1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
15 /* This RF programming code is based upon the code found in v2.16.0.0 of the
16 * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs
17 * for this RF on their website, so we're able to understand more than
18 * usual as to what is going on. Thumbs up for Ubec for doing that. */
20 /* The 3-wire serial interface provides access to 8 write-only registers.
21 * The data format is a 4 bit register address followed by a 20 bit value. */
22 #define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff))
24 /* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth
25 * fractional divide ratio) and 3 (VCO config).
27 * We configure the RF to produce an interrupt when the PLL is locked onto
28 * the configured frequency. During initialization, we run through a variety
29 * of different VCO configurations on channel 1 until we detect a PLL lock.
30 * When this happens, we remember which VCO configuration produced the lock
31 * and use it later. Actually, we use the configuration *after* the one that
32 * produced the lock, which seems odd, but it works.
34 * If we do not see a PLL lock on any standard VCO config, we fall back on an
35 * autocal configuration, which has a fixed (as opposed to per-channel) VCO
36 * config and different synth values from the standard set (divide ratio
37 * is still shared with the standard set). */
39 /* The per-channel synth values for all standard VCO configurations. These get
40 * written to register 1. */
41 static const u8 uw2453_std_synth
[] = {
42 RF_CHANNEL( 1) = 0x47,
43 RF_CHANNEL( 2) = 0x47,
44 RF_CHANNEL( 3) = 0x67,
45 RF_CHANNEL( 4) = 0x67,
46 RF_CHANNEL( 5) = 0x67,
47 RF_CHANNEL( 6) = 0x67,
48 RF_CHANNEL( 7) = 0x57,
49 RF_CHANNEL( 8) = 0x57,
50 RF_CHANNEL( 9) = 0x57,
51 RF_CHANNEL(10) = 0x57,
52 RF_CHANNEL(11) = 0x77,
53 RF_CHANNEL(12) = 0x77,
54 RF_CHANNEL(13) = 0x77,
55 RF_CHANNEL(14) = 0x4f,
58 /* This table stores the synthesizer fractional divide ratio for *all* VCO
59 * configurations (both standard and autocal). These get written to register 2.
61 static const u16 uw2453_synth_divide
[] = {
62 RF_CHANNEL( 1) = 0x999,
63 RF_CHANNEL( 2) = 0x99b,
64 RF_CHANNEL( 3) = 0x998,
65 RF_CHANNEL( 4) = 0x99a,
66 RF_CHANNEL( 5) = 0x999,
67 RF_CHANNEL( 6) = 0x99b,
68 RF_CHANNEL( 7) = 0x998,
69 RF_CHANNEL( 8) = 0x99a,
70 RF_CHANNEL( 9) = 0x999,
71 RF_CHANNEL(10) = 0x99b,
72 RF_CHANNEL(11) = 0x998,
73 RF_CHANNEL(12) = 0x99a,
74 RF_CHANNEL(13) = 0x999,
75 RF_CHANNEL(14) = 0xccc,
78 /* Here is the data for all the standard VCO configurations. We shrink our
79 * table a little by observing that both channels in a consecutive pair share
80 * the same value. We also observe that the high 4 bits ([0:3] in the specs)
81 * are all 'Reserved' and are always set to 0x4 - we chop them off in the data
83 #define CHAN_TO_PAIRIDX(a) ((a - 1) / 2)
84 #define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)]
85 static const u16 uw2453_std_vco_cfg
[][7] = {
87 RF_CHANPAIR( 1, 2) = 0x664d,
88 RF_CHANPAIR( 3, 4) = 0x604d,
89 RF_CHANPAIR( 5, 6) = 0x6675,
90 RF_CHANPAIR( 7, 8) = 0x6475,
91 RF_CHANPAIR( 9, 10) = 0x6655,
92 RF_CHANPAIR(11, 12) = 0x6455,
93 RF_CHANPAIR(13, 14) = 0x6665,
96 RF_CHANPAIR( 1, 2) = 0x666d,
97 RF_CHANPAIR( 3, 4) = 0x606d,
98 RF_CHANPAIR( 5, 6) = 0x664d,
99 RF_CHANPAIR( 7, 8) = 0x644d,
100 RF_CHANPAIR( 9, 10) = 0x6675,
101 RF_CHANPAIR(11, 12) = 0x6475,
102 RF_CHANPAIR(13, 14) = 0x6655,
105 RF_CHANPAIR( 1, 2) = 0x665d,
106 RF_CHANPAIR( 3, 4) = 0x605d,
107 RF_CHANPAIR( 5, 6) = 0x666d,
108 RF_CHANPAIR( 7, 8) = 0x646d,
109 RF_CHANPAIR( 9, 10) = 0x664d,
110 RF_CHANPAIR(11, 12) = 0x644d,
111 RF_CHANPAIR(13, 14) = 0x6675,
114 RF_CHANPAIR( 1, 2) = 0x667d,
115 RF_CHANPAIR( 3, 4) = 0x607d,
116 RF_CHANPAIR( 5, 6) = 0x665d,
117 RF_CHANPAIR( 7, 8) = 0x645d,
118 RF_CHANPAIR( 9, 10) = 0x666d,
119 RF_CHANPAIR(11, 12) = 0x646d,
120 RF_CHANPAIR(13, 14) = 0x664d,
123 RF_CHANPAIR( 1, 2) = 0x6643,
124 RF_CHANPAIR( 3, 4) = 0x6043,
125 RF_CHANPAIR( 5, 6) = 0x667d,
126 RF_CHANPAIR( 7, 8) = 0x647d,
127 RF_CHANPAIR( 9, 10) = 0x665d,
128 RF_CHANPAIR(11, 12) = 0x645d,
129 RF_CHANPAIR(13, 14) = 0x666d,
132 RF_CHANPAIR( 1, 2) = 0x6663,
133 RF_CHANPAIR( 3, 4) = 0x6063,
134 RF_CHANPAIR( 5, 6) = 0x6643,
135 RF_CHANPAIR( 7, 8) = 0x6443,
136 RF_CHANPAIR( 9, 10) = 0x667d,
137 RF_CHANPAIR(11, 12) = 0x647d,
138 RF_CHANPAIR(13, 14) = 0x665d,
141 RF_CHANPAIR( 1, 2) = 0x6653,
142 RF_CHANPAIR( 3, 4) = 0x6053,
143 RF_CHANPAIR( 5, 6) = 0x6663,
144 RF_CHANPAIR( 7, 8) = 0x6463,
145 RF_CHANPAIR( 9, 10) = 0x6643,
146 RF_CHANPAIR(11, 12) = 0x6443,
147 RF_CHANPAIR(13, 14) = 0x667d,
150 RF_CHANPAIR( 1, 2) = 0x6673,
151 RF_CHANPAIR( 3, 4) = 0x6073,
152 RF_CHANPAIR( 5, 6) = 0x6653,
153 RF_CHANPAIR( 7, 8) = 0x6453,
154 RF_CHANPAIR( 9, 10) = 0x6663,
155 RF_CHANPAIR(11, 12) = 0x6463,
156 RF_CHANPAIR(13, 14) = 0x6643,
159 RF_CHANPAIR( 1, 2) = 0x664b,
160 RF_CHANPAIR( 3, 4) = 0x604b,
161 RF_CHANPAIR( 5, 6) = 0x6673,
162 RF_CHANPAIR( 7, 8) = 0x6473,
163 RF_CHANPAIR( 9, 10) = 0x6653,
164 RF_CHANPAIR(11, 12) = 0x6453,
165 RF_CHANPAIR(13, 14) = 0x6663,
168 RF_CHANPAIR( 1, 2) = 0x666b,
169 RF_CHANPAIR( 3, 4) = 0x606b,
170 RF_CHANPAIR( 5, 6) = 0x664b,
171 RF_CHANPAIR( 7, 8) = 0x644b,
172 RF_CHANPAIR( 9, 10) = 0x6673,
173 RF_CHANPAIR(11, 12) = 0x6473,
174 RF_CHANPAIR(13, 14) = 0x6653,
177 RF_CHANPAIR( 1, 2) = 0x665b,
178 RF_CHANPAIR( 3, 4) = 0x605b,
179 RF_CHANPAIR( 5, 6) = 0x666b,
180 RF_CHANPAIR( 7, 8) = 0x646b,
181 RF_CHANPAIR( 9, 10) = 0x664b,
182 RF_CHANPAIR(11, 12) = 0x644b,
183 RF_CHANPAIR(13, 14) = 0x6673,
188 /* The per-channel synth values for autocal. These get written to register 1. */
189 static const u16 uw2453_autocal_synth
[] = {
190 RF_CHANNEL( 1) = 0x6847,
191 RF_CHANNEL( 2) = 0x6847,
192 RF_CHANNEL( 3) = 0x6867,
193 RF_CHANNEL( 4) = 0x6867,
194 RF_CHANNEL( 5) = 0x6867,
195 RF_CHANNEL( 6) = 0x6867,
196 RF_CHANNEL( 7) = 0x6857,
197 RF_CHANNEL( 8) = 0x6857,
198 RF_CHANNEL( 9) = 0x6857,
199 RF_CHANNEL(10) = 0x6857,
200 RF_CHANNEL(11) = 0x6877,
201 RF_CHANNEL(12) = 0x6877,
202 RF_CHANNEL(13) = 0x6877,
203 RF_CHANNEL(14) = 0x684f,
206 /* The VCO configuration for autocal (all channels) */
207 static const u16 UW2453_AUTOCAL_VCO_CFG
= 0x6662;
209 /* TX gain settings. The array index corresponds to the TX power integration
210 * values found in the EEPROM. The values get written to register 7. */
211 static u32 uw2453_txgain
[] = {
233 /* RF-specific structure */
235 /* index into synth/VCO config tables where PLL lock was found
236 * -1 means autocal */
240 #define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv)
242 static int uw2453_synth_set_channel(struct zd_chip
*chip
, int channel
,
246 int idx
= channel
- 1;
250 val
= UW2453_REGWRITE(1, uw2453_autocal_synth
[idx
]);
252 val
= UW2453_REGWRITE(1, uw2453_std_synth
[idx
]);
254 r
= zd_rfwrite_locked(chip
, val
, RF_RV_BITS
);
258 return zd_rfwrite_locked(chip
,
259 UW2453_REGWRITE(2, uw2453_synth_divide
[idx
]), RF_RV_BITS
);
262 static int uw2453_write_vco_cfg(struct zd_chip
*chip
, u16 value
)
264 /* vendor driver always sets these upper bits even though the specs say
265 * they are reserved */
266 u32 val
= 0x40000 | value
;
267 return zd_rfwrite_locked(chip
, UW2453_REGWRITE(3, val
), RF_RV_BITS
);
270 static int uw2453_init_mode(struct zd_chip
*chip
)
272 static const u32 rv
[] = {
273 UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */
274 UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */
275 UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */
276 UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */
279 return zd_rfwritev_locked(chip
, rv
, ARRAY_SIZE(rv
), RF_RV_BITS
);
282 static int uw2453_set_tx_gain_level(struct zd_chip
*chip
, int channel
)
284 u8 int_value
= chip
->pwr_int_values
[channel
- 1];
286 if (int_value
>= ARRAY_SIZE(uw2453_txgain
)) {
287 dev_dbg_f(zd_chip_dev(chip
), "can't configure TX gain for "
288 "int value %x on channel %d\n", int_value
, channel
);
292 return zd_rfwrite_locked(chip
,
293 UW2453_REGWRITE(7, uw2453_txgain
[int_value
]), RF_RV_BITS
);
296 static int uw2453_init_hw(struct zd_rf
*rf
)
299 int found_config
= -1;
301 struct zd_chip
*chip
= zd_rf_to_chip(rf
);
303 static const struct zd_ioreq16 ioreqs
[] = {
304 { ZD_CR10
, 0x89 }, { ZD_CR15
, 0x20 },
305 { ZD_CR17
, 0x28 }, /* 6112 no change */
306 { ZD_CR23
, 0x38 }, { ZD_CR24
, 0x20 }, { ZD_CR26
, 0x93 },
307 { ZD_CR27
, 0x15 }, { ZD_CR28
, 0x3e }, { ZD_CR29
, 0x00 },
308 { ZD_CR33
, 0x28 }, { ZD_CR34
, 0x30 },
309 { ZD_CR35
, 0x43 }, /* 6112 3e->43 */
310 { ZD_CR41
, 0x24 }, { ZD_CR44
, 0x32 },
311 { ZD_CR46
, 0x92 }, /* 6112 96->92 */
313 { ZD_CR48
, 0x04 }, /* 5602 Roger */
314 { ZD_CR49
, 0xfa }, { ZD_CR79
, 0x58 }, { ZD_CR80
, 0x30 },
315 { ZD_CR81
, 0x30 }, { ZD_CR87
, 0x0a }, { ZD_CR89
, 0x04 },
316 { ZD_CR91
, 0x00 }, { ZD_CR92
, 0x0a }, { ZD_CR98
, 0x8d },
317 { ZD_CR99
, 0x28 }, { ZD_CR100
, 0x02 },
318 { ZD_CR101
, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */
320 { ZD_CR106
, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f
323 { ZD_CR107
, 0x1c }, /* 6220 1c->1a 5221 1a->1c */
325 { ZD_CR110
, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */
326 { ZD_CR111
, 0x13 }, { ZD_CR112
, 0x1f }, { ZD_CR113
, 0x27 },
327 { ZD_CR114
, 0x23 }, /* 6221 27->23 */
328 { ZD_CR115
, 0x24 }, /* 6112 24->1c 6220 1c->24 */
329 { ZD_CR116
, 0x24 }, /* 6220 1c->24 */
330 { ZD_CR117
, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */
331 { ZD_CR118
, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */
332 { ZD_CR119
, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */
334 { ZD_CR121
, 0x1f }, /* 6220 4f->1f */
335 { ZD_CR122
, 0xf0 }, { ZD_CR123
, 0x57 }, { ZD_CR125
, 0xad },
336 { ZD_CR126
, 0x6c }, { ZD_CR127
, 0x03 },
337 { ZD_CR128
, 0x14 }, /* 6302 12->11 */
338 { ZD_CR129
, 0x12 }, /* 6301 10->0f */
339 { ZD_CR130
, 0x10 }, { ZD_CR137
, 0x50 }, { ZD_CR138
, 0xa8 },
340 { ZD_CR144
, 0xac }, { ZD_CR146
, 0x20 }, { ZD_CR252
, 0xff },
344 static const u32 rv
[] = {
345 UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */
346 UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */
347 UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */
348 UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */
350 /* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins,
351 * RSSI circuit powered down, reduced RSSI range */
352 UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */
354 /* synthesizer configuration for channel 1 */
355 UW2453_REGWRITE(1, 0x47),
356 UW2453_REGWRITE(2, 0x999),
358 /* disable manual VCO band selection */
359 UW2453_REGWRITE(3, 0x7602),
361 /* enable manual VCO band selection, configure current level */
362 UW2453_REGWRITE(3, 0x46063),
365 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
369 r
= zd_rfwritev_locked(chip
, rv
, ARRAY_SIZE(rv
), RF_RV_BITS
);
373 r
= uw2453_init_mode(chip
);
377 /* Try all standard VCO configuration settings on channel 1 */
378 for (i
= 0; i
< ARRAY_SIZE(uw2453_std_vco_cfg
) - 1; i
++) {
379 /* Configure synthesizer for channel 1 */
380 r
= uw2453_synth_set_channel(chip
, 1, false);
384 /* Write VCO config */
385 r
= uw2453_write_vco_cfg(chip
, uw2453_std_vco_cfg
[i
][0]);
389 /* ack interrupt event */
390 r
= zd_iowrite16_locked(chip
, 0x0f, UW2453_INTR_REG
);
394 /* check interrupt status */
395 r
= zd_ioread16_locked(chip
, &intr_status
, UW2453_INTR_REG
);
399 if (!(intr_status
& 0xf)) {
400 dev_dbg_f(zd_chip_dev(chip
),
401 "PLL locked on configuration %d\n", i
);
407 if (found_config
== -1) {
409 dev_dbg_f(zd_chip_dev(chip
),
410 "PLL did not lock, using autocal\n");
412 r
= uw2453_synth_set_channel(chip
, 1, true);
416 r
= uw2453_write_vco_cfg(chip
, UW2453_AUTOCAL_VCO_CFG
);
421 /* To match the vendor driver behaviour, we use the configuration after
422 * the one that produced a lock. */
423 UW2453_PRIV(rf
)->config
= found_config
+ 1;
425 return zd_iowrite16_locked(chip
, 0x06, ZD_CR203
);
428 static int uw2453_set_channel(struct zd_rf
*rf
, u8 channel
)
432 int config
= UW2453_PRIV(rf
)->config
;
433 bool autocal
= (config
== -1);
434 struct zd_chip
*chip
= zd_rf_to_chip(rf
);
436 static const struct zd_ioreq16 ioreqs
[] = {
437 { ZD_CR80
, 0x30 }, { ZD_CR81
, 0x30 }, { ZD_CR79
, 0x58 },
438 { ZD_CR12
, 0xf0 }, { ZD_CR77
, 0x1b }, { ZD_CR78
, 0x58 },
441 r
= uw2453_synth_set_channel(chip
, channel
, autocal
);
446 vco_cfg
= UW2453_AUTOCAL_VCO_CFG
;
448 vco_cfg
= uw2453_std_vco_cfg
[config
][CHAN_TO_PAIRIDX(channel
)];
450 r
= uw2453_write_vco_cfg(chip
, vco_cfg
);
454 r
= uw2453_init_mode(chip
);
458 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
462 r
= uw2453_set_tx_gain_level(chip
, channel
);
466 return zd_iowrite16_locked(chip
, 0x06, ZD_CR203
);
469 static int uw2453_switch_radio_on(struct zd_rf
*rf
)
472 struct zd_chip
*chip
= zd_rf_to_chip(rf
);
473 struct zd_ioreq16 ioreqs
[] = {
474 { ZD_CR11
, 0x00 }, { ZD_CR251
, 0x3f },
477 /* enter RXTX mode */
478 r
= zd_rfwrite_locked(chip
, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS
);
482 if (zd_chip_is_zd1211b(chip
))
483 ioreqs
[1].value
= 0x7f;
485 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
488 static int uw2453_switch_radio_off(struct zd_rf
*rf
)
491 struct zd_chip
*chip
= zd_rf_to_chip(rf
);
492 static const struct zd_ioreq16 ioreqs
[] = {
493 { ZD_CR11
, 0x04 }, { ZD_CR251
, 0x2f },
496 /* enter IDLE mode */
497 /* FIXME: shouldn't we go to SLEEP? sent email to zydas */
498 r
= zd_rfwrite_locked(chip
, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS
);
502 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
505 static void uw2453_clear(struct zd_rf
*rf
)
510 int zd_rf_init_uw2453(struct zd_rf
*rf
)
512 rf
->init_hw
= uw2453_init_hw
;
513 rf
->set_channel
= uw2453_set_channel
;
514 rf
->switch_radio_on
= uw2453_switch_radio_on
;
515 rf
->switch_radio_off
= uw2453_switch_radio_off
;
516 rf
->patch_6m_band_edge
= zd_rf_generic_patch_6m
;
517 rf
->clear
= uw2453_clear
;
518 /* we have our own TX integration code */
519 rf
->update_channel_int
= 0;
521 rf
->priv
= kmalloc(sizeof(struct uw2453_priv
), GFP_KERNEL
);
522 if (rf
->priv
== NULL
)