 0xe78f);
830 rt2500usb_register_write(rt2x00dev
, MAC_CSR9
, 0xff1d);
832 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
835 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR1
);
836 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
837 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
838 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 1);
839 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
841 if (rt2x00_rev(rt2x00dev
) >= RT2570_VERSION_C
) {
842 reg
= rt2500usb_register_read(rt2x00dev
, PHY_CSR2
);
843 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 0);
846 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 1);
847 rt2x00_set_field16(®
, PHY_CSR2_LNA_MODE
, 3);
849 rt2500usb_register_write(rt2x00dev
, PHY_CSR2
, reg
);
851 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x0002);
852 rt2500usb_register_write(rt2x00dev
, MAC_CSR22
, 0x0053);
853 rt2500usb_register_write(rt2x00dev
, MAC_CSR15
, 0x01ee);
854 rt2500usb_register_write(rt2x00dev
, MAC_CSR16
, 0x0000);
856 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR8
);
857 rt2x00_set_field16(®
, MAC_CSR8_MAX_FRAME_UNIT
,
858 rt2x00dev
->rx
->data_size
);
859 rt2500usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
861 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
);
862 rt2x00_set_field16(®
, TXRX_CSR0_ALGORITHM
, CIPHER_NONE
);
863 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
864 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, 0);
865 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
867 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR18
);
868 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
, 90);
869 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
871 reg
= rt2500usb_register_read(rt2x00dev
, PHY_CSR4
);
872 rt2x00_set_field16(®
, PHY_CSR4_LOW_RF_LE
, 1);
873 rt2500usb_register_write(rt2x00dev
, PHY_CSR4
, reg
);
875 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
);
876 rt2x00_set_field16(®
, TXRX_CSR1_AUTO_SEQUENCE
, 1);
877 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
882 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
887 for (i
= 0; i
< REGISTER_USB_BUSY_COUNT
; i
++) {
888 value
= rt2500usb_bbp_read(rt2x00dev
, 0);
889 if ((value
!= 0xff) && (value
!= 0x00))
891 udelay(REGISTER_BUSY_DELAY
);
894 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
898 static int rt2500usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
905 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev
)))
908 rt2500usb_bbp_write(rt2x00dev
, 3, 0x02);
909 rt2500usb_bbp_write(rt2x00dev
, 4, 0x19);
910 rt2500usb_bbp_write(rt2x00dev
, 14, 0x1c);
911 rt2500usb_bbp_write(rt2x00dev
, 15, 0x30);
912 rt2500usb_bbp_write(rt2x00dev
, 16, 0xac);
913 rt2500usb_bbp_write(rt2x00dev
, 18, 0x18);
914 rt2500usb_bbp_write(rt2x00dev
, 19, 0xff);
915 rt2500usb_bbp_write(rt2x00dev
, 20, 0x1e);
916 rt2500usb_bbp_write(rt2x00dev
, 21, 0x08);
917 rt2500usb_bbp_write(rt2x00dev
, 22, 0x08);
918 rt2500usb_bbp_write(rt2x00dev
, 23, 0x08);
919 rt2500usb_bbp_write(rt2x00dev
, 24, 0x80);
920 rt2500usb_bbp_write(rt2x00dev
, 25, 0x50);
921 rt2500usb_bbp_write(rt2x00dev
, 26, 0x08);
922 rt2500usb_bbp_write(rt2x00dev
, 27, 0x23);
923 rt2500usb_bbp_write(rt2x00dev
, 30, 0x10);
924 rt2500usb_bbp_write(rt2x00dev
, 31, 0x2b);
925 rt2500usb_bbp_write(rt2x00dev
, 32, 0xb9);
926 rt2500usb_bbp_write(rt2x00dev
, 34, 0x12);
927 rt2500usb_bbp_write(rt2x00dev
, 35, 0x50);
928 rt2500usb_bbp_write(rt2x00dev
, 39, 0xc4);
929 rt2500usb_bbp_write(rt2x00dev
, 40, 0x02);
930 rt2500usb_bbp_write(rt2x00dev
, 41, 0x60);
931 rt2500usb_bbp_write(rt2x00dev
, 53, 0x10);
932 rt2500usb_bbp_write(rt2x00dev
, 54, 0x18);
933 rt2500usb_bbp_write(rt2x00dev
, 56, 0x08);
934 rt2500usb_bbp_write(rt2x00dev
, 57, 0x10);
935 rt2500usb_bbp_write(rt2x00dev
, 58, 0x08);
936 rt2500usb_bbp_write(rt2x00dev
, 61, 0x60);
937 rt2500usb_bbp_write(rt2x00dev
, 62, 0x10);
938 rt2500usb_bbp_write(rt2x00dev
, 75, 0xff);
940 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
941 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
943 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
944 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
945 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
946 rt2500usb_bbp_write(rt2x00dev
, reg_id
, value
);
954 * Device state switch handlers.
956 static int rt2500usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
959 * Initialize all registers.
961 if (unlikely(rt2500usb_init_registers(rt2x00dev
) ||
962 rt2500usb_init_bbp(rt2x00dev
)))
968 static void rt2500usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
970 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x2121);
971 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x2121);
974 * Disable synchronisation.
976 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
978 rt2x00usb_disable_radio(rt2x00dev
);
981 static int rt2500usb_set_state(struct rt2x00_dev
*rt2x00dev
,
982 enum dev_state state
)
991 put_to_sleep
= (state
!= STATE_AWAKE
);
994 rt2x00_set_field16(®
, MAC_CSR17_BBP_DESIRE_STATE
, state
);
995 rt2x00_set_field16(®
, MAC_CSR17_RF_DESIRE_STATE
, state
);
996 rt2x00_set_field16(®
, MAC_CSR17_PUT_TO_SLEEP
, put_to_sleep
);
997 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
998 rt2x00_set_field16(®
, MAC_CSR17_SET_STATE
, 1);
999 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1002 * Device is not guaranteed to be in the requested state yet.
1003 * We must wait until the register indicates that the
1004 * device has entered the correct state.
1006 for (i
= 0; i
< REGISTER_USB_BUSY_COUNT
; i
++) {
1007 reg2
= rt2500usb_register_read(rt2x00dev
, MAC_CSR17
);
1008 bbp_state
= rt2x00_get_field16(reg2
, MAC_CSR17_BBP_CURR_STATE
);
1009 rf_state
= rt2x00_get_field16(reg2
, MAC_CSR17_RF_CURR_STATE
);
1010 if (bbp_state
== state
&& rf_state
== state
)
1012 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1019 static int rt2500usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1020 enum dev_state state
)
1025 case STATE_RADIO_ON
:
1026 retval
= rt2500usb_enable_radio(rt2x00dev
);
1028 case STATE_RADIO_OFF
:
1029 rt2500usb_disable_radio(rt2x00dev
);
1031 case STATE_RADIO_IRQ_ON
:
1032 case STATE_RADIO_IRQ_OFF
:
1033 /* No support, but no error either */
1035 case STATE_DEEP_SLEEP
:
1039 retval
= rt2500usb_set_state(rt2x00dev
, state
);
1046 if (unlikely(retval
))
1047 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1054 * TX descriptor initialization
1056 static void rt2500usb_write_tx_desc(struct queue_entry
*entry
,
1057 struct txentry_desc
*txdesc
)
1059 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1060 __le32
*txd
= (__le32
*) entry
->skb
->data
;
1064 * Start writing the descriptor words.
1066 word
= rt2x00_desc_read(txd
, 0);
1067 rt2x00_set_field32(&word
, TXD_W0_RETRY_LIMIT
, txdesc
->retry_limit
);
1068 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1069 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1070 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1071 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1072 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1073 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1074 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1075 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1076 rt2x00_set_field32(&word
, TXD_W0_NEW_SEQ
,
1077 test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
));
1078 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1079 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1080 rt2x00_set_field32(&word
, TXD_W0_CIPHER
, !!txdesc
->cipher
);
1081 rt2x00_set_field32(&word
, TXD_W0_KEY_ID
, txdesc
->key_idx
);
1082 rt2x00_desc_write(txd
, 0, word
);
1084 word
= rt2x00_desc_read(txd
, 1);
1085 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1086 rt2x00_set_field32(&word
, TXD_W1_AIFS
, entry
->queue
->aifs
);
1087 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1088 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1089 rt2x00_desc_write(txd
, 1, word
);
1091 word
= rt2x00_desc_read(txd
, 2);
1092 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1093 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1094 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1095 txdesc
->u
.plcp
.length_low
);
1096 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1097 txdesc
->u
.plcp
.length_high
);
1098 rt2x00_desc_write(txd
, 2, word
);
1100 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1101 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1102 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1106 * Register descriptor details in skb frame descriptor.
1108 skbdesc
->flags
|= SKBDESC_DESC_IN_SKB
;
1109 skbdesc
->desc
= txd
;
1110 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1114 * TX data initialization
1116 static void rt2500usb_beacondone(struct urb
*urb
);
1118 static void rt2500usb_write_beacon(struct queue_entry
*entry
,
1119 struct txentry_desc
*txdesc
)
1121 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1122 struct usb_device
*usb_dev
= to_usb_device_intf(rt2x00dev
->dev
);
1123 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1124 int pipe
= usb_sndbulkpipe(usb_dev
, entry
->queue
->usb_endpoint
);
1129 * Disable beaconing while we are reloading the beacon data,
1130 * otherwise we might be sending out invalid data.
1132 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
1133 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
1134 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1137 * Add space for the descriptor in front of the skb.
1139 skb_push(entry
->skb
, TXD_DESC_SIZE
);
1140 memset(entry
->skb
->data
, 0, TXD_DESC_SIZE
);
1143 * Write the TX descriptor for the beacon.
1145 rt2500usb_write_tx_desc(entry
, txdesc
);
1148 * Dump beacon to userspace through debugfs.
1150 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1153 * USB devices cannot blindly pass the skb->len as the
1154 * length of the data to usb_fill_bulk_urb. Pass the skb
1155 * to the driver to determine what the length should be.
1157 length
= rt2x00dev
->ops
->lib
->get_tx_data_len(entry
);
1159 usb_fill_bulk_urb(bcn_priv
->urb
, usb_dev
, pipe
,
1160 entry
->skb
->data
, length
, rt2500usb_beacondone
,
1164 * Second we need to create the guardian byte.
1165 * We only need a single byte, so lets recycle
1166 * the 'flags' field we are not using for beacons.
1168 bcn_priv
->guardian_data
= 0;
1169 usb_fill_bulk_urb(bcn_priv
->guardian_urb
, usb_dev
, pipe
,
1170 &bcn_priv
->guardian_data
, 1, rt2500usb_beacondone
,
1174 * Send out the guardian byte.
1176 usb_submit_urb(bcn_priv
->guardian_urb
, GFP_ATOMIC
);
1179 * Enable beaconing again.
1181 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
1182 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
1184 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
1186 * Beacon generation will fail initially.
1187 * To prevent this we need to change the TXRX_CSR19
1188 * register several times (reg0 is the same as reg
1189 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1192 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1193 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1194 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1195 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1196 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1199 static int rt2500usb_get_tx_data_len(struct queue_entry
*entry
)
1204 * The length _must_ be a multiple of 2,
1205 * but it must _not_ be a multiple of the USB packet size.
1207 length
= roundup(entry
->skb
->len
, 2);
1208 length
+= (2 * !(length
% entry
->queue
->usb_maxpacket
));
1214 * RX control handlers
1216 static void rt2500usb_fill_rxdone(struct queue_entry
*entry
,
1217 struct rxdone_entry_desc
*rxdesc
)
1219 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1220 struct queue_entry_priv_usb
*entry_priv
= entry
->priv_data
;
1221 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1223 (__le32
*)(entry
->skb
->data
+
1224 (entry_priv
->urb
->actual_length
-
1225 entry
->queue
->desc_size
));
1230 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1231 * frame data in rt2x00usb.
1233 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1234 rxd
= (__le32
*)skbdesc
->desc
;
1237 * It is now safe to read the descriptor on all architectures.
1239 word0
= rt2x00_desc_read(rxd
, 0);
1240 word1
= rt2x00_desc_read(rxd
, 1);
1242 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1243 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1244 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1245 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1247 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER
);
1248 if (rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
))
1249 rxdesc
->cipher_status
= RX_CRYPTO_FAIL_KEY
;
1251 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1252 rxdesc
->iv
[0] = _rt2x00_desc_read(rxd
, 2);
1253 rxdesc
->iv
[1] = _rt2x00_desc_read(rxd
, 3);
1254 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1256 /* ICV is located at the end of frame */
1258 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1259 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1260 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1261 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1262 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1266 * Obtain the status about this packet.
1267 * When frame was received with an OFDM bitrate,
1268 * the signal is the PLCP value. If it was received with
1269 * a CCK bitrate the signal is the rate in 100kbit/s.
1271 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1273 rt2x00_get_field32(word1
, RXD_W1_RSSI
) - rt2x00dev
->rssi_offset
;
1274 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1276 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1277 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1279 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1280 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1281 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1284 * Adjust the skb memory window to the frame boundaries.
1286 skb_trim(entry
->skb
, rxdesc
->size
);
1290 * Interrupt functions.
1292 static void rt2500usb_beacondone(struct urb
*urb
)
1294 struct queue_entry
*entry
= (struct queue_entry
*)urb
->context
;
1295 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1297 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &entry
->queue
->rt2x00dev
->flags
))
1301 * Check if this was the guardian beacon,
1302 * if that was the case we need to send the real beacon now.
1303 * Otherwise we should free the sk_buffer, the device
1304 * should be doing the rest of the work now.
1306 if (bcn_priv
->guardian_urb
== urb
) {
1307 usb_submit_urb(bcn_priv
->urb
, GFP_ATOMIC
);
1308 } else if (bcn_priv
->urb
== urb
) {
1309 dev_kfree_skb(entry
->skb
);
1315 * Device probe functions.
1317 static int rt2500usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1323 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1326 * Start validation of the data that has been read.
1328 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1329 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
1331 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1332 if (word
== 0xffff) {
1333 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1334 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1335 ANTENNA_SW_DIVERSITY
);
1336 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1337 ANTENNA_SW_DIVERSITY
);
1338 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1340 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1341 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1342 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1343 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1344 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1347 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
1348 if (word
== 0xffff) {
1349 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1350 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1351 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1352 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1353 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
1356 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
);
1357 if (word
== 0xffff) {
1358 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1359 DEFAULT_RSSI_OFFSET
);
1360 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1361 rt2x00_eeprom_dbg(rt2x00dev
, "Calibrate offset: 0x%04x\n",
1365 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
);
1366 if (word
== 0xffff) {
1367 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_THRESHOLD
, 45);
1368 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE
, word
);
1369 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune: 0x%04x\n", word
);
1373 * Switch lower vgc bound to current BBP R17 value,
1374 * lower the value a bit for better quality.
1376 bbp
= rt2500usb_bbp_read(rt2x00dev
, 17);
1379 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
);
1380 if (word
== 0xffff) {
1381 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCUPPER
, 0x40);
1382 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1383 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1384 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune vgc: 0x%04x\n", word
);
1386 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1387 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1390 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
);
1391 if (word
== 0xffff) {
1392 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_LOW
, 0x48);
1393 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_HIGH
, 0x41);
1394 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R17
, word
);
1395 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune r17: 0x%04x\n", word
);
1398 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
);
1399 if (word
== 0xffff) {
1400 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_LOW
, 0x40);
1401 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_HIGH
, 0x80);
1402 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R24
, word
);
1403 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune r24: 0x%04x\n", word
);
1406 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
);
1407 if (word
== 0xffff) {
1408 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_LOW
, 0x40);
1409 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_HIGH
, 0x50);
1410 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R25
, word
);
1411 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune r25: 0x%04x\n", word
);
1414 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
);
1415 if (word
== 0xffff) {
1416 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_LOW
, 0x60);
1417 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_HIGH
, 0x6d);
1418 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R61
, word
);
1419 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune r61: 0x%04x\n", word
);
1425 static int rt2500usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1432 * Read EEPROM word for configuration.
1434 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1437 * Identify RF chipset.
1439 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1440 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR0
);
1441 rt2x00_set_chip(rt2x00dev
, RT2570
, value
, reg
);
1443 if (((reg
& 0xfff0) != 0) || ((reg
& 0x0000000f) == 0)) {
1444 rt2x00_err(rt2x00dev
, "Invalid RT chipset detected\n");
1448 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1449 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1450 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1451 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1452 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1453 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1454 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1459 * Identify default antenna configuration.
1461 rt2x00dev
->default_ant
.tx
=
1462 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1463 rt2x00dev
->default_ant
.rx
=
1464 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1467 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1468 * I am not 100% sure about this, but the legacy drivers do not
1469 * indicate antenna swapping in software is required when
1470 * diversity is enabled.
1472 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1473 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1474 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1475 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1478 * Store led mode, for correct led behaviour.
1480 #ifdef CONFIG_RT2X00_LIB_LEDS
1481 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1483 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1484 if (value
== LED_MODE_TXRX_ACTIVITY
||
1485 value
== LED_MODE_DEFAULT
||
1486 value
== LED_MODE_ASUS
)
1487 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1489 #endif /* CONFIG_RT2X00_LIB_LEDS */
1492 * Detect if this device has an hardware controlled radio.
1494 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1495 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1498 * Read the RSSI <-> dBm offset information.
1500 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
);
1501 rt2x00dev
->rssi_offset
=
1502 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1508 * RF value list for RF2522
1511 static const struct rf_channel rf_vals_bg_2522
[] = {
1512 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1513 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1514 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1515 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1516 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1517 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1518 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1519 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1520 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1521 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1522 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1523 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1524 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1525 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1529 * RF value list for RF2523
1532 static const struct rf_channel rf_vals_bg_2523
[] = {
1533 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1534 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1535 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1536 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1537 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1538 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1539 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1540 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1541 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1542 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1543 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1544 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1545 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1546 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1550 * RF value list for RF2524
1553 static const struct rf_channel rf_vals_bg_2524
[] = {
1554 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1555 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1556 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1557 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1558 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1559 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1560 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1561 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1562 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1563 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1564 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1565 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1566 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1567 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1571 * RF value list for RF2525
1574 static const struct rf_channel rf_vals_bg_2525
[] = {
1575 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1576 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1577 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1578 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1579 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1580 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1581 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1582 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1583 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1584 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1585 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1586 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1587 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1588 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1592 * RF value list for RF2525e
1595 static const struct rf_channel rf_vals_bg_2525e
[] = {
1596 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1597 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1598 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1599 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1600 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1601 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1602 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1603 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1604 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1605 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1606 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1607 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1608 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1609 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1613 * RF value list for RF5222
1614 * Supports: 2.4 GHz & 5.2 GHz
1616 static const struct rf_channel rf_vals_5222
[] = {
1617 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1618 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1619 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1620 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1621 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1622 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1623 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1624 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1625 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1626 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1627 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1628 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1629 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1630 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1632 /* 802.11 UNI / HyperLan 2 */
1633 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1634 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1635 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1636 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1637 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1638 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1639 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1640 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1642 /* 802.11 HyperLan 2 */
1643 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1644 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1645 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1646 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1647 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1648 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1649 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1650 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1651 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1652 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1655 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1656 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1657 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1658 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1659 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1662 static int rt2500usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1664 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1665 struct channel_info
*info
;
1670 * Initialize all hw fields.
1672 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1673 * capable of sending the buffered frames out after the DTIM
1674 * transmission using rt2x00lib_beacondone. This will send out
1675 * multicast and broadcast traffic immediately instead of buffering it
1676 * infinitly and thus dropping it after some time.
1678 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
1679 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
1680 ieee80211_hw_set(rt2x00dev
->hw
, RX_INCLUDES_FCS
);
1681 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
1684 * Disable powersaving as default.
1686 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
1688 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1689 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1690 rt2x00_eeprom_addr(rt2x00dev
,
1691 EEPROM_MAC_ADDR_0
));
1694 * Initialize hw_mode information.
1696 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1697 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1699 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1700 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1701 spec
->channels
= rf_vals_bg_2522
;
1702 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1703 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1704 spec
->channels
= rf_vals_bg_2523
;
1705 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1706 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1707 spec
->channels
= rf_vals_bg_2524
;
1708 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1709 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1710 spec
->channels
= rf_vals_bg_2525
;
1711 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1712 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1713 spec
->channels
= rf_vals_bg_2525e
;
1714 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1715 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1716 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1717 spec
->channels
= rf_vals_5222
;
1721 * Create channel information array
1723 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1727 spec
->channels_info
= info
;
1729 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1730 for (i
= 0; i
< 14; i
++) {
1731 info
[i
].max_power
= MAX_TXPOWER
;
1732 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1735 if (spec
->num_channels
> 14) {
1736 for (i
= 14; i
< spec
->num_channels
; i
++) {
1737 info
[i
].max_power
= MAX_TXPOWER
;
1738 info
[i
].default_power1
= DEFAULT_TXPOWER
;
1745 static int rt2500usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1751 * Allocate eeprom data.
1753 retval
= rt2500usb_validate_eeprom(rt2x00dev
);
1757 retval
= rt2500usb_init_eeprom(rt2x00dev
);
1762 * Enable rfkill polling by setting GPIO direction of the
1763 * rfkill switch GPIO pin correctly.
1765 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR19
);
1766 rt2x00_set_field16(®
, MAC_CSR19_DIR0
, 0);
1767 rt2500usb_register_write(rt2x00dev
, MAC_CSR19
, reg
);
1770 * Initialize hw specifications.
1772 retval
= rt2500usb_probe_hw_mode(rt2x00dev
);
1777 * This device requires the atim queue
1779 __set_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1780 __set_bit(REQUIRE_BEACON_GUARD
, &rt2x00dev
->cap_flags
);
1781 if (!modparam_nohwcrypt
) {
1782 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
1783 __set_bit(REQUIRE_COPY_IV
, &rt2x00dev
->cap_flags
);
1785 __set_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
);
1786 __set_bit(REQUIRE_PS_AUTOWAKE
, &rt2x00dev
->cap_flags
);
1789 * Set the rssi offset.
1791 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1796 static const struct ieee80211_ops rt2500usb_mac80211_ops
= {
1798 .start
= rt2x00mac_start
,
1799 .stop
= rt2x00mac_stop
,
1800 .add_interface
= rt2x00mac_add_interface
,
1801 .remove_interface
= rt2x00mac_remove_interface
,
1802 .config
= rt2x00mac_config
,
1803 .configure_filter
= rt2x00mac_configure_filter
,
1804 .set_tim
= rt2x00mac_set_tim
,
1805 .set_key
= rt2x00mac_set_key
,
1806 .sw_scan_start
= rt2x00mac_sw_scan_start
,
1807 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
1808 .get_stats
= rt2x00mac_get_stats
,
1809 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1810 .conf_tx
= rt2x00mac_conf_tx
,
1811 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1812 .flush
= rt2x00mac_flush
,
1813 .set_antenna
= rt2x00mac_set_antenna
,
1814 .get_antenna
= rt2x00mac_get_antenna
,
1815 .get_ringparam
= rt2x00mac_get_ringparam
,
1816 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
1819 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops
= {
1820 .probe_hw
= rt2500usb_probe_hw
,
1821 .initialize
= rt2x00usb_initialize
,
1822 .uninitialize
= rt2x00usb_uninitialize
,
1823 .clear_entry
= rt2x00usb_clear_entry
,
1824 .set_device_state
= rt2500usb_set_device_state
,
1825 .rfkill_poll
= rt2500usb_rfkill_poll
,
1826 .link_stats
= rt2500usb_link_stats
,
1827 .reset_tuner
= rt2500usb_reset_tuner
,
1828 .watchdog
= rt2x00usb_watchdog
,
1829 .start_queue
= rt2500usb_start_queue
,
1830 .kick_queue
= rt2x00usb_kick_queue
,
1831 .stop_queue
= rt2500usb_stop_queue
,
1832 .flush_queue
= rt2x00usb_flush_queue
,
1833 .write_tx_desc
= rt2500usb_write_tx_desc
,
1834 .write_beacon
= rt2500usb_write_beacon
,
1835 .get_tx_data_len
= rt2500usb_get_tx_data_len
,
1836 .fill_rxdone
= rt2500usb_fill_rxdone
,
1837 .config_shared_key
= rt2500usb_config_key
,
1838 .config_pairwise_key
= rt2500usb_config_key
,
1839 .config_filter
= rt2500usb_config_filter
,
1840 .config_intf
= rt2500usb_config_intf
,
1841 .config_erp
= rt2500usb_config_erp
,
1842 .config_ant
= rt2500usb_config_ant
,
1843 .config
= rt2500usb_config
,
1846 static void rt2500usb_queue_init(struct data_queue
*queue
)
1848 switch (queue
->qid
) {
1851 queue
->data_size
= DATA_FRAME_SIZE
;
1852 queue
->desc_size
= RXD_DESC_SIZE
;
1853 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
1861 queue
->data_size
= DATA_FRAME_SIZE
;
1862 queue
->desc_size
= TXD_DESC_SIZE
;
1863 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
1868 queue
->data_size
= MGMT_FRAME_SIZE
;
1869 queue
->desc_size
= TXD_DESC_SIZE
;
1870 queue
->priv_size
= sizeof(struct queue_entry_priv_usb_bcn
);
1875 queue
->data_size
= DATA_FRAME_SIZE
;
1876 queue
->desc_size
= TXD_DESC_SIZE
;
1877 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
1886 static const struct rt2x00_ops rt2500usb_ops
= {
1887 .name
= KBUILD_MODNAME
,
1889 .eeprom_size
= EEPROM_SIZE
,
1891 .tx_queues
= NUM_TX_QUEUES
,
1892 .queue_init
= rt2500usb_queue_init
,
1893 .lib
= &rt2500usb_rt2x00_ops
,
1894 .hw
= &rt2500usb_mac80211_ops
,
1895 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1896 .debugfs
= &rt2500usb_rt2x00debug
,
1897 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1901 * rt2500usb module information.
1903 static const struct usb_device_id rt2500usb_device_table
[] = {
1905 { USB_DEVICE(0x0b05, 0x1706) },
1906 { USB_DEVICE(0x0b05, 0x1707) },
1908 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1909 { USB_DEVICE(0x050d, 0x7051) },
1911 { USB_DEVICE(0x13b1, 0x000d) },
1912 { USB_DEVICE(0x13b1, 0x0011) },
1913 { USB_DEVICE(0x13b1, 0x001a) },
1915 { USB_DEVICE(0x14b2, 0x3c02) },
1917 { USB_DEVICE(0x2001, 0x3c00) },
1919 { USB_DEVICE(0x1044, 0x8001) },
1920 { USB_DEVICE(0x1044, 0x8007) },
1922 { USB_DEVICE(0x06f8, 0xe000) },
1924 { USB_DEVICE(0x0411, 0x005e) },
1925 { USB_DEVICE(0x0411, 0x0066) },
1926 { USB_DEVICE(0x0411, 0x0067) },
1927 { USB_DEVICE(0x0411, 0x008b) },
1928 { USB_DEVICE(0x0411, 0x0097) },
1930 { USB_DEVICE(0x0db0, 0x6861) },
1931 { USB_DEVICE(0x0db0, 0x6865) },
1932 { USB_DEVICE(0x0db0, 0x6869) },
1934 { USB_DEVICE(0x148f, 0x1706) },
1935 { USB_DEVICE(0x148f, 0x2570) },
1936 { USB_DEVICE(0x148f, 0x9020) },
1938 { USB_DEVICE(0x079b, 0x004b) },
1940 { USB_DEVICE(0x0681, 0x3c06) },
1942 { USB_DEVICE(0x0707, 0xee13) },
1944 { USB_DEVICE(0x114b, 0x0110) },
1946 { USB_DEVICE(0x0769, 0x11f3) },
1948 { USB_DEVICE(0x0eb0, 0x9020) },
1950 { USB_DEVICE(0x0f88, 0x3012) },
1952 { USB_DEVICE(0x5a57, 0x0260) },
1956 MODULE_AUTHOR(DRV_PROJECT
);
1957 MODULE_VERSION(DRV_VERSION
);
1958 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1959 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1960 MODULE_DEVICE_TABLE(usb
, rt2500usb_device_table
);
1961 MODULE_LICENSE("GPL");
1963 static int rt2500usb_probe(struct usb_interface
*usb_intf
,
1964 const struct usb_device_id
*id
)
1966 return rt2x00usb_probe(usb_intf
, &rt2500usb_ops
);
1969 static struct usb_driver rt2500usb_driver
= {
1970 .name
= KBUILD_MODNAME
,
1971 .id_table
= rt2500usb_device_table
,
1972 .probe
= rt2500usb_probe
,
1973 .disconnect
= rt2x00usb_disconnect
,
1974 .suspend
= rt2x00usb_suspend
,
1975 .resume
= rt2x00usb_resume
,
1976 .reset_resume
= rt2x00usb_resume
,
1977 .disable_hub_initiated_lpm
= 1,
1980 module_usb_driver(rt2500usb_driver
);