treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / ralink / rt2x00 / rt73usb.c
blobe908c303b6772d2a3dbda1235e6cdb58e954332e
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 */
8 /*
9 Module: rt73usb
10 Abstract: rt73usb device specific routines.
11 Supported chipsets: rt2571W & rt2671.
14 #include <linux/crc-itu-t.h>
15 #include <linux/delay.h>
16 #include <linux/etherdevice.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/usb.h>
22 #include "rt2x00.h"
23 #include "rt2x00usb.h"
24 #include "rt73usb.h"
27 * Allow hardware encryption to be disabled.
29 static bool modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
34 * Register access.
35 * All access to the CSR registers will go through the methods
36 * rt2x00usb_register_read and rt2x00usb_register_write.
37 * BBP and RF register require indirect register access,
38 * and use the CSR registers BBPCSR and RFCSR to achieve this.
39 * These indirect registers work with busy bits,
40 * and we will try maximal REGISTER_BUSY_COUNT times to access
41 * the register while taking a REGISTER_BUSY_DELAY us delay
42 * between each attampt. When the busy bit is still set at that time,
43 * the access attempt is considered to have failed,
44 * and we will print an error.
45 * The _lock versions must be used if you already hold the csr_mutex
47 #define WAIT_FOR_BBP(__dev, __reg) \
48 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
49 #define WAIT_FOR_RF(__dev, __reg) \
50 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
52 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
53 const unsigned int word, const u8 value)
55 u32 reg;
57 mutex_lock(&rt2x00dev->csr_mutex);
60 * Wait until the BBP becomes available, afterwards we
61 * can safely write the new data into the register.
63 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
64 reg = 0;
65 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
66 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
67 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
68 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
70 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
73 mutex_unlock(&rt2x00dev->csr_mutex);
76 static u8 rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
77 const unsigned int word)
79 u32 reg;
80 u8 value;
82 mutex_lock(&rt2x00dev->csr_mutex);
85 * Wait until the BBP becomes available, afterwards we
86 * can safely write the read request into the register.
87 * After the data has been written, we wait until hardware
88 * returns the correct value, if at any time the register
89 * doesn't become available in time, reg will be 0xffffffff
90 * which means we return 0xff to the caller.
92 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
93 reg = 0;
94 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
95 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
96 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
98 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
100 WAIT_FOR_BBP(rt2x00dev, &reg);
103 value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
105 mutex_unlock(&rt2x00dev->csr_mutex);
107 return value;
110 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
111 const unsigned int word, const u32 value)
113 u32 reg;
115 mutex_lock(&rt2x00dev->csr_mutex);
118 * Wait until the RF becomes available, afterwards we
119 * can safely write the new data into the register.
121 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
122 reg = 0;
123 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
125 * RF5225 and RF2527 contain 21 bits per RF register value,
126 * all others contain 20 bits.
128 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
129 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
130 rt2x00_rf(rt2x00dev, RF2527)));
131 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
132 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
134 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
135 rt2x00_rf_write(rt2x00dev, word, value);
138 mutex_unlock(&rt2x00dev->csr_mutex);
141 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
142 static const struct rt2x00debug rt73usb_rt2x00debug = {
143 .owner = THIS_MODULE,
144 .csr = {
145 .read = rt2x00usb_register_read,
146 .write = rt2x00usb_register_write,
147 .flags = RT2X00DEBUGFS_OFFSET,
148 .word_base = CSR_REG_BASE,
149 .word_size = sizeof(u32),
150 .word_count = CSR_REG_SIZE / sizeof(u32),
152 .eeprom = {
153 .read = rt2x00_eeprom_read,
154 .write = rt2x00_eeprom_write,
155 .word_base = EEPROM_BASE,
156 .word_size = sizeof(u16),
157 .word_count = EEPROM_SIZE / sizeof(u16),
159 .bbp = {
160 .read = rt73usb_bbp_read,
161 .write = rt73usb_bbp_write,
162 .word_base = BBP_BASE,
163 .word_size = sizeof(u8),
164 .word_count = BBP_SIZE / sizeof(u8),
166 .rf = {
167 .read = rt2x00_rf_read,
168 .write = rt73usb_rf_write,
169 .word_base = RF_BASE,
170 .word_size = sizeof(u32),
171 .word_count = RF_SIZE / sizeof(u32),
174 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
176 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
178 u32 reg;
180 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13);
181 return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
184 #ifdef CONFIG_RT2X00_LIB_LEDS
185 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
186 enum led_brightness brightness)
188 struct rt2x00_led *led =
189 container_of(led_cdev, struct rt2x00_led, led_dev);
190 unsigned int enabled = brightness != LED_OFF;
191 unsigned int a_mode =
192 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
193 unsigned int bg_mode =
194 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
196 if (led->type == LED_TYPE_RADIO) {
197 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
198 MCU_LEDCS_RADIO_STATUS, enabled);
200 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
201 0, led->rt2x00dev->led_mcu_reg,
202 REGISTER_TIMEOUT);
203 } else if (led->type == LED_TYPE_ASSOC) {
204 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
205 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
206 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
207 MCU_LEDCS_LINK_A_STATUS, a_mode);
209 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
210 0, led->rt2x00dev->led_mcu_reg,
211 REGISTER_TIMEOUT);
212 } else if (led->type == LED_TYPE_QUALITY) {
214 * The brightness is divided into 6 levels (0 - 5),
215 * this means we need to convert the brightness
216 * argument into the matching level within that range.
218 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
219 brightness / (LED_FULL / 6),
220 led->rt2x00dev->led_mcu_reg,
221 REGISTER_TIMEOUT);
225 static int rt73usb_blink_set(struct led_classdev *led_cdev,
226 unsigned long *delay_on,
227 unsigned long *delay_off)
229 struct rt2x00_led *led =
230 container_of(led_cdev, struct rt2x00_led, led_dev);
231 u32 reg;
233 reg = rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14);
234 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
235 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
236 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
238 return 0;
241 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
242 struct rt2x00_led *led,
243 enum led_type type)
245 led->rt2x00dev = rt2x00dev;
246 led->type = type;
247 led->led_dev.brightness_set = rt73usb_brightness_set;
248 led->led_dev.blink_set = rt73usb_blink_set;
249 led->flags = LED_INITIALIZED;
251 #endif /* CONFIG_RT2X00_LIB_LEDS */
254 * Configuration handlers.
256 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
257 struct rt2x00lib_crypto *crypto,
258 struct ieee80211_key_conf *key)
260 struct hw_key_entry key_entry;
261 struct rt2x00_field32 field;
262 u32 mask;
263 u32 reg;
265 if (crypto->cmd == SET_KEY) {
267 * rt2x00lib can't determine the correct free
268 * key_idx for shared keys. We have 1 register
269 * with key valid bits. The goal is simple, read
270 * the register, if that is full we have no slots
271 * left.
272 * Note that each BSS is allowed to have up to 4
273 * shared keys, so put a mask over the allowed
274 * entries.
276 mask = (0xf << crypto->bssidx);
278 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0);
279 reg &= mask;
281 if (reg && reg == mask)
282 return -ENOSPC;
284 key->hw_key_idx += reg ? ffz(reg) : 0;
287 * Upload key to hardware
289 memcpy(key_entry.key, crypto->key,
290 sizeof(key_entry.key));
291 memcpy(key_entry.tx_mic, crypto->tx_mic,
292 sizeof(key_entry.tx_mic));
293 memcpy(key_entry.rx_mic, crypto->rx_mic,
294 sizeof(key_entry.rx_mic));
296 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
297 rt2x00usb_register_multiwrite(rt2x00dev, reg,
298 &key_entry, sizeof(key_entry));
301 * The cipher types are stored over 2 registers.
302 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
303 * bssidx 1 and 2 keys are stored in SEC_CSR5.
304 * Using the correct defines correctly will cause overhead,
305 * so just calculate the correct offset.
307 if (key->hw_key_idx < 8) {
308 field.bit_offset = (3 * key->hw_key_idx);
309 field.bit_mask = 0x7 << field.bit_offset;
311 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR1);
312 rt2x00_set_field32(&reg, field, crypto->cipher);
313 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
314 } else {
315 field.bit_offset = (3 * (key->hw_key_idx - 8));
316 field.bit_mask = 0x7 << field.bit_offset;
318 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR5);
319 rt2x00_set_field32(&reg, field, crypto->cipher);
320 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
324 * The driver does not support the IV/EIV generation
325 * in hardware. However it doesn't support the IV/EIV
326 * inside the ieee80211 frame either, but requires it
327 * to be provided separately for the descriptor.
328 * rt2x00lib will cut the IV/EIV data out of all frames
329 * given to us by mac80211, but we must tell mac80211
330 * to generate the IV/EIV data.
332 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
336 * SEC_CSR0 contains only single-bit fields to indicate
337 * a particular key is valid. Because using the FIELD32()
338 * defines directly will cause a lot of overhead we use
339 * a calculation to determine the correct bit directly.
341 mask = 1 << key->hw_key_idx;
343 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0);
344 if (crypto->cmd == SET_KEY)
345 reg |= mask;
346 else if (crypto->cmd == DISABLE_KEY)
347 reg &= ~mask;
348 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
350 return 0;
353 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
354 struct rt2x00lib_crypto *crypto,
355 struct ieee80211_key_conf *key)
357 struct hw_pairwise_ta_entry addr_entry;
358 struct hw_key_entry key_entry;
359 u32 mask;
360 u32 reg;
362 if (crypto->cmd == SET_KEY) {
364 * rt2x00lib can't determine the correct free
365 * key_idx for pairwise keys. We have 2 registers
366 * with key valid bits. The goal is simple, read
367 * the first register, if that is full move to
368 * the next register.
369 * When both registers are full, we drop the key,
370 * otherwise we use the first invalid entry.
372 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2);
373 if (reg && reg == ~0) {
374 key->hw_key_idx = 32;
375 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3);
376 if (reg && reg == ~0)
377 return -ENOSPC;
380 key->hw_key_idx += reg ? ffz(reg) : 0;
383 * Upload key to hardware
385 memcpy(key_entry.key, crypto->key,
386 sizeof(key_entry.key));
387 memcpy(key_entry.tx_mic, crypto->tx_mic,
388 sizeof(key_entry.tx_mic));
389 memcpy(key_entry.rx_mic, crypto->rx_mic,
390 sizeof(key_entry.rx_mic));
392 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
393 rt2x00usb_register_multiwrite(rt2x00dev, reg,
394 &key_entry, sizeof(key_entry));
397 * Send the address and cipher type to the hardware register.
399 memset(&addr_entry, 0, sizeof(addr_entry));
400 memcpy(&addr_entry, crypto->address, ETH_ALEN);
401 addr_entry.cipher = crypto->cipher;
403 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
404 rt2x00usb_register_multiwrite(rt2x00dev, reg,
405 &addr_entry, sizeof(addr_entry));
408 * Enable pairwise lookup table for given BSS idx,
409 * without this received frames will not be decrypted
410 * by the hardware.
412 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR4);
413 reg |= (1 << crypto->bssidx);
414 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
417 * The driver does not support the IV/EIV generation
418 * in hardware. However it doesn't support the IV/EIV
419 * inside the ieee80211 frame either, but requires it
420 * to be provided separately for the descriptor.
421 * rt2x00lib will cut the IV/EIV data out of all frames
422 * given to us by mac80211, but we must tell mac80211
423 * to generate the IV/EIV data.
425 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
429 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
430 * a particular key is valid. Because using the FIELD32()
431 * defines directly will cause a lot of overhead we use
432 * a calculation to determine the correct bit directly.
434 if (key->hw_key_idx < 32) {
435 mask = 1 << key->hw_key_idx;
437 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2);
438 if (crypto->cmd == SET_KEY)
439 reg |= mask;
440 else if (crypto->cmd == DISABLE_KEY)
441 reg &= ~mask;
442 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
443 } else {
444 mask = 1 << (key->hw_key_idx - 32);
446 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3);
447 if (crypto->cmd == SET_KEY)
448 reg |= mask;
449 else if (crypto->cmd == DISABLE_KEY)
450 reg &= ~mask;
451 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
454 return 0;
457 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
458 const unsigned int filter_flags)
460 u32 reg;
463 * Start configuration steps.
464 * Note that the version error will always be dropped
465 * and broadcast frames will always be accepted since
466 * there is no filter for it at this time.
468 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
469 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
470 !(filter_flags & FIF_FCSFAIL));
471 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
472 !(filter_flags & FIF_PLCPFAIL));
473 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
474 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
475 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
476 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
477 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
478 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
479 !rt2x00dev->intf_ap_count);
480 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
481 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
482 !(filter_flags & FIF_ALLMULTI));
483 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
484 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
485 !(filter_flags & FIF_CONTROL));
486 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
489 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
490 struct rt2x00_intf *intf,
491 struct rt2x00intf_conf *conf,
492 const unsigned int flags)
494 u32 reg;
496 if (flags & CONFIG_UPDATE_TYPE) {
498 * Enable synchronisation.
500 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
501 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
502 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
505 if (flags & CONFIG_UPDATE_MAC) {
506 reg = le32_to_cpu(conf->mac[1]);
507 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
508 conf->mac[1] = cpu_to_le32(reg);
510 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
511 conf->mac, sizeof(conf->mac));
514 if (flags & CONFIG_UPDATE_BSSID) {
515 reg = le32_to_cpu(conf->bssid[1]);
516 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
517 conf->bssid[1] = cpu_to_le32(reg);
519 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
520 conf->bssid, sizeof(conf->bssid));
524 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
525 struct rt2x00lib_erp *erp,
526 u32 changed)
528 u32 reg;
530 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
531 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
532 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
533 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
535 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
536 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4);
537 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
538 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
539 !!erp->short_preamble);
540 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
543 if (changed & BSS_CHANGED_BASIC_RATES)
544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
545 erp->basic_rates);
547 if (changed & BSS_CHANGED_BEACON_INT) {
548 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
549 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
550 erp->beacon_int * 16);
551 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
554 if (changed & BSS_CHANGED_ERP_SLOT) {
555 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9);
556 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
557 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
559 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR8);
560 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
561 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
562 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
563 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
567 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
568 struct antenna_setup *ant)
570 u8 r3;
571 u8 r4;
572 u8 r77;
573 u8 temp;
575 r3 = rt73usb_bbp_read(rt2x00dev, 3);
576 r4 = rt73usb_bbp_read(rt2x00dev, 4);
577 r77 = rt73usb_bbp_read(rt2x00dev, 77);
579 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
582 * Configure the RX antenna.
584 switch (ant->rx) {
585 case ANTENNA_HW_DIVERSITY:
586 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
587 temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
588 (rt2x00dev->curr_band != NL80211_BAND_5GHZ);
589 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
590 break;
591 case ANTENNA_A:
592 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
593 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
594 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
595 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
596 else
597 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
598 break;
599 case ANTENNA_B:
600 default:
601 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
602 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
603 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
604 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
605 else
606 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
607 break;
610 rt73usb_bbp_write(rt2x00dev, 77, r77);
611 rt73usb_bbp_write(rt2x00dev, 3, r3);
612 rt73usb_bbp_write(rt2x00dev, 4, r4);
615 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
616 struct antenna_setup *ant)
618 u8 r3;
619 u8 r4;
620 u8 r77;
622 r3 = rt73usb_bbp_read(rt2x00dev, 3);
623 r4 = rt73usb_bbp_read(rt2x00dev, 4);
624 r77 = rt73usb_bbp_read(rt2x00dev, 77);
626 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
627 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
628 !rt2x00_has_cap_frame_type(rt2x00dev));
631 * Configure the RX antenna.
633 switch (ant->rx) {
634 case ANTENNA_HW_DIVERSITY:
635 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
636 break;
637 case ANTENNA_A:
638 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
639 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
640 break;
641 case ANTENNA_B:
642 default:
643 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
644 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
645 break;
648 rt73usb_bbp_write(rt2x00dev, 77, r77);
649 rt73usb_bbp_write(rt2x00dev, 3, r3);
650 rt73usb_bbp_write(rt2x00dev, 4, r4);
653 struct antenna_sel {
654 u8 word;
656 * value[0] -> non-LNA
657 * value[1] -> LNA
659 u8 value[2];
662 static const struct antenna_sel antenna_sel_a[] = {
663 { 96, { 0x58, 0x78 } },
664 { 104, { 0x38, 0x48 } },
665 { 75, { 0xfe, 0x80 } },
666 { 86, { 0xfe, 0x80 } },
667 { 88, { 0xfe, 0x80 } },
668 { 35, { 0x60, 0x60 } },
669 { 97, { 0x58, 0x58 } },
670 { 98, { 0x58, 0x58 } },
673 static const struct antenna_sel antenna_sel_bg[] = {
674 { 96, { 0x48, 0x68 } },
675 { 104, { 0x2c, 0x3c } },
676 { 75, { 0xfe, 0x80 } },
677 { 86, { 0xfe, 0x80 } },
678 { 88, { 0xfe, 0x80 } },
679 { 35, { 0x50, 0x50 } },
680 { 97, { 0x48, 0x48 } },
681 { 98, { 0x48, 0x48 } },
684 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
685 struct antenna_setup *ant)
687 const struct antenna_sel *sel;
688 unsigned int lna;
689 unsigned int i;
690 u32 reg;
693 * We should never come here because rt2x00lib is supposed
694 * to catch this and send us the correct antenna explicitely.
696 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
697 ant->tx == ANTENNA_SW_DIVERSITY);
699 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
700 sel = antenna_sel_a;
701 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
702 } else {
703 sel = antenna_sel_bg;
704 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
707 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
708 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
710 reg = rt2x00usb_register_read(rt2x00dev, PHY_CSR0);
712 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
713 (rt2x00dev->curr_band == NL80211_BAND_2GHZ));
714 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
715 (rt2x00dev->curr_band == NL80211_BAND_5GHZ));
717 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
719 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
720 rt73usb_config_antenna_5x(rt2x00dev, ant);
721 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
722 rt73usb_config_antenna_2x(rt2x00dev, ant);
725 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
726 struct rt2x00lib_conf *libconf)
728 u16 eeprom;
729 short lna_gain = 0;
731 if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
732 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
733 lna_gain += 14;
735 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
736 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
737 } else {
738 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
739 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
742 rt2x00dev->lna_gain = lna_gain;
745 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
746 struct rf_channel *rf, const int txpower)
748 u8 r3;
749 u8 r94;
750 u8 smart;
752 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
753 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
755 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
757 r3 = rt73usb_bbp_read(rt2x00dev, 3);
758 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
759 rt73usb_bbp_write(rt2x00dev, 3, r3);
761 r94 = 6;
762 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
763 r94 += txpower - MAX_TXPOWER;
764 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
765 r94 += txpower;
766 rt73usb_bbp_write(rt2x00dev, 94, r94);
768 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
769 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
770 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
771 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
773 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
774 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
775 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
776 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
778 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
779 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
780 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
781 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
783 udelay(10);
786 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
787 const int txpower)
789 struct rf_channel rf;
791 rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
792 rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
793 rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
794 rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
796 rt73usb_config_channel(rt2x00dev, &rf, txpower);
799 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
800 struct rt2x00lib_conf *libconf)
802 u32 reg;
804 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4);
805 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
806 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
807 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
808 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
809 libconf->conf->long_frame_max_tx_count);
810 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
811 libconf->conf->short_frame_max_tx_count);
812 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
815 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
816 struct rt2x00lib_conf *libconf)
818 enum dev_state state =
819 (libconf->conf->flags & IEEE80211_CONF_PS) ?
820 STATE_SLEEP : STATE_AWAKE;
821 u32 reg;
823 if (state == STATE_SLEEP) {
824 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11);
825 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
826 rt2x00dev->beacon_int - 10);
827 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
828 libconf->conf->listen_interval - 1);
829 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
831 /* We must first disable autowake before it can be enabled */
832 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
833 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
835 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
836 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
838 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
839 USB_MODE_SLEEP, REGISTER_TIMEOUT);
840 } else {
841 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11);
842 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
843 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
844 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
845 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
846 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
848 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
849 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
853 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
854 struct rt2x00lib_conf *libconf,
855 const unsigned int flags)
857 /* Always recalculate LNA gain before changing configuration */
858 rt73usb_config_lna_gain(rt2x00dev, libconf);
860 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
861 rt73usb_config_channel(rt2x00dev, &libconf->rf,
862 libconf->conf->power_level);
863 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
864 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
865 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
866 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
867 rt73usb_config_retry_limit(rt2x00dev, libconf);
868 if (flags & IEEE80211_CONF_CHANGE_PS)
869 rt73usb_config_ps(rt2x00dev, libconf);
873 * Link tuning
875 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
876 struct link_qual *qual)
878 u32 reg;
881 * Update FCS error count from register.
883 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0);
884 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
887 * Update False CCA count from register.
889 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1);
890 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
893 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
894 struct link_qual *qual, u8 vgc_level)
896 if (qual->vgc_level != vgc_level) {
897 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
898 qual->vgc_level = vgc_level;
899 qual->vgc_level_reg = vgc_level;
903 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
904 struct link_qual *qual)
906 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
909 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
910 struct link_qual *qual, const u32 count)
912 u8 up_bound;
913 u8 low_bound;
916 * Determine r17 bounds.
918 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
919 low_bound = 0x28;
920 up_bound = 0x48;
922 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
923 low_bound += 0x10;
924 up_bound += 0x10;
926 } else {
927 if (qual->rssi > -82) {
928 low_bound = 0x1c;
929 up_bound = 0x40;
930 } else if (qual->rssi > -84) {
931 low_bound = 0x1c;
932 up_bound = 0x20;
933 } else {
934 low_bound = 0x1c;
935 up_bound = 0x1c;
938 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
939 low_bound += 0x14;
940 up_bound += 0x10;
945 * If we are not associated, we should go straight to the
946 * dynamic CCA tuning.
948 if (!rt2x00dev->intf_associated)
949 goto dynamic_cca_tune;
952 * Special big-R17 for very short distance
954 if (qual->rssi > -35) {
955 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
956 return;
960 * Special big-R17 for short distance
962 if (qual->rssi >= -58) {
963 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
964 return;
968 * Special big-R17 for middle-short distance
970 if (qual->rssi >= -66) {
971 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
972 return;
976 * Special mid-R17 for middle distance
978 if (qual->rssi >= -74) {
979 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
980 return;
984 * Special case: Change up_bound based on the rssi.
985 * Lower up_bound when rssi is weaker then -74 dBm.
987 up_bound -= 2 * (-74 - qual->rssi);
988 if (low_bound > up_bound)
989 up_bound = low_bound;
991 if (qual->vgc_level > up_bound) {
992 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
993 return;
996 dynamic_cca_tune:
999 * r17 does not yet exceed upper limit, continue and base
1000 * the r17 tuning on the false CCA count.
1002 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1003 rt73usb_set_vgc(rt2x00dev, qual,
1004 min_t(u8, qual->vgc_level + 4, up_bound));
1005 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1006 rt73usb_set_vgc(rt2x00dev, qual,
1007 max_t(u8, qual->vgc_level - 4, low_bound));
1011 * Queue handlers.
1013 static void rt73usb_start_queue(struct data_queue *queue)
1015 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1016 u32 reg;
1018 switch (queue->qid) {
1019 case QID_RX:
1020 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1021 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1022 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1023 break;
1024 case QID_BEACON:
1025 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1026 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1027 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1028 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1029 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1030 break;
1031 default:
1032 break;
1036 static void rt73usb_stop_queue(struct data_queue *queue)
1038 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1039 u32 reg;
1041 switch (queue->qid) {
1042 case QID_RX:
1043 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1044 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1045 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1046 break;
1047 case QID_BEACON:
1048 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1049 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1050 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1051 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1052 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1053 break;
1054 default:
1055 break;
1060 * Firmware functions
1062 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1064 return FIRMWARE_RT2571;
1067 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1068 const u8 *data, const size_t len)
1070 u16 fw_crc;
1071 u16 crc;
1074 * Only support 2kb firmware files.
1076 if (len != 2048)
1077 return FW_BAD_LENGTH;
1080 * The last 2 bytes in the firmware array are the crc checksum itself,
1081 * this means that we should never pass those 2 bytes to the crc
1082 * algorithm.
1084 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1087 * Use the crc itu-t algorithm.
1089 crc = crc_itu_t(0, data, len - 2);
1090 crc = crc_itu_t_byte(crc, 0);
1091 crc = crc_itu_t_byte(crc, 0);
1093 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1096 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1097 const u8 *data, const size_t len)
1099 unsigned int i;
1100 int status;
1101 u32 reg;
1104 * Wait for stable hardware.
1106 for (i = 0; i < 100; i++) {
1107 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0);
1108 if (reg)
1109 break;
1110 msleep(1);
1113 if (!reg) {
1114 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1115 return -EBUSY;
1119 * Write firmware to device.
1121 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1124 * Send firmware request to device to load firmware,
1125 * we need to specify a long timeout time.
1127 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1128 0, USB_MODE_FIRMWARE,
1129 REGISTER_TIMEOUT_FIRMWARE);
1130 if (status < 0) {
1131 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1132 return status;
1135 return 0;
1139 * Initialization functions.
1141 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1143 u32 reg;
1145 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1146 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1147 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1148 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1149 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1151 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR1);
1152 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1153 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1154 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1155 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1156 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1157 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1158 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1159 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1160 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1163 * CCK TXD BBP registers
1165 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR2);
1166 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1167 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1168 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1169 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1170 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1171 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1172 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1173 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1174 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1177 * OFDM TXD BBP registers
1179 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR3);
1180 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1181 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1182 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1183 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1184 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1185 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1186 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1188 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR7);
1189 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1190 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1191 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1192 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1193 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1195 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR8);
1196 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1197 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1198 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1199 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1200 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1202 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1203 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1204 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1205 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1206 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1207 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1208 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1209 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1211 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1213 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR6);
1214 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1215 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1217 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1219 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1220 return -EBUSY;
1222 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1225 * Invalidate all Shared Keys (SEC_CSR0),
1226 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1228 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1229 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1230 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1232 reg = 0x000023b0;
1233 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1234 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1235 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1237 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1238 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1239 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1241 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9);
1242 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1243 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1246 * Clear all beacons
1247 * For the Beacon base registers we only need to clear
1248 * the first byte since that byte contains the VALID and OWNER
1249 * bits which (when set to 0) will invalidate the entire beacon.
1251 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1252 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1253 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1254 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1257 * We must clear the error counters.
1258 * These registers are cleared on read,
1259 * so we may pass a useless variable to store the value.
1261 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0);
1262 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1);
1263 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR2);
1266 * Reset MAC and BBP registers.
1268 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1269 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1270 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1271 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1273 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1274 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1275 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1276 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1278 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1279 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1280 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1282 return 0;
1285 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1287 unsigned int i;
1288 u8 value;
1290 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1291 value = rt73usb_bbp_read(rt2x00dev, 0);
1292 if ((value != 0xff) && (value != 0x00))
1293 return 0;
1294 udelay(REGISTER_BUSY_DELAY);
1297 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1298 return -EACCES;
1301 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1303 unsigned int i;
1304 u16 eeprom;
1305 u8 reg_id;
1306 u8 value;
1308 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1309 return -EACCES;
1311 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1312 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1313 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1314 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1315 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1316 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1317 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1318 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1319 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1320 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1321 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1322 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1323 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1324 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1325 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1326 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1327 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1328 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1329 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1330 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1331 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1332 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1333 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1334 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1335 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1337 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1338 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1340 if (eeprom != 0xffff && eeprom != 0x0000) {
1341 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1342 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1343 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1347 return 0;
1351 * Device state switch handlers.
1353 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1356 * Initialize all registers.
1358 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1359 rt73usb_init_bbp(rt2x00dev)))
1360 return -EIO;
1362 return 0;
1365 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1367 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1370 * Disable synchronisation.
1372 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1374 rt2x00usb_disable_radio(rt2x00dev);
1377 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1379 u32 reg, reg2;
1380 unsigned int i;
1381 char put_to_sleep;
1383 put_to_sleep = (state != STATE_AWAKE);
1385 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR12);
1386 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1387 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1388 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1391 * Device is not guaranteed to be in the requested state yet.
1392 * We must wait until the register indicates that the
1393 * device has entered the correct state.
1395 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1396 reg2 = rt2x00usb_register_read(rt2x00dev, MAC_CSR12);
1397 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1398 if (state == !put_to_sleep)
1399 return 0;
1400 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1401 msleep(10);
1404 return -EBUSY;
1407 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1408 enum dev_state state)
1410 int retval = 0;
1412 switch (state) {
1413 case STATE_RADIO_ON:
1414 retval = rt73usb_enable_radio(rt2x00dev);
1415 break;
1416 case STATE_RADIO_OFF:
1417 rt73usb_disable_radio(rt2x00dev);
1418 break;
1419 case STATE_RADIO_IRQ_ON:
1420 case STATE_RADIO_IRQ_OFF:
1421 /* No support, but no error either */
1422 break;
1423 case STATE_DEEP_SLEEP:
1424 case STATE_SLEEP:
1425 case STATE_STANDBY:
1426 case STATE_AWAKE:
1427 retval = rt73usb_set_state(rt2x00dev, state);
1428 break;
1429 default:
1430 retval = -ENOTSUPP;
1431 break;
1434 if (unlikely(retval))
1435 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1436 state, retval);
1438 return retval;
1442 * TX descriptor initialization
1444 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1445 struct txentry_desc *txdesc)
1447 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1448 __le32 *txd = (__le32 *) entry->skb->data;
1449 u32 word;
1452 * Start writing the descriptor words.
1454 word = rt2x00_desc_read(txd, 0);
1455 rt2x00_set_field32(&word, TXD_W0_BURST,
1456 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1457 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1458 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1459 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1460 rt2x00_set_field32(&word, TXD_W0_ACK,
1461 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1462 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1463 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1464 rt2x00_set_field32(&word, TXD_W0_OFDM,
1465 (txdesc->rate_mode == RATE_MODE_OFDM));
1466 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1467 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1468 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1469 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1470 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1471 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1472 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1473 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1474 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1475 rt2x00_set_field32(&word, TXD_W0_BURST2,
1476 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1477 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1478 rt2x00_desc_write(txd, 0, word);
1480 word = rt2x00_desc_read(txd, 1);
1481 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1482 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1483 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1484 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1485 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1486 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1487 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1488 rt2x00_desc_write(txd, 1, word);
1490 word = rt2x00_desc_read(txd, 2);
1491 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1492 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1493 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1494 txdesc->u.plcp.length_low);
1495 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1496 txdesc->u.plcp.length_high);
1497 rt2x00_desc_write(txd, 2, word);
1499 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1500 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1501 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1504 word = rt2x00_desc_read(txd, 5);
1505 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1506 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1507 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1508 rt2x00_desc_write(txd, 5, word);
1511 * Register descriptor details in skb frame descriptor.
1513 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1514 skbdesc->desc = txd;
1515 skbdesc->desc_len = TXD_DESC_SIZE;
1519 * TX data initialization
1521 static void rt73usb_write_beacon(struct queue_entry *entry,
1522 struct txentry_desc *txdesc)
1524 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1525 unsigned int beacon_base;
1526 unsigned int padding_len;
1527 u32 orig_reg, reg;
1530 * Disable beaconing while we are reloading the beacon data,
1531 * otherwise we might be sending out invalid data.
1533 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1534 orig_reg = reg;
1535 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1536 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1539 * Add space for the descriptor in front of the skb.
1541 skb_push(entry->skb, TXD_DESC_SIZE);
1542 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1545 * Write the TX descriptor for the beacon.
1547 rt73usb_write_tx_desc(entry, txdesc);
1550 * Dump beacon to userspace through debugfs.
1552 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1555 * Write entire beacon with descriptor and padding to register.
1557 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1558 if (padding_len && skb_pad(entry->skb, padding_len)) {
1559 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1560 /* skb freed by skb_pad() on failure */
1561 entry->skb = NULL;
1562 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1563 return;
1566 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1567 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1568 entry->skb->len + padding_len);
1571 * Enable beaconing again.
1573 * For Wi-Fi faily generated beacons between participating stations.
1574 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1576 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1578 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1579 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1582 * Clean up the beacon skb.
1584 dev_kfree_skb(entry->skb);
1585 entry->skb = NULL;
1588 static void rt73usb_clear_beacon(struct queue_entry *entry)
1590 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1591 unsigned int beacon_base;
1592 u32 orig_reg, reg;
1595 * Disable beaconing while we are reloading the beacon data,
1596 * otherwise we might be sending out invalid data.
1598 orig_reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1599 reg = orig_reg;
1600 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1601 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1604 * Clear beacon.
1606 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1607 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1610 * Restore beaconing state.
1612 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1615 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1617 int length;
1620 * The length _must_ be a multiple of 4,
1621 * but it must _not_ be a multiple of the USB packet size.
1623 length = roundup(entry->skb->len, 4);
1624 length += (4 * !(length % entry->queue->usb_maxpacket));
1626 return length;
1630 * RX control handlers
1632 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1634 u8 offset = rt2x00dev->lna_gain;
1635 u8 lna;
1637 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1638 switch (lna) {
1639 case 3:
1640 offset += 90;
1641 break;
1642 case 2:
1643 offset += 74;
1644 break;
1645 case 1:
1646 offset += 64;
1647 break;
1648 default:
1649 return 0;
1652 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1653 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1654 if (lna == 3 || lna == 2)
1655 offset += 10;
1656 } else {
1657 if (lna == 3)
1658 offset += 6;
1659 else if (lna == 2)
1660 offset += 8;
1664 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1667 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1668 struct rxdone_entry_desc *rxdesc)
1670 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1671 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1672 __le32 *rxd = (__le32 *)entry->skb->data;
1673 u32 word0;
1674 u32 word1;
1677 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1678 * frame data in rt2x00usb.
1680 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1681 rxd = (__le32 *)skbdesc->desc;
1684 * It is now safe to read the descriptor on all architectures.
1686 word0 = rt2x00_desc_read(rxd, 0);
1687 word1 = rt2x00_desc_read(rxd, 1);
1689 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1690 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1692 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1693 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1695 if (rxdesc->cipher != CIPHER_NONE) {
1696 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1697 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1698 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1700 rxdesc->icv = _rt2x00_desc_read(rxd, 4);
1701 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1704 * Hardware has stripped IV/EIV data from 802.11 frame during
1705 * decryption. It has provided the data separately but rt2x00lib
1706 * should decide if it should be reinserted.
1708 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1711 * The hardware has already checked the Michael Mic and has
1712 * stripped it from the frame. Signal this to mac80211.
1714 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1716 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1717 rxdesc->flags |= RX_FLAG_DECRYPTED;
1718 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1719 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1723 * Obtain the status about this packet.
1724 * When frame was received with an OFDM bitrate,
1725 * the signal is the PLCP value. If it was received with
1726 * a CCK bitrate the signal is the rate in 100kbit/s.
1728 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1729 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1730 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1732 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1733 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1734 else
1735 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1736 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1737 rxdesc->dev_flags |= RXDONE_MY_BSS;
1740 * Set skb pointers, and update frame information.
1742 skb_pull(entry->skb, entry->queue->desc_size);
1743 skb_trim(entry->skb, rxdesc->size);
1747 * Device probe functions.
1749 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1751 u16 word;
1752 u8 *mac;
1753 s8 value;
1755 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1758 * Start validation of the data that has been read.
1760 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1761 rt2x00lib_set_mac_address(rt2x00dev, mac);
1763 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1764 if (word == 0xffff) {
1765 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1766 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1767 ANTENNA_B);
1768 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1769 ANTENNA_B);
1770 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1771 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1772 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1773 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1774 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1775 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1778 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1779 if (word == 0xffff) {
1780 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1781 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1782 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1785 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
1786 if (word == 0xffff) {
1787 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1788 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1789 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1790 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1791 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1792 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1793 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1794 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1795 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1796 LED_MODE_DEFAULT);
1797 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1798 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1801 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
1802 if (word == 0xffff) {
1803 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1804 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1805 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1806 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1809 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
1810 if (word == 0xffff) {
1811 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1812 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1813 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1814 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1815 } else {
1816 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1817 if (value < -10 || value > 10)
1818 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1819 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1820 if (value < -10 || value > 10)
1821 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1822 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1825 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
1826 if (word == 0xffff) {
1827 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1828 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1829 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1830 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1831 } else {
1832 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1833 if (value < -10 || value > 10)
1834 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1835 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1836 if (value < -10 || value > 10)
1837 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1838 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1841 return 0;
1844 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1846 u32 reg;
1847 u16 value;
1848 u16 eeprom;
1851 * Read EEPROM word for configuration.
1853 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1856 * Identify RF chipset.
1858 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1859 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0);
1860 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1861 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1863 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1864 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1865 return -ENODEV;
1868 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1869 !rt2x00_rf(rt2x00dev, RF2528) &&
1870 !rt2x00_rf(rt2x00dev, RF5225) &&
1871 !rt2x00_rf(rt2x00dev, RF2527)) {
1872 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1873 return -ENODEV;
1877 * Identify default antenna configuration.
1879 rt2x00dev->default_ant.tx =
1880 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1881 rt2x00dev->default_ant.rx =
1882 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1885 * Read the Frame type.
1887 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1888 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1891 * Detect if this device has an hardware controlled radio.
1893 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1894 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1897 * Read frequency offset.
1899 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
1900 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1903 * Read external LNA informations.
1905 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1907 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1908 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1909 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1913 * Store led settings, for correct led behaviour.
1915 #ifdef CONFIG_RT2X00_LIB_LEDS
1916 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
1918 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1919 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1920 if (value == LED_MODE_SIGNAL_STRENGTH)
1921 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1922 LED_TYPE_QUALITY);
1924 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1925 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1926 rt2x00_get_field16(eeprom,
1927 EEPROM_LED_POLARITY_GPIO_0));
1928 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1929 rt2x00_get_field16(eeprom,
1930 EEPROM_LED_POLARITY_GPIO_1));
1931 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1932 rt2x00_get_field16(eeprom,
1933 EEPROM_LED_POLARITY_GPIO_2));
1934 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1935 rt2x00_get_field16(eeprom,
1936 EEPROM_LED_POLARITY_GPIO_3));
1937 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1938 rt2x00_get_field16(eeprom,
1939 EEPROM_LED_POLARITY_GPIO_4));
1940 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1941 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1943 rt2x00_get_field16(eeprom,
1944 EEPROM_LED_POLARITY_RDY_G));
1945 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1946 rt2x00_get_field16(eeprom,
1947 EEPROM_LED_POLARITY_RDY_A));
1948 #endif /* CONFIG_RT2X00_LIB_LEDS */
1950 return 0;
1954 * RF value list for RF2528
1955 * Supports: 2.4 GHz
1957 static const struct rf_channel rf_vals_bg_2528[] = {
1958 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1959 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1960 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1961 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1962 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1963 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1964 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1965 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1966 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1967 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1968 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1969 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1970 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1971 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1975 * RF value list for RF5226
1976 * Supports: 2.4 GHz & 5.2 GHz
1978 static const struct rf_channel rf_vals_5226[] = {
1979 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1980 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1981 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1982 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1983 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1984 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1985 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1986 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1987 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1988 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1989 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1990 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1991 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1992 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1994 /* 802.11 UNI / HyperLan 2 */
1995 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1996 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1997 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1998 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1999 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2000 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2001 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2002 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2004 /* 802.11 HyperLan 2 */
2005 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2006 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2007 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2008 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2009 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2010 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2011 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2012 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2013 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2014 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2016 /* 802.11 UNII */
2017 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2018 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2019 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2020 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2021 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2022 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2024 /* MMAC(Japan)J52 ch 34,38,42,46 */
2025 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2026 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2027 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2028 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2032 * RF value list for RF5225 & RF2527
2033 * Supports: 2.4 GHz & 5.2 GHz
2035 static const struct rf_channel rf_vals_5225_2527[] = {
2036 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2037 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2038 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2039 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2040 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2041 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2042 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2043 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2044 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2045 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2046 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2047 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2048 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2049 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2051 /* 802.11 UNI / HyperLan 2 */
2052 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2053 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2054 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2055 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2056 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2057 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2058 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2059 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2061 /* 802.11 HyperLan 2 */
2062 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2063 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2064 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2065 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2066 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2067 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2068 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2069 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2070 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2071 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2073 /* 802.11 UNII */
2074 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2075 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2076 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2077 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2078 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2079 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2081 /* MMAC(Japan)J52 ch 34,38,42,46 */
2082 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2083 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2084 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2085 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2089 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2091 struct hw_mode_spec *spec = &rt2x00dev->spec;
2092 struct channel_info *info;
2093 char *tx_power;
2094 unsigned int i;
2097 * Initialize all hw fields.
2099 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
2100 * capable of sending the buffered frames out after the DTIM
2101 * transmission using rt2x00lib_beacondone. This will send out
2102 * multicast and broadcast traffic immediately instead of buffering it
2103 * infinitly and thus dropping it after some time.
2105 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2106 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2107 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2109 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2110 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2111 rt2x00_eeprom_addr(rt2x00dev,
2112 EEPROM_MAC_ADDR_0));
2115 * Initialize hw_mode information.
2117 spec->supported_bands = SUPPORT_BAND_2GHZ;
2118 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2120 if (rt2x00_rf(rt2x00dev, RF2528)) {
2121 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2122 spec->channels = rf_vals_bg_2528;
2123 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2124 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2125 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2126 spec->channels = rf_vals_5226;
2127 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2128 spec->num_channels = 14;
2129 spec->channels = rf_vals_5225_2527;
2130 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2131 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2132 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2133 spec->channels = rf_vals_5225_2527;
2137 * Create channel information array
2139 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2140 if (!info)
2141 return -ENOMEM;
2143 spec->channels_info = info;
2145 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2146 for (i = 0; i < 14; i++) {
2147 info[i].max_power = MAX_TXPOWER;
2148 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2151 if (spec->num_channels > 14) {
2152 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2153 for (i = 14; i < spec->num_channels; i++) {
2154 info[i].max_power = MAX_TXPOWER;
2155 info[i].default_power1 =
2156 TXPOWER_FROM_DEV(tx_power[i - 14]);
2160 return 0;
2163 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2165 int retval;
2166 u32 reg;
2169 * Allocate eeprom data.
2171 retval = rt73usb_validate_eeprom(rt2x00dev);
2172 if (retval)
2173 return retval;
2175 retval = rt73usb_init_eeprom(rt2x00dev);
2176 if (retval)
2177 return retval;
2180 * Enable rfkill polling by setting GPIO direction of the
2181 * rfkill switch GPIO pin correctly.
2183 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13);
2184 rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2185 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2188 * Initialize hw specifications.
2190 retval = rt73usb_probe_hw_mode(rt2x00dev);
2191 if (retval)
2192 return retval;
2195 * This device has multiple filters for control frames,
2196 * but has no a separate filter for PS Poll frames.
2198 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2201 * This device requires firmware.
2203 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2204 if (!modparam_nohwcrypt)
2205 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2206 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2207 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2210 * Set the rssi offset.
2212 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2214 return 0;
2218 * IEEE80211 stack callback functions.
2220 static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2221 struct ieee80211_vif *vif, u16 queue_idx,
2222 const struct ieee80211_tx_queue_params *params)
2224 struct rt2x00_dev *rt2x00dev = hw->priv;
2225 struct data_queue *queue;
2226 struct rt2x00_field32 field;
2227 int retval;
2228 u32 reg;
2229 u32 offset;
2232 * First pass the configuration through rt2x00lib, that will
2233 * update the queue settings and validate the input. After that
2234 * we are free to update the registers based on the value
2235 * in the queue parameter.
2237 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2238 if (retval)
2239 return retval;
2242 * We only need to perform additional register initialization
2243 * for WMM queues/
2245 if (queue_idx >= 4)
2246 return 0;
2248 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2250 /* Update WMM TXOP register */
2251 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2252 field.bit_offset = (queue_idx & 1) * 16;
2253 field.bit_mask = 0xffff << field.bit_offset;
2255 reg = rt2x00usb_register_read(rt2x00dev, offset);
2256 rt2x00_set_field32(&reg, field, queue->txop);
2257 rt2x00usb_register_write(rt2x00dev, offset, reg);
2259 /* Update WMM registers */
2260 field.bit_offset = queue_idx * 4;
2261 field.bit_mask = 0xf << field.bit_offset;
2263 reg = rt2x00usb_register_read(rt2x00dev, AIFSN_CSR);
2264 rt2x00_set_field32(&reg, field, queue->aifs);
2265 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2267 reg = rt2x00usb_register_read(rt2x00dev, CWMIN_CSR);
2268 rt2x00_set_field32(&reg, field, queue->cw_min);
2269 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2271 reg = rt2x00usb_register_read(rt2x00dev, CWMAX_CSR);
2272 rt2x00_set_field32(&reg, field, queue->cw_max);
2273 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2275 return 0;
2278 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2280 struct rt2x00_dev *rt2x00dev = hw->priv;
2281 u64 tsf;
2282 u32 reg;
2284 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR13);
2285 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2286 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR12);
2287 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2289 return tsf;
2292 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2293 .tx = rt2x00mac_tx,
2294 .start = rt2x00mac_start,
2295 .stop = rt2x00mac_stop,
2296 .add_interface = rt2x00mac_add_interface,
2297 .remove_interface = rt2x00mac_remove_interface,
2298 .config = rt2x00mac_config,
2299 .configure_filter = rt2x00mac_configure_filter,
2300 .set_tim = rt2x00mac_set_tim,
2301 .set_key = rt2x00mac_set_key,
2302 .sw_scan_start = rt2x00mac_sw_scan_start,
2303 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2304 .get_stats = rt2x00mac_get_stats,
2305 .bss_info_changed = rt2x00mac_bss_info_changed,
2306 .conf_tx = rt73usb_conf_tx,
2307 .get_tsf = rt73usb_get_tsf,
2308 .rfkill_poll = rt2x00mac_rfkill_poll,
2309 .flush = rt2x00mac_flush,
2310 .set_antenna = rt2x00mac_set_antenna,
2311 .get_antenna = rt2x00mac_get_antenna,
2312 .get_ringparam = rt2x00mac_get_ringparam,
2313 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2316 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2317 .probe_hw = rt73usb_probe_hw,
2318 .get_firmware_name = rt73usb_get_firmware_name,
2319 .check_firmware = rt73usb_check_firmware,
2320 .load_firmware = rt73usb_load_firmware,
2321 .initialize = rt2x00usb_initialize,
2322 .uninitialize = rt2x00usb_uninitialize,
2323 .clear_entry = rt2x00usb_clear_entry,
2324 .set_device_state = rt73usb_set_device_state,
2325 .rfkill_poll = rt73usb_rfkill_poll,
2326 .link_stats = rt73usb_link_stats,
2327 .reset_tuner = rt73usb_reset_tuner,
2328 .link_tuner = rt73usb_link_tuner,
2329 .watchdog = rt2x00usb_watchdog,
2330 .start_queue = rt73usb_start_queue,
2331 .kick_queue = rt2x00usb_kick_queue,
2332 .stop_queue = rt73usb_stop_queue,
2333 .flush_queue = rt2x00usb_flush_queue,
2334 .write_tx_desc = rt73usb_write_tx_desc,
2335 .write_beacon = rt73usb_write_beacon,
2336 .clear_beacon = rt73usb_clear_beacon,
2337 .get_tx_data_len = rt73usb_get_tx_data_len,
2338 .fill_rxdone = rt73usb_fill_rxdone,
2339 .config_shared_key = rt73usb_config_shared_key,
2340 .config_pairwise_key = rt73usb_config_pairwise_key,
2341 .config_filter = rt73usb_config_filter,
2342 .config_intf = rt73usb_config_intf,
2343 .config_erp = rt73usb_config_erp,
2344 .config_ant = rt73usb_config_ant,
2345 .config = rt73usb_config,
2348 static void rt73usb_queue_init(struct data_queue *queue)
2350 switch (queue->qid) {
2351 case QID_RX:
2352 queue->limit = 32;
2353 queue->data_size = DATA_FRAME_SIZE;
2354 queue->desc_size = RXD_DESC_SIZE;
2355 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2356 break;
2358 case QID_AC_VO:
2359 case QID_AC_VI:
2360 case QID_AC_BE:
2361 case QID_AC_BK:
2362 queue->limit = 32;
2363 queue->data_size = DATA_FRAME_SIZE;
2364 queue->desc_size = TXD_DESC_SIZE;
2365 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2366 break;
2368 case QID_BEACON:
2369 queue->limit = 4;
2370 queue->data_size = MGMT_FRAME_SIZE;
2371 queue->desc_size = TXINFO_SIZE;
2372 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2373 break;
2375 case QID_ATIM:
2376 /* fallthrough */
2377 default:
2378 BUG();
2379 break;
2383 static const struct rt2x00_ops rt73usb_ops = {
2384 .name = KBUILD_MODNAME,
2385 .max_ap_intf = 4,
2386 .eeprom_size = EEPROM_SIZE,
2387 .rf_size = RF_SIZE,
2388 .tx_queues = NUM_TX_QUEUES,
2389 .queue_init = rt73usb_queue_init,
2390 .lib = &rt73usb_rt2x00_ops,
2391 .hw = &rt73usb_mac80211_ops,
2392 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2393 .debugfs = &rt73usb_rt2x00debug,
2394 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2398 * rt73usb module information.
2400 static const struct usb_device_id rt73usb_device_table[] = {
2401 /* AboCom */
2402 { USB_DEVICE(0x07b8, 0xb21b) },
2403 { USB_DEVICE(0x07b8, 0xb21c) },
2404 { USB_DEVICE(0x07b8, 0xb21d) },
2405 { USB_DEVICE(0x07b8, 0xb21e) },
2406 { USB_DEVICE(0x07b8, 0xb21f) },
2407 /* AL */
2408 { USB_DEVICE(0x14b2, 0x3c10) },
2409 /* Amigo */
2410 { USB_DEVICE(0x148f, 0x9021) },
2411 { USB_DEVICE(0x0eb0, 0x9021) },
2412 /* AMIT */
2413 { USB_DEVICE(0x18c5, 0x0002) },
2414 /* Askey */
2415 { USB_DEVICE(0x1690, 0x0722) },
2416 /* ASUS */
2417 { USB_DEVICE(0x0b05, 0x1723) },
2418 { USB_DEVICE(0x0b05, 0x1724) },
2419 /* Belkin */
2420 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2421 { USB_DEVICE(0x050d, 0x705a) },
2422 { USB_DEVICE(0x050d, 0x905b) },
2423 { USB_DEVICE(0x050d, 0x905c) },
2424 /* Billionton */
2425 { USB_DEVICE(0x1631, 0xc019) },
2426 { USB_DEVICE(0x08dd, 0x0120) },
2427 /* Buffalo */
2428 { USB_DEVICE(0x0411, 0x00d8) },
2429 { USB_DEVICE(0x0411, 0x00d9) },
2430 { USB_DEVICE(0x0411, 0x00e6) },
2431 { USB_DEVICE(0x0411, 0x00f4) },
2432 { USB_DEVICE(0x0411, 0x0116) },
2433 { USB_DEVICE(0x0411, 0x0119) },
2434 { USB_DEVICE(0x0411, 0x0137) },
2435 /* CEIVA */
2436 { USB_DEVICE(0x178d, 0x02be) },
2437 /* CNet */
2438 { USB_DEVICE(0x1371, 0x9022) },
2439 { USB_DEVICE(0x1371, 0x9032) },
2440 /* Conceptronic */
2441 { USB_DEVICE(0x14b2, 0x3c22) },
2442 /* Corega */
2443 { USB_DEVICE(0x07aa, 0x002e) },
2444 /* D-Link */
2445 { USB_DEVICE(0x07d1, 0x3c03) },
2446 { USB_DEVICE(0x07d1, 0x3c04) },
2447 { USB_DEVICE(0x07d1, 0x3c06) },
2448 { USB_DEVICE(0x07d1, 0x3c07) },
2449 /* Edimax */
2450 { USB_DEVICE(0x7392, 0x7318) },
2451 { USB_DEVICE(0x7392, 0x7618) },
2452 /* EnGenius */
2453 { USB_DEVICE(0x1740, 0x3701) },
2454 /* Gemtek */
2455 { USB_DEVICE(0x15a9, 0x0004) },
2456 /* Gigabyte */
2457 { USB_DEVICE(0x1044, 0x8008) },
2458 { USB_DEVICE(0x1044, 0x800a) },
2459 /* Huawei-3Com */
2460 { USB_DEVICE(0x1472, 0x0009) },
2461 /* Hercules */
2462 { USB_DEVICE(0x06f8, 0xe002) },
2463 { USB_DEVICE(0x06f8, 0xe010) },
2464 { USB_DEVICE(0x06f8, 0xe020) },
2465 /* Linksys */
2466 { USB_DEVICE(0x13b1, 0x0020) },
2467 { USB_DEVICE(0x13b1, 0x0023) },
2468 { USB_DEVICE(0x13b1, 0x0028) },
2469 /* MSI */
2470 { USB_DEVICE(0x0db0, 0x4600) },
2471 { USB_DEVICE(0x0db0, 0x6877) },
2472 { USB_DEVICE(0x0db0, 0x6874) },
2473 { USB_DEVICE(0x0db0, 0xa861) },
2474 { USB_DEVICE(0x0db0, 0xa874) },
2475 /* Ovislink */
2476 { USB_DEVICE(0x1b75, 0x7318) },
2477 /* Ralink */
2478 { USB_DEVICE(0x04bb, 0x093d) },
2479 { USB_DEVICE(0x148f, 0x2573) },
2480 { USB_DEVICE(0x148f, 0x2671) },
2481 { USB_DEVICE(0x0812, 0x3101) },
2482 /* Qcom */
2483 { USB_DEVICE(0x18e8, 0x6196) },
2484 { USB_DEVICE(0x18e8, 0x6229) },
2485 { USB_DEVICE(0x18e8, 0x6238) },
2486 /* Samsung */
2487 { USB_DEVICE(0x04e8, 0x4471) },
2488 /* Senao */
2489 { USB_DEVICE(0x1740, 0x7100) },
2490 /* Sitecom */
2491 { USB_DEVICE(0x0df6, 0x0024) },
2492 { USB_DEVICE(0x0df6, 0x0027) },
2493 { USB_DEVICE(0x0df6, 0x002f) },
2494 { USB_DEVICE(0x0df6, 0x90ac) },
2495 { USB_DEVICE(0x0df6, 0x9712) },
2496 /* Surecom */
2497 { USB_DEVICE(0x0769, 0x31f3) },
2498 /* Tilgin */
2499 { USB_DEVICE(0x6933, 0x5001) },
2500 /* Philips */
2501 { USB_DEVICE(0x0471, 0x200a) },
2502 /* Planex */
2503 { USB_DEVICE(0x2019, 0xab01) },
2504 { USB_DEVICE(0x2019, 0xab50) },
2505 /* WideTell */
2506 { USB_DEVICE(0x7167, 0x3840) },
2507 /* Zcom */
2508 { USB_DEVICE(0x0cde, 0x001c) },
2509 /* ZyXEL */
2510 { USB_DEVICE(0x0586, 0x3415) },
2511 { 0, }
2514 MODULE_AUTHOR(DRV_PROJECT);
2515 MODULE_VERSION(DRV_VERSION);
2516 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2517 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2518 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2519 MODULE_FIRMWARE(FIRMWARE_RT2571);
2520 MODULE_LICENSE("GPL");
2522 static int rt73usb_probe(struct usb_interface *usb_intf,
2523 const struct usb_device_id *id)
2525 return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2528 static struct usb_driver rt73usb_driver = {
2529 .name = KBUILD_MODNAME,
2530 .id_table = rt73usb_device_table,
2531 .probe = rt73usb_probe,
2532 .disconnect = rt2x00usb_disconnect,
2533 .suspend = rt2x00usb_suspend,
2534 .resume = rt2x00usb_resume,
2535 .reset_resume = rt2x00usb_resume,
2536 .disable_hub_initiated_lpm = 1,
2539 module_usb_driver(rt73usb_driver);