2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 * Copyright (C) 2016 T-Platforms. All Rights Reserved.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
17 * Copyright(c) 2012 Intel Corporation. All rights reserved.
18 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
19 * Copyright (C) 2016 T-Platforms. All Rights Reserved.
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
25 * * Redistributions of source code must retain the above copyright
26 * notice, this list of conditions and the following disclaimer.
27 * * Redistributions in binary form must reproduce the above copy
28 * notice, this list of conditions and the following disclaimer in
29 * the documentation and/or other materials provided with the
31 * * Neither the name of Intel Corporation nor the names of its
32 * contributors may be used to endorse or promote products derived
33 * from this software without specific prior written permission.
35 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
36 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
38 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
39 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
42 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
43 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
45 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 * Intel PCIe NTB Linux driver
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
53 #include <linux/interrupt.h>
54 #include <linux/module.h>
55 #include <linux/pci.h>
56 #include <linux/random.h>
57 #include <linux/slab.h>
58 #include <linux/ntb.h>
60 #include "ntb_hw_intel.h"
61 #include "ntb_hw_gen1.h"
62 #include "ntb_hw_gen3.h"
64 #define NTB_NAME "ntb_hw_intel"
65 #define NTB_DESC "Intel(R) PCI-E Non-Transparent Bridge Driver"
68 MODULE_DESCRIPTION(NTB_DESC
);
69 MODULE_VERSION(NTB_VER
);
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Intel Corporation");
73 #define bar0_off(base, bar) ((base) + ((bar) << 2))
74 #define bar2_off(base, bar) bar0_off(base, (bar) - 2)
76 static const struct intel_ntb_reg xeon_reg
;
77 static const struct intel_ntb_alt_reg xeon_pri_reg
;
78 static const struct intel_ntb_alt_reg xeon_sec_reg
;
79 static const struct intel_ntb_alt_reg xeon_b2b_reg
;
80 static const struct intel_ntb_xlat_reg xeon_pri_xlat
;
81 static const struct intel_ntb_xlat_reg xeon_sec_xlat
;
82 static const struct ntb_dev_ops intel_ntb_ops
;
84 static const struct file_operations intel_ntb_debugfs_info
;
85 static struct dentry
*debugfs_dir
;
87 static int b2b_mw_idx
= -1;
88 module_param(b2b_mw_idx
, int, 0644);
89 MODULE_PARM_DESC(b2b_mw_idx
, "Use this mw idx to access the peer ntb. A "
90 "value of zero or positive starts from first mw idx, and a "
91 "negative value starts from last mw idx. Both sides MUST "
92 "set the same value here!");
94 static unsigned int b2b_mw_share
;
95 module_param(b2b_mw_share
, uint
, 0644);
96 MODULE_PARM_DESC(b2b_mw_share
, "If the b2b mw is large enough, configure the "
97 "ntb so that the peer ntb only occupies the first half of "
98 "the mw, so the second half can still be used as a mw. Both "
99 "sides MUST set the same value here!");
101 module_param_named(xeon_b2b_usd_bar2_addr64
,
102 xeon_b2b_usd_addr
.bar2_addr64
, ullong
, 0644);
103 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64
,
104 "XEON B2B USD BAR 2 64-bit address");
106 module_param_named(xeon_b2b_usd_bar4_addr64
,
107 xeon_b2b_usd_addr
.bar4_addr64
, ullong
, 0644);
108 MODULE_PARM_DESC(xeon_b2b_usd_bar4_addr64
,
109 "XEON B2B USD BAR 4 64-bit address");
111 module_param_named(xeon_b2b_usd_bar4_addr32
,
112 xeon_b2b_usd_addr
.bar4_addr32
, ullong
, 0644);
113 MODULE_PARM_DESC(xeon_b2b_usd_bar4_addr32
,
114 "XEON B2B USD split-BAR 4 32-bit address");
116 module_param_named(xeon_b2b_usd_bar5_addr32
,
117 xeon_b2b_usd_addr
.bar5_addr32
, ullong
, 0644);
118 MODULE_PARM_DESC(xeon_b2b_usd_bar5_addr32
,
119 "XEON B2B USD split-BAR 5 32-bit address");
121 module_param_named(xeon_b2b_dsd_bar2_addr64
,
122 xeon_b2b_dsd_addr
.bar2_addr64
, ullong
, 0644);
123 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64
,
124 "XEON B2B DSD BAR 2 64-bit address");
126 module_param_named(xeon_b2b_dsd_bar4_addr64
,
127 xeon_b2b_dsd_addr
.bar4_addr64
, ullong
, 0644);
128 MODULE_PARM_DESC(xeon_b2b_dsd_bar4_addr64
,
129 "XEON B2B DSD BAR 4 64-bit address");
131 module_param_named(xeon_b2b_dsd_bar4_addr32
,
132 xeon_b2b_dsd_addr
.bar4_addr32
, ullong
, 0644);
133 MODULE_PARM_DESC(xeon_b2b_dsd_bar4_addr32
,
134 "XEON B2B DSD split-BAR 4 32-bit address");
136 module_param_named(xeon_b2b_dsd_bar5_addr32
,
137 xeon_b2b_dsd_addr
.bar5_addr32
, ullong
, 0644);
138 MODULE_PARM_DESC(xeon_b2b_dsd_bar5_addr32
,
139 "XEON B2B DSD split-BAR 5 32-bit address");
142 static int xeon_init_isr(struct intel_ntb_dev
*ndev
);
144 static inline void ndev_reset_unsafe_flags(struct intel_ntb_dev
*ndev
)
146 ndev
->unsafe_flags
= 0;
147 ndev
->unsafe_flags_ignore
= 0;
149 /* Only B2B has a workaround to avoid SDOORBELL */
150 if (ndev
->hwerr_flags
& NTB_HWERR_SDOORBELL_LOCKUP
)
151 if (!ntb_topo_is_b2b(ndev
->ntb
.topo
))
152 ndev
->unsafe_flags
|= NTB_UNSAFE_DB
;
154 /* No low level workaround to avoid SB01BASE */
155 if (ndev
->hwerr_flags
& NTB_HWERR_SB01BASE_LOCKUP
) {
156 ndev
->unsafe_flags
|= NTB_UNSAFE_DB
;
157 ndev
->unsafe_flags
|= NTB_UNSAFE_SPAD
;
161 static inline int ndev_is_unsafe(struct intel_ntb_dev
*ndev
,
164 return !!(flag
& ndev
->unsafe_flags
& ~ndev
->unsafe_flags_ignore
);
167 static inline int ndev_ignore_unsafe(struct intel_ntb_dev
*ndev
,
170 flag
&= ndev
->unsafe_flags
;
171 ndev
->unsafe_flags_ignore
|= flag
;
176 int ndev_mw_to_bar(struct intel_ntb_dev
*ndev
, int idx
)
178 if (idx
< 0 || idx
>= ndev
->mw_count
)
180 return ndev
->reg
->mw_bar
[idx
];
183 void ndev_db_addr(struct intel_ntb_dev
*ndev
,
184 phys_addr_t
*db_addr
, resource_size_t
*db_size
,
185 phys_addr_t reg_addr
, unsigned long reg
)
187 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
188 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
191 *db_addr
= reg_addr
+ reg
;
192 dev_dbg(&ndev
->ntb
.pdev
->dev
, "Peer db addr %llx\n", *db_addr
);
196 *db_size
= ndev
->reg
->db_size
;
197 dev_dbg(&ndev
->ntb
.pdev
->dev
, "Peer db size %llx\n", *db_size
);
201 u64
ndev_db_read(struct intel_ntb_dev
*ndev
,
204 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
205 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
207 return ndev
->reg
->db_ioread(mmio
);
210 int ndev_db_write(struct intel_ntb_dev
*ndev
, u64 db_bits
,
213 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
214 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
216 if (db_bits
& ~ndev
->db_valid_mask
)
219 ndev
->reg
->db_iowrite(db_bits
, mmio
);
224 static inline int ndev_db_set_mask(struct intel_ntb_dev
*ndev
, u64 db_bits
,
227 unsigned long irqflags
;
229 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
230 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
232 if (db_bits
& ~ndev
->db_valid_mask
)
235 spin_lock_irqsave(&ndev
->db_mask_lock
, irqflags
);
237 ndev
->db_mask
|= db_bits
;
238 ndev
->reg
->db_iowrite(ndev
->db_mask
, mmio
);
240 spin_unlock_irqrestore(&ndev
->db_mask_lock
, irqflags
);
245 static inline int ndev_db_clear_mask(struct intel_ntb_dev
*ndev
, u64 db_bits
,
248 unsigned long irqflags
;
250 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_DB
))
251 pr_warn_once("%s: NTB unsafe doorbell access", __func__
);
253 if (db_bits
& ~ndev
->db_valid_mask
)
256 spin_lock_irqsave(&ndev
->db_mask_lock
, irqflags
);
258 ndev
->db_mask
&= ~db_bits
;
259 ndev
->reg
->db_iowrite(ndev
->db_mask
, mmio
);
261 spin_unlock_irqrestore(&ndev
->db_mask_lock
, irqflags
);
266 static inline u64
ndev_vec_mask(struct intel_ntb_dev
*ndev
, int db_vector
)
270 shift
= ndev
->db_vec_shift
;
271 mask
= BIT_ULL(shift
) - 1;
273 return mask
<< (shift
* db_vector
);
276 static inline int ndev_spad_addr(struct intel_ntb_dev
*ndev
, int idx
,
277 phys_addr_t
*spad_addr
, phys_addr_t reg_addr
,
280 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_SPAD
))
281 pr_warn_once("%s: NTB unsafe scratchpad access", __func__
);
283 if (idx
< 0 || idx
>= ndev
->spad_count
)
287 *spad_addr
= reg_addr
+ reg
+ (idx
<< 2);
288 dev_dbg(&ndev
->ntb
.pdev
->dev
, "Peer spad addr %llx\n",
295 static inline u32
ndev_spad_read(struct intel_ntb_dev
*ndev
, int idx
,
298 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_SPAD
))
299 pr_warn_once("%s: NTB unsafe scratchpad access", __func__
);
301 if (idx
< 0 || idx
>= ndev
->spad_count
)
304 return ioread32(mmio
+ (idx
<< 2));
307 static inline int ndev_spad_write(struct intel_ntb_dev
*ndev
, int idx
, u32 val
,
310 if (ndev_is_unsafe(ndev
, NTB_UNSAFE_SPAD
))
311 pr_warn_once("%s: NTB unsafe scratchpad access", __func__
);
313 if (idx
< 0 || idx
>= ndev
->spad_count
)
316 iowrite32(val
, mmio
+ (idx
<< 2));
321 static irqreturn_t
ndev_interrupt(struct intel_ntb_dev
*ndev
, int vec
)
325 vec_mask
= ndev_vec_mask(ndev
, vec
);
327 if ((ndev
->hwerr_flags
& NTB_HWERR_MSIX_VECTOR32_BAD
) && (vec
== 31))
328 vec_mask
|= ndev
->db_link_mask
;
330 dev_dbg(&ndev
->ntb
.pdev
->dev
, "vec %d vec_mask %llx\n", vec
, vec_mask
);
332 ndev
->last_ts
= jiffies
;
334 if (vec_mask
& ndev
->db_link_mask
) {
335 if (ndev
->reg
->poll_link(ndev
))
336 ntb_link_event(&ndev
->ntb
);
339 if (vec_mask
& ndev
->db_valid_mask
)
340 ntb_db_event(&ndev
->ntb
, vec
);
345 static irqreturn_t
ndev_vec_isr(int irq
, void *dev
)
347 struct intel_ntb_vec
*nvec
= dev
;
349 dev_dbg(&nvec
->ndev
->ntb
.pdev
->dev
, "irq: %d nvec->num: %d\n",
352 return ndev_interrupt(nvec
->ndev
, nvec
->num
);
355 static irqreturn_t
ndev_irq_isr(int irq
, void *dev
)
357 struct intel_ntb_dev
*ndev
= dev
;
359 return ndev_interrupt(ndev
, irq
- ndev
->ntb
.pdev
->irq
);
362 int ndev_init_isr(struct intel_ntb_dev
*ndev
,
363 int msix_min
, int msix_max
,
364 int msix_shift
, int total_shift
)
366 struct pci_dev
*pdev
;
367 int rc
, i
, msix_count
, node
;
369 pdev
= ndev
->ntb
.pdev
;
371 node
= dev_to_node(&pdev
->dev
);
373 /* Mask all doorbell interrupts */
374 ndev
->db_mask
= ndev
->db_valid_mask
;
375 ndev
->reg
->db_iowrite(ndev
->db_mask
,
377 ndev
->self_reg
->db_mask
);
379 /* Try to set up msix irq */
381 ndev
->vec
= kcalloc_node(msix_max
, sizeof(*ndev
->vec
),
384 goto err_msix_vec_alloc
;
386 ndev
->msix
= kcalloc_node(msix_max
, sizeof(*ndev
->msix
),
391 for (i
= 0; i
< msix_max
; ++i
)
392 ndev
->msix
[i
].entry
= i
;
394 msix_count
= pci_enable_msix_range(pdev
, ndev
->msix
,
397 goto err_msix_enable
;
399 for (i
= 0; i
< msix_count
; ++i
) {
400 ndev
->vec
[i
].ndev
= ndev
;
401 ndev
->vec
[i
].num
= i
;
402 rc
= request_irq(ndev
->msix
[i
].vector
, ndev_vec_isr
, 0,
403 "ndev_vec_isr", &ndev
->vec
[i
]);
405 goto err_msix_request
;
408 dev_dbg(&pdev
->dev
, "Using %d msix interrupts\n", msix_count
);
409 ndev
->db_vec_count
= msix_count
;
410 ndev
->db_vec_shift
= msix_shift
;
415 free_irq(ndev
->msix
[i
].vector
, &ndev
->vec
[i
]);
416 pci_disable_msix(pdev
);
425 /* Try to set up msi irq */
427 rc
= pci_enable_msi(pdev
);
431 rc
= request_irq(pdev
->irq
, ndev_irq_isr
, 0,
432 "ndev_irq_isr", ndev
);
434 goto err_msi_request
;
436 dev_dbg(&pdev
->dev
, "Using msi interrupts\n");
437 ndev
->db_vec_count
= 1;
438 ndev
->db_vec_shift
= total_shift
;
442 pci_disable_msi(pdev
);
445 /* Try to set up intx irq */
449 rc
= request_irq(pdev
->irq
, ndev_irq_isr
, IRQF_SHARED
,
450 "ndev_irq_isr", ndev
);
452 goto err_intx_request
;
454 dev_dbg(&pdev
->dev
, "Using intx interrupts\n");
455 ndev
->db_vec_count
= 1;
456 ndev
->db_vec_shift
= total_shift
;
463 static void ndev_deinit_isr(struct intel_ntb_dev
*ndev
)
465 struct pci_dev
*pdev
;
468 pdev
= ndev
->ntb
.pdev
;
470 /* Mask all doorbell interrupts */
471 ndev
->db_mask
= ndev
->db_valid_mask
;
472 ndev
->reg
->db_iowrite(ndev
->db_mask
,
474 ndev
->self_reg
->db_mask
);
477 i
= ndev
->db_vec_count
;
479 free_irq(ndev
->msix
[i
].vector
, &ndev
->vec
[i
]);
480 pci_disable_msix(pdev
);
484 free_irq(pdev
->irq
, ndev
);
485 if (pci_dev_msi_enabled(pdev
))
486 pci_disable_msi(pdev
);
490 static ssize_t
ndev_ntb_debugfs_read(struct file
*filp
, char __user
*ubuf
,
491 size_t count
, loff_t
*offp
)
493 struct intel_ntb_dev
*ndev
;
494 struct pci_dev
*pdev
;
499 union { u64 v64
; u32 v32
; u16 v16
; u8 v8
; } u
;
501 ndev
= filp
->private_data
;
502 pdev
= ndev
->ntb
.pdev
;
503 mmio
= ndev
->self_mmio
;
505 buf_size
= min(count
, 0x800ul
);
507 buf
= kmalloc(buf_size
, GFP_KERNEL
);
513 off
+= scnprintf(buf
+ off
, buf_size
- off
,
514 "NTB Device Information:\n");
516 off
+= scnprintf(buf
+ off
, buf_size
- off
,
517 "Connection Topology -\t%s\n",
518 ntb_topo_string(ndev
->ntb
.topo
));
520 if (ndev
->b2b_idx
!= UINT_MAX
) {
521 off
+= scnprintf(buf
+ off
, buf_size
- off
,
522 "B2B MW Idx -\t\t%u\n", ndev
->b2b_idx
);
523 off
+= scnprintf(buf
+ off
, buf_size
- off
,
524 "B2B Offset -\t\t%#lx\n", ndev
->b2b_off
);
527 off
+= scnprintf(buf
+ off
, buf_size
- off
,
528 "BAR4 Split -\t\t%s\n",
529 ndev
->bar4_split
? "yes" : "no");
531 off
+= scnprintf(buf
+ off
, buf_size
- off
,
532 "NTB CTL -\t\t%#06x\n", ndev
->ntb_ctl
);
533 off
+= scnprintf(buf
+ off
, buf_size
- off
,
534 "LNK STA -\t\t%#06x\n", ndev
->lnk_sta
);
536 if (!ndev
->reg
->link_is_up(ndev
)) {
537 off
+= scnprintf(buf
+ off
, buf_size
- off
,
538 "Link Status -\t\tDown\n");
540 off
+= scnprintf(buf
+ off
, buf_size
- off
,
541 "Link Status -\t\tUp\n");
542 off
+= scnprintf(buf
+ off
, buf_size
- off
,
543 "Link Speed -\t\tPCI-E Gen %u\n",
544 NTB_LNK_STA_SPEED(ndev
->lnk_sta
));
545 off
+= scnprintf(buf
+ off
, buf_size
- off
,
546 "Link Width -\t\tx%u\n",
547 NTB_LNK_STA_WIDTH(ndev
->lnk_sta
));
550 off
+= scnprintf(buf
+ off
, buf_size
- off
,
551 "Memory Window Count -\t%u\n", ndev
->mw_count
);
552 off
+= scnprintf(buf
+ off
, buf_size
- off
,
553 "Scratchpad Count -\t%u\n", ndev
->spad_count
);
554 off
+= scnprintf(buf
+ off
, buf_size
- off
,
555 "Doorbell Count -\t%u\n", ndev
->db_count
);
556 off
+= scnprintf(buf
+ off
, buf_size
- off
,
557 "Doorbell Vector Count -\t%u\n", ndev
->db_vec_count
);
558 off
+= scnprintf(buf
+ off
, buf_size
- off
,
559 "Doorbell Vector Shift -\t%u\n", ndev
->db_vec_shift
);
561 off
+= scnprintf(buf
+ off
, buf_size
- off
,
562 "Doorbell Valid Mask -\t%#llx\n", ndev
->db_valid_mask
);
563 off
+= scnprintf(buf
+ off
, buf_size
- off
,
564 "Doorbell Link Mask -\t%#llx\n", ndev
->db_link_mask
);
565 off
+= scnprintf(buf
+ off
, buf_size
- off
,
566 "Doorbell Mask Cached -\t%#llx\n", ndev
->db_mask
);
568 u
.v64
= ndev_db_read(ndev
, mmio
+ ndev
->self_reg
->db_mask
);
569 off
+= scnprintf(buf
+ off
, buf_size
- off
,
570 "Doorbell Mask -\t\t%#llx\n", u
.v64
);
572 u
.v64
= ndev_db_read(ndev
, mmio
+ ndev
->self_reg
->db_bell
);
573 off
+= scnprintf(buf
+ off
, buf_size
- off
,
574 "Doorbell Bell -\t\t%#llx\n", u
.v64
);
576 off
+= scnprintf(buf
+ off
, buf_size
- off
,
577 "\nNTB Window Size:\n");
579 pci_read_config_byte(pdev
, XEON_PBAR23SZ_OFFSET
, &u
.v8
);
580 off
+= scnprintf(buf
+ off
, buf_size
- off
,
581 "PBAR23SZ %hhu\n", u
.v8
);
582 if (!ndev
->bar4_split
) {
583 pci_read_config_byte(pdev
, XEON_PBAR45SZ_OFFSET
, &u
.v8
);
584 off
+= scnprintf(buf
+ off
, buf_size
- off
,
585 "PBAR45SZ %hhu\n", u
.v8
);
587 pci_read_config_byte(pdev
, XEON_PBAR4SZ_OFFSET
, &u
.v8
);
588 off
+= scnprintf(buf
+ off
, buf_size
- off
,
589 "PBAR4SZ %hhu\n", u
.v8
);
590 pci_read_config_byte(pdev
, XEON_PBAR5SZ_OFFSET
, &u
.v8
);
591 off
+= scnprintf(buf
+ off
, buf_size
- off
,
592 "PBAR5SZ %hhu\n", u
.v8
);
595 pci_read_config_byte(pdev
, XEON_SBAR23SZ_OFFSET
, &u
.v8
);
596 off
+= scnprintf(buf
+ off
, buf_size
- off
,
597 "SBAR23SZ %hhu\n", u
.v8
);
598 if (!ndev
->bar4_split
) {
599 pci_read_config_byte(pdev
, XEON_SBAR45SZ_OFFSET
, &u
.v8
);
600 off
+= scnprintf(buf
+ off
, buf_size
- off
,
601 "SBAR45SZ %hhu\n", u
.v8
);
603 pci_read_config_byte(pdev
, XEON_SBAR4SZ_OFFSET
, &u
.v8
);
604 off
+= scnprintf(buf
+ off
, buf_size
- off
,
605 "SBAR4SZ %hhu\n", u
.v8
);
606 pci_read_config_byte(pdev
, XEON_SBAR5SZ_OFFSET
, &u
.v8
);
607 off
+= scnprintf(buf
+ off
, buf_size
- off
,
608 "SBAR5SZ %hhu\n", u
.v8
);
611 off
+= scnprintf(buf
+ off
, buf_size
- off
,
612 "\nNTB Incoming XLAT:\n");
614 u
.v64
= ioread64(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_xlat
, 2));
615 off
+= scnprintf(buf
+ off
, buf_size
- off
,
616 "XLAT23 -\t\t%#018llx\n", u
.v64
);
618 if (ndev
->bar4_split
) {
619 u
.v32
= ioread32(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_xlat
, 4));
620 off
+= scnprintf(buf
+ off
, buf_size
- off
,
621 "XLAT4 -\t\t\t%#06x\n", u
.v32
);
623 u
.v32
= ioread32(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_xlat
, 5));
624 off
+= scnprintf(buf
+ off
, buf_size
- off
,
625 "XLAT5 -\t\t\t%#06x\n", u
.v32
);
627 u
.v64
= ioread64(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_xlat
, 4));
628 off
+= scnprintf(buf
+ off
, buf_size
- off
,
629 "XLAT45 -\t\t%#018llx\n", u
.v64
);
632 u
.v64
= ioread64(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_limit
, 2));
633 off
+= scnprintf(buf
+ off
, buf_size
- off
,
634 "LMT23 -\t\t\t%#018llx\n", u
.v64
);
636 if (ndev
->bar4_split
) {
637 u
.v32
= ioread32(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_limit
, 4));
638 off
+= scnprintf(buf
+ off
, buf_size
- off
,
639 "LMT4 -\t\t\t%#06x\n", u
.v32
);
640 u
.v32
= ioread32(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_limit
, 5));
641 off
+= scnprintf(buf
+ off
, buf_size
- off
,
642 "LMT5 -\t\t\t%#06x\n", u
.v32
);
644 u
.v64
= ioread64(mmio
+ bar2_off(ndev
->xlat_reg
->bar2_limit
, 4));
645 off
+= scnprintf(buf
+ off
, buf_size
- off
,
646 "LMT45 -\t\t\t%#018llx\n", u
.v64
);
649 if (pdev_is_gen1(pdev
)) {
650 if (ntb_topo_is_b2b(ndev
->ntb
.topo
)) {
651 off
+= scnprintf(buf
+ off
, buf_size
- off
,
652 "\nNTB Outgoing B2B XLAT:\n");
654 u
.v64
= ioread64(mmio
+ XEON_PBAR23XLAT_OFFSET
);
655 off
+= scnprintf(buf
+ off
, buf_size
- off
,
656 "B2B XLAT23 -\t\t%#018llx\n", u
.v64
);
658 if (ndev
->bar4_split
) {
659 u
.v32
= ioread32(mmio
+ XEON_PBAR4XLAT_OFFSET
);
660 off
+= scnprintf(buf
+ off
, buf_size
- off
,
661 "B2B XLAT4 -\t\t%#06x\n",
663 u
.v32
= ioread32(mmio
+ XEON_PBAR5XLAT_OFFSET
);
664 off
+= scnprintf(buf
+ off
, buf_size
- off
,
665 "B2B XLAT5 -\t\t%#06x\n",
668 u
.v64
= ioread64(mmio
+ XEON_PBAR45XLAT_OFFSET
);
669 off
+= scnprintf(buf
+ off
, buf_size
- off
,
670 "B2B XLAT45 -\t\t%#018llx\n",
674 u
.v64
= ioread64(mmio
+ XEON_PBAR23LMT_OFFSET
);
675 off
+= scnprintf(buf
+ off
, buf_size
- off
,
676 "B2B LMT23 -\t\t%#018llx\n", u
.v64
);
678 if (ndev
->bar4_split
) {
679 u
.v32
= ioread32(mmio
+ XEON_PBAR4LMT_OFFSET
);
680 off
+= scnprintf(buf
+ off
, buf_size
- off
,
681 "B2B LMT4 -\t\t%#06x\n",
683 u
.v32
= ioread32(mmio
+ XEON_PBAR5LMT_OFFSET
);
684 off
+= scnprintf(buf
+ off
, buf_size
- off
,
685 "B2B LMT5 -\t\t%#06x\n",
688 u
.v64
= ioread64(mmio
+ XEON_PBAR45LMT_OFFSET
);
689 off
+= scnprintf(buf
+ off
, buf_size
- off
,
690 "B2B LMT45 -\t\t%#018llx\n",
694 off
+= scnprintf(buf
+ off
, buf_size
- off
,
695 "\nNTB Secondary BAR:\n");
697 u
.v64
= ioread64(mmio
+ XEON_SBAR0BASE_OFFSET
);
698 off
+= scnprintf(buf
+ off
, buf_size
- off
,
699 "SBAR01 -\t\t%#018llx\n", u
.v64
);
701 u
.v64
= ioread64(mmio
+ XEON_SBAR23BASE_OFFSET
);
702 off
+= scnprintf(buf
+ off
, buf_size
- off
,
703 "SBAR23 -\t\t%#018llx\n", u
.v64
);
705 if (ndev
->bar4_split
) {
706 u
.v32
= ioread32(mmio
+ XEON_SBAR4BASE_OFFSET
);
707 off
+= scnprintf(buf
+ off
, buf_size
- off
,
708 "SBAR4 -\t\t\t%#06x\n", u
.v32
);
709 u
.v32
= ioread32(mmio
+ XEON_SBAR5BASE_OFFSET
);
710 off
+= scnprintf(buf
+ off
, buf_size
- off
,
711 "SBAR5 -\t\t\t%#06x\n", u
.v32
);
713 u
.v64
= ioread64(mmio
+ XEON_SBAR45BASE_OFFSET
);
714 off
+= scnprintf(buf
+ off
, buf_size
- off
,
715 "SBAR45 -\t\t%#018llx\n",
720 off
+= scnprintf(buf
+ off
, buf_size
- off
,
721 "\nXEON NTB Statistics:\n");
723 u
.v16
= ioread16(mmio
+ XEON_USMEMMISS_OFFSET
);
724 off
+= scnprintf(buf
+ off
, buf_size
- off
,
725 "Upstream Memory Miss -\t%u\n", u
.v16
);
727 off
+= scnprintf(buf
+ off
, buf_size
- off
,
728 "\nXEON NTB Hardware Errors:\n");
730 if (!pci_read_config_word(pdev
,
731 XEON_DEVSTS_OFFSET
, &u
.v16
))
732 off
+= scnprintf(buf
+ off
, buf_size
- off
,
733 "DEVSTS -\t\t%#06x\n", u
.v16
);
735 if (!pci_read_config_word(pdev
,
736 XEON_LINK_STATUS_OFFSET
, &u
.v16
))
737 off
+= scnprintf(buf
+ off
, buf_size
- off
,
738 "LNKSTS -\t\t%#06x\n", u
.v16
);
740 if (!pci_read_config_dword(pdev
,
741 XEON_UNCERRSTS_OFFSET
, &u
.v32
))
742 off
+= scnprintf(buf
+ off
, buf_size
- off
,
743 "UNCERRSTS -\t\t%#06x\n", u
.v32
);
745 if (!pci_read_config_dword(pdev
,
746 XEON_CORERRSTS_OFFSET
, &u
.v32
))
747 off
+= scnprintf(buf
+ off
, buf_size
- off
,
748 "CORERRSTS -\t\t%#06x\n", u
.v32
);
751 ret
= simple_read_from_buffer(ubuf
, count
, offp
, buf
, off
);
756 static ssize_t
ndev_debugfs_read(struct file
*filp
, char __user
*ubuf
,
757 size_t count
, loff_t
*offp
)
759 struct intel_ntb_dev
*ndev
= filp
->private_data
;
761 if (pdev_is_gen1(ndev
->ntb
.pdev
))
762 return ndev_ntb_debugfs_read(filp
, ubuf
, count
, offp
);
763 else if (pdev_is_gen3(ndev
->ntb
.pdev
))
764 return ndev_ntb3_debugfs_read(filp
, ubuf
, count
, offp
);
769 static void ndev_init_debugfs(struct intel_ntb_dev
*ndev
)
772 ndev
->debugfs_dir
= NULL
;
773 ndev
->debugfs_info
= NULL
;
776 debugfs_create_dir(pci_name(ndev
->ntb
.pdev
),
778 if (!ndev
->debugfs_dir
)
779 ndev
->debugfs_info
= NULL
;
782 debugfs_create_file("info", S_IRUSR
,
783 ndev
->debugfs_dir
, ndev
,
784 &intel_ntb_debugfs_info
);
788 static void ndev_deinit_debugfs(struct intel_ntb_dev
*ndev
)
790 debugfs_remove_recursive(ndev
->debugfs_dir
);
793 int intel_ntb_mw_count(struct ntb_dev
*ntb
, int pidx
)
795 if (pidx
!= NTB_DEF_PEER_IDX
)
798 return ntb_ndev(ntb
)->mw_count
;
801 int intel_ntb_mw_get_align(struct ntb_dev
*ntb
, int pidx
, int idx
,
802 resource_size_t
*addr_align
,
803 resource_size_t
*size_align
,
804 resource_size_t
*size_max
)
806 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
807 resource_size_t bar_size
, mw_size
;
810 if (pidx
!= NTB_DEF_PEER_IDX
)
813 if (idx
>= ndev
->b2b_idx
&& !ndev
->b2b_off
)
816 bar
= ndev_mw_to_bar(ndev
, idx
);
820 bar_size
= pci_resource_len(ndev
->ntb
.pdev
, bar
);
822 if (idx
== ndev
->b2b_idx
)
823 mw_size
= bar_size
- ndev
->b2b_off
;
828 *addr_align
= pci_resource_len(ndev
->ntb
.pdev
, bar
);
839 static int intel_ntb_mw_set_trans(struct ntb_dev
*ntb
, int pidx
, int idx
,
840 dma_addr_t addr
, resource_size_t size
)
842 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
843 unsigned long base_reg
, xlat_reg
, limit_reg
;
844 resource_size_t bar_size
, mw_size
;
846 u64 base
, limit
, reg_val
;
849 if (pidx
!= NTB_DEF_PEER_IDX
)
852 if (idx
>= ndev
->b2b_idx
&& !ndev
->b2b_off
)
855 bar
= ndev_mw_to_bar(ndev
, idx
);
859 bar_size
= pci_resource_len(ndev
->ntb
.pdev
, bar
);
861 if (idx
== ndev
->b2b_idx
)
862 mw_size
= bar_size
- ndev
->b2b_off
;
866 /* hardware requires that addr is aligned to bar size */
867 if (addr
& (bar_size
- 1))
870 /* make sure the range fits in the usable mw size */
874 mmio
= ndev
->self_mmio
;
875 base_reg
= bar0_off(ndev
->xlat_reg
->bar0_base
, bar
);
876 xlat_reg
= bar2_off(ndev
->xlat_reg
->bar2_xlat
, bar
);
877 limit_reg
= bar2_off(ndev
->xlat_reg
->bar2_limit
, bar
);
879 if (bar
< 4 || !ndev
->bar4_split
) {
880 base
= ioread64(mmio
+ base_reg
) & NTB_BAR_MASK_64
;
882 /* Set the limit if supported, if size is not mw_size */
883 if (limit_reg
&& size
!= mw_size
)
888 /* set and verify setting the translation address */
889 iowrite64(addr
, mmio
+ xlat_reg
);
890 reg_val
= ioread64(mmio
+ xlat_reg
);
891 if (reg_val
!= addr
) {
892 iowrite64(0, mmio
+ xlat_reg
);
896 /* set and verify setting the limit */
897 iowrite64(limit
, mmio
+ limit_reg
);
898 reg_val
= ioread64(mmio
+ limit_reg
);
899 if (reg_val
!= limit
) {
900 iowrite64(base
, mmio
+ limit_reg
);
901 iowrite64(0, mmio
+ xlat_reg
);
905 /* split bar addr range must all be 32 bit */
906 if (addr
& (~0ull << 32))
908 if ((addr
+ size
) & (~0ull << 32))
911 base
= ioread32(mmio
+ base_reg
) & NTB_BAR_MASK_32
;
913 /* Set the limit if supported, if size is not mw_size */
914 if (limit_reg
&& size
!= mw_size
)
919 /* set and verify setting the translation address */
920 iowrite32(addr
, mmio
+ xlat_reg
);
921 reg_val
= ioread32(mmio
+ xlat_reg
);
922 if (reg_val
!= addr
) {
923 iowrite32(0, mmio
+ xlat_reg
);
927 /* set and verify setting the limit */
928 iowrite32(limit
, mmio
+ limit_reg
);
929 reg_val
= ioread32(mmio
+ limit_reg
);
930 if (reg_val
!= limit
) {
931 iowrite32(base
, mmio
+ limit_reg
);
932 iowrite32(0, mmio
+ xlat_reg
);
940 u64
intel_ntb_link_is_up(struct ntb_dev
*ntb
, enum ntb_speed
*speed
,
941 enum ntb_width
*width
)
943 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
945 if (ndev
->reg
->link_is_up(ndev
)) {
947 *speed
= NTB_LNK_STA_SPEED(ndev
->lnk_sta
);
949 *width
= NTB_LNK_STA_WIDTH(ndev
->lnk_sta
);
952 /* TODO MAYBE: is it possible to observe the link speed and
953 * width while link is training? */
955 *speed
= NTB_SPEED_NONE
;
957 *width
= NTB_WIDTH_NONE
;
962 static int intel_ntb_link_enable(struct ntb_dev
*ntb
,
963 enum ntb_speed max_speed
,
964 enum ntb_width max_width
)
966 struct intel_ntb_dev
*ndev
;
969 ndev
= container_of(ntb
, struct intel_ntb_dev
, ntb
);
971 if (ndev
->ntb
.topo
== NTB_TOPO_SEC
)
974 dev_dbg(&ntb
->pdev
->dev
,
975 "Enabling link with max_speed %d max_width %d\n",
976 max_speed
, max_width
);
977 if (max_speed
!= NTB_SPEED_AUTO
)
978 dev_dbg(&ntb
->pdev
->dev
, "ignoring max_speed %d\n", max_speed
);
979 if (max_width
!= NTB_WIDTH_AUTO
)
980 dev_dbg(&ntb
->pdev
->dev
, "ignoring max_width %d\n", max_width
);
982 ntb_ctl
= ioread32(ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
983 ntb_ctl
&= ~(NTB_CTL_DISABLE
| NTB_CTL_CFG_LOCK
);
984 ntb_ctl
|= NTB_CTL_P2S_BAR2_SNOOP
| NTB_CTL_S2P_BAR2_SNOOP
;
985 ntb_ctl
|= NTB_CTL_P2S_BAR4_SNOOP
| NTB_CTL_S2P_BAR4_SNOOP
;
986 if (ndev
->bar4_split
)
987 ntb_ctl
|= NTB_CTL_P2S_BAR5_SNOOP
| NTB_CTL_S2P_BAR5_SNOOP
;
988 iowrite32(ntb_ctl
, ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
993 int intel_ntb_link_disable(struct ntb_dev
*ntb
)
995 struct intel_ntb_dev
*ndev
;
998 ndev
= container_of(ntb
, struct intel_ntb_dev
, ntb
);
1000 if (ndev
->ntb
.topo
== NTB_TOPO_SEC
)
1003 dev_dbg(&ntb
->pdev
->dev
, "Disabling link\n");
1005 /* Bring NTB link down */
1006 ntb_cntl
= ioread32(ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
1007 ntb_cntl
&= ~(NTB_CTL_P2S_BAR2_SNOOP
| NTB_CTL_S2P_BAR2_SNOOP
);
1008 ntb_cntl
&= ~(NTB_CTL_P2S_BAR4_SNOOP
| NTB_CTL_S2P_BAR4_SNOOP
);
1009 if (ndev
->bar4_split
)
1010 ntb_cntl
&= ~(NTB_CTL_P2S_BAR5_SNOOP
| NTB_CTL_S2P_BAR5_SNOOP
);
1011 ntb_cntl
|= NTB_CTL_DISABLE
| NTB_CTL_CFG_LOCK
;
1012 iowrite32(ntb_cntl
, ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
1017 int intel_ntb_peer_mw_count(struct ntb_dev
*ntb
)
1019 /* Numbers of inbound and outbound memory windows match */
1020 return ntb_ndev(ntb
)->mw_count
;
1023 int intel_ntb_peer_mw_get_addr(struct ntb_dev
*ntb
, int idx
,
1024 phys_addr_t
*base
, resource_size_t
*size
)
1026 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1029 if (idx
>= ndev
->b2b_idx
&& !ndev
->b2b_off
)
1032 bar
= ndev_mw_to_bar(ndev
, idx
);
1037 *base
= pci_resource_start(ndev
->ntb
.pdev
, bar
) +
1038 (idx
== ndev
->b2b_idx
? ndev
->b2b_off
: 0);
1041 *size
= pci_resource_len(ndev
->ntb
.pdev
, bar
) -
1042 (idx
== ndev
->b2b_idx
? ndev
->b2b_off
: 0);
1047 static int intel_ntb_db_is_unsafe(struct ntb_dev
*ntb
)
1049 return ndev_ignore_unsafe(ntb_ndev(ntb
), NTB_UNSAFE_DB
);
1052 u64
intel_ntb_db_valid_mask(struct ntb_dev
*ntb
)
1054 return ntb_ndev(ntb
)->db_valid_mask
;
1057 int intel_ntb_db_vector_count(struct ntb_dev
*ntb
)
1059 struct intel_ntb_dev
*ndev
;
1061 ndev
= container_of(ntb
, struct intel_ntb_dev
, ntb
);
1063 return ndev
->db_vec_count
;
1066 u64
intel_ntb_db_vector_mask(struct ntb_dev
*ntb
, int db_vector
)
1068 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1070 if (db_vector
< 0 || db_vector
> ndev
->db_vec_count
)
1073 return ndev
->db_valid_mask
& ndev_vec_mask(ndev
, db_vector
);
1076 static u64
intel_ntb_db_read(struct ntb_dev
*ntb
)
1078 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1080 return ndev_db_read(ndev
,
1082 ndev
->self_reg
->db_bell
);
1085 static int intel_ntb_db_clear(struct ntb_dev
*ntb
, u64 db_bits
)
1087 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1089 return ndev_db_write(ndev
, db_bits
,
1091 ndev
->self_reg
->db_bell
);
1094 int intel_ntb_db_set_mask(struct ntb_dev
*ntb
, u64 db_bits
)
1096 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1098 return ndev_db_set_mask(ndev
, db_bits
,
1100 ndev
->self_reg
->db_mask
);
1103 int intel_ntb_db_clear_mask(struct ntb_dev
*ntb
, u64 db_bits
)
1105 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1107 return ndev_db_clear_mask(ndev
, db_bits
,
1109 ndev
->self_reg
->db_mask
);
1112 static int intel_ntb_peer_db_addr(struct ntb_dev
*ntb
, phys_addr_t
*db_addr
,
1113 resource_size_t
*db_size
, u64
*db_data
, int db_bit
)
1116 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1118 if (unlikely(db_bit
>= BITS_PER_LONG_LONG
))
1121 db_bits
= BIT_ULL(db_bit
);
1123 if (unlikely(db_bits
& ~ntb_ndev(ntb
)->db_valid_mask
))
1126 ndev_db_addr(ndev
, db_addr
, db_size
, ndev
->peer_addr
,
1127 ndev
->peer_reg
->db_bell
);
1136 static int intel_ntb_peer_db_set(struct ntb_dev
*ntb
, u64 db_bits
)
1138 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1140 return ndev_db_write(ndev
, db_bits
,
1142 ndev
->peer_reg
->db_bell
);
1145 int intel_ntb_spad_is_unsafe(struct ntb_dev
*ntb
)
1147 return ndev_ignore_unsafe(ntb_ndev(ntb
), NTB_UNSAFE_SPAD
);
1150 int intel_ntb_spad_count(struct ntb_dev
*ntb
)
1152 struct intel_ntb_dev
*ndev
;
1154 ndev
= container_of(ntb
, struct intel_ntb_dev
, ntb
);
1156 return ndev
->spad_count
;
1159 u32
intel_ntb_spad_read(struct ntb_dev
*ntb
, int idx
)
1161 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1163 return ndev_spad_read(ndev
, idx
,
1165 ndev
->self_reg
->spad
);
1168 int intel_ntb_spad_write(struct ntb_dev
*ntb
, int idx
, u32 val
)
1170 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1172 return ndev_spad_write(ndev
, idx
, val
,
1174 ndev
->self_reg
->spad
);
1177 int intel_ntb_peer_spad_addr(struct ntb_dev
*ntb
, int pidx
, int sidx
,
1178 phys_addr_t
*spad_addr
)
1180 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1182 return ndev_spad_addr(ndev
, sidx
, spad_addr
, ndev
->peer_addr
,
1183 ndev
->peer_reg
->spad
);
1186 u32
intel_ntb_peer_spad_read(struct ntb_dev
*ntb
, int pidx
, int sidx
)
1188 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1190 return ndev_spad_read(ndev
, sidx
,
1192 ndev
->peer_reg
->spad
);
1195 int intel_ntb_peer_spad_write(struct ntb_dev
*ntb
, int pidx
, int sidx
,
1198 struct intel_ntb_dev
*ndev
= ntb_ndev(ntb
);
1200 return ndev_spad_write(ndev
, sidx
, val
,
1202 ndev
->peer_reg
->spad
);
1205 static u64
xeon_db_ioread(void __iomem
*mmio
)
1207 return (u64
)ioread16(mmio
);
1210 static void xeon_db_iowrite(u64 bits
, void __iomem
*mmio
)
1212 iowrite16((u16
)bits
, mmio
);
1215 static int xeon_poll_link(struct intel_ntb_dev
*ndev
)
1220 ndev
->reg
->db_iowrite(ndev
->db_link_mask
,
1222 ndev
->self_reg
->db_bell
);
1224 rc
= pci_read_config_word(ndev
->ntb
.pdev
,
1225 XEON_LINK_STATUS_OFFSET
, ®_val
);
1229 if (reg_val
== ndev
->lnk_sta
)
1232 ndev
->lnk_sta
= reg_val
;
1237 int xeon_link_is_up(struct intel_ntb_dev
*ndev
)
1239 if (ndev
->ntb
.topo
== NTB_TOPO_SEC
)
1242 return NTB_LNK_STA_ACTIVE(ndev
->lnk_sta
);
1245 enum ntb_topo
xeon_ppd_topo(struct intel_ntb_dev
*ndev
, u8 ppd
)
1247 switch (ppd
& XEON_PPD_TOPO_MASK
) {
1248 case XEON_PPD_TOPO_B2B_USD
:
1249 return NTB_TOPO_B2B_USD
;
1251 case XEON_PPD_TOPO_B2B_DSD
:
1252 return NTB_TOPO_B2B_DSD
;
1254 case XEON_PPD_TOPO_PRI_USD
:
1255 case XEON_PPD_TOPO_PRI_DSD
: /* accept bogus PRI_DSD */
1256 return NTB_TOPO_PRI
;
1258 case XEON_PPD_TOPO_SEC_USD
:
1259 case XEON_PPD_TOPO_SEC_DSD
: /* accept bogus SEC_DSD */
1260 return NTB_TOPO_SEC
;
1263 return NTB_TOPO_NONE
;
1266 static inline int xeon_ppd_bar4_split(struct intel_ntb_dev
*ndev
, u8 ppd
)
1268 if (ppd
& XEON_PPD_SPLIT_BAR_MASK
) {
1269 dev_dbg(&ndev
->ntb
.pdev
->dev
, "PPD %d split bar\n", ppd
);
1275 static int xeon_init_isr(struct intel_ntb_dev
*ndev
)
1277 return ndev_init_isr(ndev
, XEON_DB_MSIX_VECTOR_COUNT
,
1278 XEON_DB_MSIX_VECTOR_COUNT
,
1279 XEON_DB_MSIX_VECTOR_SHIFT
,
1280 XEON_DB_TOTAL_SHIFT
);
1283 static void xeon_deinit_isr(struct intel_ntb_dev
*ndev
)
1285 ndev_deinit_isr(ndev
);
1288 static int xeon_setup_b2b_mw(struct intel_ntb_dev
*ndev
,
1289 const struct intel_b2b_addr
*addr
,
1290 const struct intel_b2b_addr
*peer_addr
)
1292 struct pci_dev
*pdev
;
1294 resource_size_t bar_size
;
1295 phys_addr_t bar_addr
;
1299 pdev
= ndev
->ntb
.pdev
;
1300 mmio
= ndev
->self_mmio
;
1302 if (ndev
->b2b_idx
== UINT_MAX
) {
1303 dev_dbg(&pdev
->dev
, "not using b2b mw\n");
1307 b2b_bar
= ndev_mw_to_bar(ndev
, ndev
->b2b_idx
);
1311 dev_dbg(&pdev
->dev
, "using b2b mw bar %d\n", b2b_bar
);
1313 bar_size
= pci_resource_len(ndev
->ntb
.pdev
, b2b_bar
);
1315 dev_dbg(&pdev
->dev
, "b2b bar size %#llx\n", bar_size
);
1317 if (b2b_mw_share
&& XEON_B2B_MIN_SIZE
<= bar_size
>> 1) {
1318 dev_dbg(&pdev
->dev
, "b2b using first half of bar\n");
1319 ndev
->b2b_off
= bar_size
>> 1;
1320 } else if (XEON_B2B_MIN_SIZE
<= bar_size
) {
1321 dev_dbg(&pdev
->dev
, "b2b using whole bar\n");
1325 dev_dbg(&pdev
->dev
, "b2b bar size is too small\n");
1330 /* Reset the secondary bar sizes to match the primary bar sizes,
1331 * except disable or halve the size of the b2b secondary bar.
1333 * Note: code for each specific bar size register, because the register
1334 * offsets are not in a consistent order (bar5sz comes after ppd, odd).
1336 pci_read_config_byte(pdev
, XEON_PBAR23SZ_OFFSET
, &bar_sz
);
1337 dev_dbg(&pdev
->dev
, "PBAR23SZ %#x\n", bar_sz
);
1344 pci_write_config_byte(pdev
, XEON_SBAR23SZ_OFFSET
, bar_sz
);
1345 pci_read_config_byte(pdev
, XEON_SBAR23SZ_OFFSET
, &bar_sz
);
1346 dev_dbg(&pdev
->dev
, "SBAR23SZ %#x\n", bar_sz
);
1348 if (!ndev
->bar4_split
) {
1349 pci_read_config_byte(pdev
, XEON_PBAR45SZ_OFFSET
, &bar_sz
);
1350 dev_dbg(&pdev
->dev
, "PBAR45SZ %#x\n", bar_sz
);
1357 pci_write_config_byte(pdev
, XEON_SBAR45SZ_OFFSET
, bar_sz
);
1358 pci_read_config_byte(pdev
, XEON_SBAR45SZ_OFFSET
, &bar_sz
);
1359 dev_dbg(&pdev
->dev
, "SBAR45SZ %#x\n", bar_sz
);
1361 pci_read_config_byte(pdev
, XEON_PBAR4SZ_OFFSET
, &bar_sz
);
1362 dev_dbg(&pdev
->dev
, "PBAR4SZ %#x\n", bar_sz
);
1369 pci_write_config_byte(pdev
, XEON_SBAR4SZ_OFFSET
, bar_sz
);
1370 pci_read_config_byte(pdev
, XEON_SBAR4SZ_OFFSET
, &bar_sz
);
1371 dev_dbg(&pdev
->dev
, "SBAR4SZ %#x\n", bar_sz
);
1373 pci_read_config_byte(pdev
, XEON_PBAR5SZ_OFFSET
, &bar_sz
);
1374 dev_dbg(&pdev
->dev
, "PBAR5SZ %#x\n", bar_sz
);
1381 pci_write_config_byte(pdev
, XEON_SBAR5SZ_OFFSET
, bar_sz
);
1382 pci_read_config_byte(pdev
, XEON_SBAR5SZ_OFFSET
, &bar_sz
);
1383 dev_dbg(&pdev
->dev
, "SBAR5SZ %#x\n", bar_sz
);
1386 /* SBAR01 hit by first part of the b2b bar */
1388 bar_addr
= addr
->bar0_addr
;
1389 else if (b2b_bar
== 2)
1390 bar_addr
= addr
->bar2_addr64
;
1391 else if (b2b_bar
== 4 && !ndev
->bar4_split
)
1392 bar_addr
= addr
->bar4_addr64
;
1393 else if (b2b_bar
== 4)
1394 bar_addr
= addr
->bar4_addr32
;
1395 else if (b2b_bar
== 5)
1396 bar_addr
= addr
->bar5_addr32
;
1400 dev_dbg(&pdev
->dev
, "SBAR01 %#018llx\n", bar_addr
);
1401 iowrite64(bar_addr
, mmio
+ XEON_SBAR0BASE_OFFSET
);
1403 /* Other SBAR are normally hit by the PBAR xlat, except for b2b bar.
1404 * The b2b bar is either disabled above, or configured half-size, and
1405 * it starts at the PBAR xlat + offset.
1408 bar_addr
= addr
->bar2_addr64
+ (b2b_bar
== 2 ? ndev
->b2b_off
: 0);
1409 iowrite64(bar_addr
, mmio
+ XEON_SBAR23BASE_OFFSET
);
1410 bar_addr
= ioread64(mmio
+ XEON_SBAR23BASE_OFFSET
);
1411 dev_dbg(&pdev
->dev
, "SBAR23 %#018llx\n", bar_addr
);
1413 if (!ndev
->bar4_split
) {
1414 bar_addr
= addr
->bar4_addr64
+
1415 (b2b_bar
== 4 ? ndev
->b2b_off
: 0);
1416 iowrite64(bar_addr
, mmio
+ XEON_SBAR45BASE_OFFSET
);
1417 bar_addr
= ioread64(mmio
+ XEON_SBAR45BASE_OFFSET
);
1418 dev_dbg(&pdev
->dev
, "SBAR45 %#018llx\n", bar_addr
);
1420 bar_addr
= addr
->bar4_addr32
+
1421 (b2b_bar
== 4 ? ndev
->b2b_off
: 0);
1422 iowrite32(bar_addr
, mmio
+ XEON_SBAR4BASE_OFFSET
);
1423 bar_addr
= ioread32(mmio
+ XEON_SBAR4BASE_OFFSET
);
1424 dev_dbg(&pdev
->dev
, "SBAR4 %#010llx\n", bar_addr
);
1426 bar_addr
= addr
->bar5_addr32
+
1427 (b2b_bar
== 5 ? ndev
->b2b_off
: 0);
1428 iowrite32(bar_addr
, mmio
+ XEON_SBAR5BASE_OFFSET
);
1429 bar_addr
= ioread32(mmio
+ XEON_SBAR5BASE_OFFSET
);
1430 dev_dbg(&pdev
->dev
, "SBAR5 %#010llx\n", bar_addr
);
1433 /* setup incoming bar limits == base addrs (zero length windows) */
1435 bar_addr
= addr
->bar2_addr64
+ (b2b_bar
== 2 ? ndev
->b2b_off
: 0);
1436 iowrite64(bar_addr
, mmio
+ XEON_SBAR23LMT_OFFSET
);
1437 bar_addr
= ioread64(mmio
+ XEON_SBAR23LMT_OFFSET
);
1438 dev_dbg(&pdev
->dev
, "SBAR23LMT %#018llx\n", bar_addr
);
1440 if (!ndev
->bar4_split
) {
1441 bar_addr
= addr
->bar4_addr64
+
1442 (b2b_bar
== 4 ? ndev
->b2b_off
: 0);
1443 iowrite64(bar_addr
, mmio
+ XEON_SBAR45LMT_OFFSET
);
1444 bar_addr
= ioread64(mmio
+ XEON_SBAR45LMT_OFFSET
);
1445 dev_dbg(&pdev
->dev
, "SBAR45LMT %#018llx\n", bar_addr
);
1447 bar_addr
= addr
->bar4_addr32
+
1448 (b2b_bar
== 4 ? ndev
->b2b_off
: 0);
1449 iowrite32(bar_addr
, mmio
+ XEON_SBAR4LMT_OFFSET
);
1450 bar_addr
= ioread32(mmio
+ XEON_SBAR4LMT_OFFSET
);
1451 dev_dbg(&pdev
->dev
, "SBAR4LMT %#010llx\n", bar_addr
);
1453 bar_addr
= addr
->bar5_addr32
+
1454 (b2b_bar
== 5 ? ndev
->b2b_off
: 0);
1455 iowrite32(bar_addr
, mmio
+ XEON_SBAR5LMT_OFFSET
);
1456 bar_addr
= ioread32(mmio
+ XEON_SBAR5LMT_OFFSET
);
1457 dev_dbg(&pdev
->dev
, "SBAR5LMT %#05llx\n", bar_addr
);
1460 /* zero incoming translation addrs */
1461 iowrite64(0, mmio
+ XEON_SBAR23XLAT_OFFSET
);
1463 if (!ndev
->bar4_split
) {
1464 iowrite64(0, mmio
+ XEON_SBAR45XLAT_OFFSET
);
1466 iowrite32(0, mmio
+ XEON_SBAR4XLAT_OFFSET
);
1467 iowrite32(0, mmio
+ XEON_SBAR5XLAT_OFFSET
);
1470 /* zero outgoing translation limits (whole bar size windows) */
1471 iowrite64(0, mmio
+ XEON_PBAR23LMT_OFFSET
);
1472 if (!ndev
->bar4_split
) {
1473 iowrite64(0, mmio
+ XEON_PBAR45LMT_OFFSET
);
1475 iowrite32(0, mmio
+ XEON_PBAR4LMT_OFFSET
);
1476 iowrite32(0, mmio
+ XEON_PBAR5LMT_OFFSET
);
1479 /* set outgoing translation offsets */
1480 bar_addr
= peer_addr
->bar2_addr64
;
1481 iowrite64(bar_addr
, mmio
+ XEON_PBAR23XLAT_OFFSET
);
1482 bar_addr
= ioread64(mmio
+ XEON_PBAR23XLAT_OFFSET
);
1483 dev_dbg(&pdev
->dev
, "PBAR23XLAT %#018llx\n", bar_addr
);
1485 if (!ndev
->bar4_split
) {
1486 bar_addr
= peer_addr
->bar4_addr64
;
1487 iowrite64(bar_addr
, mmio
+ XEON_PBAR45XLAT_OFFSET
);
1488 bar_addr
= ioread64(mmio
+ XEON_PBAR45XLAT_OFFSET
);
1489 dev_dbg(&pdev
->dev
, "PBAR45XLAT %#018llx\n", bar_addr
);
1491 bar_addr
= peer_addr
->bar4_addr32
;
1492 iowrite32(bar_addr
, mmio
+ XEON_PBAR4XLAT_OFFSET
);
1493 bar_addr
= ioread32(mmio
+ XEON_PBAR4XLAT_OFFSET
);
1494 dev_dbg(&pdev
->dev
, "PBAR4XLAT %#010llx\n", bar_addr
);
1496 bar_addr
= peer_addr
->bar5_addr32
;
1497 iowrite32(bar_addr
, mmio
+ XEON_PBAR5XLAT_OFFSET
);
1498 bar_addr
= ioread32(mmio
+ XEON_PBAR5XLAT_OFFSET
);
1499 dev_dbg(&pdev
->dev
, "PBAR5XLAT %#010llx\n", bar_addr
);
1502 /* set the translation offset for b2b registers */
1504 bar_addr
= peer_addr
->bar0_addr
;
1505 else if (b2b_bar
== 2)
1506 bar_addr
= peer_addr
->bar2_addr64
;
1507 else if (b2b_bar
== 4 && !ndev
->bar4_split
)
1508 bar_addr
= peer_addr
->bar4_addr64
;
1509 else if (b2b_bar
== 4)
1510 bar_addr
= peer_addr
->bar4_addr32
;
1511 else if (b2b_bar
== 5)
1512 bar_addr
= peer_addr
->bar5_addr32
;
1516 /* B2B_XLAT_OFFSET is 64bit, but can only take 32bit writes */
1517 dev_dbg(&pdev
->dev
, "B2BXLAT %#018llx\n", bar_addr
);
1518 iowrite32(bar_addr
, mmio
+ XEON_B2B_XLAT_OFFSETL
);
1519 iowrite32(bar_addr
>> 32, mmio
+ XEON_B2B_XLAT_OFFSETU
);
1522 /* map peer ntb mmio config space registers */
1523 ndev
->peer_mmio
= pci_iomap(pdev
, b2b_bar
,
1525 if (!ndev
->peer_mmio
)
1528 ndev
->peer_addr
= pci_resource_start(pdev
, b2b_bar
);
1534 static int xeon_init_ntb(struct intel_ntb_dev
*ndev
)
1536 struct device
*dev
= &ndev
->ntb
.pdev
->dev
;
1540 if (ndev
->bar4_split
)
1541 ndev
->mw_count
= HSX_SPLIT_BAR_MW_COUNT
;
1543 ndev
->mw_count
= XEON_MW_COUNT
;
1545 ndev
->spad_count
= XEON_SPAD_COUNT
;
1546 ndev
->db_count
= XEON_DB_COUNT
;
1547 ndev
->db_link_mask
= XEON_DB_LINK_BIT
;
1549 switch (ndev
->ntb
.topo
) {
1551 if (ndev
->hwerr_flags
& NTB_HWERR_SDOORBELL_LOCKUP
) {
1552 dev_err(dev
, "NTB Primary config disabled\n");
1556 /* enable link to allow secondary side device to appear */
1557 ntb_ctl
= ioread32(ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
1558 ntb_ctl
&= ~NTB_CTL_DISABLE
;
1559 iowrite32(ntb_ctl
, ndev
->self_mmio
+ ndev
->reg
->ntb_ctl
);
1561 /* use half the spads for the peer */
1562 ndev
->spad_count
>>= 1;
1563 ndev
->self_reg
= &xeon_pri_reg
;
1564 ndev
->peer_reg
= &xeon_sec_reg
;
1565 ndev
->xlat_reg
= &xeon_sec_xlat
;
1569 if (ndev
->hwerr_flags
& NTB_HWERR_SDOORBELL_LOCKUP
) {
1570 dev_err(dev
, "NTB Secondary config disabled\n");
1573 /* use half the spads for the peer */
1574 ndev
->spad_count
>>= 1;
1575 ndev
->self_reg
= &xeon_sec_reg
;
1576 ndev
->peer_reg
= &xeon_pri_reg
;
1577 ndev
->xlat_reg
= &xeon_pri_xlat
;
1580 case NTB_TOPO_B2B_USD
:
1581 case NTB_TOPO_B2B_DSD
:
1582 ndev
->self_reg
= &xeon_pri_reg
;
1583 ndev
->peer_reg
= &xeon_b2b_reg
;
1584 ndev
->xlat_reg
= &xeon_sec_xlat
;
1586 if (ndev
->hwerr_flags
& NTB_HWERR_SDOORBELL_LOCKUP
) {
1587 ndev
->peer_reg
= &xeon_pri_reg
;
1590 ndev
->b2b_idx
= b2b_mw_idx
+ ndev
->mw_count
;
1592 ndev
->b2b_idx
= b2b_mw_idx
;
1594 if (ndev
->b2b_idx
>= ndev
->mw_count
) {
1596 "b2b_mw_idx %d invalid for mw_count %u\n",
1597 b2b_mw_idx
, ndev
->mw_count
);
1601 dev_dbg(dev
, "setting up b2b mw idx %d means %d\n",
1602 b2b_mw_idx
, ndev
->b2b_idx
);
1604 } else if (ndev
->hwerr_flags
& NTB_HWERR_B2BDOORBELL_BIT14
) {
1605 dev_warn(dev
, "Reduce doorbell count by 1\n");
1606 ndev
->db_count
-= 1;
1609 if (ndev
->ntb
.topo
== NTB_TOPO_B2B_USD
) {
1610 rc
= xeon_setup_b2b_mw(ndev
,
1612 &xeon_b2b_usd_addr
);
1614 rc
= xeon_setup_b2b_mw(ndev
,
1616 &xeon_b2b_dsd_addr
);
1621 /* Enable Bus Master and Memory Space on the secondary side */
1622 iowrite16(PCI_COMMAND_MEMORY
| PCI_COMMAND_MASTER
,
1623 ndev
->self_mmio
+ XEON_SPCICMD_OFFSET
);
1631 ndev
->db_valid_mask
= BIT_ULL(ndev
->db_count
) - 1;
1633 ndev
->reg
->db_iowrite(ndev
->db_valid_mask
,
1635 ndev
->self_reg
->db_mask
);
1640 static int xeon_init_dev(struct intel_ntb_dev
*ndev
)
1642 struct pci_dev
*pdev
;
1646 pdev
= ndev
->ntb
.pdev
;
1648 switch (pdev
->device
) {
1649 /* There is a Xeon hardware errata related to writes to SDOORBELL or
1650 * B2BDOORBELL in conjunction with inbound access to NTB MMIO Space,
1651 * which may hang the system. To workaround this use the second memory
1652 * window to access the interrupt and scratch pad registers on the
1655 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF
:
1656 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF
:
1657 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
:
1658 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB
:
1659 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB
:
1660 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
:
1661 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT
:
1662 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT
:
1663 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
:
1664 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX
:
1665 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX
:
1666 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
:
1667 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX
:
1668 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX
:
1669 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
:
1670 ndev
->hwerr_flags
|= NTB_HWERR_SDOORBELL_LOCKUP
;
1674 switch (pdev
->device
) {
1675 /* There is a hardware errata related to accessing any register in
1676 * SB01BASE in the presence of bidirectional traffic crossing the NTB.
1678 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT
:
1679 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT
:
1680 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
:
1681 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX
:
1682 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX
:
1683 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
:
1684 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX
:
1685 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX
:
1686 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
:
1687 ndev
->hwerr_flags
|= NTB_HWERR_SB01BASE_LOCKUP
;
1691 switch (pdev
->device
) {
1692 /* HW Errata on bit 14 of b2bdoorbell register. Writes will not be
1693 * mirrored to the remote system. Shrink the number of bits by one,
1694 * since bit 14 is the last bit.
1696 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF
:
1697 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF
:
1698 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
:
1699 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB
:
1700 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB
:
1701 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
:
1702 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT
:
1703 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT
:
1704 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
:
1705 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX
:
1706 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX
:
1707 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
:
1708 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX
:
1709 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX
:
1710 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
:
1711 ndev
->hwerr_flags
|= NTB_HWERR_B2BDOORBELL_BIT14
;
1715 ndev
->reg
= &xeon_reg
;
1717 rc
= pci_read_config_byte(pdev
, XEON_PPD_OFFSET
, &ppd
);
1721 ndev
->ntb
.topo
= xeon_ppd_topo(ndev
, ppd
);
1722 dev_dbg(&pdev
->dev
, "ppd %#x topo %s\n", ppd
,
1723 ntb_topo_string(ndev
->ntb
.topo
));
1724 if (ndev
->ntb
.topo
== NTB_TOPO_NONE
)
1727 if (ndev
->ntb
.topo
!= NTB_TOPO_SEC
) {
1728 ndev
->bar4_split
= xeon_ppd_bar4_split(ndev
, ppd
);
1729 dev_dbg(&pdev
->dev
, "ppd %#x bar4_split %d\n",
1730 ppd
, ndev
->bar4_split
);
1732 /* This is a way for transparent BAR to figure out if we are
1733 * doing split BAR or not. There is no way for the hw on the
1734 * transparent side to know and set the PPD.
1736 mem
= pci_select_bars(pdev
, IORESOURCE_MEM
);
1737 ndev
->bar4_split
= hweight32(mem
) ==
1738 HSX_SPLIT_BAR_MW_COUNT
+ 1;
1739 dev_dbg(&pdev
->dev
, "mem %#x bar4_split %d\n",
1740 mem
, ndev
->bar4_split
);
1743 rc
= xeon_init_ntb(ndev
);
1747 return xeon_init_isr(ndev
);
1750 static void xeon_deinit_dev(struct intel_ntb_dev
*ndev
)
1752 xeon_deinit_isr(ndev
);
1755 static int intel_ntb_init_pci(struct intel_ntb_dev
*ndev
, struct pci_dev
*pdev
)
1759 pci_set_drvdata(pdev
, ndev
);
1761 rc
= pci_enable_device(pdev
);
1763 goto err_pci_enable
;
1765 rc
= pci_request_regions(pdev
, NTB_NAME
);
1767 goto err_pci_regions
;
1769 pci_set_master(pdev
);
1771 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
1773 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
1776 dev_warn(&pdev
->dev
, "Cannot DMA highmem\n");
1779 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
1781 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
1784 dev_warn(&pdev
->dev
, "Cannot DMA consistent highmem\n");
1786 rc
= dma_coerce_mask_and_coherent(&ndev
->ntb
.dev
,
1787 dma_get_mask(&pdev
->dev
));
1791 ndev
->self_mmio
= pci_iomap(pdev
, 0, 0);
1792 if (!ndev
->self_mmio
) {
1796 ndev
->peer_mmio
= ndev
->self_mmio
;
1797 ndev
->peer_addr
= pci_resource_start(pdev
, 0);
1803 pci_clear_master(pdev
);
1804 pci_release_regions(pdev
);
1806 pci_disable_device(pdev
);
1808 pci_set_drvdata(pdev
, NULL
);
1812 static void intel_ntb_deinit_pci(struct intel_ntb_dev
*ndev
)
1814 struct pci_dev
*pdev
= ndev
->ntb
.pdev
;
1816 if (ndev
->peer_mmio
&& ndev
->peer_mmio
!= ndev
->self_mmio
)
1817 pci_iounmap(pdev
, ndev
->peer_mmio
);
1818 pci_iounmap(pdev
, ndev
->self_mmio
);
1820 pci_clear_master(pdev
);
1821 pci_release_regions(pdev
);
1822 pci_disable_device(pdev
);
1823 pci_set_drvdata(pdev
, NULL
);
1826 static inline void ndev_init_struct(struct intel_ntb_dev
*ndev
,
1827 struct pci_dev
*pdev
)
1829 ndev
->ntb
.pdev
= pdev
;
1830 ndev
->ntb
.topo
= NTB_TOPO_NONE
;
1831 ndev
->ntb
.ops
= &intel_ntb_ops
;
1834 ndev
->b2b_idx
= UINT_MAX
;
1836 ndev
->bar4_split
= 0;
1839 ndev
->spad_count
= 0;
1841 ndev
->db_vec_count
= 0;
1842 ndev
->db_vec_shift
= 0;
1847 ndev
->db_valid_mask
= 0;
1848 ndev
->db_link_mask
= 0;
1851 spin_lock_init(&ndev
->db_mask_lock
);
1854 static int intel_ntb_pci_probe(struct pci_dev
*pdev
,
1855 const struct pci_device_id
*id
)
1857 struct intel_ntb_dev
*ndev
;
1860 node
= dev_to_node(&pdev
->dev
);
1862 if (pdev_is_gen1(pdev
)) {
1863 ndev
= kzalloc_node(sizeof(*ndev
), GFP_KERNEL
, node
);
1869 ndev_init_struct(ndev
, pdev
);
1871 rc
= intel_ntb_init_pci(ndev
, pdev
);
1875 rc
= xeon_init_dev(ndev
);
1879 } else if (pdev_is_gen3(pdev
)) {
1880 ndev
= kzalloc_node(sizeof(*ndev
), GFP_KERNEL
, node
);
1886 ndev_init_struct(ndev
, pdev
);
1887 ndev
->ntb
.ops
= &intel_ntb3_ops
;
1889 rc
= intel_ntb_init_pci(ndev
, pdev
);
1893 rc
= gen3_init_dev(ndev
);
1902 ndev_reset_unsafe_flags(ndev
);
1904 ndev
->reg
->poll_link(ndev
);
1906 ndev_init_debugfs(ndev
);
1908 rc
= ntb_register_device(&ndev
->ntb
);
1912 dev_info(&pdev
->dev
, "NTB device registered.\n");
1917 ndev_deinit_debugfs(ndev
);
1918 if (pdev_is_gen1(pdev
) || pdev_is_gen3(pdev
))
1919 xeon_deinit_dev(ndev
);
1921 intel_ntb_deinit_pci(ndev
);
1928 static void intel_ntb_pci_remove(struct pci_dev
*pdev
)
1930 struct intel_ntb_dev
*ndev
= pci_get_drvdata(pdev
);
1932 ntb_unregister_device(&ndev
->ntb
);
1933 ndev_deinit_debugfs(ndev
);
1934 if (pdev_is_gen1(pdev
) || pdev_is_gen3(pdev
))
1935 xeon_deinit_dev(ndev
);
1936 intel_ntb_deinit_pci(ndev
);
1940 static const struct intel_ntb_reg xeon_reg
= {
1941 .poll_link
= xeon_poll_link
,
1942 .link_is_up
= xeon_link_is_up
,
1943 .db_ioread
= xeon_db_ioread
,
1944 .db_iowrite
= xeon_db_iowrite
,
1945 .db_size
= sizeof(u32
),
1946 .ntb_ctl
= XEON_NTBCNTL_OFFSET
,
1947 .mw_bar
= {2, 4, 5},
1950 static const struct intel_ntb_alt_reg xeon_pri_reg
= {
1951 .db_bell
= XEON_PDOORBELL_OFFSET
,
1952 .db_mask
= XEON_PDBMSK_OFFSET
,
1953 .spad
= XEON_SPAD_OFFSET
,
1956 static const struct intel_ntb_alt_reg xeon_sec_reg
= {
1957 .db_bell
= XEON_SDOORBELL_OFFSET
,
1958 .db_mask
= XEON_SDBMSK_OFFSET
,
1959 /* second half of the scratchpads */
1960 .spad
= XEON_SPAD_OFFSET
+ (XEON_SPAD_COUNT
<< 1),
1963 static const struct intel_ntb_alt_reg xeon_b2b_reg
= {
1964 .db_bell
= XEON_B2B_DOORBELL_OFFSET
,
1965 .spad
= XEON_B2B_SPAD_OFFSET
,
1968 static const struct intel_ntb_xlat_reg xeon_pri_xlat
= {
1969 /* Note: no primary .bar0_base visible to the secondary side.
1971 * The secondary side cannot get the base address stored in primary
1972 * bars. The base address is necessary to set the limit register to
1973 * any value other than zero, or unlimited.
1975 * WITHOUT THE BASE ADDRESS, THE SECONDARY SIDE CANNOT DISABLE the
1976 * window by setting the limit equal to base, nor can it limit the size
1977 * of the memory window by setting the limit to base + size.
1979 .bar2_limit
= XEON_PBAR23LMT_OFFSET
,
1980 .bar2_xlat
= XEON_PBAR23XLAT_OFFSET
,
1983 static const struct intel_ntb_xlat_reg xeon_sec_xlat
= {
1984 .bar0_base
= XEON_SBAR0BASE_OFFSET
,
1985 .bar2_limit
= XEON_SBAR23LMT_OFFSET
,
1986 .bar2_xlat
= XEON_SBAR23XLAT_OFFSET
,
1989 struct intel_b2b_addr xeon_b2b_usd_addr
= {
1990 .bar2_addr64
= XEON_B2B_BAR2_ADDR64
,
1991 .bar4_addr64
= XEON_B2B_BAR4_ADDR64
,
1992 .bar4_addr32
= XEON_B2B_BAR4_ADDR32
,
1993 .bar5_addr32
= XEON_B2B_BAR5_ADDR32
,
1996 struct intel_b2b_addr xeon_b2b_dsd_addr
= {
1997 .bar2_addr64
= XEON_B2B_BAR2_ADDR64
,
1998 .bar4_addr64
= XEON_B2B_BAR4_ADDR64
,
1999 .bar4_addr32
= XEON_B2B_BAR4_ADDR32
,
2000 .bar5_addr32
= XEON_B2B_BAR5_ADDR32
,
2003 /* operations for primary side of local ntb */
2004 static const struct ntb_dev_ops intel_ntb_ops
= {
2005 .mw_count
= intel_ntb_mw_count
,
2006 .mw_get_align
= intel_ntb_mw_get_align
,
2007 .mw_set_trans
= intel_ntb_mw_set_trans
,
2008 .peer_mw_count
= intel_ntb_peer_mw_count
,
2009 .peer_mw_get_addr
= intel_ntb_peer_mw_get_addr
,
2010 .link_is_up
= intel_ntb_link_is_up
,
2011 .link_enable
= intel_ntb_link_enable
,
2012 .link_disable
= intel_ntb_link_disable
,
2013 .db_is_unsafe
= intel_ntb_db_is_unsafe
,
2014 .db_valid_mask
= intel_ntb_db_valid_mask
,
2015 .db_vector_count
= intel_ntb_db_vector_count
,
2016 .db_vector_mask
= intel_ntb_db_vector_mask
,
2017 .db_read
= intel_ntb_db_read
,
2018 .db_clear
= intel_ntb_db_clear
,
2019 .db_set_mask
= intel_ntb_db_set_mask
,
2020 .db_clear_mask
= intel_ntb_db_clear_mask
,
2021 .peer_db_addr
= intel_ntb_peer_db_addr
,
2022 .peer_db_set
= intel_ntb_peer_db_set
,
2023 .spad_is_unsafe
= intel_ntb_spad_is_unsafe
,
2024 .spad_count
= intel_ntb_spad_count
,
2025 .spad_read
= intel_ntb_spad_read
,
2026 .spad_write
= intel_ntb_spad_write
,
2027 .peer_spad_addr
= intel_ntb_peer_spad_addr
,
2028 .peer_spad_read
= intel_ntb_peer_spad_read
,
2029 .peer_spad_write
= intel_ntb_peer_spad_write
,
2032 static const struct file_operations intel_ntb_debugfs_info
= {
2033 .owner
= THIS_MODULE
,
2034 .open
= simple_open
,
2035 .read
= ndev_debugfs_read
,
2038 static const struct pci_device_id intel_ntb_pci_tbl
[] = {
2039 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
)},
2040 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
)},
2041 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
)},
2042 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
)},
2043 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_BDX
)},
2044 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_JSF
)},
2045 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_SNB
)},
2046 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_IVT
)},
2047 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_HSX
)},
2048 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_BDX
)},
2049 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_JSF
)},
2050 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_SNB
)},
2051 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_IVT
)},
2052 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_HSX
)},
2053 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_BDX
)},
2054 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_SKX
)},
2057 MODULE_DEVICE_TABLE(pci
, intel_ntb_pci_tbl
);
2059 static struct pci_driver intel_ntb_pci_driver
= {
2060 .name
= KBUILD_MODNAME
,
2061 .id_table
= intel_ntb_pci_tbl
,
2062 .probe
= intel_ntb_pci_probe
,
2063 .remove
= intel_ntb_pci_remove
,
2066 static int __init
intel_ntb_pci_driver_init(void)
2068 pr_info("%s %s\n", NTB_DESC
, NTB_VER
);
2070 if (debugfs_initialized())
2071 debugfs_dir
= debugfs_create_dir(KBUILD_MODNAME
, NULL
);
2073 return pci_register_driver(&intel_ntb_pci_driver
);
2075 module_init(intel_ntb_pci_driver_init
);
2077 static void __exit
intel_ntb_pci_driver_exit(void)
2079 pci_unregister_driver(&intel_ntb_pci_driver
);
2081 debugfs_remove_recursive(debugfs_dir
);
2083 module_exit(intel_ntb_pci_driver_exit
);