treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / ralink / rt2x00 / rt2x00queue.c
blob3b6100e6c8f69436ea8c549a53993ce6da9d6c02
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 <http://rt2x00.serialmonkey.com>
8 */
11 Module: rt2x00lib
12 Abstract: rt2x00 queue specific routines.
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/dma-mapping.h>
20 #include "rt2x00.h"
21 #include "rt2x00lib.h"
23 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
25 struct data_queue *queue = entry->queue;
26 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
27 struct sk_buff *skb;
28 struct skb_frame_desc *skbdesc;
29 unsigned int frame_size;
30 unsigned int head_size = 0;
31 unsigned int tail_size = 0;
34 * The frame size includes descriptor size, because the
35 * hardware directly receive the frame into the skbuffer.
37 frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
40 * The payload should be aligned to a 4-byte boundary,
41 * this means we need at least 3 bytes for moving the frame
42 * into the correct offset.
44 head_size = 4;
47 * For IV/EIV/ICV assembly we must make sure there is
48 * at least 8 bytes bytes available in headroom for IV/EIV
49 * and 8 bytes for ICV data as tailroon.
51 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
52 head_size += 8;
53 tail_size += 8;
57 * Allocate skbuffer.
59 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
60 if (!skb)
61 return NULL;
64 * Make sure we not have a frame with the requested bytes
65 * available in the head and tail.
67 skb_reserve(skb, head_size);
68 skb_put(skb, frame_size);
71 * Populate skbdesc.
73 skbdesc = get_skb_frame_desc(skb);
74 memset(skbdesc, 0, sizeof(*skbdesc));
76 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
77 dma_addr_t skb_dma;
79 skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
80 DMA_FROM_DEVICE);
81 if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
82 dev_kfree_skb_any(skb);
83 return NULL;
86 skbdesc->skb_dma = skb_dma;
87 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
90 return skb;
93 int rt2x00queue_map_txskb(struct queue_entry *entry)
95 struct device *dev = entry->queue->rt2x00dev->dev;
96 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
98 skbdesc->skb_dma =
99 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
101 if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
102 return -ENOMEM;
104 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
105 rt2x00lib_dmadone(entry);
106 return 0;
108 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
110 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 struct device *dev = entry->queue->rt2x00dev->dev;
113 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
116 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
117 DMA_FROM_DEVICE);
118 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
119 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
121 DMA_TO_DEVICE);
122 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
125 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127 void rt2x00queue_free_skb(struct queue_entry *entry)
129 if (!entry->skb)
130 return;
132 rt2x00queue_unmap_skb(entry);
133 dev_kfree_skb_any(entry->skb);
134 entry->skb = NULL;
137 void rt2x00queue_align_frame(struct sk_buff *skb)
139 unsigned int frame_length = skb->len;
140 unsigned int align = ALIGN_SIZE(skb, 0);
142 if (!align)
143 return;
145 skb_push(skb, align);
146 memmove(skb->data, skb->data + align, frame_length);
147 skb_trim(skb, frame_length);
151 * H/W needs L2 padding between the header and the paylod if header size
152 * is not 4 bytes aligned.
154 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
156 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
158 if (!l2pad)
159 return;
161 skb_push(skb, l2pad);
162 memmove(skb->data, skb->data + l2pad, hdr_len);
165 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
167 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
169 if (!l2pad)
170 return;
172 memmove(skb->data + l2pad, skb->data, hdr_len);
173 skb_pull(skb, l2pad);
176 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
177 struct sk_buff *skb,
178 struct txentry_desc *txdesc)
180 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
181 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
182 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
183 u16 seqno;
185 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
186 return;
188 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
190 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
192 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
193 * seqno on retransmitted data (non-QOS) and management frames.
194 * To workaround the problem let's generate seqno in software.
195 * Except for beacons which are transmitted periodically by H/W
196 * hence hardware has to assign seqno for them.
198 if (ieee80211_is_beacon(hdr->frame_control)) {
199 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200 /* H/W will generate sequence number */
201 return;
204 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
208 * The hardware is not able to insert a sequence number. Assign a
209 * software generated one here.
211 * This is wrong because beacons are not getting sequence
212 * numbers assigned properly.
214 * A secondary problem exists for drivers that cannot toggle
215 * sequence counting per-frame, since those will override the
216 * sequence counter given by mac80211.
218 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
219 seqno = atomic_add_return(0x10, &intf->seqno);
220 else
221 seqno = atomic_read(&intf->seqno);
223 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
224 hdr->seq_ctrl |= cpu_to_le16(seqno);
227 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
228 struct sk_buff *skb,
229 struct txentry_desc *txdesc,
230 const struct rt2x00_rate *hwrate)
232 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
233 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
234 unsigned int data_length;
235 unsigned int duration;
236 unsigned int residual;
239 * Determine with what IFS priority this frame should be send.
240 * Set ifs to IFS_SIFS when the this is not the first fragment,
241 * or this fragment came after RTS/CTS.
243 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
244 txdesc->u.plcp.ifs = IFS_BACKOFF;
245 else
246 txdesc->u.plcp.ifs = IFS_SIFS;
248 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
249 data_length = skb->len + 4;
250 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
253 * PLCP setup
254 * Length calculation depends on OFDM/CCK rate.
256 txdesc->u.plcp.signal = hwrate->plcp;
257 txdesc->u.plcp.service = 0x04;
259 if (hwrate->flags & DEV_RATE_OFDM) {
260 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
261 txdesc->u.plcp.length_low = data_length & 0x3f;
262 } else {
264 * Convert length to microseconds.
266 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
267 duration = GET_DURATION(data_length, hwrate->bitrate);
269 if (residual != 0) {
270 duration++;
273 * Check if we need to set the Length Extension
275 if (hwrate->bitrate == 110 && residual <= 30)
276 txdesc->u.plcp.service |= 0x80;
279 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
280 txdesc->u.plcp.length_low = duration & 0xff;
283 * When preamble is enabled we should set the
284 * preamble bit for the signal.
286 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
287 txdesc->u.plcp.signal |= 0x08;
291 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
292 struct sk_buff *skb,
293 struct txentry_desc *txdesc,
294 struct ieee80211_sta *sta,
295 const struct rt2x00_rate *hwrate)
297 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
298 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
299 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
300 struct rt2x00_sta *sta_priv = NULL;
301 u8 density = 0;
303 if (sta) {
304 sta_priv = sta_to_rt2x00_sta(sta);
305 txdesc->u.ht.wcid = sta_priv->wcid;
306 density = sta->ht_cap.ampdu_density;
310 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
311 * mcs rate to be used
313 if (txrate->flags & IEEE80211_TX_RC_MCS) {
314 txdesc->u.ht.mcs = txrate->idx;
317 * MIMO PS should be set to 1 for STA's using dynamic SM PS
318 * when using more then one tx stream (>MCS7).
320 if (sta && txdesc->u.ht.mcs > 7 &&
321 sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
322 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
323 } else {
324 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
325 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
326 txdesc->u.ht.mcs |= 0x08;
329 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
330 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
331 txdesc->u.ht.txop = TXOP_SIFS;
332 else
333 txdesc->u.ht.txop = TXOP_BACKOFF;
335 /* Left zero on all other settings. */
336 return;
340 * Only one STBC stream is supported for now.
342 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
343 txdesc->u.ht.stbc = 1;
346 * This frame is eligible for an AMPDU, however, don't aggregate
347 * frames that are intended to probe a specific tx rate.
349 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
350 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
351 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
352 txdesc->u.ht.mpdu_density = density;
353 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
357 * Set 40Mhz mode if necessary (for legacy rates this will
358 * duplicate the frame to both channels).
360 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
361 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
362 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
363 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
364 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
367 * Determine IFS values
368 * - Use TXOP_BACKOFF for management frames except beacons
369 * - Use TXOP_SIFS for fragment bursts
370 * - Use TXOP_HTTXOP for everything else
372 * Note: rt2800 devices won't use CTS protection (if used)
373 * for frames not transmitted with TXOP_HTTXOP
375 if (ieee80211_is_mgmt(hdr->frame_control) &&
376 !ieee80211_is_beacon(hdr->frame_control))
377 txdesc->u.ht.txop = TXOP_BACKOFF;
378 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
379 txdesc->u.ht.txop = TXOP_SIFS;
380 else
381 txdesc->u.ht.txop = TXOP_HTTXOP;
384 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
385 struct sk_buff *skb,
386 struct txentry_desc *txdesc,
387 struct ieee80211_sta *sta)
389 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
390 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
391 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
392 struct ieee80211_rate *rate;
393 const struct rt2x00_rate *hwrate = NULL;
395 memset(txdesc, 0, sizeof(*txdesc));
398 * Header and frame information.
400 txdesc->length = skb->len;
401 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
404 * Check whether this frame is to be acked.
406 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
407 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
410 * Check if this is a RTS/CTS frame
412 if (ieee80211_is_rts(hdr->frame_control) ||
413 ieee80211_is_cts(hdr->frame_control)) {
414 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
415 if (ieee80211_is_rts(hdr->frame_control))
416 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
417 else
418 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
419 if (tx_info->control.rts_cts_rate_idx >= 0)
420 rate =
421 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
425 * Determine retry information.
427 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
428 if (txdesc->retry_limit >= rt2x00dev->long_retry)
429 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
432 * Check if more fragments are pending
434 if (ieee80211_has_morefrags(hdr->frame_control)) {
435 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
436 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
440 * Check if more frames (!= fragments) are pending
442 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
443 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
446 * Beacons and probe responses require the tsf timestamp
447 * to be inserted into the frame.
449 if (ieee80211_is_beacon(hdr->frame_control) ||
450 ieee80211_is_probe_resp(hdr->frame_control))
451 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
453 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
454 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
455 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
458 * Determine rate modulation.
460 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
461 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
462 else if (txrate->flags & IEEE80211_TX_RC_MCS)
463 txdesc->rate_mode = RATE_MODE_HT_MIX;
464 else {
465 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
466 hwrate = rt2x00_get_rate(rate->hw_value);
467 if (hwrate->flags & DEV_RATE_OFDM)
468 txdesc->rate_mode = RATE_MODE_OFDM;
469 else
470 txdesc->rate_mode = RATE_MODE_CCK;
474 * Apply TX descriptor handling by components
476 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
477 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
479 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
480 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
481 sta, hwrate);
482 else
483 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
484 hwrate);
487 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
488 struct txentry_desc *txdesc)
490 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
493 * This should not happen, we already checked the entry
494 * was ours. When the hardware disagrees there has been
495 * a queue corruption!
497 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
498 rt2x00dev->ops->lib->get_entry_state(entry))) {
499 rt2x00_err(rt2x00dev,
500 "Corrupt queue %d, accessing entry which is not ours\n"
501 "Please file bug report to %s\n",
502 entry->queue->qid, DRV_PROJECT);
503 return -EINVAL;
507 * Add the requested extra tx headroom in front of the skb.
509 skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
510 memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
513 * Call the driver's write_tx_data function, if it exists.
515 if (rt2x00dev->ops->lib->write_tx_data)
516 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
519 * Map the skb to DMA.
521 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
522 rt2x00queue_map_txskb(entry))
523 return -ENOMEM;
525 return 0;
528 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
529 struct txentry_desc *txdesc)
531 struct data_queue *queue = entry->queue;
533 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
536 * All processing on the frame has been completed, this means
537 * it is now ready to be dumped to userspace through debugfs.
539 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
542 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
543 struct txentry_desc *txdesc)
546 * Check if we need to kick the queue, there are however a few rules
547 * 1) Don't kick unless this is the last in frame in a burst.
548 * When the burst flag is set, this frame is always followed
549 * by another frame which in some way are related to eachother.
550 * This is true for fragments, RTS or CTS-to-self frames.
551 * 2) Rule 1 can be broken when the available entries
552 * in the queue are less then a certain threshold.
554 if (rt2x00queue_threshold(queue) ||
555 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
556 queue->rt2x00dev->ops->lib->kick_queue(queue);
559 static void rt2x00queue_bar_check(struct queue_entry *entry)
561 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
562 struct ieee80211_bar *bar = (void *) (entry->skb->data +
563 rt2x00dev->extra_tx_headroom);
564 struct rt2x00_bar_list_entry *bar_entry;
566 if (likely(!ieee80211_is_back_req(bar->frame_control)))
567 return;
569 bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
572 * If the alloc fails we still send the BAR out but just don't track
573 * it in our bar list. And as a result we will report it to mac80211
574 * back as failed.
576 if (!bar_entry)
577 return;
579 bar_entry->entry = entry;
580 bar_entry->block_acked = 0;
583 * Copy the relevant parts of the 802.11 BAR into out check list
584 * such that we can use RCU for less-overhead in the RX path since
585 * sending BARs and processing the according BlockAck should be
586 * the exception.
588 memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
589 memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
590 bar_entry->control = bar->control;
591 bar_entry->start_seq_num = bar->start_seq_num;
594 * Insert BAR into our BAR check list.
596 spin_lock_bh(&rt2x00dev->bar_list_lock);
597 list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
598 spin_unlock_bh(&rt2x00dev->bar_list_lock);
601 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
602 struct ieee80211_sta *sta, bool local)
604 struct ieee80211_tx_info *tx_info;
605 struct queue_entry *entry;
606 struct txentry_desc txdesc;
607 struct skb_frame_desc *skbdesc;
608 u8 rate_idx, rate_flags;
609 int ret = 0;
612 * Copy all TX descriptor information into txdesc,
613 * after that we are free to use the skb->cb array
614 * for our information.
616 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
619 * All information is retrieved from the skb->cb array,
620 * now we should claim ownership of the driver part of that
621 * array, preserving the bitrate index and flags.
623 tx_info = IEEE80211_SKB_CB(skb);
624 rate_idx = tx_info->control.rates[0].idx;
625 rate_flags = tx_info->control.rates[0].flags;
626 skbdesc = get_skb_frame_desc(skb);
627 memset(skbdesc, 0, sizeof(*skbdesc));
628 skbdesc->tx_rate_idx = rate_idx;
629 skbdesc->tx_rate_flags = rate_flags;
631 if (local)
632 skbdesc->flags |= SKBDESC_NOT_MAC80211;
635 * When hardware encryption is supported, and this frame
636 * is to be encrypted, we should strip the IV/EIV data from
637 * the frame so we can provide it to the driver separately.
639 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
640 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
641 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
642 rt2x00crypto_tx_copy_iv(skb, &txdesc);
643 else
644 rt2x00crypto_tx_remove_iv(skb, &txdesc);
648 * When DMA allocation is required we should guarantee to the
649 * driver that the DMA is aligned to a 4-byte boundary.
650 * However some drivers require L2 padding to pad the payload
651 * rather then the header. This could be a requirement for
652 * PCI and USB devices, while header alignment only is valid
653 * for PCI devices.
655 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
656 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
657 else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
658 rt2x00queue_align_frame(skb);
661 * That function must be called with bh disabled.
663 spin_lock(&queue->tx_lock);
665 if (unlikely(rt2x00queue_full(queue))) {
666 rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
667 queue->qid);
668 ret = -ENOBUFS;
669 goto out;
672 entry = rt2x00queue_get_entry(queue, Q_INDEX);
674 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
675 &entry->flags))) {
676 rt2x00_err(queue->rt2x00dev,
677 "Arrived at non-free entry in the non-full queue %d\n"
678 "Please file bug report to %s\n",
679 queue->qid, DRV_PROJECT);
680 ret = -EINVAL;
681 goto out;
684 entry->skb = skb;
687 * It could be possible that the queue was corrupted and this
688 * call failed. Since we always return NETDEV_TX_OK to mac80211,
689 * this frame will simply be dropped.
691 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
692 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
693 entry->skb = NULL;
694 ret = -EIO;
695 goto out;
699 * Put BlockAckReqs into our check list for driver BA processing.
701 rt2x00queue_bar_check(entry);
703 set_bit(ENTRY_DATA_PENDING, &entry->flags);
705 rt2x00queue_index_inc(entry, Q_INDEX);
706 rt2x00queue_write_tx_descriptor(entry, &txdesc);
707 rt2x00queue_kick_tx_queue(queue, &txdesc);
709 out:
711 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
712 * do this under queue->tx_lock. Bottom halve was already disabled
713 * before ieee80211_xmit() call.
715 if (rt2x00queue_threshold(queue))
716 rt2x00queue_pause_queue(queue);
718 spin_unlock(&queue->tx_lock);
719 return ret;
722 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
723 struct ieee80211_vif *vif)
725 struct rt2x00_intf *intf = vif_to_intf(vif);
727 if (unlikely(!intf->beacon))
728 return -ENOBUFS;
731 * Clean up the beacon skb.
733 rt2x00queue_free_skb(intf->beacon);
736 * Clear beacon (single bssid devices don't need to clear the beacon
737 * since the beacon queue will get stopped anyway).
739 if (rt2x00dev->ops->lib->clear_beacon)
740 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
742 return 0;
745 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
746 struct ieee80211_vif *vif)
748 struct rt2x00_intf *intf = vif_to_intf(vif);
749 struct skb_frame_desc *skbdesc;
750 struct txentry_desc txdesc;
752 if (unlikely(!intf->beacon))
753 return -ENOBUFS;
756 * Clean up the beacon skb.
758 rt2x00queue_free_skb(intf->beacon);
760 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
761 if (!intf->beacon->skb)
762 return -ENOMEM;
765 * Copy all TX descriptor information into txdesc,
766 * after that we are free to use the skb->cb array
767 * for our information.
769 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
772 * Fill in skb descriptor
774 skbdesc = get_skb_frame_desc(intf->beacon->skb);
775 memset(skbdesc, 0, sizeof(*skbdesc));
778 * Send beacon to hardware.
780 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
782 return 0;
786 bool rt2x00queue_for_each_entry(struct data_queue *queue,
787 enum queue_index start,
788 enum queue_index end,
789 void *data,
790 bool (*fn)(struct queue_entry *entry,
791 void *data))
793 unsigned long irqflags;
794 unsigned int index_start;
795 unsigned int index_end;
796 unsigned int i;
798 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
799 rt2x00_err(queue->rt2x00dev,
800 "Entry requested from invalid index range (%d - %d)\n",
801 start, end);
802 return true;
806 * Only protect the range we are going to loop over,
807 * if during our loop a extra entry is set to pending
808 * it should not be kicked during this run, since it
809 * is part of another TX operation.
811 spin_lock_irqsave(&queue->index_lock, irqflags);
812 index_start = queue->index[start];
813 index_end = queue->index[end];
814 spin_unlock_irqrestore(&queue->index_lock, irqflags);
817 * Start from the TX done pointer, this guarantees that we will
818 * send out all frames in the correct order.
820 if (index_start < index_end) {
821 for (i = index_start; i < index_end; i++) {
822 if (fn(&queue->entries[i], data))
823 return true;
825 } else {
826 for (i = index_start; i < queue->limit; i++) {
827 if (fn(&queue->entries[i], data))
828 return true;
831 for (i = 0; i < index_end; i++) {
832 if (fn(&queue->entries[i], data))
833 return true;
837 return false;
839 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
841 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
842 enum queue_index index)
844 struct queue_entry *entry;
845 unsigned long irqflags;
847 if (unlikely(index >= Q_INDEX_MAX)) {
848 rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
849 index);
850 return NULL;
853 spin_lock_irqsave(&queue->index_lock, irqflags);
855 entry = &queue->entries[queue->index[index]];
857 spin_unlock_irqrestore(&queue->index_lock, irqflags);
859 return entry;
861 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
863 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
865 struct data_queue *queue = entry->queue;
866 unsigned long irqflags;
868 if (unlikely(index >= Q_INDEX_MAX)) {
869 rt2x00_err(queue->rt2x00dev,
870 "Index change on invalid index type (%d)\n", index);
871 return;
874 spin_lock_irqsave(&queue->index_lock, irqflags);
876 queue->index[index]++;
877 if (queue->index[index] >= queue->limit)
878 queue->index[index] = 0;
880 entry->last_action = jiffies;
882 if (index == Q_INDEX) {
883 queue->length++;
884 } else if (index == Q_INDEX_DONE) {
885 queue->length--;
886 queue->count++;
889 spin_unlock_irqrestore(&queue->index_lock, irqflags);
892 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
894 switch (queue->qid) {
895 case QID_AC_VO:
896 case QID_AC_VI:
897 case QID_AC_BE:
898 case QID_AC_BK:
900 * For TX queues, we have to disable the queue
901 * inside mac80211.
903 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
904 break;
905 default:
906 break;
909 void rt2x00queue_pause_queue(struct data_queue *queue)
911 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
912 !test_bit(QUEUE_STARTED, &queue->flags) ||
913 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
914 return;
916 rt2x00queue_pause_queue_nocheck(queue);
918 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
920 void rt2x00queue_unpause_queue(struct data_queue *queue)
922 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
923 !test_bit(QUEUE_STARTED, &queue->flags) ||
924 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
925 return;
927 switch (queue->qid) {
928 case QID_AC_VO:
929 case QID_AC_VI:
930 case QID_AC_BE:
931 case QID_AC_BK:
933 * For TX queues, we have to enable the queue
934 * inside mac80211.
936 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
937 break;
938 case QID_RX:
940 * For RX we need to kick the queue now in order to
941 * receive frames.
943 queue->rt2x00dev->ops->lib->kick_queue(queue);
944 default:
945 break;
948 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
950 void rt2x00queue_start_queue(struct data_queue *queue)
952 mutex_lock(&queue->status_lock);
954 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
955 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
956 mutex_unlock(&queue->status_lock);
957 return;
960 set_bit(QUEUE_PAUSED, &queue->flags);
962 queue->rt2x00dev->ops->lib->start_queue(queue);
964 rt2x00queue_unpause_queue(queue);
966 mutex_unlock(&queue->status_lock);
968 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
970 void rt2x00queue_stop_queue(struct data_queue *queue)
972 mutex_lock(&queue->status_lock);
974 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
975 mutex_unlock(&queue->status_lock);
976 return;
979 rt2x00queue_pause_queue_nocheck(queue);
981 queue->rt2x00dev->ops->lib->stop_queue(queue);
983 mutex_unlock(&queue->status_lock);
985 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
987 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
989 bool tx_queue =
990 (queue->qid == QID_AC_VO) ||
991 (queue->qid == QID_AC_VI) ||
992 (queue->qid == QID_AC_BE) ||
993 (queue->qid == QID_AC_BK);
995 if (rt2x00queue_empty(queue))
996 return;
999 * If we are not supposed to drop any pending
1000 * frames, this means we must force a start (=kick)
1001 * to the queue to make sure the hardware will
1002 * start transmitting.
1004 if (!drop && tx_queue)
1005 queue->rt2x00dev->ops->lib->kick_queue(queue);
1008 * Check if driver supports flushing, if that is the case we can
1009 * defer the flushing to the driver. Otherwise we must use the
1010 * alternative which just waits for the queue to become empty.
1012 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1013 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1016 * The queue flush has failed...
1018 if (unlikely(!rt2x00queue_empty(queue)))
1019 rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1020 queue->qid);
1022 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1024 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1026 struct data_queue *queue;
1029 * rt2x00queue_start_queue will call ieee80211_wake_queue
1030 * for each queue after is has been properly initialized.
1032 tx_queue_for_each(rt2x00dev, queue)
1033 rt2x00queue_start_queue(queue);
1035 rt2x00queue_start_queue(rt2x00dev->rx);
1037 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1039 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1041 struct data_queue *queue;
1044 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1045 * as well, but we are completely shutting doing everything
1046 * now, so it is much safer to stop all TX queues at once,
1047 * and use rt2x00queue_stop_queue for cleaning up.
1049 ieee80211_stop_queues(rt2x00dev->hw);
1051 tx_queue_for_each(rt2x00dev, queue)
1052 rt2x00queue_stop_queue(queue);
1054 rt2x00queue_stop_queue(rt2x00dev->rx);
1056 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1058 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1060 struct data_queue *queue;
1062 tx_queue_for_each(rt2x00dev, queue)
1063 rt2x00queue_flush_queue(queue, drop);
1065 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1067 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1069 static void rt2x00queue_reset(struct data_queue *queue)
1071 unsigned long irqflags;
1072 unsigned int i;
1074 spin_lock_irqsave(&queue->index_lock, irqflags);
1076 queue->count = 0;
1077 queue->length = 0;
1079 for (i = 0; i < Q_INDEX_MAX; i++)
1080 queue->index[i] = 0;
1082 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1085 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1087 struct data_queue *queue;
1088 unsigned int i;
1090 queue_for_each(rt2x00dev, queue) {
1091 rt2x00queue_reset(queue);
1093 for (i = 0; i < queue->limit; i++)
1094 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1098 static int rt2x00queue_alloc_entries(struct data_queue *queue)
1100 struct queue_entry *entries;
1101 unsigned int entry_size;
1102 unsigned int i;
1104 rt2x00queue_reset(queue);
1107 * Allocate all queue entries.
1109 entry_size = sizeof(*entries) + queue->priv_size;
1110 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1111 if (!entries)
1112 return -ENOMEM;
1114 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1115 (((char *)(__base)) + ((__limit) * (__esize)) + \
1116 ((__index) * (__psize)))
1118 for (i = 0; i < queue->limit; i++) {
1119 entries[i].flags = 0;
1120 entries[i].queue = queue;
1121 entries[i].skb = NULL;
1122 entries[i].entry_idx = i;
1123 entries[i].priv_data =
1124 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1125 sizeof(*entries), queue->priv_size);
1128 #undef QUEUE_ENTRY_PRIV_OFFSET
1130 queue->entries = entries;
1132 return 0;
1135 static void rt2x00queue_free_skbs(struct data_queue *queue)
1137 unsigned int i;
1139 if (!queue->entries)
1140 return;
1142 for (i = 0; i < queue->limit; i++) {
1143 rt2x00queue_free_skb(&queue->entries[i]);
1147 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1149 unsigned int i;
1150 struct sk_buff *skb;
1152 for (i = 0; i < queue->limit; i++) {
1153 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1154 if (!skb)
1155 return -ENOMEM;
1156 queue->entries[i].skb = skb;
1159 return 0;
1162 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1164 struct data_queue *queue;
1165 int status;
1167 status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1168 if (status)
1169 goto exit;
1171 tx_queue_for_each(rt2x00dev, queue) {
1172 status = rt2x00queue_alloc_entries(queue);
1173 if (status)
1174 goto exit;
1177 status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1178 if (status)
1179 goto exit;
1181 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1182 status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1183 if (status)
1184 goto exit;
1187 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1188 if (status)
1189 goto exit;
1191 return 0;
1193 exit:
1194 rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1196 rt2x00queue_uninitialize(rt2x00dev);
1198 return status;
1201 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1203 struct data_queue *queue;
1205 rt2x00queue_free_skbs(rt2x00dev->rx);
1207 queue_for_each(rt2x00dev, queue) {
1208 kfree(queue->entries);
1209 queue->entries = NULL;
1213 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1214 struct data_queue *queue, enum data_queue_qid qid)
1216 mutex_init(&queue->status_lock);
1217 spin_lock_init(&queue->tx_lock);
1218 spin_lock_init(&queue->index_lock);
1220 queue->rt2x00dev = rt2x00dev;
1221 queue->qid = qid;
1222 queue->txop = 0;
1223 queue->aifs = 2;
1224 queue->cw_min = 5;
1225 queue->cw_max = 10;
1227 rt2x00dev->ops->queue_init(queue);
1229 queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1232 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1234 struct data_queue *queue;
1235 enum data_queue_qid qid;
1236 unsigned int req_atim =
1237 rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1240 * We need the following queues:
1241 * RX: 1
1242 * TX: ops->tx_queues
1243 * Beacon: 1
1244 * Atim: 1 (if required)
1246 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1248 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1249 if (!queue)
1250 return -ENOMEM;
1253 * Initialize pointers
1255 rt2x00dev->rx = queue;
1256 rt2x00dev->tx = &queue[1];
1257 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1258 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1261 * Initialize queue parameters.
1262 * RX: qid = QID_RX
1263 * TX: qid = QID_AC_VO + index
1264 * TX: cw_min: 2^5 = 32.
1265 * TX: cw_max: 2^10 = 1024.
1266 * BCN: qid = QID_BEACON
1267 * ATIM: qid = QID_ATIM
1269 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1271 qid = QID_AC_VO;
1272 tx_queue_for_each(rt2x00dev, queue)
1273 rt2x00queue_init(rt2x00dev, queue, qid++);
1275 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1276 if (req_atim)
1277 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1279 return 0;
1282 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1284 kfree(rt2x00dev->rx);
1285 rt2x00dev->rx = NULL;
1286 rt2x00dev->tx = NULL;
1287 rt2x00dev->bcn = NULL;