1 // SPDX-License-Identifier: GPL-2.0-or-later
3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
10 Abstract: rt73usb device specific routines.
11 Supported chipsets: rt2571W & rt2671.
14 #include <linux/crc-itu-t.h>
15 #include <linux/delay.h>
16 #include <linux/etherdevice.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/usb.h>
23 #include "rt2x00usb.h"
27 * Allow hardware encryption to be disabled.
29 static bool modparam_nohwcrypt
;
30 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, 0444);
31 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
35 * All access to the CSR registers will go through the methods
36 * rt2x00usb_register_read and rt2x00usb_register_write.
37 * BBP and RF register require indirect register access,
38 * and use the CSR registers BBPCSR and RFCSR to achieve this.
39 * These indirect registers work with busy bits,
40 * and we will try maximal REGISTER_BUSY_COUNT times to access
41 * the register while taking a REGISTER_BUSY_DELAY us delay
42 * between each attampt. When the busy bit is still set at that time,
43 * the access attempt is considered to have failed,
44 * and we will print an error.
45 * The _lock versions must be used if you already hold the csr_mutex
47 #define WAIT_FOR_BBP(__dev, __reg) \
48 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
49 #define WAIT_FOR_RF(__dev, __reg) \
50 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
52 static void rt73usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
53 const unsigned int word
, const u8 value
)
57 mutex_lock(&rt2x00dev
->csr_mutex
);
60 * Wait until the BBP becomes available, afterwards we
61 * can safely write the new data into the register.
63 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
65 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
66 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
67 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
68 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
70 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR3
, reg
);
73 mutex_unlock(&rt2x00dev
->csr_mutex
);
76 static u8
rt73usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
77 const unsigned int word
)
82 mutex_lock(&rt2x00dev
->csr_mutex
);
85 * Wait until the BBP becomes available, afterwards we
86 * can safely write the read request into the register.
87 * After the data has been written, we wait until hardware
88 * returns the correct value, if at any time the register
89 * doesn't become available in time, reg will be 0xffffffff
90 * which means we return 0xff to the caller.
92 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
94 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
95 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
96 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
98 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR3
, reg
);
100 WAIT_FOR_BBP(rt2x00dev
, ®
);
103 value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
105 mutex_unlock(&rt2x00dev
->csr_mutex
);
110 static void rt73usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
111 const unsigned int word
, const u32 value
)
115 mutex_lock(&rt2x00dev
->csr_mutex
);
118 * Wait until the RF becomes available, afterwards we
119 * can safely write the new data into the register.
121 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
123 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
125 * RF5225 and RF2527 contain 21 bits per RF register value,
126 * all others contain 20 bits.
128 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
,
129 20 + (rt2x00_rf(rt2x00dev
, RF5225
) ||
130 rt2x00_rf(rt2x00dev
, RF2527
)));
131 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
132 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
134 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR4
, reg
);
135 rt2x00_rf_write(rt2x00dev
, word
, value
);
138 mutex_unlock(&rt2x00dev
->csr_mutex
);
141 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
142 static const struct rt2x00debug rt73usb_rt2x00debug
= {
143 .owner
= THIS_MODULE
,
145 .read
= rt2x00usb_register_read
,
146 .write
= rt2x00usb_register_write
,
147 .flags
= RT2X00DEBUGFS_OFFSET
,
148 .word_base
= CSR_REG_BASE
,
149 .word_size
= sizeof(u32
),
150 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
153 .read
= rt2x00_eeprom_read
,
154 .write
= rt2x00_eeprom_write
,
155 .word_base
= EEPROM_BASE
,
156 .word_size
= sizeof(u16
),
157 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
160 .read
= rt73usb_bbp_read
,
161 .write
= rt73usb_bbp_write
,
162 .word_base
= BBP_BASE
,
163 .word_size
= sizeof(u8
),
164 .word_count
= BBP_SIZE
/ sizeof(u8
),
167 .read
= rt2x00_rf_read
,
168 .write
= rt73usb_rf_write
,
169 .word_base
= RF_BASE
,
170 .word_size
= sizeof(u32
),
171 .word_count
= RF_SIZE
/ sizeof(u32
),
174 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
176 static int rt73usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
180 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR13
);
181 return rt2x00_get_field32(reg
, MAC_CSR13_VAL7
);
184 #ifdef CONFIG_RT2X00_LIB_LEDS
185 static void rt73usb_brightness_set(struct led_classdev
*led_cdev
,
186 enum led_brightness brightness
)
188 struct rt2x00_led
*led
=
189 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
190 unsigned int enabled
= brightness
!= LED_OFF
;
191 unsigned int a_mode
=
192 (enabled
&& led
->rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
);
193 unsigned int bg_mode
=
194 (enabled
&& led
->rt2x00dev
->curr_band
== NL80211_BAND_2GHZ
);
196 if (led
->type
== LED_TYPE_RADIO
) {
197 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
198 MCU_LEDCS_RADIO_STATUS
, enabled
);
200 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
201 0, led
->rt2x00dev
->led_mcu_reg
,
203 } else if (led
->type
== LED_TYPE_ASSOC
) {
204 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
205 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
206 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
207 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
209 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
210 0, led
->rt2x00dev
->led_mcu_reg
,
212 } else if (led
->type
== LED_TYPE_QUALITY
) {
214 * The brightness is divided into 6 levels (0 - 5),
215 * this means we need to convert the brightness
216 * argument into the matching level within that range.
218 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
219 brightness
/ (LED_FULL
/ 6),
220 led
->rt2x00dev
->led_mcu_reg
,
225 static int rt73usb_blink_set(struct led_classdev
*led_cdev
,
226 unsigned long *delay_on
,
227 unsigned long *delay_off
)
229 struct rt2x00_led
*led
=
230 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
233 reg
= rt2x00usb_register_read(led
->rt2x00dev
, MAC_CSR14
);
234 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
235 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
236 rt2x00usb_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
241 static void rt73usb_init_led(struct rt2x00_dev
*rt2x00dev
,
242 struct rt2x00_led
*led
,
245 led
->rt2x00dev
= rt2x00dev
;
247 led
->led_dev
.brightness_set
= rt73usb_brightness_set
;
248 led
->led_dev
.blink_set
= rt73usb_blink_set
;
249 led
->flags
= LED_INITIALIZED
;
251 #endif /* CONFIG_RT2X00_LIB_LEDS */
254 * Configuration handlers.
256 static int rt73usb_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
257 struct rt2x00lib_crypto
*crypto
,
258 struct ieee80211_key_conf
*key
)
260 struct hw_key_entry key_entry
;
261 struct rt2x00_field32 field
;
265 if (crypto
->cmd
== SET_KEY
) {
267 * rt2x00lib can't determine the correct free
268 * key_idx for shared keys. We have 1 register
269 * with key valid bits. The goal is simple, read
270 * the register, if that is full we have no slots
272 * Note that each BSS is allowed to have up to 4
273 * shared keys, so put a mask over the allowed
276 mask
= (0xf << crypto
->bssidx
);
278 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR0
);
281 if (reg
&& reg
== mask
)
284 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
287 * Upload key to hardware
289 memcpy(key_entry
.key
, crypto
->key
,
290 sizeof(key_entry
.key
));
291 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
292 sizeof(key_entry
.tx_mic
));
293 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
294 sizeof(key_entry
.rx_mic
));
296 reg
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
297 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
298 &key_entry
, sizeof(key_entry
));
301 * The cipher types are stored over 2 registers.
302 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
303 * bssidx 1 and 2 keys are stored in SEC_CSR5.
304 * Using the correct defines correctly will cause overhead,
305 * so just calculate the correct offset.
307 if (key
->hw_key_idx
< 8) {
308 field
.bit_offset
= (3 * key
->hw_key_idx
);
309 field
.bit_mask
= 0x7 << field
.bit_offset
;
311 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR1
);
312 rt2x00_set_field32(®
, field
, crypto
->cipher
);
313 rt2x00usb_register_write(rt2x00dev
, SEC_CSR1
, reg
);
315 field
.bit_offset
= (3 * (key
->hw_key_idx
- 8));
316 field
.bit_mask
= 0x7 << field
.bit_offset
;
318 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR5
);
319 rt2x00_set_field32(®
, field
, crypto
->cipher
);
320 rt2x00usb_register_write(rt2x00dev
, SEC_CSR5
, reg
);
324 * The driver does not support the IV/EIV generation
325 * in hardware. However it doesn't support the IV/EIV
326 * inside the ieee80211 frame either, but requires it
327 * to be provided separately for the descriptor.
328 * rt2x00lib will cut the IV/EIV data out of all frames
329 * given to us by mac80211, but we must tell mac80211
330 * to generate the IV/EIV data.
332 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
336 * SEC_CSR0 contains only single-bit fields to indicate
337 * a particular key is valid. Because using the FIELD32()
338 * defines directly will cause a lot of overhead we use
339 * a calculation to determine the correct bit directly.
341 mask
= 1 << key
->hw_key_idx
;
343 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR0
);
344 if (crypto
->cmd
== SET_KEY
)
346 else if (crypto
->cmd
== DISABLE_KEY
)
348 rt2x00usb_register_write(rt2x00dev
, SEC_CSR0
, reg
);
353 static int rt73usb_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
354 struct rt2x00lib_crypto
*crypto
,
355 struct ieee80211_key_conf
*key
)
357 struct hw_pairwise_ta_entry addr_entry
;
358 struct hw_key_entry key_entry
;
362 if (crypto
->cmd
== SET_KEY
) {
364 * rt2x00lib can't determine the correct free
365 * key_idx for pairwise keys. We have 2 registers
366 * with key valid bits. The goal is simple, read
367 * the first register, if that is full move to
369 * When both registers are full, we drop the key,
370 * otherwise we use the first invalid entry.
372 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR2
);
373 if (reg
&& reg
== ~0) {
374 key
->hw_key_idx
= 32;
375 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR3
);
376 if (reg
&& reg
== ~0)
380 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
383 * Upload key to hardware
385 memcpy(key_entry
.key
, crypto
->key
,
386 sizeof(key_entry
.key
));
387 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
388 sizeof(key_entry
.tx_mic
));
389 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
390 sizeof(key_entry
.rx_mic
));
392 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
393 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
394 &key_entry
, sizeof(key_entry
));
397 * Send the address and cipher type to the hardware register.
399 memset(&addr_entry
, 0, sizeof(addr_entry
));
400 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
401 addr_entry
.cipher
= crypto
->cipher
;
403 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
404 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
405 &addr_entry
, sizeof(addr_entry
));
408 * Enable pairwise lookup table for given BSS idx,
409 * without this received frames will not be decrypted
412 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR4
);
413 reg
|= (1 << crypto
->bssidx
);
414 rt2x00usb_register_write(rt2x00dev
, SEC_CSR4
, reg
);
417 * The driver does not support the IV/EIV generation
418 * in hardware. However it doesn't support the IV/EIV
419 * inside the ieee80211 frame either, but requires it
420 * to be provided separately for the descriptor.
421 * rt2x00lib will cut the IV/EIV data out of all frames
422 * given to us by mac80211, but we must tell mac80211
423 * to generate the IV/EIV data.
425 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
429 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
430 * a particular key is valid. Because using the FIELD32()
431 * defines directly will cause a lot of overhead we use
432 * a calculation to determine the correct bit directly.
434 if (key
->hw_key_idx
< 32) {
435 mask
= 1 << key
->hw_key_idx
;
437 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR2
);
438 if (crypto
->cmd
== SET_KEY
)
440 else if (crypto
->cmd
== DISABLE_KEY
)
442 rt2x00usb_register_write(rt2x00dev
, SEC_CSR2
, reg
);
444 mask
= 1 << (key
->hw_key_idx
- 32);
446 reg
= rt2x00usb_register_read(rt2x00dev
, SEC_CSR3
);
447 if (crypto
->cmd
== SET_KEY
)
449 else if (crypto
->cmd
== DISABLE_KEY
)
451 rt2x00usb_register_write(rt2x00dev
, SEC_CSR3
, reg
);
457 static void rt73usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
458 const unsigned int filter_flags
)
463 * Start configuration steps.
464 * Note that the version error will always be dropped
465 * and broadcast frames will always be accepted since
466 * there is no filter for it at this time.
468 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
);
469 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
470 !(filter_flags
& FIF_FCSFAIL
));
471 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
472 !(filter_flags
& FIF_PLCPFAIL
));
473 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
474 !(filter_flags
& (FIF_CONTROL
| FIF_PSPOLL
)));
475 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
476 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
477 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
478 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
479 !rt2x00dev
->intf_ap_count
);
480 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
481 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
482 !(filter_flags
& FIF_ALLMULTI
));
483 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
484 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
485 !(filter_flags
& FIF_CONTROL
));
486 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
489 static void rt73usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
490 struct rt2x00_intf
*intf
,
491 struct rt2x00intf_conf
*conf
,
492 const unsigned int flags
)
496 if (flags
& CONFIG_UPDATE_TYPE
) {
498 * Enable synchronisation.
500 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
);
501 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
502 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
505 if (flags
& CONFIG_UPDATE_MAC
) {
506 reg
= le32_to_cpu(conf
->mac
[1]);
507 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
508 conf
->mac
[1] = cpu_to_le32(reg
);
510 rt2x00usb_register_multiwrite(rt2x00dev
, MAC_CSR2
,
511 conf
->mac
, sizeof(conf
->mac
));
514 if (flags
& CONFIG_UPDATE_BSSID
) {
515 reg
= le32_to_cpu(conf
->bssid
[1]);
516 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
517 conf
->bssid
[1] = cpu_to_le32(reg
);
519 rt2x00usb_register_multiwrite(rt2x00dev
, MAC_CSR4
,
520 conf
->bssid
, sizeof(conf
->bssid
));
524 static void rt73usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
525 struct rt2x00lib_erp
*erp
,
530 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
);
531 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, 0x32);
532 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
533 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
535 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
536 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR4
);
537 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
538 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
539 !!erp
->short_preamble
);
540 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
543 if (changed
& BSS_CHANGED_BASIC_RATES
)
544 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR5
,
547 if (changed
& BSS_CHANGED_BEACON_INT
) {
548 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
);
549 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
550 erp
->beacon_int
* 16);
551 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
554 if (changed
& BSS_CHANGED_ERP_SLOT
) {
555 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR9
);
556 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
557 rt2x00usb_register_write(rt2x00dev
, MAC_CSR9
, reg
);
559 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR8
);
560 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
561 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
562 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
563 rt2x00usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
567 static void rt73usb_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
568 struct antenna_setup
*ant
)
575 r3
= rt73usb_bbp_read(rt2x00dev
, 3);
576 r4
= rt73usb_bbp_read(rt2x00dev
, 4);
577 r77
= rt73usb_bbp_read(rt2x00dev
, 77);
579 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
582 * Configure the RX antenna.
585 case ANTENNA_HW_DIVERSITY
:
586 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
587 temp
= !rt2x00_has_cap_frame_type(rt2x00dev
) &&
588 (rt2x00dev
->curr_band
!= NL80211_BAND_5GHZ
);
589 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, temp
);
592 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
593 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
594 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
)
595 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
597 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
601 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
602 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
603 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
)
604 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
606 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
610 rt73usb_bbp_write(rt2x00dev
, 77, r77
);
611 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
612 rt73usb_bbp_write(rt2x00dev
, 4, r4
);
615 static void rt73usb_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
616 struct antenna_setup
*ant
)
622 r3
= rt73usb_bbp_read(rt2x00dev
, 3);
623 r4
= rt73usb_bbp_read(rt2x00dev
, 4);
624 r77
= rt73usb_bbp_read(rt2x00dev
, 77);
626 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
627 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
628 !rt2x00_has_cap_frame_type(rt2x00dev
));
631 * Configure the RX antenna.
634 case ANTENNA_HW_DIVERSITY
:
635 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
638 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
639 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
643 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
644 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
648 rt73usb_bbp_write(rt2x00dev
, 77, r77
);
649 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
650 rt73usb_bbp_write(rt2x00dev
, 4, r4
);
656 * value[0] -> non-LNA
662 static const struct antenna_sel antenna_sel_a
[] = {
663 { 96, { 0x58, 0x78 } },
664 { 104, { 0x38, 0x48 } },
665 { 75, { 0xfe, 0x80 } },
666 { 86, { 0xfe, 0x80 } },
667 { 88, { 0xfe, 0x80 } },
668 { 35, { 0x60, 0x60 } },
669 { 97, { 0x58, 0x58 } },
670 { 98, { 0x58, 0x58 } },
673 static const struct antenna_sel antenna_sel_bg
[] = {
674 { 96, { 0x48, 0x68 } },
675 { 104, { 0x2c, 0x3c } },
676 { 75, { 0xfe, 0x80 } },
677 { 86, { 0xfe, 0x80 } },
678 { 88, { 0xfe, 0x80 } },
679 { 35, { 0x50, 0x50 } },
680 { 97, { 0x48, 0x48 } },
681 { 98, { 0x48, 0x48 } },
684 static void rt73usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
685 struct antenna_setup
*ant
)
687 const struct antenna_sel
*sel
;
693 * We should never come here because rt2x00lib is supposed
694 * to catch this and send us the correct antenna explicitely.
696 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
697 ant
->tx
== ANTENNA_SW_DIVERSITY
);
699 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
701 lna
= rt2x00_has_cap_external_lna_a(rt2x00dev
);
703 sel
= antenna_sel_bg
;
704 lna
= rt2x00_has_cap_external_lna_bg(rt2x00dev
);
707 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
708 rt73usb_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
710 reg
= rt2x00usb_register_read(rt2x00dev
, PHY_CSR0
);
712 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
713 (rt2x00dev
->curr_band
== NL80211_BAND_2GHZ
));
714 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
715 (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
));
717 rt2x00usb_register_write(rt2x00dev
, PHY_CSR0
, reg
);
719 if (rt2x00_rf(rt2x00dev
, RF5226
) || rt2x00_rf(rt2x00dev
, RF5225
))
720 rt73usb_config_antenna_5x(rt2x00dev
, ant
);
721 else if (rt2x00_rf(rt2x00dev
, RF2528
) || rt2x00_rf(rt2x00dev
, RF2527
))
722 rt73usb_config_antenna_2x(rt2x00dev
, ant
);
725 static void rt73usb_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
726 struct rt2x00lib_conf
*libconf
)
731 if (libconf
->conf
->chandef
.chan
->band
== NL80211_BAND_2GHZ
) {
732 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
))
735 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
);
736 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
738 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
);
739 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
742 rt2x00dev
->lna_gain
= lna_gain
;
745 static void rt73usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
746 struct rf_channel
*rf
, const int txpower
)
752 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
753 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
755 smart
= !(rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
));
757 r3
= rt73usb_bbp_read(rt2x00dev
, 3);
758 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
759 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
762 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
763 r94
+= txpower
- MAX_TXPOWER
;
764 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
766 rt73usb_bbp_write(rt2x00dev
, 94, r94
);
768 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
769 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
770 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
771 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
773 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
774 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
775 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
776 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
778 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
779 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
780 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
781 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
786 static void rt73usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
789 struct rf_channel rf
;
791 rf
.rf1
= rt2x00_rf_read(rt2x00dev
, 1);
792 rf
.rf2
= rt2x00_rf_read(rt2x00dev
, 2);
793 rf
.rf3
= rt2x00_rf_read(rt2x00dev
, 3);
794 rf
.rf4
= rt2x00_rf_read(rt2x00dev
, 4);
796 rt73usb_config_channel(rt2x00dev
, &rf
, txpower
);
799 static void rt73usb_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
800 struct rt2x00lib_conf
*libconf
)
804 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR4
);
805 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_DOWN
, 1);
806 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_STEP
, 0);
807 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_FALLBACK_CCK
, 0);
808 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
809 libconf
->conf
->long_frame_max_tx_count
);
810 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
811 libconf
->conf
->short_frame_max_tx_count
);
812 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
815 static void rt73usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
816 struct rt2x00lib_conf
*libconf
)
818 enum dev_state state
=
819 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
820 STATE_SLEEP
: STATE_AWAKE
;
823 if (state
== STATE_SLEEP
) {
824 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR11
);
825 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
826 rt2x00dev
->beacon_int
- 10);
827 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
828 libconf
->conf
->listen_interval
- 1);
829 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
831 /* We must first disable autowake before it can be enabled */
832 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
833 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
835 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
836 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
838 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0,
839 USB_MODE_SLEEP
, REGISTER_TIMEOUT
);
841 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR11
);
842 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
843 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
844 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
845 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
846 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
848 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0,
849 USB_MODE_WAKEUP
, REGISTER_TIMEOUT
);
853 static void rt73usb_config(struct rt2x00_dev
*rt2x00dev
,
854 struct rt2x00lib_conf
*libconf
,
855 const unsigned int flags
)
857 /* Always recalculate LNA gain before changing configuration */
858 rt73usb_config_lna_gain(rt2x00dev
, libconf
);
860 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
861 rt73usb_config_channel(rt2x00dev
, &libconf
->rf
,
862 libconf
->conf
->power_level
);
863 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
864 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
865 rt73usb_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
866 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
867 rt73usb_config_retry_limit(rt2x00dev
, libconf
);
868 if (flags
& IEEE80211_CONF_CHANGE_PS
)
869 rt73usb_config_ps(rt2x00dev
, libconf
);
875 static void rt73usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
876 struct link_qual
*qual
)
881 * Update FCS error count from register.
883 reg
= rt2x00usb_register_read(rt2x00dev
, STA_CSR0
);
884 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
887 * Update False CCA count from register.
889 reg
= rt2x00usb_register_read(rt2x00dev
, STA_CSR1
);
890 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
893 static inline void rt73usb_set_vgc(struct rt2x00_dev
*rt2x00dev
,
894 struct link_qual
*qual
, u8 vgc_level
)
896 if (qual
->vgc_level
!= vgc_level
) {
897 rt73usb_bbp_write(rt2x00dev
, 17, vgc_level
);
898 qual
->vgc_level
= vgc_level
;
899 qual
->vgc_level_reg
= vgc_level
;
903 static void rt73usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
904 struct link_qual
*qual
)
906 rt73usb_set_vgc(rt2x00dev
, qual
, 0x20);
909 static void rt73usb_link_tuner(struct rt2x00_dev
*rt2x00dev
,
910 struct link_qual
*qual
, const u32 count
)
916 * Determine r17 bounds.
918 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
922 if (rt2x00_has_cap_external_lna_a(rt2x00dev
)) {
927 if (qual
->rssi
> -82) {
930 } else if (qual
->rssi
> -84) {
938 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
)) {
945 * If we are not associated, we should go straight to the
946 * dynamic CCA tuning.
948 if (!rt2x00dev
->intf_associated
)
949 goto dynamic_cca_tune
;
952 * Special big-R17 for very short distance
954 if (qual
->rssi
> -35) {
955 rt73usb_set_vgc(rt2x00dev
, qual
, 0x60);
960 * Special big-R17 for short distance
962 if (qual
->rssi
>= -58) {
963 rt73usb_set_vgc(rt2x00dev
, qual
, up_bound
);
968 * Special big-R17 for middle-short distance
970 if (qual
->rssi
>= -66) {
971 rt73usb_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
976 * Special mid-R17 for middle distance
978 if (qual
->rssi
>= -74) {
979 rt73usb_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
984 * Special case: Change up_bound based on the rssi.
985 * Lower up_bound when rssi is weaker then -74 dBm.
987 up_bound
-= 2 * (-74 - qual
->rssi
);
988 if (low_bound
> up_bound
)
989 up_bound
= low_bound
;
991 if (qual
->vgc_level
> up_bound
) {
992 rt73usb_set_vgc(rt2x00dev
, qual
, up_bound
);
999 * r17 does not yet exceed upper limit, continue and base
1000 * the r17 tuning on the false CCA count.
1002 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1003 rt73usb_set_vgc(rt2x00dev
, qual
,
1004 min_t(u8
, qual
->vgc_level
+ 4, up_bound
));
1005 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1006 rt73usb_set_vgc(rt2x00dev
, qual
,
1007 max_t(u8
, qual
->vgc_level
- 4, low_bound
));
1013 static void rt73usb_start_queue(struct data_queue
*queue
)
1015 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1018 switch (queue
->qid
) {
1020 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
);
1021 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1022 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1025 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
);
1026 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1027 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1028 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1029 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1036 static void rt73usb_stop_queue(struct data_queue
*queue
)
1038 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1041 switch (queue
->qid
) {
1043 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
);
1044 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 1);
1045 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1048 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
);
1049 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1050 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1051 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1052 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1060 * Firmware functions
1062 static char *rt73usb_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1064 return FIRMWARE_RT2571
;
1067 static int rt73usb_check_firmware(struct rt2x00_dev
*rt2x00dev
,
1068 const u8
*data
, const size_t len
)
1074 * Only support 2kb firmware files.
1077 return FW_BAD_LENGTH
;
1080 * The last 2 bytes in the firmware array are the crc checksum itself,
1081 * this means that we should never pass those 2 bytes to the crc
1084 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
1087 * Use the crc itu-t algorithm.
1089 crc
= crc_itu_t(0, data
, len
- 2);
1090 crc
= crc_itu_t_byte(crc
, 0);
1091 crc
= crc_itu_t_byte(crc
, 0);
1093 return (fw_crc
== crc
) ? FW_OK
: FW_BAD_CRC
;
1096 static int rt73usb_load_firmware(struct rt2x00_dev
*rt2x00dev
,
1097 const u8
*data
, const size_t len
)
1104 * Wait for stable hardware.
1106 for (i
= 0; i
< 100; i
++) {
1107 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR0
);
1114 rt2x00_err(rt2x00dev
, "Unstable hardware\n");
1119 * Write firmware to device.
1121 rt2x00usb_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
, data
, len
);
1124 * Send firmware request to device to load firmware,
1125 * we need to specify a long timeout time.
1127 status
= rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
,
1128 0, USB_MODE_FIRMWARE
,
1129 REGISTER_TIMEOUT_FIRMWARE
);
1131 rt2x00_err(rt2x00dev
, "Failed to write Firmware to device\n");
1139 * Initialization functions.
1141 static int rt73usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
1145 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
);
1146 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1147 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1148 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1149 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1151 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR1
);
1152 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1153 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1154 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1155 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1156 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1157 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1158 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1159 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1160 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1163 * CCK TXD BBP registers
1165 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR2
);
1166 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1167 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1168 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1169 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1170 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1171 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1172 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1173 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1174 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1177 * OFDM TXD BBP registers
1179 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR3
);
1180 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1181 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1182 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1183 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1184 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1185 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1186 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1188 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR7
);
1189 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1190 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1191 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1192 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1193 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1195 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR8
);
1196 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1197 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1198 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1199 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1200 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1202 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
);
1203 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1204 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1205 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1206 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1207 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1208 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1209 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1211 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1213 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR6
);
1214 rt2x00_set_field32(®
, MAC_CSR6_MAX_FRAME_UNIT
, 0xfff);
1215 rt2x00usb_register_write(rt2x00dev
, MAC_CSR6
, reg
);
1217 rt2x00usb_register_write(rt2x00dev
, MAC_CSR10
, 0x00000718);
1219 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1222 rt2x00usb_register_write(rt2x00dev
, MAC_CSR13
, 0x00007f00);
1225 * Invalidate all Shared Keys (SEC_CSR0),
1226 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1228 rt2x00usb_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1229 rt2x00usb_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1230 rt2x00usb_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1233 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
))
1234 rt2x00_set_field32(®
, PHY_CSR1_RF_RPI
, 1);
1235 rt2x00usb_register_write(rt2x00dev
, PHY_CSR1
, reg
);
1237 rt2x00usb_register_write(rt2x00dev
, PHY_CSR5
, 0x00040a06);
1238 rt2x00usb_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1239 rt2x00usb_register_write(rt2x00dev
, PHY_CSR7
, 0x00000408);
1241 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR9
);
1242 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1243 rt2x00usb_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1247 * For the Beacon base registers we only need to clear
1248 * the first byte since that byte contains the VALID and OWNER
1249 * bits which (when set to 0) will invalidate the entire beacon.
1251 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1252 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1253 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1254 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1257 * We must clear the error counters.
1258 * These registers are cleared on read,
1259 * so we may pass a useless variable to store the value.
1261 reg
= rt2x00usb_register_read(rt2x00dev
, STA_CSR0
);
1262 reg
= rt2x00usb_register_read(rt2x00dev
, STA_CSR1
);
1263 reg
= rt2x00usb_register_read(rt2x00dev
, STA_CSR2
);
1266 * Reset MAC and BBP registers.
1268 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
);
1269 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1270 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1271 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1273 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
);
1274 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1275 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1276 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1278 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
);
1279 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1280 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1285 static int rt73usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1290 for (i
= 0; i
< REGISTER_USB_BUSY_COUNT
; i
++) {
1291 value
= rt73usb_bbp_read(rt2x00dev
, 0);
1292 if ((value
!= 0xff) && (value
!= 0x00))
1294 udelay(REGISTER_BUSY_DELAY
);
1297 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1301 static int rt73usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1308 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev
)))
1311 rt73usb_bbp_write(rt2x00dev
, 3, 0x80);
1312 rt73usb_bbp_write(rt2x00dev
, 15, 0x30);
1313 rt73usb_bbp_write(rt2x00dev
, 21, 0xc8);
1314 rt73usb_bbp_write(rt2x00dev
, 22, 0x38);
1315 rt73usb_bbp_write(rt2x00dev
, 23, 0x06);
1316 rt73usb_bbp_write(rt2x00dev
, 24, 0xfe);
1317 rt73usb_bbp_write(rt2x00dev
, 25, 0x0a);
1318 rt73usb_bbp_write(rt2x00dev
, 26, 0x0d);
1319 rt73usb_bbp_write(rt2x00dev
, 32, 0x0b);
1320 rt73usb_bbp_write(rt2x00dev
, 34, 0x12);
1321 rt73usb_bbp_write(rt2x00dev
, 37, 0x07);
1322 rt73usb_bbp_write(rt2x00dev
, 39, 0xf8);
1323 rt73usb_bbp_write(rt2x00dev
, 41, 0x60);
1324 rt73usb_bbp_write(rt2x00dev
, 53, 0x10);
1325 rt73usb_bbp_write(rt2x00dev
, 54, 0x18);
1326 rt73usb_bbp_write(rt2x00dev
, 60, 0x10);
1327 rt73usb_bbp_write(rt2x00dev
, 61, 0x04);
1328 rt73usb_bbp_write(rt2x00dev
, 62, 0x04);
1329 rt73usb_bbp_write(rt2x00dev
, 75, 0xfe);
1330 rt73usb_bbp_write(rt2x00dev
, 86, 0xfe);
1331 rt73usb_bbp_write(rt2x00dev
, 88, 0xfe);
1332 rt73usb_bbp_write(rt2x00dev
, 90, 0x0f);
1333 rt73usb_bbp_write(rt2x00dev
, 99, 0x00);
1334 rt73usb_bbp_write(rt2x00dev
, 102, 0x16);
1335 rt73usb_bbp_write(rt2x00dev
, 107, 0x04);
1337 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1338 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
1340 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1341 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1342 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1343 rt73usb_bbp_write(rt2x00dev
, reg_id
, value
);
1351 * Device state switch handlers.
1353 static int rt73usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1356 * Initialize all registers.
1358 if (unlikely(rt73usb_init_registers(rt2x00dev
) ||
1359 rt73usb_init_bbp(rt2x00dev
)))
1365 static void rt73usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1367 rt2x00usb_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1370 * Disable synchronisation.
1372 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, 0);
1374 rt2x00usb_disable_radio(rt2x00dev
);
1377 static int rt73usb_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1383 put_to_sleep
= (state
!= STATE_AWAKE
);
1385 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR12
);
1386 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1387 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1388 rt2x00usb_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1391 * Device is not guaranteed to be in the requested state yet.
1392 * We must wait until the register indicates that the
1393 * device has entered the correct state.
1395 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1396 reg2
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR12
);
1397 state
= rt2x00_get_field32(reg2
, MAC_CSR12_BBP_CURRENT_STATE
);
1398 if (state
== !put_to_sleep
)
1400 rt2x00usb_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1407 static int rt73usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1408 enum dev_state state
)
1413 case STATE_RADIO_ON
:
1414 retval
= rt73usb_enable_radio(rt2x00dev
);
1416 case STATE_RADIO_OFF
:
1417 rt73usb_disable_radio(rt2x00dev
);
1419 case STATE_RADIO_IRQ_ON
:
1420 case STATE_RADIO_IRQ_OFF
:
1421 /* No support, but no error either */
1423 case STATE_DEEP_SLEEP
:
1427 retval
= rt73usb_set_state(rt2x00dev
, state
);
1434 if (unlikely(retval
))
1435 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1442 * TX descriptor initialization
1444 static void rt73usb_write_tx_desc(struct queue_entry
*entry
,
1445 struct txentry_desc
*txdesc
)
1447 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1448 __le32
*txd
= (__le32
*) entry
->skb
->data
;
1452 * Start writing the descriptor words.
1454 word
= rt2x00_desc_read(txd
, 0);
1455 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1456 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1457 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1458 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1459 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1460 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1461 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1462 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1463 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1464 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1465 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1466 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1467 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1468 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1469 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1470 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1471 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1472 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1473 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1474 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1475 rt2x00_set_field32(&word
, TXD_W0_BURST2
,
1476 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1477 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1478 rt2x00_desc_write(txd
, 0, word
);
1480 word
= rt2x00_desc_read(txd
, 1);
1481 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, entry
->queue
->qid
);
1482 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, entry
->queue
->aifs
);
1483 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1484 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1485 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1486 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1487 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1488 rt2x00_desc_write(txd
, 1, word
);
1490 word
= rt2x00_desc_read(txd
, 2);
1491 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1492 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1493 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1494 txdesc
->u
.plcp
.length_low
);
1495 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1496 txdesc
->u
.plcp
.length_high
);
1497 rt2x00_desc_write(txd
, 2, word
);
1499 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1500 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1501 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1504 word
= rt2x00_desc_read(txd
, 5);
1505 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1506 TXPOWER_TO_DEV(entry
->queue
->rt2x00dev
->tx_power
));
1507 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1508 rt2x00_desc_write(txd
, 5, word
);
1511 * Register descriptor details in skb frame descriptor.
1513 skbdesc
->flags
|= SKBDESC_DESC_IN_SKB
;
1514 skbdesc
->desc
= txd
;
1515 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1519 * TX data initialization
1521 static void rt73usb_write_beacon(struct queue_entry
*entry
,
1522 struct txentry_desc
*txdesc
)
1524 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1525 unsigned int beacon_base
;
1526 unsigned int padding_len
;
1530 * Disable beaconing while we are reloading the beacon data,
1531 * otherwise we might be sending out invalid data.
1533 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
);
1535 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1536 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1539 * Add space for the descriptor in front of the skb.
1541 skb_push(entry
->skb
, TXD_DESC_SIZE
);
1542 memset(entry
->skb
->data
, 0, TXD_DESC_SIZE
);
1545 * Write the TX descriptor for the beacon.
1547 rt73usb_write_tx_desc(entry
, txdesc
);
1550 * Dump beacon to userspace through debugfs.
1552 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1555 * Write entire beacon with descriptor and padding to register.
1557 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
1558 if (padding_len
&& skb_pad(entry
->skb
, padding_len
)) {
1559 rt2x00_err(rt2x00dev
, "Failure padding beacon, aborting\n");
1560 /* skb freed by skb_pad() on failure */
1562 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
1566 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1567 rt2x00usb_register_multiwrite(rt2x00dev
, beacon_base
, entry
->skb
->data
,
1568 entry
->skb
->len
+ padding_len
);
1571 * Enable beaconing again.
1573 * For Wi-Fi faily generated beacons between participating stations.
1574 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1576 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1578 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1579 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1582 * Clean up the beacon skb.
1584 dev_kfree_skb(entry
->skb
);
1588 static void rt73usb_clear_beacon(struct queue_entry
*entry
)
1590 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1591 unsigned int beacon_base
;
1595 * Disable beaconing while we are reloading the beacon data,
1596 * otherwise we might be sending out invalid data.
1598 orig_reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
);
1600 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1601 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1606 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1607 rt2x00usb_register_write(rt2x00dev
, beacon_base
, 0);
1610 * Restore beaconing state.
1612 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
1615 static int rt73usb_get_tx_data_len(struct queue_entry
*entry
)
1620 * The length _must_ be a multiple of 4,
1621 * but it must _not_ be a multiple of the USB packet size.
1623 length
= roundup(entry
->skb
->len
, 4);
1624 length
+= (4 * !(length
% entry
->queue
->usb_maxpacket
));
1630 * RX control handlers
1632 static int rt73usb_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1634 u8 offset
= rt2x00dev
->lna_gain
;
1637 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1652 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
1653 if (rt2x00_has_cap_external_lna_a(rt2x00dev
)) {
1654 if (lna
== 3 || lna
== 2)
1664 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
1667 static void rt73usb_fill_rxdone(struct queue_entry
*entry
,
1668 struct rxdone_entry_desc
*rxdesc
)
1670 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1671 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1672 __le32
*rxd
= (__le32
*)entry
->skb
->data
;
1677 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1678 * frame data in rt2x00usb.
1680 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1681 rxd
= (__le32
*)skbdesc
->desc
;
1684 * It is now safe to read the descriptor on all architectures.
1686 word0
= rt2x00_desc_read(rxd
, 0);
1687 word1
= rt2x00_desc_read(rxd
, 1);
1689 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1690 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1692 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
1693 rxdesc
->cipher_status
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
1695 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1696 rxdesc
->iv
[0] = _rt2x00_desc_read(rxd
, 2);
1697 rxdesc
->iv
[1] = _rt2x00_desc_read(rxd
, 3);
1698 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1700 rxdesc
->icv
= _rt2x00_desc_read(rxd
, 4);
1701 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
1704 * Hardware has stripped IV/EIV data from 802.11 frame during
1705 * decryption. It has provided the data separately but rt2x00lib
1706 * should decide if it should be reinserted.
1708 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
1711 * The hardware has already checked the Michael Mic and has
1712 * stripped it from the frame. Signal this to mac80211.
1714 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1716 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1717 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1718 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1719 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1723 * Obtain the status about this packet.
1724 * When frame was received with an OFDM bitrate,
1725 * the signal is the PLCP value. If it was received with
1726 * a CCK bitrate the signal is the rate in 100kbit/s.
1728 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1729 rxdesc
->rssi
= rt73usb_agc_to_rssi(rt2x00dev
, word1
);
1730 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1732 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1733 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1735 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1736 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1737 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1740 * Set skb pointers, and update frame information.
1742 skb_pull(entry
->skb
, entry
->queue
->desc_size
);
1743 skb_trim(entry
->skb
, rxdesc
->size
);
1747 * Device probe functions.
1749 static int rt73usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1755 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1758 * Start validation of the data that has been read.
1760 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1761 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
1763 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1764 if (word
== 0xffff) {
1765 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1766 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1768 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1770 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
1771 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1772 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1773 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5226
);
1774 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1775 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1778 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
1779 if (word
== 0xffff) {
1780 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA
, 0);
1781 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1782 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
1785 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
);
1786 if (word
== 0xffff) {
1787 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_RDY_G
, 0);
1788 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_RDY_A
, 0);
1789 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_ACT
, 0);
1790 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_0
, 0);
1791 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_1
, 0);
1792 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_2
, 0);
1793 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_3
, 0);
1794 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_4
, 0);
1795 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
1797 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
1798 rt2x00_eeprom_dbg(rt2x00dev
, "Led: 0x%04x\n", word
);
1801 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
);
1802 if (word
== 0xffff) {
1803 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
1804 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
1805 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
1806 rt2x00_eeprom_dbg(rt2x00dev
, "Freq: 0x%04x\n", word
);
1809 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
);
1810 if (word
== 0xffff) {
1811 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1812 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1813 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1814 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1816 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
1817 if (value
< -10 || value
> 10)
1818 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1819 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
1820 if (value
< -10 || value
> 10)
1821 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1822 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1825 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
);
1826 if (word
== 0xffff) {
1827 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1828 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1829 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1830 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
1832 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
1833 if (value
< -10 || value
> 10)
1834 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1835 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
1836 if (value
< -10 || value
> 10)
1837 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1838 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1844 static int rt73usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1851 * Read EEPROM word for configuration.
1853 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1856 * Identify RF chipset.
1858 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1859 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR0
);
1860 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
1861 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
1863 if (!rt2x00_rt(rt2x00dev
, RT2573
) || (rt2x00_rev(rt2x00dev
) == 0)) {
1864 rt2x00_err(rt2x00dev
, "Invalid RT chipset detected\n");
1868 if (!rt2x00_rf(rt2x00dev
, RF5226
) &&
1869 !rt2x00_rf(rt2x00dev
, RF2528
) &&
1870 !rt2x00_rf(rt2x00dev
, RF5225
) &&
1871 !rt2x00_rf(rt2x00dev
, RF2527
)) {
1872 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1877 * Identify default antenna configuration.
1879 rt2x00dev
->default_ant
.tx
=
1880 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1881 rt2x00dev
->default_ant
.rx
=
1882 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1885 * Read the Frame type.
1887 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
1888 __set_bit(CAPABILITY_FRAME_TYPE
, &rt2x00dev
->cap_flags
);
1891 * Detect if this device has an hardware controlled radio.
1893 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1894 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1897 * Read frequency offset.
1899 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
);
1900 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
1903 * Read external LNA informations.
1905 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
1907 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA
)) {
1908 __set_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
);
1909 __set_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
);
1913 * Store led settings, for correct led behaviour.
1915 #ifdef CONFIG_RT2X00_LIB_LEDS
1916 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
);
1918 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1919 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
1920 if (value
== LED_MODE_SIGNAL_STRENGTH
)
1921 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1924 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
1925 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
1926 rt2x00_get_field16(eeprom
,
1927 EEPROM_LED_POLARITY_GPIO_0
));
1928 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
1929 rt2x00_get_field16(eeprom
,
1930 EEPROM_LED_POLARITY_GPIO_1
));
1931 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
1932 rt2x00_get_field16(eeprom
,
1933 EEPROM_LED_POLARITY_GPIO_2
));
1934 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
1935 rt2x00_get_field16(eeprom
,
1936 EEPROM_LED_POLARITY_GPIO_3
));
1937 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
1938 rt2x00_get_field16(eeprom
,
1939 EEPROM_LED_POLARITY_GPIO_4
));
1940 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
1941 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
1942 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
1943 rt2x00_get_field16(eeprom
,
1944 EEPROM_LED_POLARITY_RDY_G
));
1945 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
1946 rt2x00_get_field16(eeprom
,
1947 EEPROM_LED_POLARITY_RDY_A
));
1948 #endif /* CONFIG_RT2X00_LIB_LEDS */
1954 * RF value list for RF2528
1957 static const struct rf_channel rf_vals_bg_2528
[] = {
1958 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1959 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1960 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1961 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1962 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1963 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1964 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1965 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1966 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1967 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1968 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1969 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1970 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1971 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1975 * RF value list for RF5226
1976 * Supports: 2.4 GHz & 5.2 GHz
1978 static const struct rf_channel rf_vals_5226
[] = {
1979 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1980 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1981 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1982 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1983 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1984 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1985 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1986 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1987 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1988 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1989 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1990 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1991 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1992 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1994 /* 802.11 UNI / HyperLan 2 */
1995 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1996 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1997 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1998 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1999 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2000 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2001 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2002 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2004 /* 802.11 HyperLan 2 */
2005 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2006 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2007 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2008 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2009 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2010 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2011 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2012 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2013 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2014 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2017 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2018 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2019 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2020 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2021 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2022 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2024 /* MMAC(Japan)J52 ch 34,38,42,46 */
2025 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2026 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2027 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2028 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2032 * RF value list for RF5225 & RF2527
2033 * Supports: 2.4 GHz & 5.2 GHz
2035 static const struct rf_channel rf_vals_5225_2527
[] = {
2036 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2037 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2038 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2039 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2040 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2041 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2042 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2043 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2044 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2045 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2046 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2047 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2048 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2049 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2051 /* 802.11 UNI / HyperLan 2 */
2052 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2053 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2054 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2055 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2056 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2057 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2058 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2059 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2061 /* 802.11 HyperLan 2 */
2062 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2063 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2064 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2065 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2066 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2067 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2068 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2069 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2070 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2071 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2074 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2075 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2076 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2077 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2078 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2079 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2081 /* MMAC(Japan)J52 ch 34,38,42,46 */
2082 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2083 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2084 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2085 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2089 static int rt73usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2091 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2092 struct channel_info
*info
;
2097 * Initialize all hw fields.
2099 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
2100 * capable of sending the buffered frames out after the DTIM
2101 * transmission using rt2x00lib_beacondone. This will send out
2102 * multicast and broadcast traffic immediately instead of buffering it
2103 * infinitly and thus dropping it after some time.
2105 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
2106 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
2107 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
2109 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2110 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2111 rt2x00_eeprom_addr(rt2x00dev
,
2112 EEPROM_MAC_ADDR_0
));
2115 * Initialize hw_mode information.
2117 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2118 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2120 if (rt2x00_rf(rt2x00dev
, RF2528
)) {
2121 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2528
);
2122 spec
->channels
= rf_vals_bg_2528
;
2123 } else if (rt2x00_rf(rt2x00dev
, RF5226
)) {
2124 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2125 spec
->num_channels
= ARRAY_SIZE(rf_vals_5226
);
2126 spec
->channels
= rf_vals_5226
;
2127 } else if (rt2x00_rf(rt2x00dev
, RF2527
)) {
2128 spec
->num_channels
= 14;
2129 spec
->channels
= rf_vals_5225_2527
;
2130 } else if (rt2x00_rf(rt2x00dev
, RF5225
)) {
2131 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2132 spec
->num_channels
= ARRAY_SIZE(rf_vals_5225_2527
);
2133 spec
->channels
= rf_vals_5225_2527
;
2137 * Create channel information array
2139 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
2143 spec
->channels_info
= info
;
2145 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2146 for (i
= 0; i
< 14; i
++) {
2147 info
[i
].max_power
= MAX_TXPOWER
;
2148 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2151 if (spec
->num_channels
> 14) {
2152 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2153 for (i
= 14; i
< spec
->num_channels
; i
++) {
2154 info
[i
].max_power
= MAX_TXPOWER
;
2155 info
[i
].default_power1
=
2156 TXPOWER_FROM_DEV(tx_power
[i
- 14]);
2163 static int rt73usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2169 * Allocate eeprom data.
2171 retval
= rt73usb_validate_eeprom(rt2x00dev
);
2175 retval
= rt73usb_init_eeprom(rt2x00dev
);
2180 * Enable rfkill polling by setting GPIO direction of the
2181 * rfkill switch GPIO pin correctly.
2183 reg
= rt2x00usb_register_read(rt2x00dev
, MAC_CSR13
);
2184 rt2x00_set_field32(®
, MAC_CSR13_DIR7
, 0);
2185 rt2x00usb_register_write(rt2x00dev
, MAC_CSR13
, reg
);
2188 * Initialize hw specifications.
2190 retval
= rt73usb_probe_hw_mode(rt2x00dev
);
2195 * This device has multiple filters for control frames,
2196 * but has no a separate filter for PS Poll frames.
2198 __set_bit(CAPABILITY_CONTROL_FILTERS
, &rt2x00dev
->cap_flags
);
2201 * This device requires firmware.
2203 __set_bit(REQUIRE_FIRMWARE
, &rt2x00dev
->cap_flags
);
2204 if (!modparam_nohwcrypt
)
2205 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
2206 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
2207 __set_bit(REQUIRE_PS_AUTOWAKE
, &rt2x00dev
->cap_flags
);
2210 * Set the rssi offset.
2212 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2218 * IEEE80211 stack callback functions.
2220 static int rt73usb_conf_tx(struct ieee80211_hw
*hw
,
2221 struct ieee80211_vif
*vif
, u16 queue_idx
,
2222 const struct ieee80211_tx_queue_params
*params
)
2224 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2225 struct data_queue
*queue
;
2226 struct rt2x00_field32 field
;
2232 * First pass the configuration through rt2x00lib, that will
2233 * update the queue settings and validate the input. After that
2234 * we are free to update the registers based on the value
2235 * in the queue parameter.
2237 retval
= rt2x00mac_conf_tx(hw
, vif
, queue_idx
, params
);
2242 * We only need to perform additional register initialization
2248 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
2250 /* Update WMM TXOP register */
2251 offset
= AC_TXOP_CSR0
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
2252 field
.bit_offset
= (queue_idx
& 1) * 16;
2253 field
.bit_mask
= 0xffff << field
.bit_offset
;
2255 reg
= rt2x00usb_register_read(rt2x00dev
, offset
);
2256 rt2x00_set_field32(®
, field
, queue
->txop
);
2257 rt2x00usb_register_write(rt2x00dev
, offset
, reg
);
2259 /* Update WMM registers */
2260 field
.bit_offset
= queue_idx
* 4;
2261 field
.bit_mask
= 0xf << field
.bit_offset
;
2263 reg
= rt2x00usb_register_read(rt2x00dev
, AIFSN_CSR
);
2264 rt2x00_set_field32(®
, field
, queue
->aifs
);
2265 rt2x00usb_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2267 reg
= rt2x00usb_register_read(rt2x00dev
, CWMIN_CSR
);
2268 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2269 rt2x00usb_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2271 reg
= rt2x00usb_register_read(rt2x00dev
, CWMAX_CSR
);
2272 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2273 rt2x00usb_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2278 static u64
rt73usb_get_tsf(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
2280 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2284 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR13
);
2285 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2286 reg
= rt2x00usb_register_read(rt2x00dev
, TXRX_CSR12
);
2287 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2292 static const struct ieee80211_ops rt73usb_mac80211_ops
= {
2294 .start
= rt2x00mac_start
,
2295 .stop
= rt2x00mac_stop
,
2296 .add_interface
= rt2x00mac_add_interface
,
2297 .remove_interface
= rt2x00mac_remove_interface
,
2298 .config
= rt2x00mac_config
,
2299 .configure_filter
= rt2x00mac_configure_filter
,
2300 .set_tim
= rt2x00mac_set_tim
,
2301 .set_key
= rt2x00mac_set_key
,
2302 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2303 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2304 .get_stats
= rt2x00mac_get_stats
,
2305 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2306 .conf_tx
= rt73usb_conf_tx
,
2307 .get_tsf
= rt73usb_get_tsf
,
2308 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2309 .flush
= rt2x00mac_flush
,
2310 .set_antenna
= rt2x00mac_set_antenna
,
2311 .get_antenna
= rt2x00mac_get_antenna
,
2312 .get_ringparam
= rt2x00mac_get_ringparam
,
2313 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2316 static const struct rt2x00lib_ops rt73usb_rt2x00_ops
= {
2317 .probe_hw
= rt73usb_probe_hw
,
2318 .get_firmware_name
= rt73usb_get_firmware_name
,
2319 .check_firmware
= rt73usb_check_firmware
,
2320 .load_firmware
= rt73usb_load_firmware
,
2321 .initialize
= rt2x00usb_initialize
,
2322 .uninitialize
= rt2x00usb_uninitialize
,
2323 .clear_entry
= rt2x00usb_clear_entry
,
2324 .set_device_state
= rt73usb_set_device_state
,
2325 .rfkill_poll
= rt73usb_rfkill_poll
,
2326 .link_stats
= rt73usb_link_stats
,
2327 .reset_tuner
= rt73usb_reset_tuner
,
2328 .link_tuner
= rt73usb_link_tuner
,
2329 .watchdog
= rt2x00usb_watchdog
,
2330 .start_queue
= rt73usb_start_queue
,
2331 .kick_queue
= rt2x00usb_kick_queue
,
2332 .stop_queue
= rt73usb_stop_queue
,
2333 .flush_queue
= rt2x00usb_flush_queue
,
2334 .write_tx_desc
= rt73usb_write_tx_desc
,
2335 .write_beacon
= rt73usb_write_beacon
,
2336 .clear_beacon
= rt73usb_clear_beacon
,
2337 .get_tx_data_len
= rt73usb_get_tx_data_len
,
2338 .fill_rxdone
= rt73usb_fill_rxdone
,
2339 .config_shared_key
= rt73usb_config_shared_key
,
2340 .config_pairwise_key
= rt73usb_config_pairwise_key
,
2341 .config_filter
= rt73usb_config_filter
,
2342 .config_intf
= rt73usb_config_intf
,
2343 .config_erp
= rt73usb_config_erp
,
2344 .config_ant
= rt73usb_config_ant
,
2345 .config
= rt73usb_config
,
2348 static void rt73usb_queue_init(struct data_queue
*queue
)
2350 switch (queue
->qid
) {
2353 queue
->data_size
= DATA_FRAME_SIZE
;
2354 queue
->desc_size
= RXD_DESC_SIZE
;
2355 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2363 queue
->data_size
= DATA_FRAME_SIZE
;
2364 queue
->desc_size
= TXD_DESC_SIZE
;
2365 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2370 queue
->data_size
= MGMT_FRAME_SIZE
;
2371 queue
->desc_size
= TXINFO_SIZE
;
2372 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2383 static const struct rt2x00_ops rt73usb_ops
= {
2384 .name
= KBUILD_MODNAME
,
2386 .eeprom_size
= EEPROM_SIZE
,
2388 .tx_queues
= NUM_TX_QUEUES
,
2389 .queue_init
= rt73usb_queue_init
,
2390 .lib
= &rt73usb_rt2x00_ops
,
2391 .hw
= &rt73usb_mac80211_ops
,
2392 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2393 .debugfs
= &rt73usb_rt2x00debug
,
2394 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2398 * rt73usb module information.
2400 static const struct usb_device_id rt73usb_device_table
[] = {
2402 { USB_DEVICE(0x07b8, 0xb21b) },
2403 { USB_DEVICE(0x07b8, 0xb21c) },
2404 { USB_DEVICE(0x07b8, 0xb21d) },
2405 { USB_DEVICE(0x07b8, 0xb21e) },
2406 { USB_DEVICE(0x07b8, 0xb21f) },
2408 { USB_DEVICE(0x14b2, 0x3c10) },
2410 { USB_DEVICE(0x148f, 0x9021) },
2411 { USB_DEVICE(0x0eb0, 0x9021) },
2413 { USB_DEVICE(0x18c5, 0x0002) },
2415 { USB_DEVICE(0x1690, 0x0722) },
2417 { USB_DEVICE(0x0b05, 0x1723) },
2418 { USB_DEVICE(0x0b05, 0x1724) },
2420 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2421 { USB_DEVICE(0x050d, 0x705a) },
2422 { USB_DEVICE(0x050d, 0x905b) },
2423 { USB_DEVICE(0x050d, 0x905c) },
2425 { USB_DEVICE(0x1631, 0xc019) },
2426 { USB_DEVICE(0x08dd, 0x0120) },
2428 { USB_DEVICE(0x0411, 0x00d8) },
2429 { USB_DEVICE(0x0411, 0x00d9) },
2430 { USB_DEVICE(0x0411, 0x00e6) },
2431 { USB_DEVICE(0x0411, 0x00f4) },
2432 { USB_DEVICE(0x0411, 0x0116) },
2433 { USB_DEVICE(0x0411, 0x0119) },
2434 { USB_DEVICE(0x0411, 0x0137) },
2436 { USB_DEVICE(0x178d, 0x02be) },
2438 { USB_DEVICE(0x1371, 0x9022) },
2439 { USB_DEVICE(0x1371, 0x9032) },
2441 { USB_DEVICE(0x14b2, 0x3c22) },
2443 { USB_DEVICE(0x07aa, 0x002e) },
2445 { USB_DEVICE(0x07d1, 0x3c03) },
2446 { USB_DEVICE(0x07d1, 0x3c04) },
2447 { USB_DEVICE(0x07d1, 0x3c06) },
2448 { USB_DEVICE(0x07d1, 0x3c07) },
2450 { USB_DEVICE(0x7392, 0x7318) },
2451 { USB_DEVICE(0x7392, 0x7618) },
2453 { USB_DEVICE(0x1740, 0x3701) },
2455 { USB_DEVICE(0x15a9, 0x0004) },
2457 { USB_DEVICE(0x1044, 0x8008) },
2458 { USB_DEVICE(0x1044, 0x800a) },
2460 { USB_DEVICE(0x1472, 0x0009) },
2462 { USB_DEVICE(0x06f8, 0xe002) },
2463 { USB_DEVICE(0x06f8, 0xe010) },
2464 { USB_DEVICE(0x06f8, 0xe020) },
2466 { USB_DEVICE(0x13b1, 0x0020) },
2467 { USB_DEVICE(0x13b1, 0x0023) },
2468 { USB_DEVICE(0x13b1, 0x0028) },
2470 { USB_DEVICE(0x0db0, 0x4600) },
2471 { USB_DEVICE(0x0db0, 0x6877) },
2472 { USB_DEVICE(0x0db0, 0x6874) },
2473 { USB_DEVICE(0x0db0, 0xa861) },
2474 { USB_DEVICE(0x0db0, 0xa874) },
2476 { USB_DEVICE(0x1b75, 0x7318) },
2478 { USB_DEVICE(0x04bb, 0x093d) },
2479 { USB_DEVICE(0x148f, 0x2573) },
2480 { USB_DEVICE(0x148f, 0x2671) },
2481 { USB_DEVICE(0x0812, 0x3101) },
2483 { USB_DEVICE(0x18e8, 0x6196) },
2484 { USB_DEVICE(0x18e8, 0x6229) },
2485 { USB_DEVICE(0x18e8, 0x6238) },
2487 { USB_DEVICE(0x04e8, 0x4471) },
2489 { USB_DEVICE(0x1740, 0x7100) },
2491 { USB_DEVICE(0x0df6, 0x0024) },
2492 { USB_DEVICE(0x0df6, 0x0027) },
2493 { USB_DEVICE(0x0df6, 0x002f) },
2494 { USB_DEVICE(0x0df6, 0x90ac) },
2495 { USB_DEVICE(0x0df6, 0x9712) },
2497 { USB_DEVICE(0x0769, 0x31f3) },
2499 { USB_DEVICE(0x6933, 0x5001) },
2501 { USB_DEVICE(0x0471, 0x200a) },
2503 { USB_DEVICE(0x2019, 0xab01) },
2504 { USB_DEVICE(0x2019, 0xab50) },
2506 { USB_DEVICE(0x7167, 0x3840) },
2508 { USB_DEVICE(0x0cde, 0x001c) },
2510 { USB_DEVICE(0x0586, 0x3415) },
2514 MODULE_AUTHOR(DRV_PROJECT
);
2515 MODULE_VERSION(DRV_VERSION
);
2516 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2517 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2518 MODULE_DEVICE_TABLE(usb
, rt73usb_device_table
);
2519 MODULE_FIRMWARE(FIRMWARE_RT2571
);
2520 MODULE_LICENSE("GPL");
2522 static int rt73usb_probe(struct usb_interface
*usb_intf
,
2523 const struct usb_device_id
*id
)
2525 return rt2x00usb_probe(usb_intf
, &rt73usb_ops
);
2528 static struct usb_driver rt73usb_driver
= {
2529 .name
= KBUILD_MODNAME
,
2530 .id_table
= rt73usb_device_table
,
2531 .probe
= rt73usb_probe
,
2532 .disconnect
= rt2x00usb_disconnect
,
2533 .suspend
= rt2x00usb_suspend
,
2534 .resume
= rt2x00usb_resume
,
2535 .reset_resume
= rt2x00usb_resume
,
2536 .disable_hub_initiated_lpm
= 1,
2539 module_usb_driver(rt73usb_driver
);