treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / nvdimm / pmem.c
blob4eae441f86c96aa3e7dd2eeb07af140ae8d8d295
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Persistent Memory Driver
5 * Copyright (c) 2014-2015, Intel Corporation.
6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 */
10 #include <asm/cacheflush.h>
11 #include <linux/blkdev.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/backing-dev.h>
28 #include "pmem.h"
29 #include "pfn.h"
30 #include "nd.h"
32 static struct device *to_dev(struct pmem_device *pmem)
35 * nvdimm bus services need a 'dev' parameter, and we record the device
36 * at init in bb.dev.
38 return pmem->bb.dev;
41 static struct nd_region *to_region(struct pmem_device *pmem)
43 return to_nd_region(to_dev(pmem)->parent);
46 static void hwpoison_clear(struct pmem_device *pmem,
47 phys_addr_t phys, unsigned int len)
49 unsigned long pfn_start, pfn_end, pfn;
51 /* only pmem in the linear map supports HWPoison */
52 if (is_vmalloc_addr(pmem->virt_addr))
53 return;
55 pfn_start = PHYS_PFN(phys);
56 pfn_end = pfn_start + PHYS_PFN(len);
57 for (pfn = pfn_start; pfn < pfn_end; pfn++) {
58 struct page *page = pfn_to_page(pfn);
61 * Note, no need to hold a get_dev_pagemap() reference
62 * here since we're in the driver I/O path and
63 * outstanding I/O requests pin the dev_pagemap.
65 if (test_and_clear_pmem_poison(page))
66 clear_mce_nospec(pfn);
70 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
71 phys_addr_t offset, unsigned int len)
73 struct device *dev = to_dev(pmem);
74 sector_t sector;
75 long cleared;
76 blk_status_t rc = BLK_STS_OK;
78 sector = (offset - pmem->data_offset) / 512;
80 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
81 if (cleared < len)
82 rc = BLK_STS_IOERR;
83 if (cleared > 0 && cleared / 512) {
84 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
85 cleared /= 512;
86 dev_dbg(dev, "%#llx clear %ld sector%s\n",
87 (unsigned long long) sector, cleared,
88 cleared > 1 ? "s" : "");
89 badblocks_clear(&pmem->bb, sector, cleared);
90 if (pmem->bb_state)
91 sysfs_notify_dirent(pmem->bb_state);
94 arch_invalidate_pmem(pmem->virt_addr + offset, len);
96 return rc;
99 static void write_pmem(void *pmem_addr, struct page *page,
100 unsigned int off, unsigned int len)
102 unsigned int chunk;
103 void *mem;
105 while (len) {
106 mem = kmap_atomic(page);
107 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
108 memcpy_flushcache(pmem_addr, mem + off, chunk);
109 kunmap_atomic(mem);
110 len -= chunk;
111 off = 0;
112 page++;
113 pmem_addr += chunk;
117 static blk_status_t read_pmem(struct page *page, unsigned int off,
118 void *pmem_addr, unsigned int len)
120 unsigned int chunk;
121 unsigned long rem;
122 void *mem;
124 while (len) {
125 mem = kmap_atomic(page);
126 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
127 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
128 kunmap_atomic(mem);
129 if (rem)
130 return BLK_STS_IOERR;
131 len -= chunk;
132 off = 0;
133 page++;
134 pmem_addr += chunk;
136 return BLK_STS_OK;
139 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
140 unsigned int len, unsigned int off, unsigned int op,
141 sector_t sector)
143 blk_status_t rc = BLK_STS_OK;
144 bool bad_pmem = false;
145 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146 void *pmem_addr = pmem->virt_addr + pmem_off;
148 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149 bad_pmem = true;
151 if (!op_is_write(op)) {
152 if (unlikely(bad_pmem))
153 rc = BLK_STS_IOERR;
154 else {
155 rc = read_pmem(page, off, pmem_addr, len);
156 flush_dcache_page(page);
158 } else {
160 * Note that we write the data both before and after
161 * clearing poison. The write before clear poison
162 * handles situations where the latest written data is
163 * preserved and the clear poison operation simply marks
164 * the address range as valid without changing the data.
165 * In this case application software can assume that an
166 * interrupted write will either return the new good
167 * data or an error.
169 * However, if pmem_clear_poison() leaves the data in an
170 * indeterminate state we need to perform the write
171 * after clear poison.
173 flush_dcache_page(page);
174 write_pmem(pmem_addr, page, off, len);
175 if (unlikely(bad_pmem)) {
176 rc = pmem_clear_poison(pmem, pmem_off, len);
177 write_pmem(pmem_addr, page, off, len);
181 return rc;
184 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
186 int ret = 0;
187 blk_status_t rc = 0;
188 bool do_acct;
189 unsigned long start;
190 struct bio_vec bvec;
191 struct bvec_iter iter;
192 struct pmem_device *pmem = q->queuedata;
193 struct nd_region *nd_region = to_region(pmem);
195 if (bio->bi_opf & REQ_PREFLUSH)
196 ret = nvdimm_flush(nd_region, bio);
198 do_acct = nd_iostat_start(bio, &start);
199 bio_for_each_segment(bvec, bio, iter) {
200 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
201 bvec.bv_offset, bio_op(bio), iter.bi_sector);
202 if (rc) {
203 bio->bi_status = rc;
204 break;
207 if (do_acct)
208 nd_iostat_end(bio, start);
210 if (bio->bi_opf & REQ_FUA)
211 ret = nvdimm_flush(nd_region, bio);
213 if (ret)
214 bio->bi_status = errno_to_blk_status(ret);
216 bio_endio(bio);
217 return BLK_QC_T_NONE;
220 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
221 struct page *page, unsigned int op)
223 struct pmem_device *pmem = bdev->bd_queue->queuedata;
224 blk_status_t rc;
226 rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
227 0, op, sector);
230 * The ->rw_page interface is subtle and tricky. The core
231 * retries on any error, so we can only invoke page_endio() in
232 * the successful completion case. Otherwise, we'll see crashes
233 * caused by double completion.
235 if (rc == 0)
236 page_endio(page, op_is_write(op), 0);
238 return blk_status_to_errno(rc);
241 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
242 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
243 long nr_pages, void **kaddr, pfn_t *pfn)
245 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
247 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
248 PFN_PHYS(nr_pages))))
249 return -EIO;
251 if (kaddr)
252 *kaddr = pmem->virt_addr + offset;
253 if (pfn)
254 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
257 * If badblocks are present, limit known good range to the
258 * requested range.
260 if (unlikely(pmem->bb.count))
261 return nr_pages;
262 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
265 static const struct block_device_operations pmem_fops = {
266 .owner = THIS_MODULE,
267 .rw_page = pmem_rw_page,
268 .revalidate_disk = nvdimm_revalidate_disk,
271 static long pmem_dax_direct_access(struct dax_device *dax_dev,
272 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
274 struct pmem_device *pmem = dax_get_private(dax_dev);
276 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
280 * Use the 'no check' versions of copy_from_iter_flushcache() and
281 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
282 * checking, both file offset and device offset, is handled by
283 * dax_iomap_actor()
285 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
286 void *addr, size_t bytes, struct iov_iter *i)
288 return _copy_from_iter_flushcache(addr, bytes, i);
291 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
292 void *addr, size_t bytes, struct iov_iter *i)
294 return _copy_to_iter_mcsafe(addr, bytes, i);
297 static const struct dax_operations pmem_dax_ops = {
298 .direct_access = pmem_dax_direct_access,
299 .dax_supported = generic_fsdax_supported,
300 .copy_from_iter = pmem_copy_from_iter,
301 .copy_to_iter = pmem_copy_to_iter,
304 static const struct attribute_group *pmem_attribute_groups[] = {
305 &dax_attribute_group,
306 NULL,
309 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
311 struct request_queue *q =
312 container_of(pgmap->ref, struct request_queue, q_usage_counter);
314 blk_cleanup_queue(q);
317 static void pmem_release_queue(void *pgmap)
319 pmem_pagemap_cleanup(pgmap);
322 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
324 struct request_queue *q =
325 container_of(pgmap->ref, struct request_queue, q_usage_counter);
327 blk_freeze_queue_start(q);
330 static void pmem_release_disk(void *__pmem)
332 struct pmem_device *pmem = __pmem;
334 kill_dax(pmem->dax_dev);
335 put_dax(pmem->dax_dev);
336 del_gendisk(pmem->disk);
337 put_disk(pmem->disk);
340 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
341 .kill = pmem_pagemap_kill,
342 .cleanup = pmem_pagemap_cleanup,
345 static int pmem_attach_disk(struct device *dev,
346 struct nd_namespace_common *ndns)
348 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
349 struct nd_region *nd_region = to_nd_region(dev->parent);
350 int nid = dev_to_node(dev), fua;
351 struct resource *res = &nsio->res;
352 struct resource bb_res;
353 struct nd_pfn *nd_pfn = NULL;
354 struct dax_device *dax_dev;
355 struct nd_pfn_sb *pfn_sb;
356 struct pmem_device *pmem;
357 struct request_queue *q;
358 struct device *gendev;
359 struct gendisk *disk;
360 void *addr;
361 int rc;
362 unsigned long flags = 0UL;
364 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
365 if (!pmem)
366 return -ENOMEM;
368 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
369 if (rc)
370 return rc;
372 /* while nsio_rw_bytes is active, parse a pfn info block if present */
373 if (is_nd_pfn(dev)) {
374 nd_pfn = to_nd_pfn(dev);
375 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
376 if (rc)
377 return rc;
380 /* we're attaching a block device, disable raw namespace access */
381 devm_namespace_disable(dev, ndns);
383 dev_set_drvdata(dev, pmem);
384 pmem->phys_addr = res->start;
385 pmem->size = resource_size(res);
386 fua = nvdimm_has_flush(nd_region);
387 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
388 dev_warn(dev, "unable to guarantee persistence of writes\n");
389 fua = 0;
392 if (!devm_request_mem_region(dev, res->start, resource_size(res),
393 dev_name(&ndns->dev))) {
394 dev_warn(dev, "could not reserve region %pR\n", res);
395 return -EBUSY;
398 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
399 if (!q)
400 return -ENOMEM;
402 pmem->pfn_flags = PFN_DEV;
403 pmem->pgmap.ref = &q->q_usage_counter;
404 if (is_nd_pfn(dev)) {
405 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
406 pmem->pgmap.ops = &fsdax_pagemap_ops;
407 addr = devm_memremap_pages(dev, &pmem->pgmap);
408 pfn_sb = nd_pfn->pfn_sb;
409 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
410 pmem->pfn_pad = resource_size(res) -
411 resource_size(&pmem->pgmap.res);
412 pmem->pfn_flags |= PFN_MAP;
413 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
414 bb_res.start += pmem->data_offset;
415 } else if (pmem_should_map_pages(dev)) {
416 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
417 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
418 pmem->pgmap.ops = &fsdax_pagemap_ops;
419 addr = devm_memremap_pages(dev, &pmem->pgmap);
420 pmem->pfn_flags |= PFN_MAP;
421 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
422 } else {
423 if (devm_add_action_or_reset(dev, pmem_release_queue,
424 &pmem->pgmap))
425 return -ENOMEM;
426 addr = devm_memremap(dev, pmem->phys_addr,
427 pmem->size, ARCH_MEMREMAP_PMEM);
428 memcpy(&bb_res, &nsio->res, sizeof(bb_res));
431 if (IS_ERR(addr))
432 return PTR_ERR(addr);
433 pmem->virt_addr = addr;
435 blk_queue_write_cache(q, true, fua);
436 blk_queue_make_request(q, pmem_make_request);
437 blk_queue_physical_block_size(q, PAGE_SIZE);
438 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
439 blk_queue_max_hw_sectors(q, UINT_MAX);
440 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
441 if (pmem->pfn_flags & PFN_MAP)
442 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
443 q->queuedata = pmem;
445 disk = alloc_disk_node(0, nid);
446 if (!disk)
447 return -ENOMEM;
448 pmem->disk = disk;
450 disk->fops = &pmem_fops;
451 disk->queue = q;
452 disk->flags = GENHD_FL_EXT_DEVT;
453 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
454 nvdimm_namespace_disk_name(ndns, disk->disk_name);
455 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
456 / 512);
457 if (devm_init_badblocks(dev, &pmem->bb))
458 return -ENOMEM;
459 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
460 disk->bb = &pmem->bb;
462 if (is_nvdimm_sync(nd_region))
463 flags = DAXDEV_F_SYNC;
464 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
465 if (!dax_dev) {
466 put_disk(disk);
467 return -ENOMEM;
469 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
470 pmem->dax_dev = dax_dev;
471 gendev = disk_to_dev(disk);
472 gendev->groups = pmem_attribute_groups;
474 device_add_disk(dev, disk, NULL);
475 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
476 return -ENOMEM;
478 revalidate_disk(disk);
480 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
481 "badblocks");
482 if (!pmem->bb_state)
483 dev_warn(dev, "'badblocks' notification disabled\n");
485 return 0;
488 static int nd_pmem_probe(struct device *dev)
490 int ret;
491 struct nd_namespace_common *ndns;
493 ndns = nvdimm_namespace_common_probe(dev);
494 if (IS_ERR(ndns))
495 return PTR_ERR(ndns);
497 if (is_nd_btt(dev))
498 return nvdimm_namespace_attach_btt(ndns);
500 if (is_nd_pfn(dev))
501 return pmem_attach_disk(dev, ndns);
503 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
504 if (ret)
505 return ret;
507 ret = nd_btt_probe(dev, ndns);
508 if (ret == 0)
509 return -ENXIO;
512 * We have two failure conditions here, there is no
513 * info reserver block or we found a valid info reserve block
514 * but failed to initialize the pfn superblock.
516 * For the first case consider namespace as a raw pmem namespace
517 * and attach a disk.
519 * For the latter, consider this a success and advance the namespace
520 * seed.
522 ret = nd_pfn_probe(dev, ndns);
523 if (ret == 0)
524 return -ENXIO;
525 else if (ret == -EOPNOTSUPP)
526 return ret;
528 ret = nd_dax_probe(dev, ndns);
529 if (ret == 0)
530 return -ENXIO;
531 else if (ret == -EOPNOTSUPP)
532 return ret;
534 /* probe complete, attach handles namespace enabling */
535 devm_namespace_disable(dev, ndns);
537 return pmem_attach_disk(dev, ndns);
540 static int nd_pmem_remove(struct device *dev)
542 struct pmem_device *pmem = dev_get_drvdata(dev);
544 if (is_nd_btt(dev))
545 nvdimm_namespace_detach_btt(to_nd_btt(dev));
546 else {
548 * Note, this assumes nd_device_lock() context to not
549 * race nd_pmem_notify()
551 sysfs_put(pmem->bb_state);
552 pmem->bb_state = NULL;
554 nvdimm_flush(to_nd_region(dev->parent), NULL);
556 return 0;
559 static void nd_pmem_shutdown(struct device *dev)
561 nvdimm_flush(to_nd_region(dev->parent), NULL);
564 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
566 struct nd_region *nd_region;
567 resource_size_t offset = 0, end_trunc = 0;
568 struct nd_namespace_common *ndns;
569 struct nd_namespace_io *nsio;
570 struct resource res;
571 struct badblocks *bb;
572 struct kernfs_node *bb_state;
574 if (event != NVDIMM_REVALIDATE_POISON)
575 return;
577 if (is_nd_btt(dev)) {
578 struct nd_btt *nd_btt = to_nd_btt(dev);
580 ndns = nd_btt->ndns;
581 nd_region = to_nd_region(ndns->dev.parent);
582 nsio = to_nd_namespace_io(&ndns->dev);
583 bb = &nsio->bb;
584 bb_state = NULL;
585 } else {
586 struct pmem_device *pmem = dev_get_drvdata(dev);
588 nd_region = to_region(pmem);
589 bb = &pmem->bb;
590 bb_state = pmem->bb_state;
592 if (is_nd_pfn(dev)) {
593 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
594 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
596 ndns = nd_pfn->ndns;
597 offset = pmem->data_offset +
598 __le32_to_cpu(pfn_sb->start_pad);
599 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
600 } else {
601 ndns = to_ndns(dev);
604 nsio = to_nd_namespace_io(&ndns->dev);
607 res.start = nsio->res.start + offset;
608 res.end = nsio->res.end - end_trunc;
609 nvdimm_badblocks_populate(nd_region, bb, &res);
610 if (bb_state)
611 sysfs_notify_dirent(bb_state);
614 MODULE_ALIAS("pmem");
615 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
616 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
617 static struct nd_device_driver nd_pmem_driver = {
618 .probe = nd_pmem_probe,
619 .remove = nd_pmem_remove,
620 .notify = nd_pmem_notify,
621 .shutdown = nd_pmem_shutdown,
622 .drv = {
623 .name = "nd_pmem",
625 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
628 module_nd_driver(nd_pmem_driver);
630 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
631 MODULE_LICENSE("GPL v2");