1 // SPDX-License-Identifier: GPL-2.0-or-later
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 <http://rt2x00.serialmonkey.com>
12 Abstract: rt2x00 queue specific routines.
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/dma-mapping.h>
21 #include "rt2x00lib.h"
23 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
, gfp_t gfp
)
25 struct data_queue
*queue
= entry
->queue
;
26 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
28 struct skb_frame_desc
*skbdesc
;
29 unsigned int frame_size
;
30 unsigned int head_size
= 0;
31 unsigned int tail_size
= 0;
34 * The frame size includes descriptor size, because the
35 * hardware directly receive the frame into the skbuffer.
37 frame_size
= queue
->data_size
+ queue
->desc_size
+ queue
->winfo_size
;
40 * The payload should be aligned to a 4-byte boundary,
41 * this means we need at least 3 bytes for moving the frame
42 * into the correct offset.
47 * For IV/EIV/ICV assembly we must make sure there is
48 * at least 8 bytes bytes available in headroom for IV/EIV
49 * and 8 bytes for ICV data as tailroon.
51 if (rt2x00_has_cap_hw_crypto(rt2x00dev
)) {
59 skb
= __dev_alloc_skb(frame_size
+ head_size
+ tail_size
, gfp
);
64 * Make sure we not have a frame with the requested bytes
65 * available in the head and tail.
67 skb_reserve(skb
, head_size
);
68 skb_put(skb
, frame_size
);
73 skbdesc
= get_skb_frame_desc(skb
);
74 memset(skbdesc
, 0, sizeof(*skbdesc
));
76 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DMA
)) {
79 skb_dma
= dma_map_single(rt2x00dev
->dev
, skb
->data
, skb
->len
,
81 if (unlikely(dma_mapping_error(rt2x00dev
->dev
, skb_dma
))) {
82 dev_kfree_skb_any(skb
);
86 skbdesc
->skb_dma
= skb_dma
;
87 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
93 int rt2x00queue_map_txskb(struct queue_entry
*entry
)
95 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
96 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
99 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
101 if (unlikely(dma_mapping_error(dev
, skbdesc
->skb_dma
)))
104 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
105 rt2x00lib_dmadone(entry
);
108 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
110 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
112 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
113 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
115 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
116 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
118 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
119 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
120 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
122 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
125 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
127 void rt2x00queue_free_skb(struct queue_entry
*entry
)
132 rt2x00queue_unmap_skb(entry
);
133 dev_kfree_skb_any(entry
->skb
);
137 void rt2x00queue_align_frame(struct sk_buff
*skb
)
139 unsigned int frame_length
= skb
->len
;
140 unsigned int align
= ALIGN_SIZE(skb
, 0);
145 skb_push(skb
, align
);
146 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
147 skb_trim(skb
, frame_length
);
151 * H/W needs L2 padding between the header and the paylod if header size
152 * is not 4 bytes aligned.
154 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int hdr_len
)
156 unsigned int l2pad
= (skb
->len
> hdr_len
) ? L2PAD_SIZE(hdr_len
) : 0;
161 skb_push(skb
, l2pad
);
162 memmove(skb
->data
, skb
->data
+ l2pad
, hdr_len
);
165 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int hdr_len
)
167 unsigned int l2pad
= (skb
->len
> hdr_len
) ? L2PAD_SIZE(hdr_len
) : 0;
172 memmove(skb
->data
+ l2pad
, skb
->data
, hdr_len
);
173 skb_pull(skb
, l2pad
);
176 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev
*rt2x00dev
,
178 struct txentry_desc
*txdesc
)
180 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
181 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
182 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
185 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
188 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
190 if (!rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_SW_SEQNO
)) {
192 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
193 * seqno on retransmitted data (non-QOS) and management frames.
194 * To workaround the problem let's generate seqno in software.
195 * Except for beacons which are transmitted periodically by H/W
196 * hence hardware has to assign seqno for them.
198 if (ieee80211_is_beacon(hdr
->frame_control
)) {
199 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
200 /* H/W will generate sequence number */
204 __clear_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
208 * The hardware is not able to insert a sequence number. Assign a
209 * software generated one here.
211 * This is wrong because beacons are not getting sequence
212 * numbers assigned properly.
214 * A secondary problem exists for drivers that cannot toggle
215 * sequence counting per-frame, since those will override the
216 * sequence counter given by mac80211.
218 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
219 seqno
= atomic_add_return(0x10, &intf
->seqno
);
221 seqno
= atomic_read(&intf
->seqno
);
223 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
224 hdr
->seq_ctrl
|= cpu_to_le16(seqno
);
227 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev
*rt2x00dev
,
229 struct txentry_desc
*txdesc
,
230 const struct rt2x00_rate
*hwrate
)
232 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
233 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
234 unsigned int data_length
;
235 unsigned int duration
;
236 unsigned int residual
;
239 * Determine with what IFS priority this frame should be send.
240 * Set ifs to IFS_SIFS when the this is not the first fragment,
241 * or this fragment came after RTS/CTS.
243 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
244 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
246 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
248 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
249 data_length
= skb
->len
+ 4;
250 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, skb
);
254 * Length calculation depends on OFDM/CCK rate.
256 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
257 txdesc
->u
.plcp
.service
= 0x04;
259 if (hwrate
->flags
& DEV_RATE_OFDM
) {
260 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
261 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
264 * Convert length to microseconds.
266 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
267 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
273 * Check if we need to set the Length Extension
275 if (hwrate
->bitrate
== 110 && residual
<= 30)
276 txdesc
->u
.plcp
.service
|= 0x80;
279 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
280 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
283 * When preamble is enabled we should set the
284 * preamble bit for the signal.
286 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
287 txdesc
->u
.plcp
.signal
|= 0x08;
291 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev
*rt2x00dev
,
293 struct txentry_desc
*txdesc
,
294 struct ieee80211_sta
*sta
,
295 const struct rt2x00_rate
*hwrate
)
297 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
298 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
299 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
300 struct rt2x00_sta
*sta_priv
= NULL
;
304 sta_priv
= sta_to_rt2x00_sta(sta
);
305 txdesc
->u
.ht
.wcid
= sta_priv
->wcid
;
306 density
= sta
->ht_cap
.ampdu_density
;
310 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
311 * mcs rate to be used
313 if (txrate
->flags
& IEEE80211_TX_RC_MCS
) {
314 txdesc
->u
.ht
.mcs
= txrate
->idx
;
317 * MIMO PS should be set to 1 for STA's using dynamic SM PS
318 * when using more then one tx stream (>MCS7).
320 if (sta
&& txdesc
->u
.ht
.mcs
> 7 &&
321 sta
->smps_mode
== IEEE80211_SMPS_DYNAMIC
)
322 __set_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
);
324 txdesc
->u
.ht
.mcs
= rt2x00_get_rate_mcs(hwrate
->mcs
);
325 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
326 txdesc
->u
.ht
.mcs
|= 0x08;
329 if (test_bit(CONFIG_HT_DISABLED
, &rt2x00dev
->flags
)) {
330 if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
331 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
333 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
335 /* Left zero on all other settings. */
340 * Only one STBC stream is supported for now.
342 if (tx_info
->flags
& IEEE80211_TX_CTL_STBC
)
343 txdesc
->u
.ht
.stbc
= 1;
346 * This frame is eligible for an AMPDU, however, don't aggregate
347 * frames that are intended to probe a specific tx rate.
349 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
&&
350 !(tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
)) {
351 __set_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
);
352 txdesc
->u
.ht
.mpdu_density
= density
;
353 txdesc
->u
.ht
.ba_size
= 7; /* FIXME: What value is needed? */
357 * Set 40Mhz mode if necessary (for legacy rates this will
358 * duplicate the frame to both channels).
360 if (txrate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
||
361 txrate
->flags
& IEEE80211_TX_RC_DUP_DATA
)
362 __set_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
);
363 if (txrate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
364 __set_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
);
367 * Determine IFS values
368 * - Use TXOP_BACKOFF for management frames except beacons
369 * - Use TXOP_SIFS for fragment bursts
370 * - Use TXOP_HTTXOP for everything else
372 * Note: rt2800 devices won't use CTS protection (if used)
373 * for frames not transmitted with TXOP_HTTXOP
375 if (ieee80211_is_mgmt(hdr
->frame_control
) &&
376 !ieee80211_is_beacon(hdr
->frame_control
))
377 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
378 else if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
379 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
381 txdesc
->u
.ht
.txop
= TXOP_HTTXOP
;
384 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev
*rt2x00dev
,
386 struct txentry_desc
*txdesc
,
387 struct ieee80211_sta
*sta
)
389 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
390 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
391 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
392 struct ieee80211_rate
*rate
;
393 const struct rt2x00_rate
*hwrate
= NULL
;
395 memset(txdesc
, 0, sizeof(*txdesc
));
398 * Header and frame information.
400 txdesc
->length
= skb
->len
;
401 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(skb
);
404 * Check whether this frame is to be acked.
406 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
407 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
410 * Check if this is a RTS/CTS frame
412 if (ieee80211_is_rts(hdr
->frame_control
) ||
413 ieee80211_is_cts(hdr
->frame_control
)) {
414 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
415 if (ieee80211_is_rts(hdr
->frame_control
))
416 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
418 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
419 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
421 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
425 * Determine retry information.
427 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
428 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
429 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
432 * Check if more fragments are pending
434 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
435 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
436 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
440 * Check if more frames (!= fragments) are pending
442 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
443 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
446 * Beacons and probe responses require the tsf timestamp
447 * to be inserted into the frame.
449 if (ieee80211_is_beacon(hdr
->frame_control
) ||
450 ieee80211_is_probe_resp(hdr
->frame_control
))
451 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
453 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
454 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
455 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
458 * Determine rate modulation.
460 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
461 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
462 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
463 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
465 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
466 hwrate
= rt2x00_get_rate(rate
->hw_value
);
467 if (hwrate
->flags
& DEV_RATE_OFDM
)
468 txdesc
->rate_mode
= RATE_MODE_OFDM
;
470 txdesc
->rate_mode
= RATE_MODE_CCK
;
474 * Apply TX descriptor handling by components
476 rt2x00crypto_create_tx_descriptor(rt2x00dev
, skb
, txdesc
);
477 rt2x00queue_create_tx_descriptor_seq(rt2x00dev
, skb
, txdesc
);
479 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_HT_TX_DESC
))
480 rt2x00queue_create_tx_descriptor_ht(rt2x00dev
, skb
, txdesc
,
483 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev
, skb
, txdesc
,
487 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
488 struct txentry_desc
*txdesc
)
490 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
493 * This should not happen, we already checked the entry
494 * was ours. When the hardware disagrees there has been
495 * a queue corruption!
497 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
498 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
499 rt2x00_err(rt2x00dev
,
500 "Corrupt queue %d, accessing entry which is not ours\n"
501 "Please file bug report to %s\n",
502 entry
->queue
->qid
, DRV_PROJECT
);
507 * Add the requested extra tx headroom in front of the skb.
509 skb_push(entry
->skb
, rt2x00dev
->extra_tx_headroom
);
510 memset(entry
->skb
->data
, 0, rt2x00dev
->extra_tx_headroom
);
513 * Call the driver's write_tx_data function, if it exists.
515 if (rt2x00dev
->ops
->lib
->write_tx_data
)
516 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
519 * Map the skb to DMA.
521 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DMA
) &&
522 rt2x00queue_map_txskb(entry
))
528 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
529 struct txentry_desc
*txdesc
)
531 struct data_queue
*queue
= entry
->queue
;
533 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
536 * All processing on the frame has been completed, this means
537 * it is now ready to be dumped to userspace through debugfs.
539 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
);
542 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
543 struct txentry_desc
*txdesc
)
546 * Check if we need to kick the queue, there are however a few rules
547 * 1) Don't kick unless this is the last in frame in a burst.
548 * When the burst flag is set, this frame is always followed
549 * by another frame which in some way are related to eachother.
550 * This is true for fragments, RTS or CTS-to-self frames.
551 * 2) Rule 1 can be broken when the available entries
552 * in the queue are less then a certain threshold.
554 if (rt2x00queue_threshold(queue
) ||
555 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
556 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
559 static void rt2x00queue_bar_check(struct queue_entry
*entry
)
561 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
562 struct ieee80211_bar
*bar
= (void *) (entry
->skb
->data
+
563 rt2x00dev
->extra_tx_headroom
);
564 struct rt2x00_bar_list_entry
*bar_entry
;
566 if (likely(!ieee80211_is_back_req(bar
->frame_control
)))
569 bar_entry
= kmalloc(sizeof(*bar_entry
), GFP_ATOMIC
);
572 * If the alloc fails we still send the BAR out but just don't track
573 * it in our bar list. And as a result we will report it to mac80211
579 bar_entry
->entry
= entry
;
580 bar_entry
->block_acked
= 0;
583 * Copy the relevant parts of the 802.11 BAR into out check list
584 * such that we can use RCU for less-overhead in the RX path since
585 * sending BARs and processing the according BlockAck should be
588 memcpy(bar_entry
->ra
, bar
->ra
, sizeof(bar
->ra
));
589 memcpy(bar_entry
->ta
, bar
->ta
, sizeof(bar
->ta
));
590 bar_entry
->control
= bar
->control
;
591 bar_entry
->start_seq_num
= bar
->start_seq_num
;
594 * Insert BAR into our BAR check list.
596 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
597 list_add_tail_rcu(&bar_entry
->list
, &rt2x00dev
->bar_list
);
598 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
601 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
602 struct ieee80211_sta
*sta
, bool local
)
604 struct ieee80211_tx_info
*tx_info
;
605 struct queue_entry
*entry
;
606 struct txentry_desc txdesc
;
607 struct skb_frame_desc
*skbdesc
;
608 u8 rate_idx
, rate_flags
;
612 * Copy all TX descriptor information into txdesc,
613 * after that we are free to use the skb->cb array
614 * for our information.
616 rt2x00queue_create_tx_descriptor(queue
->rt2x00dev
, skb
, &txdesc
, sta
);
619 * All information is retrieved from the skb->cb array,
620 * now we should claim ownership of the driver part of that
621 * array, preserving the bitrate index and flags.
623 tx_info
= IEEE80211_SKB_CB(skb
);
624 rate_idx
= tx_info
->control
.rates
[0].idx
;
625 rate_flags
= tx_info
->control
.rates
[0].flags
;
626 skbdesc
= get_skb_frame_desc(skb
);
627 memset(skbdesc
, 0, sizeof(*skbdesc
));
628 skbdesc
->tx_rate_idx
= rate_idx
;
629 skbdesc
->tx_rate_flags
= rate_flags
;
632 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
635 * When hardware encryption is supported, and this frame
636 * is to be encrypted, we should strip the IV/EIV data from
637 * the frame so we can provide it to the driver separately.
639 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
640 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
641 if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_COPY_IV
))
642 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
644 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
648 * When DMA allocation is required we should guarantee to the
649 * driver that the DMA is aligned to a 4-byte boundary.
650 * However some drivers require L2 padding to pad the payload
651 * rather then the header. This could be a requirement for
652 * PCI and USB devices, while header alignment only is valid
655 if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_L2PAD
))
656 rt2x00queue_insert_l2pad(skb
, txdesc
.header_length
);
657 else if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_DMA
))
658 rt2x00queue_align_frame(skb
);
661 * That function must be called with bh disabled.
663 spin_lock(&queue
->tx_lock
);
665 if (unlikely(rt2x00queue_full(queue
))) {
666 rt2x00_dbg(queue
->rt2x00dev
, "Dropping frame due to full tx queue %d\n",
672 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
674 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
676 rt2x00_err(queue
->rt2x00dev
,
677 "Arrived at non-free entry in the non-full queue %d\n"
678 "Please file bug report to %s\n",
679 queue
->qid
, DRV_PROJECT
);
687 * It could be possible that the queue was corrupted and this
688 * call failed. Since we always return NETDEV_TX_OK to mac80211,
689 * this frame will simply be dropped.
691 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
692 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
699 * Put BlockAckReqs into our check list for driver BA processing.
701 rt2x00queue_bar_check(entry
);
703 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
705 rt2x00queue_index_inc(entry
, Q_INDEX
);
706 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
707 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
711 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
712 * do this under queue->tx_lock. Bottom halve was already disabled
713 * before ieee80211_xmit() call.
715 if (rt2x00queue_threshold(queue
))
716 rt2x00queue_pause_queue(queue
);
718 spin_unlock(&queue
->tx_lock
);
722 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
723 struct ieee80211_vif
*vif
)
725 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
727 if (unlikely(!intf
->beacon
))
731 * Clean up the beacon skb.
733 rt2x00queue_free_skb(intf
->beacon
);
736 * Clear beacon (single bssid devices don't need to clear the beacon
737 * since the beacon queue will get stopped anyway).
739 if (rt2x00dev
->ops
->lib
->clear_beacon
)
740 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
745 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
746 struct ieee80211_vif
*vif
)
748 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
749 struct skb_frame_desc
*skbdesc
;
750 struct txentry_desc txdesc
;
752 if (unlikely(!intf
->beacon
))
756 * Clean up the beacon skb.
758 rt2x00queue_free_skb(intf
->beacon
);
760 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
761 if (!intf
->beacon
->skb
)
765 * Copy all TX descriptor information into txdesc,
766 * after that we are free to use the skb->cb array
767 * for our information.
769 rt2x00queue_create_tx_descriptor(rt2x00dev
, intf
->beacon
->skb
, &txdesc
, NULL
);
772 * Fill in skb descriptor
774 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
775 memset(skbdesc
, 0, sizeof(*skbdesc
));
778 * Send beacon to hardware.
780 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
786 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
787 enum queue_index start
,
788 enum queue_index end
,
790 bool (*fn
)(struct queue_entry
*entry
,
793 unsigned long irqflags
;
794 unsigned int index_start
;
795 unsigned int index_end
;
798 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
799 rt2x00_err(queue
->rt2x00dev
,
800 "Entry requested from invalid index range (%d - %d)\n",
806 * Only protect the range we are going to loop over,
807 * if during our loop a extra entry is set to pending
808 * it should not be kicked during this run, since it
809 * is part of another TX operation.
811 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
812 index_start
= queue
->index
[start
];
813 index_end
= queue
->index
[end
];
814 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
817 * Start from the TX done pointer, this guarantees that we will
818 * send out all frames in the correct order.
820 if (index_start
< index_end
) {
821 for (i
= index_start
; i
< index_end
; i
++) {
822 if (fn(&queue
->entries
[i
], data
))
826 for (i
= index_start
; i
< queue
->limit
; i
++) {
827 if (fn(&queue
->entries
[i
], data
))
831 for (i
= 0; i
< index_end
; i
++) {
832 if (fn(&queue
->entries
[i
], data
))
839 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
841 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
842 enum queue_index index
)
844 struct queue_entry
*entry
;
845 unsigned long irqflags
;
847 if (unlikely(index
>= Q_INDEX_MAX
)) {
848 rt2x00_err(queue
->rt2x00dev
, "Entry requested from invalid index type (%d)\n",
853 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
855 entry
= &queue
->entries
[queue
->index
[index
]];
857 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
861 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
863 void rt2x00queue_index_inc(struct queue_entry
*entry
, enum queue_index index
)
865 struct data_queue
*queue
= entry
->queue
;
866 unsigned long irqflags
;
868 if (unlikely(index
>= Q_INDEX_MAX
)) {
869 rt2x00_err(queue
->rt2x00dev
,
870 "Index change on invalid index type (%d)\n", index
);
874 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
876 queue
->index
[index
]++;
877 if (queue
->index
[index
] >= queue
->limit
)
878 queue
->index
[index
] = 0;
880 entry
->last_action
= jiffies
;
882 if (index
== Q_INDEX
) {
884 } else if (index
== Q_INDEX_DONE
) {
889 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
892 static void rt2x00queue_pause_queue_nocheck(struct data_queue
*queue
)
894 switch (queue
->qid
) {
900 * For TX queues, we have to disable the queue
903 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
909 void rt2x00queue_pause_queue(struct data_queue
*queue
)
911 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
912 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
913 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
916 rt2x00queue_pause_queue_nocheck(queue
);
918 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
920 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
922 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
923 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
924 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
927 switch (queue
->qid
) {
933 * For TX queues, we have to enable the queue
936 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
940 * For RX we need to kick the queue now in order to
943 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
948 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
950 void rt2x00queue_start_queue(struct data_queue
*queue
)
952 mutex_lock(&queue
->status_lock
);
954 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
955 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
956 mutex_unlock(&queue
->status_lock
);
960 set_bit(QUEUE_PAUSED
, &queue
->flags
);
962 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
964 rt2x00queue_unpause_queue(queue
);
966 mutex_unlock(&queue
->status_lock
);
968 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
970 void rt2x00queue_stop_queue(struct data_queue
*queue
)
972 mutex_lock(&queue
->status_lock
);
974 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
975 mutex_unlock(&queue
->status_lock
);
979 rt2x00queue_pause_queue_nocheck(queue
);
981 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
983 mutex_unlock(&queue
->status_lock
);
985 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
987 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
990 (queue
->qid
== QID_AC_VO
) ||
991 (queue
->qid
== QID_AC_VI
) ||
992 (queue
->qid
== QID_AC_BE
) ||
993 (queue
->qid
== QID_AC_BK
);
995 if (rt2x00queue_empty(queue
))
999 * If we are not supposed to drop any pending
1000 * frames, this means we must force a start (=kick)
1001 * to the queue to make sure the hardware will
1002 * start transmitting.
1004 if (!drop
&& tx_queue
)
1005 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
1008 * Check if driver supports flushing, if that is the case we can
1009 * defer the flushing to the driver. Otherwise we must use the
1010 * alternative which just waits for the queue to become empty.
1012 if (likely(queue
->rt2x00dev
->ops
->lib
->flush_queue
))
1013 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
, drop
);
1016 * The queue flush has failed...
1018 if (unlikely(!rt2x00queue_empty(queue
)))
1019 rt2x00_warn(queue
->rt2x00dev
, "Queue %d failed to flush\n",
1022 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
1024 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
1026 struct data_queue
*queue
;
1029 * rt2x00queue_start_queue will call ieee80211_wake_queue
1030 * for each queue after is has been properly initialized.
1032 tx_queue_for_each(rt2x00dev
, queue
)
1033 rt2x00queue_start_queue(queue
);
1035 rt2x00queue_start_queue(rt2x00dev
->rx
);
1037 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
1039 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
1041 struct data_queue
*queue
;
1044 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1045 * as well, but we are completely shutting doing everything
1046 * now, so it is much safer to stop all TX queues at once,
1047 * and use rt2x00queue_stop_queue for cleaning up.
1049 ieee80211_stop_queues(rt2x00dev
->hw
);
1051 tx_queue_for_each(rt2x00dev
, queue
)
1052 rt2x00queue_stop_queue(queue
);
1054 rt2x00queue_stop_queue(rt2x00dev
->rx
);
1056 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
1058 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
1060 struct data_queue
*queue
;
1062 tx_queue_for_each(rt2x00dev
, queue
)
1063 rt2x00queue_flush_queue(queue
, drop
);
1065 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
1067 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
1069 static void rt2x00queue_reset(struct data_queue
*queue
)
1071 unsigned long irqflags
;
1074 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
1079 for (i
= 0; i
< Q_INDEX_MAX
; i
++)
1080 queue
->index
[i
] = 0;
1082 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
1085 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
1087 struct data_queue
*queue
;
1090 queue_for_each(rt2x00dev
, queue
) {
1091 rt2x00queue_reset(queue
);
1093 for (i
= 0; i
< queue
->limit
; i
++)
1094 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
1098 static int rt2x00queue_alloc_entries(struct data_queue
*queue
)
1100 struct queue_entry
*entries
;
1101 unsigned int entry_size
;
1104 rt2x00queue_reset(queue
);
1107 * Allocate all queue entries.
1109 entry_size
= sizeof(*entries
) + queue
->priv_size
;
1110 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1114 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1115 (((char *)(__base)) + ((__limit) * (__esize)) + \
1116 ((__index) * (__psize)))
1118 for (i
= 0; i
< queue
->limit
; i
++) {
1119 entries
[i
].flags
= 0;
1120 entries
[i
].queue
= queue
;
1121 entries
[i
].skb
= NULL
;
1122 entries
[i
].entry_idx
= i
;
1123 entries
[i
].priv_data
=
1124 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1125 sizeof(*entries
), queue
->priv_size
);
1128 #undef QUEUE_ENTRY_PRIV_OFFSET
1130 queue
->entries
= entries
;
1135 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1139 if (!queue
->entries
)
1142 for (i
= 0; i
< queue
->limit
; i
++) {
1143 rt2x00queue_free_skb(&queue
->entries
[i
]);
1147 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1150 struct sk_buff
*skb
;
1152 for (i
= 0; i
< queue
->limit
; i
++) {
1153 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
], GFP_KERNEL
);
1156 queue
->entries
[i
].skb
= skb
;
1162 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1164 struct data_queue
*queue
;
1167 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
);
1171 tx_queue_for_each(rt2x00dev
, queue
) {
1172 status
= rt2x00queue_alloc_entries(queue
);
1177 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
);
1181 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_ATIM_QUEUE
)) {
1182 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
);
1187 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1194 rt2x00_err(rt2x00dev
, "Queue entries allocation failed\n");
1196 rt2x00queue_uninitialize(rt2x00dev
);
1201 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1203 struct data_queue
*queue
;
1205 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1207 queue_for_each(rt2x00dev
, queue
) {
1208 kfree(queue
->entries
);
1209 queue
->entries
= NULL
;
1213 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1214 struct data_queue
*queue
, enum data_queue_qid qid
)
1216 mutex_init(&queue
->status_lock
);
1217 spin_lock_init(&queue
->tx_lock
);
1218 spin_lock_init(&queue
->index_lock
);
1220 queue
->rt2x00dev
= rt2x00dev
;
1227 rt2x00dev
->ops
->queue_init(queue
);
1229 queue
->threshold
= DIV_ROUND_UP(queue
->limit
, 10);
1232 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1234 struct data_queue
*queue
;
1235 enum data_queue_qid qid
;
1236 unsigned int req_atim
=
1237 rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_ATIM_QUEUE
);
1240 * We need the following queues:
1242 * TX: ops->tx_queues
1244 * Atim: 1 (if required)
1246 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1248 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1253 * Initialize pointers
1255 rt2x00dev
->rx
= queue
;
1256 rt2x00dev
->tx
= &queue
[1];
1257 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1258 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1261 * Initialize queue parameters.
1263 * TX: qid = QID_AC_VO + index
1264 * TX: cw_min: 2^5 = 32.
1265 * TX: cw_max: 2^10 = 1024.
1266 * BCN: qid = QID_BEACON
1267 * ATIM: qid = QID_ATIM
1269 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1272 tx_queue_for_each(rt2x00dev
, queue
)
1273 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1275 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1277 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1282 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1284 kfree(rt2x00dev
->rx
);
1285 rt2x00dev
->rx
= NULL
;
1286 rt2x00dev
->tx
= NULL
;
1287 rt2x00dev
->bcn
= NULL
;