1 // SPDX-License-Identifier: GPL-2.0-or-later
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 <http://rt2x00.serialmonkey.com>
11 Abstract: rt2x00 generic device routines.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/log2.h>
19 #include <linux/of_net.h>
22 #include "rt2x00lib.h"
27 u32
rt2x00lib_get_bssidx(struct rt2x00_dev
*rt2x00dev
,
28 struct ieee80211_vif
*vif
)
31 * When in STA mode, bssidx is always 0 otherwise local_address[5]
32 * contains the bss number, see BSS_ID_MASK comments for details.
34 if (rt2x00dev
->intf_sta_count
)
36 return vif
->addr
[5] & (rt2x00dev
->ops
->max_ap_intf
- 1);
38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx
);
41 * Radio control handlers.
43 int rt2x00lib_enable_radio(struct rt2x00_dev
*rt2x00dev
)
48 * Don't enable the radio twice.
49 * And check if the hardware button has been disabled.
51 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
55 * Initialize all data queues.
57 rt2x00queue_init_queues(rt2x00dev
);
63 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_ON
);
67 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_ON
);
69 rt2x00leds_led_radio(rt2x00dev
, true);
70 rt2x00led_led_activity(rt2x00dev
, true);
72 set_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
);
77 rt2x00queue_start_queues(rt2x00dev
);
78 rt2x00link_start_tuner(rt2x00dev
);
81 * Start watchdog monitoring.
83 rt2x00link_start_watchdog(rt2x00dev
);
88 void rt2x00lib_disable_radio(struct rt2x00_dev
*rt2x00dev
)
90 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
94 * Stop watchdog monitoring.
96 rt2x00link_stop_watchdog(rt2x00dev
);
101 rt2x00link_stop_tuner(rt2x00dev
);
102 rt2x00queue_stop_queues(rt2x00dev
);
103 rt2x00queue_flush_queues(rt2x00dev
, true);
108 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_OFF
);
109 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
110 rt2x00led_led_activity(rt2x00dev
, false);
111 rt2x00leds_led_radio(rt2x00dev
, false);
114 static void rt2x00lib_intf_scheduled_iter(void *data
, u8
*mac
,
115 struct ieee80211_vif
*vif
)
117 struct rt2x00_dev
*rt2x00dev
= data
;
118 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
121 * It is possible the radio was disabled while the work had been
122 * scheduled. If that happens we should return here immediately,
123 * note that in the spinlock protected area above the delayed_flags
124 * have been cleared correctly.
126 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
129 if (test_and_clear_bit(DELAYED_UPDATE_BEACON
, &intf
->delayed_flags
)) {
130 mutex_lock(&intf
->beacon_skb_mutex
);
131 rt2x00queue_update_beacon(rt2x00dev
, vif
);
132 mutex_unlock(&intf
->beacon_skb_mutex
);
136 static void rt2x00lib_intf_scheduled(struct work_struct
*work
)
138 struct rt2x00_dev
*rt2x00dev
=
139 container_of(work
, struct rt2x00_dev
, intf_work
);
142 * Iterate over each interface and perform the
143 * requested configurations.
145 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
146 IEEE80211_IFACE_ITER_RESUME_ALL
,
147 rt2x00lib_intf_scheduled_iter
,
151 static void rt2x00lib_autowakeup(struct work_struct
*work
)
153 struct rt2x00_dev
*rt2x00dev
=
154 container_of(work
, struct rt2x00_dev
, autowakeup_work
.work
);
156 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
159 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
160 rt2x00_err(rt2x00dev
, "Device failed to wakeup\n");
161 clear_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
);
165 * Interrupt context handlers.
167 static void rt2x00lib_bc_buffer_iter(void *data
, u8
*mac
,
168 struct ieee80211_vif
*vif
)
170 struct ieee80211_tx_control control
= {};
171 struct rt2x00_dev
*rt2x00dev
= data
;
175 * Only AP mode interfaces do broad- and multicast buffering
177 if (vif
->type
!= NL80211_IFTYPE_AP
)
181 * Send out buffered broad- and multicast frames
183 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
185 rt2x00mac_tx(rt2x00dev
->hw
, &control
, skb
);
186 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
190 static void rt2x00lib_beaconupdate_iter(void *data
, u8
*mac
,
191 struct ieee80211_vif
*vif
)
193 struct rt2x00_dev
*rt2x00dev
= data
;
195 if (vif
->type
!= NL80211_IFTYPE_AP
&&
196 vif
->type
!= NL80211_IFTYPE_ADHOC
&&
197 vif
->type
!= NL80211_IFTYPE_MESH_POINT
&&
198 vif
->type
!= NL80211_IFTYPE_WDS
)
202 * Update the beacon without locking. This is safe on PCI devices
203 * as they only update the beacon periodically here. This should
204 * never be called for USB devices.
206 WARN_ON(rt2x00_is_usb(rt2x00dev
));
207 rt2x00queue_update_beacon(rt2x00dev
, vif
);
210 void rt2x00lib_beacondone(struct rt2x00_dev
*rt2x00dev
)
212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
215 /* send buffered bc/mc frames out for every bssid */
216 ieee80211_iterate_active_interfaces_atomic(
217 rt2x00dev
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
218 rt2x00lib_bc_buffer_iter
, rt2x00dev
);
220 * Devices with pre tbtt interrupt don't need to update the beacon
221 * here as they will fetch the next beacon directly prior to
224 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev
))
227 /* fetch next beacon */
228 ieee80211_iterate_active_interfaces_atomic(
229 rt2x00dev
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
230 rt2x00lib_beaconupdate_iter
, rt2x00dev
);
232 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone
);
234 void rt2x00lib_pretbtt(struct rt2x00_dev
*rt2x00dev
)
236 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
239 /* fetch next beacon */
240 ieee80211_iterate_active_interfaces_atomic(
241 rt2x00dev
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
242 rt2x00lib_beaconupdate_iter
, rt2x00dev
);
244 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt
);
246 void rt2x00lib_dmastart(struct queue_entry
*entry
)
248 set_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
249 rt2x00queue_index_inc(entry
, Q_INDEX
);
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart
);
253 void rt2x00lib_dmadone(struct queue_entry
*entry
)
255 set_bit(ENTRY_DATA_STATUS_PENDING
, &entry
->flags
);
256 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
257 rt2x00queue_index_inc(entry
, Q_INDEX_DMA_DONE
);
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone
);
261 static inline int rt2x00lib_txdone_bar_status(struct queue_entry
*entry
)
263 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
264 struct ieee80211_bar
*bar
= (void *) entry
->skb
->data
;
265 struct rt2x00_bar_list_entry
*bar_entry
;
268 if (likely(!ieee80211_is_back_req(bar
->frame_control
)))
272 * Unlike all other frames, the status report for BARs does
273 * not directly come from the hardware as it is incapable of
274 * matching a BA to a previously send BAR. The hardware will
275 * report all BARs as if they weren't acked at all.
277 * Instead the RX-path will scan for incoming BAs and set the
278 * block_acked flag if it sees one that was likely caused by
281 * Remove remaining BARs here and return their status for
282 * TX done processing.
286 list_for_each_entry_rcu(bar_entry
, &rt2x00dev
->bar_list
, list
) {
287 if (bar_entry
->entry
!= entry
)
290 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
291 /* Return whether this BAR was blockacked or not */
292 ret
= bar_entry
->block_acked
;
293 /* Remove the BAR from our checklist */
294 list_del_rcu(&bar_entry
->list
);
295 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
296 kfree_rcu(bar_entry
, head
);
305 static void rt2x00lib_fill_tx_status(struct rt2x00_dev
*rt2x00dev
,
306 struct ieee80211_tx_info
*tx_info
,
307 struct skb_frame_desc
*skbdesc
,
308 struct txdone_entry_desc
*txdesc
,
311 u8 rate_idx
, rate_flags
, retry_rates
;
314 rate_idx
= skbdesc
->tx_rate_idx
;
315 rate_flags
= skbdesc
->tx_rate_flags
;
316 retry_rates
= test_bit(TXDONE_FALLBACK
, &txdesc
->flags
) ?
317 (txdesc
->retry
+ 1) : 1;
320 * Initialize TX status
322 memset(&tx_info
->status
, 0, sizeof(tx_info
->status
));
323 tx_info
->status
.ack_signal
= 0;
326 * Frame was send with retries, hardware tried
327 * different rates to send out the frame, at each
328 * retry it lowered the rate 1 step except when the
329 * lowest rate was used.
331 for (i
= 0; i
< retry_rates
&& i
< IEEE80211_TX_MAX_RATES
; i
++) {
332 tx_info
->status
.rates
[i
].idx
= rate_idx
- i
;
333 tx_info
->status
.rates
[i
].flags
= rate_flags
;
335 if (rate_idx
- i
== 0) {
337 * The lowest rate (index 0) was used until the
338 * number of max retries was reached.
340 tx_info
->status
.rates
[i
].count
= retry_rates
- i
;
344 tx_info
->status
.rates
[i
].count
= 1;
346 if (i
< (IEEE80211_TX_MAX_RATES
- 1))
347 tx_info
->status
.rates
[i
].idx
= -1; /* terminate */
349 if (test_bit(TXDONE_NO_ACK_REQ
, &txdesc
->flags
))
350 tx_info
->flags
|= IEEE80211_TX_CTL_NO_ACK
;
352 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)) {
354 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
356 rt2x00dev
->low_level_stats
.dot11ACKFailureCount
++;
360 * Every single frame has it's own tx status, hence report
361 * every frame as ampdu of size 1.
363 * TODO: if we can find out how many frames were aggregated
364 * by the hw we could provide the real ampdu_len to mac80211
365 * which would allow the rc algorithm to better decide on
366 * which rates are suitable.
368 if (test_bit(TXDONE_AMPDU
, &txdesc
->flags
) ||
369 tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
370 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
|
371 IEEE80211_TX_CTL_AMPDU
;
372 tx_info
->status
.ampdu_len
= 1;
373 tx_info
->status
.ampdu_ack_len
= success
? 1 : 0;
376 if (rate_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
378 rt2x00dev
->low_level_stats
.dot11RTSSuccessCount
++;
380 rt2x00dev
->low_level_stats
.dot11RTSFailureCount
++;
384 static void rt2x00lib_clear_entry(struct rt2x00_dev
*rt2x00dev
,
385 struct queue_entry
*entry
)
388 * Make this entry available for reuse.
393 rt2x00dev
->ops
->lib
->clear_entry(entry
);
395 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
398 * If the data queue was below the threshold before the txdone
399 * handler we must make sure the packet queue in the mac80211 stack
400 * is reenabled when the txdone handler has finished. This has to be
401 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
402 * before it was stopped.
404 spin_lock_bh(&entry
->queue
->tx_lock
);
405 if (!rt2x00queue_threshold(entry
->queue
))
406 rt2x00queue_unpause_queue(entry
->queue
);
407 spin_unlock_bh(&entry
->queue
->tx_lock
);
410 void rt2x00lib_txdone_nomatch(struct queue_entry
*entry
,
411 struct txdone_entry_desc
*txdesc
)
413 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
414 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
415 struct ieee80211_tx_info txinfo
= {};
421 rt2x00queue_unmap_skb(entry
);
424 * Signal that the TX descriptor is no longer in the skb.
426 skbdesc
->flags
&= ~SKBDESC_DESC_IN_SKB
;
429 * Send frame to debugfs immediately, after this call is completed
430 * we are going to overwrite the skb->cb array.
432 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_TXDONE
, entry
);
435 * Determine if the frame has been successfully transmitted and
436 * remove BARs from our check list while checking for their
440 rt2x00lib_txdone_bar_status(entry
) ||
441 test_bit(TXDONE_SUCCESS
, &txdesc
->flags
);
443 if (!test_bit(TXDONE_UNKNOWN
, &txdesc
->flags
)) {
445 * Update TX statistics.
447 rt2x00dev
->link
.qual
.tx_success
+= success
;
448 rt2x00dev
->link
.qual
.tx_failed
+= !success
;
450 rt2x00lib_fill_tx_status(rt2x00dev
, &txinfo
, skbdesc
, txdesc
,
452 ieee80211_tx_status_noskb(rt2x00dev
->hw
, skbdesc
->sta
, &txinfo
);
455 dev_kfree_skb_any(entry
->skb
);
456 rt2x00lib_clear_entry(rt2x00dev
, entry
);
458 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch
);
460 void rt2x00lib_txdone(struct queue_entry
*entry
,
461 struct txdone_entry_desc
*txdesc
)
463 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
464 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
465 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
466 u8 skbdesc_flags
= skbdesc
->flags
;
467 unsigned int header_length
;
473 rt2x00queue_unmap_skb(entry
);
476 * Remove the extra tx headroom from the skb.
478 skb_pull(entry
->skb
, rt2x00dev
->extra_tx_headroom
);
481 * Signal that the TX descriptor is no longer in the skb.
483 skbdesc
->flags
&= ~SKBDESC_DESC_IN_SKB
;
486 * Determine the length of 802.11 header.
488 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
491 * Remove L2 padding which was added during
493 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_L2PAD
))
494 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
497 * If the IV/EIV data was stripped from the frame before it was
498 * passed to the hardware, we should now reinsert it again because
499 * mac80211 will expect the same data to be present it the
500 * frame as it was passed to us.
502 if (rt2x00_has_cap_hw_crypto(rt2x00dev
))
503 rt2x00crypto_tx_insert_iv(entry
->skb
, header_length
);
506 * Send frame to debugfs immediately, after this call is completed
507 * we are going to overwrite the skb->cb array.
509 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_TXDONE
, entry
);
512 * Determine if the frame has been successfully transmitted and
513 * remove BARs from our check list while checking for their
517 rt2x00lib_txdone_bar_status(entry
) ||
518 test_bit(TXDONE_SUCCESS
, &txdesc
->flags
) ||
519 test_bit(TXDONE_UNKNOWN
, &txdesc
->flags
);
522 * Update TX statistics.
524 rt2x00dev
->link
.qual
.tx_success
+= success
;
525 rt2x00dev
->link
.qual
.tx_failed
+= !success
;
527 rt2x00lib_fill_tx_status(rt2x00dev
, tx_info
, skbdesc
, txdesc
, success
);
530 * Only send the status report to mac80211 when it's a frame
531 * that originated in mac80211. If this was a extra frame coming
532 * through a mac80211 library call (RTS/CTS) then we should not
533 * send the status report back.
535 if (!(skbdesc_flags
& SKBDESC_NOT_MAC80211
)) {
536 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_TASKLET_CONTEXT
))
537 ieee80211_tx_status(rt2x00dev
->hw
, entry
->skb
);
539 ieee80211_tx_status_ni(rt2x00dev
->hw
, entry
->skb
);
541 dev_kfree_skb_any(entry
->skb
);
544 rt2x00lib_clear_entry(rt2x00dev
, entry
);
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone
);
548 void rt2x00lib_txdone_noinfo(struct queue_entry
*entry
, u32 status
)
550 struct txdone_entry_desc txdesc
;
553 __set_bit(status
, &txdesc
.flags
);
556 rt2x00lib_txdone(entry
, &txdesc
);
558 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo
);
560 static u8
*rt2x00lib_find_ie(u8
*data
, unsigned int len
, u8 ie
)
562 struct ieee80211_mgmt
*mgmt
= (void *)data
;
565 pos
= (u8
*)mgmt
->u
.beacon
.variable
;
568 if (pos
+ 2 + pos
[1] > end
)
580 static void rt2x00lib_sleep(struct work_struct
*work
)
582 struct rt2x00_dev
*rt2x00dev
=
583 container_of(work
, struct rt2x00_dev
, sleep_work
);
585 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
589 * Check again is powersaving is enabled, to prevent races from delayed
592 if (!test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
593 rt2x00lib_config(rt2x00dev
, &rt2x00dev
->hw
->conf
,
594 IEEE80211_CONF_CHANGE_PS
);
597 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev
*rt2x00dev
,
599 struct rxdone_entry_desc
*rxdesc
)
601 struct rt2x00_bar_list_entry
*entry
;
602 struct ieee80211_bar
*ba
= (void *)skb
->data
;
604 if (likely(!ieee80211_is_back(ba
->frame_control
)))
607 if (rxdesc
->size
< sizeof(*ba
) + FCS_LEN
)
611 list_for_each_entry_rcu(entry
, &rt2x00dev
->bar_list
, list
) {
613 if (ba
->start_seq_num
!= entry
->start_seq_num
)
616 #define TID_CHECK(a, b) ( \
617 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
618 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
620 if (!TID_CHECK(ba->control, entry->control))
625 if (!ether_addr_equal_64bits(ba
->ra
, entry
->ta
))
628 if (!ether_addr_equal_64bits(ba
->ta
, entry
->ra
))
631 /* Mark BAR since we received the according BA */
632 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
633 entry
->block_acked
= 1;
634 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
641 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev
*rt2x00dev
,
643 struct rxdone_entry_desc
*rxdesc
)
645 struct ieee80211_hdr
*hdr
= (void *) skb
->data
;
646 struct ieee80211_tim_ie
*tim_ie
;
651 /* If this is not a beacon, or if mac80211 has no powersaving
652 * configured, or if the device is already in powersaving mode
653 * we can exit now. */
654 if (likely(!ieee80211_is_beacon(hdr
->frame_control
) ||
655 !(rt2x00dev
->hw
->conf
.flags
& IEEE80211_CONF_PS
)))
658 /* min. beacon length + FCS_LEN */
659 if (skb
->len
<= 40 + FCS_LEN
)
662 /* and only beacons from the associated BSSID, please */
663 if (!(rxdesc
->dev_flags
& RXDONE_MY_BSS
) ||
667 rt2x00dev
->last_beacon
= jiffies
;
669 tim
= rt2x00lib_find_ie(skb
->data
, skb
->len
- FCS_LEN
, WLAN_EID_TIM
);
673 if (tim
[1] < sizeof(*tim_ie
))
677 tim_ie
= (struct ieee80211_tim_ie
*) &tim
[2];
679 /* Check whenever the PHY can be turned off again. */
681 /* 1. What about buffered unicast traffic for our AID? */
682 cam
= ieee80211_check_tim(tim_ie
, tim_len
, rt2x00dev
->aid
);
684 /* 2. Maybe the AP wants to send multicast/broadcast data? */
685 cam
|= (tim_ie
->bitmap_ctrl
& 0x01);
687 if (!cam
&& !test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
688 queue_work(rt2x00dev
->workqueue
, &rt2x00dev
->sleep_work
);
691 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev
*rt2x00dev
,
692 struct rxdone_entry_desc
*rxdesc
)
694 struct ieee80211_supported_band
*sband
;
695 const struct rt2x00_rate
*rate
;
697 int signal
= rxdesc
->signal
;
698 int type
= (rxdesc
->dev_flags
& RXDONE_SIGNAL_MASK
);
700 switch (rxdesc
->rate_mode
) {
704 * For non-HT rates the MCS value needs to contain the
705 * actually used rate modulation (CCK or OFDM).
707 if (rxdesc
->dev_flags
& RXDONE_SIGNAL_MCS
)
708 signal
= RATE_MCS(rxdesc
->rate_mode
, signal
);
710 sband
= &rt2x00dev
->bands
[rt2x00dev
->curr_band
];
711 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
712 rate
= rt2x00_get_rate(sband
->bitrates
[i
].hw_value
);
713 if (((type
== RXDONE_SIGNAL_PLCP
) &&
714 (rate
->plcp
== signal
)) ||
715 ((type
== RXDONE_SIGNAL_BITRATE
) &&
716 (rate
->bitrate
== signal
)) ||
717 ((type
== RXDONE_SIGNAL_MCS
) &&
718 (rate
->mcs
== signal
))) {
723 case RATE_MODE_HT_MIX
:
724 case RATE_MODE_HT_GREENFIELD
:
725 if (signal
>= 0 && signal
<= 76)
732 rt2x00_warn(rt2x00dev
, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
733 rxdesc
->rate_mode
, signal
, type
);
737 void rt2x00lib_rxdone(struct queue_entry
*entry
, gfp_t gfp
)
739 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
740 struct rxdone_entry_desc rxdesc
;
742 struct ieee80211_rx_status
*rx_status
;
743 unsigned int header_length
;
746 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) ||
747 !test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
750 if (test_bit(ENTRY_DATA_IO_FAILED
, &entry
->flags
))
754 * Allocate a new sk_buffer. If no new buffer available, drop the
755 * received frame and reuse the existing buffer.
757 skb
= rt2x00queue_alloc_rxskb(entry
, gfp
);
764 rt2x00queue_unmap_skb(entry
);
767 * Extract the RXD details.
769 memset(&rxdesc
, 0, sizeof(rxdesc
));
770 rt2x00dev
->ops
->lib
->fill_rxdone(entry
, &rxdesc
);
773 * Check for valid size in case we get corrupted descriptor from
776 if (unlikely(rxdesc
.size
== 0 ||
777 rxdesc
.size
> entry
->queue
->data_size
)) {
778 rt2x00_err(rt2x00dev
, "Wrong frame size %d max %d\n",
779 rxdesc
.size
, entry
->queue
->data_size
);
780 dev_kfree_skb(entry
->skb
);
785 * The data behind the ieee80211 header must be
786 * aligned on a 4 byte boundary.
788 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
791 * Hardware might have stripped the IV/EIV/ICV data,
792 * in that case it is possible that the data was
793 * provided separately (through hardware descriptor)
794 * in which case we should reinsert the data into the frame.
796 if ((rxdesc
.dev_flags
& RXDONE_CRYPTO_IV
) &&
797 (rxdesc
.flags
& RX_FLAG_IV_STRIPPED
))
798 rt2x00crypto_rx_insert_iv(entry
->skb
, header_length
,
800 else if (header_length
&&
801 (rxdesc
.size
> header_length
) &&
802 (rxdesc
.dev_flags
& RXDONE_L2PAD
))
803 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
805 /* Trim buffer to correct size */
806 skb_trim(entry
->skb
, rxdesc
.size
);
809 * Translate the signal to the correct bitrate index.
811 rate_idx
= rt2x00lib_rxdone_read_signal(rt2x00dev
, &rxdesc
);
812 if (rxdesc
.rate_mode
== RATE_MODE_HT_MIX
||
813 rxdesc
.rate_mode
== RATE_MODE_HT_GREENFIELD
)
814 rxdesc
.encoding
= RX_ENC_HT
;
817 * Check if this is a beacon, and more frames have been
818 * buffered while we were in powersaving mode.
820 rt2x00lib_rxdone_check_ps(rt2x00dev
, entry
->skb
, &rxdesc
);
823 * Check for incoming BlockAcks to match to the BlockAckReqs
826 rt2x00lib_rxdone_check_ba(rt2x00dev
, entry
->skb
, &rxdesc
);
829 * Update extra components
831 rt2x00link_update_stats(rt2x00dev
, entry
->skb
, &rxdesc
);
832 rt2x00debug_update_crypto(rt2x00dev
, &rxdesc
);
833 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_RXDONE
, entry
);
836 * Initialize RX status information, and send frame
839 rx_status
= IEEE80211_SKB_RXCB(entry
->skb
);
841 /* Ensure that all fields of rx_status are initialized
842 * properly. The skb->cb array was used for driver
843 * specific informations, so rx_status might contain
846 memset(rx_status
, 0, sizeof(*rx_status
));
848 rx_status
->mactime
= rxdesc
.timestamp
;
849 rx_status
->band
= rt2x00dev
->curr_band
;
850 rx_status
->freq
= rt2x00dev
->curr_freq
;
851 rx_status
->rate_idx
= rate_idx
;
852 rx_status
->signal
= rxdesc
.rssi
;
853 rx_status
->flag
= rxdesc
.flags
;
854 rx_status
->enc_flags
= rxdesc
.enc_flags
;
855 rx_status
->encoding
= rxdesc
.encoding
;
856 rx_status
->bw
= rxdesc
.bw
;
857 rx_status
->antenna
= rt2x00dev
->link
.ant
.active
.rx
;
859 ieee80211_rx_ni(rt2x00dev
->hw
, entry
->skb
);
863 * Replace the skb with the freshly allocated one.
869 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
870 if (test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) &&
871 test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
872 rt2x00dev
->ops
->lib
->clear_entry(entry
);
874 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone
);
877 * Driver initialization handlers.
879 const struct rt2x00_rate rt2x00_supported_rates
[12] = {
881 .flags
= DEV_RATE_CCK
,
885 .mcs
= RATE_MCS(RATE_MODE_CCK
, 0),
888 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
892 .mcs
= RATE_MCS(RATE_MODE_CCK
, 1),
895 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
899 .mcs
= RATE_MCS(RATE_MODE_CCK
, 2),
902 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
906 .mcs
= RATE_MCS(RATE_MODE_CCK
, 3),
909 .flags
= DEV_RATE_OFDM
,
913 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 0),
916 .flags
= DEV_RATE_OFDM
,
920 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 1),
923 .flags
= DEV_RATE_OFDM
,
927 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 2),
930 .flags
= DEV_RATE_OFDM
,
934 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 3),
937 .flags
= DEV_RATE_OFDM
,
941 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 4),
944 .flags
= DEV_RATE_OFDM
,
948 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 5),
951 .flags
= DEV_RATE_OFDM
,
955 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 6),
958 .flags
= DEV_RATE_OFDM
,
962 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 7),
966 static void rt2x00lib_channel(struct ieee80211_channel
*entry
,
967 const int channel
, const int tx_power
,
970 /* XXX: this assumption about the band is wrong for 802.11j */
971 entry
->band
= channel
<= 14 ? NL80211_BAND_2GHZ
: NL80211_BAND_5GHZ
;
972 entry
->center_freq
= ieee80211_channel_to_frequency(channel
,
974 entry
->hw_value
= value
;
975 entry
->max_power
= tx_power
;
976 entry
->max_antenna_gain
= 0xff;
979 static void rt2x00lib_rate(struct ieee80211_rate
*entry
,
980 const u16 index
, const struct rt2x00_rate
*rate
)
983 entry
->bitrate
= rate
->bitrate
;
984 entry
->hw_value
= index
;
985 entry
->hw_value_short
= index
;
987 if (rate
->flags
& DEV_RATE_SHORT_PREAMBLE
)
988 entry
->flags
|= IEEE80211_RATE_SHORT_PREAMBLE
;
991 void rt2x00lib_set_mac_address(struct rt2x00_dev
*rt2x00dev
, u8
*eeprom_mac_addr
)
993 const char *mac_addr
;
995 mac_addr
= of_get_mac_address(rt2x00dev
->dev
->of_node
);
996 if (!IS_ERR(mac_addr
))
997 ether_addr_copy(eeprom_mac_addr
, mac_addr
);
999 if (!is_valid_ether_addr(eeprom_mac_addr
)) {
1000 eth_random_addr(eeprom_mac_addr
);
1001 rt2x00_eeprom_dbg(rt2x00dev
, "MAC: %pM\n", eeprom_mac_addr
);
1004 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address
);
1006 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev
*rt2x00dev
,
1007 struct hw_mode_spec
*spec
)
1009 struct ieee80211_hw
*hw
= rt2x00dev
->hw
;
1010 struct ieee80211_channel
*channels
;
1011 struct ieee80211_rate
*rates
;
1012 unsigned int num_rates
;
1016 if (spec
->supported_rates
& SUPPORT_RATE_CCK
)
1018 if (spec
->supported_rates
& SUPPORT_RATE_OFDM
)
1021 channels
= kcalloc(spec
->num_channels
, sizeof(*channels
), GFP_KERNEL
);
1025 rates
= kcalloc(num_rates
, sizeof(*rates
), GFP_KERNEL
);
1027 goto exit_free_channels
;
1030 * Initialize Rate list.
1032 for (i
= 0; i
< num_rates
; i
++)
1033 rt2x00lib_rate(&rates
[i
], i
, rt2x00_get_rate(i
));
1036 * Initialize Channel list.
1038 for (i
= 0; i
< spec
->num_channels
; i
++) {
1039 rt2x00lib_channel(&channels
[i
],
1040 spec
->channels
[i
].channel
,
1041 spec
->channels_info
[i
].max_power
, i
);
1045 * Intitialize 802.11b, 802.11g
1049 if (spec
->supported_bands
& SUPPORT_BAND_2GHZ
) {
1050 rt2x00dev
->bands
[NL80211_BAND_2GHZ
].n_channels
= 14;
1051 rt2x00dev
->bands
[NL80211_BAND_2GHZ
].n_bitrates
= num_rates
;
1052 rt2x00dev
->bands
[NL80211_BAND_2GHZ
].channels
= channels
;
1053 rt2x00dev
->bands
[NL80211_BAND_2GHZ
].bitrates
= rates
;
1054 hw
->wiphy
->bands
[NL80211_BAND_2GHZ
] =
1055 &rt2x00dev
->bands
[NL80211_BAND_2GHZ
];
1056 memcpy(&rt2x00dev
->bands
[NL80211_BAND_2GHZ
].ht_cap
,
1057 &spec
->ht
, sizeof(spec
->ht
));
1061 * Intitialize 802.11a
1063 * Channels: OFDM, UNII, HiperLAN2.
1065 if (spec
->supported_bands
& SUPPORT_BAND_5GHZ
) {
1066 rt2x00dev
->bands
[NL80211_BAND_5GHZ
].n_channels
=
1067 spec
->num_channels
- 14;
1068 rt2x00dev
->bands
[NL80211_BAND_5GHZ
].n_bitrates
=
1070 rt2x00dev
->bands
[NL80211_BAND_5GHZ
].channels
= &channels
[14];
1071 rt2x00dev
->bands
[NL80211_BAND_5GHZ
].bitrates
= &rates
[4];
1072 hw
->wiphy
->bands
[NL80211_BAND_5GHZ
] =
1073 &rt2x00dev
->bands
[NL80211_BAND_5GHZ
];
1074 memcpy(&rt2x00dev
->bands
[NL80211_BAND_5GHZ
].ht_cap
,
1075 &spec
->ht
, sizeof(spec
->ht
));
1082 rt2x00_err(rt2x00dev
, "Allocation ieee80211 modes failed\n");
1086 static void rt2x00lib_remove_hw(struct rt2x00_dev
*rt2x00dev
)
1088 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
1089 ieee80211_unregister_hw(rt2x00dev
->hw
);
1091 if (likely(rt2x00dev
->hw
->wiphy
->bands
[NL80211_BAND_2GHZ
])) {
1092 kfree(rt2x00dev
->hw
->wiphy
->bands
[NL80211_BAND_2GHZ
]->channels
);
1093 kfree(rt2x00dev
->hw
->wiphy
->bands
[NL80211_BAND_2GHZ
]->bitrates
);
1094 rt2x00dev
->hw
->wiphy
->bands
[NL80211_BAND_2GHZ
] = NULL
;
1095 rt2x00dev
->hw
->wiphy
->bands
[NL80211_BAND_5GHZ
] = NULL
;
1098 kfree(rt2x00dev
->spec
.channels_info
);
1101 static int rt2x00lib_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1103 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1106 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
1110 * Initialize HW modes.
1112 status
= rt2x00lib_probe_hw_modes(rt2x00dev
, spec
);
1117 * Initialize HW fields.
1119 rt2x00dev
->hw
->queues
= rt2x00dev
->ops
->tx_queues
;
1122 * Initialize extra TX headroom required.
1124 rt2x00dev
->hw
->extra_tx_headroom
=
1125 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM
,
1126 rt2x00dev
->extra_tx_headroom
);
1129 * Take TX headroom required for alignment into account.
1131 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_L2PAD
))
1132 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_L2PAD_SIZE
;
1133 else if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DMA
))
1134 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_ALIGN_SIZE
;
1137 * Tell mac80211 about the size of our private STA structure.
1139 rt2x00dev
->hw
->sta_data_size
= sizeof(struct rt2x00_sta
);
1142 * Allocate tx status FIFO for driver use.
1144 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_TXSTATUS_FIFO
)) {
1146 * Allocate the txstatus fifo. In the worst case the tx
1147 * status fifo has to hold the tx status of all entries
1148 * in all tx queues. Hence, calculate the kfifo size as
1149 * tx_queues * entry_num and round up to the nearest
1153 roundup_pow_of_two(rt2x00dev
->ops
->tx_queues
*
1154 rt2x00dev
->tx
->limit
*
1157 status
= kfifo_alloc(&rt2x00dev
->txstatus_fifo
, kfifo_size
,
1164 * Initialize tasklets if used by the driver. Tasklets are
1165 * disabled until the interrupts are turned on. The driver
1166 * has to handle that.
1168 #define RT2X00_TASKLET_INIT(taskletname) \
1169 if (rt2x00dev->ops->lib->taskletname) { \
1170 tasklet_init(&rt2x00dev->taskletname, \
1171 rt2x00dev->ops->lib->taskletname, \
1172 (unsigned long)rt2x00dev); \
1175 RT2X00_TASKLET_INIT(txstatus_tasklet
);
1176 RT2X00_TASKLET_INIT(pretbtt_tasklet
);
1177 RT2X00_TASKLET_INIT(tbtt_tasklet
);
1178 RT2X00_TASKLET_INIT(rxdone_tasklet
);
1179 RT2X00_TASKLET_INIT(autowake_tasklet
);
1181 #undef RT2X00_TASKLET_INIT
1186 status
= ieee80211_register_hw(rt2x00dev
->hw
);
1190 set_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
);
1196 * Initialization/uninitialization handlers.
1198 static void rt2x00lib_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1200 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1204 * Stop rfkill polling.
1206 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DELAYED_RFKILL
))
1207 rt2x00rfkill_unregister(rt2x00dev
);
1210 * Allow the HW to uninitialize.
1212 rt2x00dev
->ops
->lib
->uninitialize(rt2x00dev
);
1215 * Free allocated queue entries.
1217 rt2x00queue_uninitialize(rt2x00dev
);
1220 static int rt2x00lib_initialize(struct rt2x00_dev
*rt2x00dev
)
1224 if (test_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1228 * Allocate all queue entries.
1230 status
= rt2x00queue_initialize(rt2x00dev
);
1235 * Initialize the device.
1237 status
= rt2x00dev
->ops
->lib
->initialize(rt2x00dev
);
1239 rt2x00queue_uninitialize(rt2x00dev
);
1243 set_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
);
1246 * Start rfkill polling.
1248 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DELAYED_RFKILL
))
1249 rt2x00rfkill_register(rt2x00dev
);
1254 int rt2x00lib_start(struct rt2x00_dev
*rt2x00dev
)
1259 * If this is the first interface which is added,
1260 * we should load the firmware now.
1262 retval
= rt2x00lib_load_firmware(rt2x00dev
);
1267 * Initialize the device.
1269 retval
= rt2x00lib_initialize(rt2x00dev
);
1273 rt2x00dev
->intf_ap_count
= 0;
1274 rt2x00dev
->intf_sta_count
= 0;
1275 rt2x00dev
->intf_associated
= 0;
1277 /* Enable the radio */
1278 retval
= rt2x00lib_enable_radio(rt2x00dev
);
1282 set_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
);
1288 void rt2x00lib_stop(struct rt2x00_dev
*rt2x00dev
)
1290 if (!test_and_clear_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1294 * Perhaps we can add something smarter here,
1295 * but for now just disabling the radio should do.
1297 rt2x00lib_disable_radio(rt2x00dev
);
1299 rt2x00dev
->intf_ap_count
= 0;
1300 rt2x00dev
->intf_sta_count
= 0;
1301 rt2x00dev
->intf_associated
= 0;
1304 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev
*rt2x00dev
)
1306 struct ieee80211_iface_limit
*if_limit
;
1307 struct ieee80211_iface_combination
*if_combination
;
1309 if (rt2x00dev
->ops
->max_ap_intf
< 2)
1313 * Build up AP interface limits structure.
1315 if_limit
= &rt2x00dev
->if_limits_ap
;
1316 if_limit
->max
= rt2x00dev
->ops
->max_ap_intf
;
1317 if_limit
->types
= BIT(NL80211_IFTYPE_AP
);
1318 #ifdef CONFIG_MAC80211_MESH
1319 if_limit
->types
|= BIT(NL80211_IFTYPE_MESH_POINT
);
1323 * Build up AP interface combinations structure.
1325 if_combination
= &rt2x00dev
->if_combinations
[IF_COMB_AP
];
1326 if_combination
->limits
= if_limit
;
1327 if_combination
->n_limits
= 1;
1328 if_combination
->max_interfaces
= if_limit
->max
;
1329 if_combination
->num_different_channels
= 1;
1332 * Finally, specify the possible combinations to mac80211.
1334 rt2x00dev
->hw
->wiphy
->iface_combinations
= rt2x00dev
->if_combinations
;
1335 rt2x00dev
->hw
->wiphy
->n_iface_combinations
= 1;
1338 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev
*rt2x00dev
)
1340 if (WARN_ON(!rt2x00dev
->tx
))
1343 if (rt2x00_is_usb(rt2x00dev
))
1344 return rt2x00dev
->tx
[0].winfo_size
+ rt2x00dev
->tx
[0].desc_size
;
1346 return rt2x00dev
->tx
[0].winfo_size
;
1350 * driver allocation handlers.
1352 int rt2x00lib_probe_dev(struct rt2x00_dev
*rt2x00dev
)
1354 int retval
= -ENOMEM
;
1357 * Set possible interface combinations.
1359 rt2x00lib_set_if_combinations(rt2x00dev
);
1362 * Allocate the driver data memory, if necessary.
1364 if (rt2x00dev
->ops
->drv_data_size
> 0) {
1365 rt2x00dev
->drv_data
= kzalloc(rt2x00dev
->ops
->drv_data_size
,
1367 if (!rt2x00dev
->drv_data
) {
1373 spin_lock_init(&rt2x00dev
->irqmask_lock
);
1374 mutex_init(&rt2x00dev
->csr_mutex
);
1375 mutex_init(&rt2x00dev
->conf_mutex
);
1376 INIT_LIST_HEAD(&rt2x00dev
->bar_list
);
1377 spin_lock_init(&rt2x00dev
->bar_list_lock
);
1378 hrtimer_init(&rt2x00dev
->txstatus_timer
, CLOCK_MONOTONIC
,
1381 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1384 * Make room for rt2x00_intf inside the per-interface
1385 * structure ieee80211_vif.
1387 rt2x00dev
->hw
->vif_data_size
= sizeof(struct rt2x00_intf
);
1390 * rt2x00 devices can only use the last n bits of the MAC address
1391 * for virtual interfaces.
1393 rt2x00dev
->hw
->wiphy
->addr_mask
[ETH_ALEN
- 1] =
1394 (rt2x00dev
->ops
->max_ap_intf
- 1);
1399 rt2x00dev
->workqueue
=
1400 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev
->hw
->wiphy
));
1401 if (!rt2x00dev
->workqueue
) {
1406 INIT_WORK(&rt2x00dev
->intf_work
, rt2x00lib_intf_scheduled
);
1407 INIT_DELAYED_WORK(&rt2x00dev
->autowakeup_work
, rt2x00lib_autowakeup
);
1408 INIT_WORK(&rt2x00dev
->sleep_work
, rt2x00lib_sleep
);
1411 * Let the driver probe the device to detect the capabilities.
1413 retval
= rt2x00dev
->ops
->lib
->probe_hw(rt2x00dev
);
1415 rt2x00_err(rt2x00dev
, "Failed to allocate device\n");
1420 * Allocate queue array.
1422 retval
= rt2x00queue_allocate(rt2x00dev
);
1426 /* Cache TX headroom value */
1427 rt2x00dev
->extra_tx_headroom
= rt2x00dev_extra_tx_headroom(rt2x00dev
);
1430 * Determine which operating modes are supported, all modes
1431 * which require beaconing, depend on the availability of
1434 rt2x00dev
->hw
->wiphy
->interface_modes
= BIT(NL80211_IFTYPE_STATION
);
1435 if (rt2x00dev
->bcn
->limit
> 0)
1436 rt2x00dev
->hw
->wiphy
->interface_modes
|=
1437 BIT(NL80211_IFTYPE_ADHOC
) |
1438 #ifdef CONFIG_MAC80211_MESH
1439 BIT(NL80211_IFTYPE_MESH_POINT
) |
1441 #ifdef CONFIG_WIRELESS_WDS
1442 BIT(NL80211_IFTYPE_WDS
) |
1444 BIT(NL80211_IFTYPE_AP
);
1446 rt2x00dev
->hw
->wiphy
->flags
|= WIPHY_FLAG_IBSS_RSN
;
1448 wiphy_ext_feature_set(rt2x00dev
->hw
->wiphy
,
1449 NL80211_EXT_FEATURE_CQM_RSSI_LIST
);
1452 * Initialize ieee80211 structure.
1454 retval
= rt2x00lib_probe_hw(rt2x00dev
);
1456 rt2x00_err(rt2x00dev
, "Failed to initialize hw\n");
1461 * Register extra components.
1463 rt2x00link_register(rt2x00dev
);
1464 rt2x00leds_register(rt2x00dev
);
1465 rt2x00debug_register(rt2x00dev
);
1468 * Start rfkill polling.
1470 if (!rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DELAYED_RFKILL
))
1471 rt2x00rfkill_register(rt2x00dev
);
1476 rt2x00lib_remove_dev(rt2x00dev
);
1480 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev
);
1482 void rt2x00lib_remove_dev(struct rt2x00_dev
*rt2x00dev
)
1484 clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1487 * Stop rfkill polling.
1489 if (!rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DELAYED_RFKILL
))
1490 rt2x00rfkill_unregister(rt2x00dev
);
1495 rt2x00lib_disable_radio(rt2x00dev
);
1500 cancel_work_sync(&rt2x00dev
->intf_work
);
1501 cancel_delayed_work_sync(&rt2x00dev
->autowakeup_work
);
1502 cancel_work_sync(&rt2x00dev
->sleep_work
);
1504 hrtimer_cancel(&rt2x00dev
->txstatus_timer
);
1507 * Kill the tx status tasklet.
1509 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1510 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
1511 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1512 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1513 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1516 * Uninitialize device.
1518 rt2x00lib_uninitialize(rt2x00dev
);
1520 if (rt2x00dev
->workqueue
)
1521 destroy_workqueue(rt2x00dev
->workqueue
);
1524 * Free the tx status fifo.
1526 kfifo_free(&rt2x00dev
->txstatus_fifo
);
1529 * Free extra components
1531 rt2x00debug_deregister(rt2x00dev
);
1532 rt2x00leds_unregister(rt2x00dev
);
1535 * Free ieee80211_hw memory.
1537 rt2x00lib_remove_hw(rt2x00dev
);
1540 * Free firmware image.
1542 rt2x00lib_free_firmware(rt2x00dev
);
1545 * Free queue structures.
1547 rt2x00queue_free(rt2x00dev
);
1550 * Free the driver data.
1552 kfree(rt2x00dev
->drv_data
);
1554 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev
);
1557 * Device state handlers
1560 int rt2x00lib_suspend(struct rt2x00_dev
*rt2x00dev
, pm_message_t state
)
1562 rt2x00_dbg(rt2x00dev
, "Going to sleep\n");
1565 * Prevent mac80211 from accessing driver while suspended.
1567 if (!test_and_clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
1571 * Cleanup as much as possible.
1573 rt2x00lib_uninitialize(rt2x00dev
);
1576 * Suspend/disable extra components.
1578 rt2x00leds_suspend(rt2x00dev
);
1579 rt2x00debug_deregister(rt2x00dev
);
1582 * Set device mode to sleep for power management,
1583 * on some hardware this call seems to consistently fail.
1584 * From the specifications it is hard to tell why it fails,
1585 * and if this is a "bad thing".
1586 * Overall it is safe to just ignore the failure and
1587 * continue suspending. The only downside is that the
1588 * device will not be in optimal power save mode, but with
1589 * the radio and the other components already disabled the
1590 * device is as good as disabled.
1592 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_SLEEP
))
1593 rt2x00_warn(rt2x00dev
, "Device failed to enter sleep state, continue suspending\n");
1597 EXPORT_SYMBOL_GPL(rt2x00lib_suspend
);
1599 int rt2x00lib_resume(struct rt2x00_dev
*rt2x00dev
)
1601 rt2x00_dbg(rt2x00dev
, "Waking up\n");
1604 * Restore/enable extra components.
1606 rt2x00debug_register(rt2x00dev
);
1607 rt2x00leds_resume(rt2x00dev
);
1610 * We are ready again to receive requests from mac80211.
1612 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1616 EXPORT_SYMBOL_GPL(rt2x00lib_resume
);
1617 #endif /* CONFIG_PM */
1620 * rt2x00lib module information.
1622 MODULE_AUTHOR(DRV_PROJECT
);
1623 MODULE_VERSION(DRV_VERSION
);
1624 MODULE_DESCRIPTION("rt2x00 library");
1625 MODULE_LICENSE("GPL");