1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
21 #include <linux/io-64-nonatomic-hi-lo.h>
23 static DEFINE_PER_CPU(int, flush_idx
);
25 static int nvdimm_map_flush(struct device
*dev
, struct nvdimm
*nvdimm
, int dimm
,
26 struct nd_region_data
*ndrd
)
30 dev_dbg(dev
, "%s: map %d flush address%s\n", nvdimm_name(nvdimm
),
31 nvdimm
->num_flush
, nvdimm
->num_flush
== 1 ? "" : "es");
32 for (i
= 0; i
< (1 << ndrd
->hints_shift
); i
++) {
33 struct resource
*res
= &nvdimm
->flush_wpq
[i
];
34 unsigned long pfn
= PHYS_PFN(res
->start
);
35 void __iomem
*flush_page
;
37 /* check if flush hints share a page */
38 for (j
= 0; j
< i
; j
++) {
39 struct resource
*res_j
= &nvdimm
->flush_wpq
[j
];
40 unsigned long pfn_j
= PHYS_PFN(res_j
->start
);
47 flush_page
= (void __iomem
*) ((unsigned long)
48 ndrd_get_flush_wpq(ndrd
, dimm
, j
)
51 flush_page
= devm_nvdimm_ioremap(dev
,
52 PFN_PHYS(pfn
), PAGE_SIZE
);
55 ndrd_set_flush_wpq(ndrd
, dimm
, i
, flush_page
56 + (res
->start
& ~PAGE_MASK
));
62 int nd_region_activate(struct nd_region
*nd_region
)
64 int i
, j
, num_flush
= 0;
65 struct nd_region_data
*ndrd
;
66 struct device
*dev
= &nd_region
->dev
;
67 size_t flush_data_size
= sizeof(void *);
69 nvdimm_bus_lock(&nd_region
->dev
);
70 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
71 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
72 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
74 if (test_bit(NDD_SECURITY_OVERWRITE
, &nvdimm
->flags
)) {
75 nvdimm_bus_unlock(&nd_region
->dev
);
79 /* at least one null hint slot per-dimm for the "no-hint" case */
80 flush_data_size
+= sizeof(void *);
81 num_flush
= min_not_zero(num_flush
, nvdimm
->num_flush
);
82 if (!nvdimm
->num_flush
)
84 flush_data_size
+= nvdimm
->num_flush
* sizeof(void *);
86 nvdimm_bus_unlock(&nd_region
->dev
);
88 ndrd
= devm_kzalloc(dev
, sizeof(*ndrd
) + flush_data_size
, GFP_KERNEL
);
91 dev_set_drvdata(dev
, ndrd
);
96 ndrd
->hints_shift
= ilog2(num_flush
);
97 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
98 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
99 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
100 int rc
= nvdimm_map_flush(&nd_region
->dev
, nvdimm
, i
, ndrd
);
107 * Clear out entries that are duplicates. This should prevent the
110 for (i
= 0; i
< nd_region
->ndr_mappings
- 1; i
++) {
111 /* ignore if NULL already */
112 if (!ndrd_get_flush_wpq(ndrd
, i
, 0))
115 for (j
= i
+ 1; j
< nd_region
->ndr_mappings
; j
++)
116 if (ndrd_get_flush_wpq(ndrd
, i
, 0) ==
117 ndrd_get_flush_wpq(ndrd
, j
, 0))
118 ndrd_set_flush_wpq(ndrd
, j
, 0, NULL
);
124 static void nd_region_release(struct device
*dev
)
126 struct nd_region
*nd_region
= to_nd_region(dev
);
129 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
130 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
131 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
133 put_device(&nvdimm
->dev
);
135 free_percpu(nd_region
->lane
);
136 memregion_free(nd_region
->id
);
138 kfree(to_nd_blk_region(dev
));
143 struct nd_region
*to_nd_region(struct device
*dev
)
145 struct nd_region
*nd_region
= container_of(dev
, struct nd_region
, dev
);
147 WARN_ON(dev
->type
->release
!= nd_region_release
);
150 EXPORT_SYMBOL_GPL(to_nd_region
);
152 struct device
*nd_region_dev(struct nd_region
*nd_region
)
156 return &nd_region
->dev
;
158 EXPORT_SYMBOL_GPL(nd_region_dev
);
160 struct nd_blk_region
*to_nd_blk_region(struct device
*dev
)
162 struct nd_region
*nd_region
= to_nd_region(dev
);
164 WARN_ON(!is_nd_blk(dev
));
165 return container_of(nd_region
, struct nd_blk_region
, nd_region
);
167 EXPORT_SYMBOL_GPL(to_nd_blk_region
);
169 void *nd_region_provider_data(struct nd_region
*nd_region
)
171 return nd_region
->provider_data
;
173 EXPORT_SYMBOL_GPL(nd_region_provider_data
);
175 void *nd_blk_region_provider_data(struct nd_blk_region
*ndbr
)
177 return ndbr
->blk_provider_data
;
179 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data
);
181 void nd_blk_region_set_provider_data(struct nd_blk_region
*ndbr
, void *data
)
183 ndbr
->blk_provider_data
= data
;
185 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data
);
188 * nd_region_to_nstype() - region to an integer namespace type
189 * @nd_region: region-device to interrogate
191 * This is the 'nstype' attribute of a region as well, an input to the
192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
193 * namespace devices with namespace drivers.
195 int nd_region_to_nstype(struct nd_region
*nd_region
)
197 if (is_memory(&nd_region
->dev
)) {
200 for (i
= 0, alias
= 0; i
< nd_region
->ndr_mappings
; i
++) {
201 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
202 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
204 if (test_bit(NDD_ALIASING
, &nvdimm
->flags
))
208 return ND_DEVICE_NAMESPACE_PMEM
;
210 return ND_DEVICE_NAMESPACE_IO
;
211 } else if (is_nd_blk(&nd_region
->dev
)) {
212 return ND_DEVICE_NAMESPACE_BLK
;
217 EXPORT_SYMBOL(nd_region_to_nstype
);
219 static ssize_t
size_show(struct device
*dev
,
220 struct device_attribute
*attr
, char *buf
)
222 struct nd_region
*nd_region
= to_nd_region(dev
);
223 unsigned long long size
= 0;
225 if (is_memory(dev
)) {
226 size
= nd_region
->ndr_size
;
227 } else if (nd_region
->ndr_mappings
== 1) {
228 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[0];
230 size
= nd_mapping
->size
;
233 return sprintf(buf
, "%llu\n", size
);
235 static DEVICE_ATTR_RO(size
);
237 static ssize_t
deep_flush_show(struct device
*dev
,
238 struct device_attribute
*attr
, char *buf
)
240 struct nd_region
*nd_region
= to_nd_region(dev
);
243 * NOTE: in the nvdimm_has_flush() error case this attribute is
246 return sprintf(buf
, "%d\n", nvdimm_has_flush(nd_region
));
249 static ssize_t
deep_flush_store(struct device
*dev
, struct device_attribute
*attr
,
250 const char *buf
, size_t len
)
253 int rc
= strtobool(buf
, &flush
);
254 struct nd_region
*nd_region
= to_nd_region(dev
);
260 rc
= nvdimm_flush(nd_region
, NULL
);
266 static DEVICE_ATTR_RW(deep_flush
);
268 static ssize_t
mappings_show(struct device
*dev
,
269 struct device_attribute
*attr
, char *buf
)
271 struct nd_region
*nd_region
= to_nd_region(dev
);
273 return sprintf(buf
, "%d\n", nd_region
->ndr_mappings
);
275 static DEVICE_ATTR_RO(mappings
);
277 static ssize_t
nstype_show(struct device
*dev
,
278 struct device_attribute
*attr
, char *buf
)
280 struct nd_region
*nd_region
= to_nd_region(dev
);
282 return sprintf(buf
, "%d\n", nd_region_to_nstype(nd_region
));
284 static DEVICE_ATTR_RO(nstype
);
286 static ssize_t
set_cookie_show(struct device
*dev
,
287 struct device_attribute
*attr
, char *buf
)
289 struct nd_region
*nd_region
= to_nd_region(dev
);
290 struct nd_interleave_set
*nd_set
= nd_region
->nd_set
;
293 if (is_memory(dev
) && nd_set
)
294 /* pass, should be precluded by region_visible */;
299 * The cookie to show depends on which specification of the
300 * labels we are using. If there are not labels then default to
301 * the v1.1 namespace label cookie definition. To read all this
302 * data we need to wait for probing to settle.
305 nvdimm_bus_lock(dev
);
306 wait_nvdimm_bus_probe_idle(dev
);
307 if (nd_region
->ndr_mappings
) {
308 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[0];
309 struct nvdimm_drvdata
*ndd
= to_ndd(nd_mapping
);
312 struct nd_namespace_index
*nsindex
;
314 nsindex
= to_namespace_index(ndd
, ndd
->ns_current
);
315 rc
= sprintf(buf
, "%#llx\n",
316 nd_region_interleave_set_cookie(nd_region
,
320 nvdimm_bus_unlock(dev
);
321 nd_device_unlock(dev
);
325 return sprintf(buf
, "%#llx\n", nd_set
->cookie1
);
327 static DEVICE_ATTR_RO(set_cookie
);
329 resource_size_t
nd_region_available_dpa(struct nd_region
*nd_region
)
331 resource_size_t blk_max_overlap
= 0, available
, overlap
;
334 WARN_ON(!is_nvdimm_bus_locked(&nd_region
->dev
));
338 overlap
= blk_max_overlap
;
339 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
340 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
341 struct nvdimm_drvdata
*ndd
= to_ndd(nd_mapping
);
343 /* if a dimm is disabled the available capacity is zero */
347 if (is_memory(&nd_region
->dev
)) {
348 available
+= nd_pmem_available_dpa(nd_region
,
349 nd_mapping
, &overlap
);
350 if (overlap
> blk_max_overlap
) {
351 blk_max_overlap
= overlap
;
354 } else if (is_nd_blk(&nd_region
->dev
))
355 available
+= nd_blk_available_dpa(nd_region
);
361 resource_size_t
nd_region_allocatable_dpa(struct nd_region
*nd_region
)
363 resource_size_t available
= 0;
366 if (is_memory(&nd_region
->dev
))
367 available
= PHYS_ADDR_MAX
;
369 WARN_ON(!is_nvdimm_bus_locked(&nd_region
->dev
));
370 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
371 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
373 if (is_memory(&nd_region
->dev
))
374 available
= min(available
,
375 nd_pmem_max_contiguous_dpa(nd_region
,
377 else if (is_nd_blk(&nd_region
->dev
))
378 available
+= nd_blk_available_dpa(nd_region
);
380 if (is_memory(&nd_region
->dev
))
381 return available
* nd_region
->ndr_mappings
;
385 static ssize_t
available_size_show(struct device
*dev
,
386 struct device_attribute
*attr
, char *buf
)
388 struct nd_region
*nd_region
= to_nd_region(dev
);
389 unsigned long long available
= 0;
392 * Flush in-flight updates and grab a snapshot of the available
393 * size. Of course, this value is potentially invalidated the
394 * memory nvdimm_bus_lock() is dropped, but that's userspace's
395 * problem to not race itself.
398 nvdimm_bus_lock(dev
);
399 wait_nvdimm_bus_probe_idle(dev
);
400 available
= nd_region_available_dpa(nd_region
);
401 nvdimm_bus_unlock(dev
);
402 nd_device_unlock(dev
);
404 return sprintf(buf
, "%llu\n", available
);
406 static DEVICE_ATTR_RO(available_size
);
408 static ssize_t
max_available_extent_show(struct device
*dev
,
409 struct device_attribute
*attr
, char *buf
)
411 struct nd_region
*nd_region
= to_nd_region(dev
);
412 unsigned long long available
= 0;
415 nvdimm_bus_lock(dev
);
416 wait_nvdimm_bus_probe_idle(dev
);
417 available
= nd_region_allocatable_dpa(nd_region
);
418 nvdimm_bus_unlock(dev
);
419 nd_device_unlock(dev
);
421 return sprintf(buf
, "%llu\n", available
);
423 static DEVICE_ATTR_RO(max_available_extent
);
425 static ssize_t
init_namespaces_show(struct device
*dev
,
426 struct device_attribute
*attr
, char *buf
)
428 struct nd_region_data
*ndrd
= dev_get_drvdata(dev
);
431 nvdimm_bus_lock(dev
);
433 rc
= sprintf(buf
, "%d/%d\n", ndrd
->ns_active
, ndrd
->ns_count
);
436 nvdimm_bus_unlock(dev
);
440 static DEVICE_ATTR_RO(init_namespaces
);
442 static ssize_t
namespace_seed_show(struct device
*dev
,
443 struct device_attribute
*attr
, char *buf
)
445 struct nd_region
*nd_region
= to_nd_region(dev
);
448 nvdimm_bus_lock(dev
);
449 if (nd_region
->ns_seed
)
450 rc
= sprintf(buf
, "%s\n", dev_name(nd_region
->ns_seed
));
452 rc
= sprintf(buf
, "\n");
453 nvdimm_bus_unlock(dev
);
456 static DEVICE_ATTR_RO(namespace_seed
);
458 static ssize_t
btt_seed_show(struct device
*dev
,
459 struct device_attribute
*attr
, char *buf
)
461 struct nd_region
*nd_region
= to_nd_region(dev
);
464 nvdimm_bus_lock(dev
);
465 if (nd_region
->btt_seed
)
466 rc
= sprintf(buf
, "%s\n", dev_name(nd_region
->btt_seed
));
468 rc
= sprintf(buf
, "\n");
469 nvdimm_bus_unlock(dev
);
473 static DEVICE_ATTR_RO(btt_seed
);
475 static ssize_t
pfn_seed_show(struct device
*dev
,
476 struct device_attribute
*attr
, char *buf
)
478 struct nd_region
*nd_region
= to_nd_region(dev
);
481 nvdimm_bus_lock(dev
);
482 if (nd_region
->pfn_seed
)
483 rc
= sprintf(buf
, "%s\n", dev_name(nd_region
->pfn_seed
));
485 rc
= sprintf(buf
, "\n");
486 nvdimm_bus_unlock(dev
);
490 static DEVICE_ATTR_RO(pfn_seed
);
492 static ssize_t
dax_seed_show(struct device
*dev
,
493 struct device_attribute
*attr
, char *buf
)
495 struct nd_region
*nd_region
= to_nd_region(dev
);
498 nvdimm_bus_lock(dev
);
499 if (nd_region
->dax_seed
)
500 rc
= sprintf(buf
, "%s\n", dev_name(nd_region
->dax_seed
));
502 rc
= sprintf(buf
, "\n");
503 nvdimm_bus_unlock(dev
);
507 static DEVICE_ATTR_RO(dax_seed
);
509 static ssize_t
read_only_show(struct device
*dev
,
510 struct device_attribute
*attr
, char *buf
)
512 struct nd_region
*nd_region
= to_nd_region(dev
);
514 return sprintf(buf
, "%d\n", nd_region
->ro
);
517 static ssize_t
read_only_store(struct device
*dev
,
518 struct device_attribute
*attr
, const char *buf
, size_t len
)
521 int rc
= strtobool(buf
, &ro
);
522 struct nd_region
*nd_region
= to_nd_region(dev
);
530 static DEVICE_ATTR_RW(read_only
);
532 static ssize_t
region_badblocks_show(struct device
*dev
,
533 struct device_attribute
*attr
, char *buf
)
535 struct nd_region
*nd_region
= to_nd_region(dev
);
540 rc
= badblocks_show(&nd_region
->bb
, buf
, 0);
543 nd_device_unlock(dev
);
547 static DEVICE_ATTR(badblocks
, 0444, region_badblocks_show
, NULL
);
549 static ssize_t
resource_show(struct device
*dev
,
550 struct device_attribute
*attr
, char *buf
)
552 struct nd_region
*nd_region
= to_nd_region(dev
);
554 return sprintf(buf
, "%#llx\n", nd_region
->ndr_start
);
556 static DEVICE_ATTR(resource
, 0400, resource_show
, NULL
);
558 static ssize_t
persistence_domain_show(struct device
*dev
,
559 struct device_attribute
*attr
, char *buf
)
561 struct nd_region
*nd_region
= to_nd_region(dev
);
563 if (test_bit(ND_REGION_PERSIST_CACHE
, &nd_region
->flags
))
564 return sprintf(buf
, "cpu_cache\n");
565 else if (test_bit(ND_REGION_PERSIST_MEMCTRL
, &nd_region
->flags
))
566 return sprintf(buf
, "memory_controller\n");
568 return sprintf(buf
, "\n");
570 static DEVICE_ATTR_RO(persistence_domain
);
572 static struct attribute
*nd_region_attributes
[] = {
574 &dev_attr_nstype
.attr
,
575 &dev_attr_mappings
.attr
,
576 &dev_attr_btt_seed
.attr
,
577 &dev_attr_pfn_seed
.attr
,
578 &dev_attr_dax_seed
.attr
,
579 &dev_attr_deep_flush
.attr
,
580 &dev_attr_read_only
.attr
,
581 &dev_attr_set_cookie
.attr
,
582 &dev_attr_available_size
.attr
,
583 &dev_attr_max_available_extent
.attr
,
584 &dev_attr_namespace_seed
.attr
,
585 &dev_attr_init_namespaces
.attr
,
586 &dev_attr_badblocks
.attr
,
587 &dev_attr_resource
.attr
,
588 &dev_attr_persistence_domain
.attr
,
592 static umode_t
region_visible(struct kobject
*kobj
, struct attribute
*a
, int n
)
594 struct device
*dev
= container_of(kobj
, typeof(*dev
), kobj
);
595 struct nd_region
*nd_region
= to_nd_region(dev
);
596 struct nd_interleave_set
*nd_set
= nd_region
->nd_set
;
597 int type
= nd_region_to_nstype(nd_region
);
599 if (!is_memory(dev
) && a
== &dev_attr_pfn_seed
.attr
)
602 if (!is_memory(dev
) && a
== &dev_attr_dax_seed
.attr
)
605 if (!is_memory(dev
) && a
== &dev_attr_badblocks
.attr
)
608 if (a
== &dev_attr_resource
.attr
&& !is_memory(dev
))
611 if (a
== &dev_attr_deep_flush
.attr
) {
612 int has_flush
= nvdimm_has_flush(nd_region
);
616 else if (has_flush
== 0)
622 if (a
== &dev_attr_persistence_domain
.attr
) {
623 if ((nd_region
->flags
& (BIT(ND_REGION_PERSIST_CACHE
)
624 | BIT(ND_REGION_PERSIST_MEMCTRL
))) == 0)
629 if (a
!= &dev_attr_set_cookie
.attr
630 && a
!= &dev_attr_available_size
.attr
)
633 if ((type
== ND_DEVICE_NAMESPACE_PMEM
634 || type
== ND_DEVICE_NAMESPACE_BLK
)
635 && a
== &dev_attr_available_size
.attr
)
637 else if (is_memory(dev
) && nd_set
)
643 static ssize_t
mappingN(struct device
*dev
, char *buf
, int n
)
645 struct nd_region
*nd_region
= to_nd_region(dev
);
646 struct nd_mapping
*nd_mapping
;
647 struct nvdimm
*nvdimm
;
649 if (n
>= nd_region
->ndr_mappings
)
651 nd_mapping
= &nd_region
->mapping
[n
];
652 nvdimm
= nd_mapping
->nvdimm
;
654 return sprintf(buf
, "%s,%llu,%llu,%d\n", dev_name(&nvdimm
->dev
),
655 nd_mapping
->start
, nd_mapping
->size
,
656 nd_mapping
->position
);
659 #define REGION_MAPPING(idx) \
660 static ssize_t mapping##idx##_show(struct device *dev, \
661 struct device_attribute *attr, char *buf) \
663 return mappingN(dev, buf, idx); \
665 static DEVICE_ATTR_RO(mapping##idx)
668 * 32 should be enough for a while, even in the presence of socket
669 * interleave a 32-way interleave set is a degenerate case.
704 static umode_t
mapping_visible(struct kobject
*kobj
, struct attribute
*a
, int n
)
706 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
707 struct nd_region
*nd_region
= to_nd_region(dev
);
709 if (n
< nd_region
->ndr_mappings
)
714 static struct attribute
*mapping_attributes
[] = {
715 &dev_attr_mapping0
.attr
,
716 &dev_attr_mapping1
.attr
,
717 &dev_attr_mapping2
.attr
,
718 &dev_attr_mapping3
.attr
,
719 &dev_attr_mapping4
.attr
,
720 &dev_attr_mapping5
.attr
,
721 &dev_attr_mapping6
.attr
,
722 &dev_attr_mapping7
.attr
,
723 &dev_attr_mapping8
.attr
,
724 &dev_attr_mapping9
.attr
,
725 &dev_attr_mapping10
.attr
,
726 &dev_attr_mapping11
.attr
,
727 &dev_attr_mapping12
.attr
,
728 &dev_attr_mapping13
.attr
,
729 &dev_attr_mapping14
.attr
,
730 &dev_attr_mapping15
.attr
,
731 &dev_attr_mapping16
.attr
,
732 &dev_attr_mapping17
.attr
,
733 &dev_attr_mapping18
.attr
,
734 &dev_attr_mapping19
.attr
,
735 &dev_attr_mapping20
.attr
,
736 &dev_attr_mapping21
.attr
,
737 &dev_attr_mapping22
.attr
,
738 &dev_attr_mapping23
.attr
,
739 &dev_attr_mapping24
.attr
,
740 &dev_attr_mapping25
.attr
,
741 &dev_attr_mapping26
.attr
,
742 &dev_attr_mapping27
.attr
,
743 &dev_attr_mapping28
.attr
,
744 &dev_attr_mapping29
.attr
,
745 &dev_attr_mapping30
.attr
,
746 &dev_attr_mapping31
.attr
,
750 static const struct attribute_group nd_mapping_attribute_group
= {
751 .is_visible
= mapping_visible
,
752 .attrs
= mapping_attributes
,
755 static const struct attribute_group nd_region_attribute_group
= {
756 .attrs
= nd_region_attributes
,
757 .is_visible
= region_visible
,
760 static const struct attribute_group
*nd_region_attribute_groups
[] = {
761 &nd_device_attribute_group
,
762 &nd_region_attribute_group
,
763 &nd_numa_attribute_group
,
764 &nd_mapping_attribute_group
,
768 static const struct device_type nd_blk_device_type
= {
770 .release
= nd_region_release
,
771 .groups
= nd_region_attribute_groups
,
774 static const struct device_type nd_pmem_device_type
= {
776 .release
= nd_region_release
,
777 .groups
= nd_region_attribute_groups
,
780 static const struct device_type nd_volatile_device_type
= {
781 .name
= "nd_volatile",
782 .release
= nd_region_release
,
783 .groups
= nd_region_attribute_groups
,
786 bool is_nd_pmem(struct device
*dev
)
788 return dev
? dev
->type
== &nd_pmem_device_type
: false;
791 bool is_nd_blk(struct device
*dev
)
793 return dev
? dev
->type
== &nd_blk_device_type
: false;
796 bool is_nd_volatile(struct device
*dev
)
798 return dev
? dev
->type
== &nd_volatile_device_type
: false;
801 u64
nd_region_interleave_set_cookie(struct nd_region
*nd_region
,
802 struct nd_namespace_index
*nsindex
)
804 struct nd_interleave_set
*nd_set
= nd_region
->nd_set
;
809 if (nsindex
&& __le16_to_cpu(nsindex
->major
) == 1
810 && __le16_to_cpu(nsindex
->minor
) == 1)
811 return nd_set
->cookie1
;
812 return nd_set
->cookie2
;
815 u64
nd_region_interleave_set_altcookie(struct nd_region
*nd_region
)
817 struct nd_interleave_set
*nd_set
= nd_region
->nd_set
;
820 return nd_set
->altcookie
;
824 void nd_mapping_free_labels(struct nd_mapping
*nd_mapping
)
826 struct nd_label_ent
*label_ent
, *e
;
828 lockdep_assert_held(&nd_mapping
->lock
);
829 list_for_each_entry_safe(label_ent
, e
, &nd_mapping
->labels
, list
) {
830 list_del(&label_ent
->list
);
836 * When a namespace is activated create new seeds for the next
837 * namespace, or namespace-personality to be configured.
839 void nd_region_advance_seeds(struct nd_region
*nd_region
, struct device
*dev
)
841 nvdimm_bus_lock(dev
);
842 if (nd_region
->ns_seed
== dev
) {
843 nd_region_create_ns_seed(nd_region
);
844 } else if (is_nd_btt(dev
)) {
845 struct nd_btt
*nd_btt
= to_nd_btt(dev
);
847 if (nd_region
->btt_seed
== dev
)
848 nd_region_create_btt_seed(nd_region
);
849 if (nd_region
->ns_seed
== &nd_btt
->ndns
->dev
)
850 nd_region_create_ns_seed(nd_region
);
851 } else if (is_nd_pfn(dev
)) {
852 struct nd_pfn
*nd_pfn
= to_nd_pfn(dev
);
854 if (nd_region
->pfn_seed
== dev
)
855 nd_region_create_pfn_seed(nd_region
);
856 if (nd_region
->ns_seed
== &nd_pfn
->ndns
->dev
)
857 nd_region_create_ns_seed(nd_region
);
858 } else if (is_nd_dax(dev
)) {
859 struct nd_dax
*nd_dax
= to_nd_dax(dev
);
861 if (nd_region
->dax_seed
== dev
)
862 nd_region_create_dax_seed(nd_region
);
863 if (nd_region
->ns_seed
== &nd_dax
->nd_pfn
.ndns
->dev
)
864 nd_region_create_ns_seed(nd_region
);
866 nvdimm_bus_unlock(dev
);
869 int nd_blk_region_init(struct nd_region
*nd_region
)
871 struct device
*dev
= &nd_region
->dev
;
872 struct nvdimm_bus
*nvdimm_bus
= walk_to_nvdimm_bus(dev
);
877 if (nd_region
->ndr_mappings
< 1) {
878 dev_dbg(dev
, "invalid BLK region\n");
882 return to_nd_blk_region(dev
)->enable(nvdimm_bus
, dev
);
886 * nd_region_acquire_lane - allocate and lock a lane
887 * @nd_region: region id and number of lanes possible
889 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
890 * We optimize for the common case where there are 256 lanes, one
891 * per-cpu. For larger systems we need to lock to share lanes. For now
892 * this implementation assumes the cost of maintaining an allocator for
893 * free lanes is on the order of the lock hold time, so it implements a
894 * static lane = cpu % num_lanes mapping.
896 * In the case of a BTT instance on top of a BLK namespace a lane may be
897 * acquired recursively. We lock on the first instance.
899 * In the case of a BTT instance on top of PMEM, we only acquire a lane
900 * for the BTT metadata updates.
902 unsigned int nd_region_acquire_lane(struct nd_region
*nd_region
)
904 unsigned int cpu
, lane
;
907 if (nd_region
->num_lanes
< nr_cpu_ids
) {
908 struct nd_percpu_lane
*ndl_lock
, *ndl_count
;
910 lane
= cpu
% nd_region
->num_lanes
;
911 ndl_count
= per_cpu_ptr(nd_region
->lane
, cpu
);
912 ndl_lock
= per_cpu_ptr(nd_region
->lane
, lane
);
913 if (ndl_count
->count
++ == 0)
914 spin_lock(&ndl_lock
->lock
);
920 EXPORT_SYMBOL(nd_region_acquire_lane
);
922 void nd_region_release_lane(struct nd_region
*nd_region
, unsigned int lane
)
924 if (nd_region
->num_lanes
< nr_cpu_ids
) {
925 unsigned int cpu
= get_cpu();
926 struct nd_percpu_lane
*ndl_lock
, *ndl_count
;
928 ndl_count
= per_cpu_ptr(nd_region
->lane
, cpu
);
929 ndl_lock
= per_cpu_ptr(nd_region
->lane
, lane
);
930 if (--ndl_count
->count
== 0)
931 spin_unlock(&ndl_lock
->lock
);
936 EXPORT_SYMBOL(nd_region_release_lane
);
938 static struct nd_region
*nd_region_create(struct nvdimm_bus
*nvdimm_bus
,
939 struct nd_region_desc
*ndr_desc
,
940 const struct device_type
*dev_type
, const char *caller
)
942 struct nd_region
*nd_region
;
948 for (i
= 0; i
< ndr_desc
->num_mappings
; i
++) {
949 struct nd_mapping_desc
*mapping
= &ndr_desc
->mapping
[i
];
950 struct nvdimm
*nvdimm
= mapping
->nvdimm
;
952 if ((mapping
->start
| mapping
->size
) % PAGE_SIZE
) {
953 dev_err(&nvdimm_bus
->dev
,
954 "%s: %s mapping%d is not %ld aligned\n",
955 caller
, dev_name(&nvdimm
->dev
), i
, PAGE_SIZE
);
959 if (test_bit(NDD_UNARMED
, &nvdimm
->flags
))
962 if (test_bit(NDD_NOBLK
, &nvdimm
->flags
)
963 && dev_type
== &nd_blk_device_type
) {
964 dev_err(&nvdimm_bus
->dev
, "%s: %s mapping%d is not BLK capable\n",
965 caller
, dev_name(&nvdimm
->dev
), i
);
970 if (dev_type
== &nd_blk_device_type
) {
971 struct nd_blk_region_desc
*ndbr_desc
;
972 struct nd_blk_region
*ndbr
;
974 ndbr_desc
= to_blk_region_desc(ndr_desc
);
975 ndbr
= kzalloc(sizeof(*ndbr
) + sizeof(struct nd_mapping
)
976 * ndr_desc
->num_mappings
,
979 nd_region
= &ndbr
->nd_region
;
980 ndbr
->enable
= ndbr_desc
->enable
;
981 ndbr
->do_io
= ndbr_desc
->do_io
;
985 nd_region
= kzalloc(struct_size(nd_region
, mapping
,
986 ndr_desc
->num_mappings
),
988 region_buf
= nd_region
;
993 nd_region
->id
= memregion_alloc(GFP_KERNEL
);
994 if (nd_region
->id
< 0)
997 nd_region
->lane
= alloc_percpu(struct nd_percpu_lane
);
998 if (!nd_region
->lane
)
1001 for (i
= 0; i
< nr_cpu_ids
; i
++) {
1002 struct nd_percpu_lane
*ndl
;
1004 ndl
= per_cpu_ptr(nd_region
->lane
, i
);
1005 spin_lock_init(&ndl
->lock
);
1009 for (i
= 0; i
< ndr_desc
->num_mappings
; i
++) {
1010 struct nd_mapping_desc
*mapping
= &ndr_desc
->mapping
[i
];
1011 struct nvdimm
*nvdimm
= mapping
->nvdimm
;
1013 nd_region
->mapping
[i
].nvdimm
= nvdimm
;
1014 nd_region
->mapping
[i
].start
= mapping
->start
;
1015 nd_region
->mapping
[i
].size
= mapping
->size
;
1016 nd_region
->mapping
[i
].position
= mapping
->position
;
1017 INIT_LIST_HEAD(&nd_region
->mapping
[i
].labels
);
1018 mutex_init(&nd_region
->mapping
[i
].lock
);
1020 get_device(&nvdimm
->dev
);
1022 nd_region
->ndr_mappings
= ndr_desc
->num_mappings
;
1023 nd_region
->provider_data
= ndr_desc
->provider_data
;
1024 nd_region
->nd_set
= ndr_desc
->nd_set
;
1025 nd_region
->num_lanes
= ndr_desc
->num_lanes
;
1026 nd_region
->flags
= ndr_desc
->flags
;
1028 nd_region
->numa_node
= ndr_desc
->numa_node
;
1029 nd_region
->target_node
= ndr_desc
->target_node
;
1030 ida_init(&nd_region
->ns_ida
);
1031 ida_init(&nd_region
->btt_ida
);
1032 ida_init(&nd_region
->pfn_ida
);
1033 ida_init(&nd_region
->dax_ida
);
1034 dev
= &nd_region
->dev
;
1035 dev_set_name(dev
, "region%d", nd_region
->id
);
1036 dev
->parent
= &nvdimm_bus
->dev
;
1037 dev
->type
= dev_type
;
1038 dev
->groups
= ndr_desc
->attr_groups
;
1039 dev
->of_node
= ndr_desc
->of_node
;
1040 nd_region
->ndr_size
= resource_size(ndr_desc
->res
);
1041 nd_region
->ndr_start
= ndr_desc
->res
->start
;
1042 if (ndr_desc
->flush
)
1043 nd_region
->flush
= ndr_desc
->flush
;
1045 nd_region
->flush
= NULL
;
1047 nd_device_register(dev
);
1052 memregion_free(nd_region
->id
);
1058 struct nd_region
*nvdimm_pmem_region_create(struct nvdimm_bus
*nvdimm_bus
,
1059 struct nd_region_desc
*ndr_desc
)
1061 ndr_desc
->num_lanes
= ND_MAX_LANES
;
1062 return nd_region_create(nvdimm_bus
, ndr_desc
, &nd_pmem_device_type
,
1065 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create
);
1067 struct nd_region
*nvdimm_blk_region_create(struct nvdimm_bus
*nvdimm_bus
,
1068 struct nd_region_desc
*ndr_desc
)
1070 if (ndr_desc
->num_mappings
> 1)
1072 ndr_desc
->num_lanes
= min(ndr_desc
->num_lanes
, ND_MAX_LANES
);
1073 return nd_region_create(nvdimm_bus
, ndr_desc
, &nd_blk_device_type
,
1076 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create
);
1078 struct nd_region
*nvdimm_volatile_region_create(struct nvdimm_bus
*nvdimm_bus
,
1079 struct nd_region_desc
*ndr_desc
)
1081 ndr_desc
->num_lanes
= ND_MAX_LANES
;
1082 return nd_region_create(nvdimm_bus
, ndr_desc
, &nd_volatile_device_type
,
1085 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create
);
1087 int nvdimm_flush(struct nd_region
*nd_region
, struct bio
*bio
)
1091 if (!nd_region
->flush
)
1092 rc
= generic_nvdimm_flush(nd_region
);
1094 if (nd_region
->flush(nd_region
, bio
))
1101 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1102 * @nd_region: blk or interleaved pmem region
1104 int generic_nvdimm_flush(struct nd_region
*nd_region
)
1106 struct nd_region_data
*ndrd
= dev_get_drvdata(&nd_region
->dev
);
1110 * Try to encourage some diversity in flush hint addresses
1111 * across cpus assuming a limited number of flush hints.
1113 idx
= this_cpu_read(flush_idx
);
1114 idx
= this_cpu_add_return(flush_idx
, hash_32(current
->pid
+ idx
, 8));
1117 * The first wmb() is needed to 'sfence' all previous writes
1118 * such that they are architecturally visible for the platform
1119 * buffer flush. Note that we've already arranged for pmem
1120 * writes to avoid the cache via memcpy_flushcache(). The final
1121 * wmb() ensures ordering for the NVDIMM flush write.
1124 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++)
1125 if (ndrd_get_flush_wpq(ndrd
, i
, 0))
1126 writeq(1, ndrd_get_flush_wpq(ndrd
, i
, idx
));
1131 EXPORT_SYMBOL_GPL(nvdimm_flush
);
1134 * nvdimm_has_flush - determine write flushing requirements
1135 * @nd_region: blk or interleaved pmem region
1137 * Returns 1 if writes require flushing
1138 * Returns 0 if writes do not require flushing
1139 * Returns -ENXIO if flushing capability can not be determined
1141 int nvdimm_has_flush(struct nd_region
*nd_region
)
1145 /* no nvdimm or pmem api == flushing capability unknown */
1146 if (nd_region
->ndr_mappings
== 0
1147 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API
))
1150 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
1151 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
1152 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
1154 /* flush hints present / available */
1155 if (nvdimm
->num_flush
)
1160 * The platform defines dimm devices without hints, assume
1161 * platform persistence mechanism like ADR
1165 EXPORT_SYMBOL_GPL(nvdimm_has_flush
);
1167 int nvdimm_has_cache(struct nd_region
*nd_region
)
1169 return is_nd_pmem(&nd_region
->dev
) &&
1170 !test_bit(ND_REGION_PERSIST_CACHE
, &nd_region
->flags
);
1172 EXPORT_SYMBOL_GPL(nvdimm_has_cache
);
1174 bool is_nvdimm_sync(struct nd_region
*nd_region
)
1176 if (is_nd_volatile(&nd_region
->dev
))
1179 return is_nd_pmem(&nd_region
->dev
) &&
1180 !test_bit(ND_REGION_ASYNC
, &nd_region
->flags
);
1182 EXPORT_SYMBOL_GPL(is_nvdimm_sync
);
1184 struct conflict_context
{
1185 struct nd_region
*nd_region
;
1186 resource_size_t start
, size
;
1189 static int region_conflict(struct device
*dev
, void *data
)
1191 struct nd_region
*nd_region
;
1192 struct conflict_context
*ctx
= data
;
1193 resource_size_t res_end
, region_end
, region_start
;
1195 if (!is_memory(dev
))
1198 nd_region
= to_nd_region(dev
);
1199 if (nd_region
== ctx
->nd_region
)
1202 res_end
= ctx
->start
+ ctx
->size
;
1203 region_start
= nd_region
->ndr_start
;
1204 region_end
= region_start
+ nd_region
->ndr_size
;
1205 if (ctx
->start
>= region_start
&& ctx
->start
< region_end
)
1207 if (res_end
> region_start
&& res_end
<= region_end
)
1212 int nd_region_conflict(struct nd_region
*nd_region
, resource_size_t start
,
1213 resource_size_t size
)
1215 struct nvdimm_bus
*nvdimm_bus
= walk_to_nvdimm_bus(&nd_region
->dev
);
1216 struct conflict_context ctx
= {
1217 .nd_region
= nd_region
,
1222 return device_for_each_child(&nvdimm_bus
->dev
, &ctx
, region_conflict
);