1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
19 /* *************************** Data Structures/Defines ****************** */
22 enum nvme_fc_queue_flags
{
23 NVME_FC_Q_CONNECTED
= 0,
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
29 struct nvme_fc_queue
{
30 struct nvme_fc_ctrl
*ctrl
;
32 struct blk_mq_hw_ctx
*hctx
;
34 size_t cmnd_capsule_len
;
43 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
45 enum nvme_fcop_flags
{
46 FCOP_FLAGS_TERMIO
= (1 << 0),
47 FCOP_FLAGS_AEN
= (1 << 1),
50 struct nvmefc_ls_req_op
{
51 struct nvmefc_ls_req ls_req
;
53 struct nvme_fc_rport
*rport
;
54 struct nvme_fc_queue
*queue
;
59 struct completion ls_done
;
60 struct list_head lsreq_list
; /* rport->ls_req_list */
64 enum nvme_fcpop_state
{
65 FCPOP_STATE_UNINIT
= 0,
67 FCPOP_STATE_ACTIVE
= 2,
68 FCPOP_STATE_ABORTED
= 3,
69 FCPOP_STATE_COMPLETE
= 4,
72 struct nvme_fc_fcp_op
{
73 struct nvme_request nreq
; /*
76 * the 1st element in the
81 struct nvmefc_fcp_req fcp_req
;
83 struct nvme_fc_ctrl
*ctrl
;
84 struct nvme_fc_queue
*queue
;
92 struct nvme_fc_cmd_iu cmd_iu
;
93 struct nvme_fc_ersp_iu rsp_iu
;
96 struct nvme_fcp_op_w_sgl
{
97 struct nvme_fc_fcp_op op
;
98 struct scatterlist sgl
[NVME_INLINE_SG_CNT
];
102 struct nvme_fc_lport
{
103 struct nvme_fc_local_port localport
;
106 struct list_head port_list
; /* nvme_fc_port_list */
107 struct list_head endp_list
;
108 struct device
*dev
; /* physical device for dma */
109 struct nvme_fc_port_template
*ops
;
111 atomic_t act_rport_cnt
;
112 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
114 struct nvme_fc_rport
{
115 struct nvme_fc_remote_port remoteport
;
117 struct list_head endp_list
; /* for lport->endp_list */
118 struct list_head ctrl_list
;
119 struct list_head ls_req_list
;
120 struct list_head disc_list
;
121 struct device
*dev
; /* physical device for dma */
122 struct nvme_fc_lport
*lport
;
125 atomic_t act_ctrl_cnt
;
126 unsigned long dev_loss_end
;
127 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
129 enum nvme_fcctrl_flags
{
130 FCCTRL_TERMIO
= (1 << 0),
133 struct nvme_fc_ctrl
{
135 struct nvme_fc_queue
*queues
;
137 struct nvme_fc_lport
*lport
;
138 struct nvme_fc_rport
*rport
;
143 atomic_t err_work_active
;
146 struct list_head ctrl_list
; /* rport->ctrl_list */
148 struct blk_mq_tag_set admin_tag_set
;
149 struct blk_mq_tag_set tag_set
;
151 struct delayed_work connect_work
;
152 struct work_struct err_work
;
157 wait_queue_head_t ioabort_wait
;
159 struct nvme_fc_fcp_op aen_ops
[NVME_NR_AEN_COMMANDS
];
161 struct nvme_ctrl ctrl
;
164 static inline struct nvme_fc_ctrl
*
165 to_fc_ctrl(struct nvme_ctrl
*ctrl
)
167 return container_of(ctrl
, struct nvme_fc_ctrl
, ctrl
);
170 static inline struct nvme_fc_lport
*
171 localport_to_lport(struct nvme_fc_local_port
*portptr
)
173 return container_of(portptr
, struct nvme_fc_lport
, localport
);
176 static inline struct nvme_fc_rport
*
177 remoteport_to_rport(struct nvme_fc_remote_port
*portptr
)
179 return container_of(portptr
, struct nvme_fc_rport
, remoteport
);
182 static inline struct nvmefc_ls_req_op
*
183 ls_req_to_lsop(struct nvmefc_ls_req
*lsreq
)
185 return container_of(lsreq
, struct nvmefc_ls_req_op
, ls_req
);
188 static inline struct nvme_fc_fcp_op
*
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req
*fcpreq
)
191 return container_of(fcpreq
, struct nvme_fc_fcp_op
, fcp_req
);
196 /* *************************** Globals **************************** */
199 static DEFINE_SPINLOCK(nvme_fc_lock
);
201 static LIST_HEAD(nvme_fc_lport_list
);
202 static DEFINE_IDA(nvme_fc_local_port_cnt
);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt
);
205 static struct workqueue_struct
*nvme_fc_wq
;
207 static bool nvme_fc_waiting_to_unload
;
208 static DECLARE_COMPLETION(nvme_fc_unload_proceed
);
211 * These items are short-term. They will eventually be moved into
212 * a generic FC class. See comments in module init.
214 static struct device
*fc_udev_device
;
217 /* *********************** FC-NVME Port Management ************************ */
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl
*,
220 struct nvme_fc_queue
*, unsigned int);
223 nvme_fc_free_lport(struct kref
*ref
)
225 struct nvme_fc_lport
*lport
=
226 container_of(ref
, struct nvme_fc_lport
, ref
);
229 WARN_ON(lport
->localport
.port_state
!= FC_OBJSTATE_DELETED
);
230 WARN_ON(!list_empty(&lport
->endp_list
));
232 /* remove from transport list */
233 spin_lock_irqsave(&nvme_fc_lock
, flags
);
234 list_del(&lport
->port_list
);
235 if (nvme_fc_waiting_to_unload
&& list_empty(&nvme_fc_lport_list
))
236 complete(&nvme_fc_unload_proceed
);
237 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
239 ida_simple_remove(&nvme_fc_local_port_cnt
, lport
->localport
.port_num
);
240 ida_destroy(&lport
->endp_cnt
);
242 put_device(lport
->dev
);
248 nvme_fc_lport_put(struct nvme_fc_lport
*lport
)
250 kref_put(&lport
->ref
, nvme_fc_free_lport
);
254 nvme_fc_lport_get(struct nvme_fc_lport
*lport
)
256 return kref_get_unless_zero(&lport
->ref
);
260 static struct nvme_fc_lport
*
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info
*pinfo
,
262 struct nvme_fc_port_template
*ops
,
265 struct nvme_fc_lport
*lport
;
268 spin_lock_irqsave(&nvme_fc_lock
, flags
);
270 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
271 if (lport
->localport
.node_name
!= pinfo
->node_name
||
272 lport
->localport
.port_name
!= pinfo
->port_name
)
275 if (lport
->dev
!= dev
) {
276 lport
= ERR_PTR(-EXDEV
);
280 if (lport
->localport
.port_state
!= FC_OBJSTATE_DELETED
) {
281 lport
= ERR_PTR(-EEXIST
);
285 if (!nvme_fc_lport_get(lport
)) {
287 * fails if ref cnt already 0. If so,
288 * act as if lport already deleted
294 /* resume the lport */
297 lport
->localport
.port_role
= pinfo
->port_role
;
298 lport
->localport
.port_id
= pinfo
->port_id
;
299 lport
->localport
.port_state
= FC_OBJSTATE_ONLINE
;
301 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
309 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
315 * nvme_fc_register_localport - transport entry point called by an
316 * LLDD to register the existence of a NVME
318 * @pinfo: pointer to information about the port to be registered
319 * @template: LLDD entrypoints and operational parameters for the port
320 * @dev: physical hardware device node port corresponds to. Will be
321 * used for DMA mappings
322 * @portptr: pointer to a local port pointer. Upon success, the routine
323 * will allocate a nvme_fc_local_port structure and place its
324 * address in the local port pointer. Upon failure, local port
325 * pointer will be set to 0.
328 * a completion status. Must be 0 upon success; a negative errno
329 * (ex: -ENXIO) upon failure.
332 nvme_fc_register_localport(struct nvme_fc_port_info
*pinfo
,
333 struct nvme_fc_port_template
*template,
335 struct nvme_fc_local_port
**portptr
)
337 struct nvme_fc_lport
*newrec
;
341 if (!template->localport_delete
|| !template->remoteport_delete
||
342 !template->ls_req
|| !template->fcp_io
||
343 !template->ls_abort
|| !template->fcp_abort
||
344 !template->max_hw_queues
|| !template->max_sgl_segments
||
345 !template->max_dif_sgl_segments
|| !template->dma_boundary
||
348 goto out_reghost_failed
;
352 * look to see if there is already a localport that had been
353 * deregistered and in the process of waiting for all the
354 * references to fully be removed. If the references haven't
355 * expired, we can simply re-enable the localport. Remoteports
356 * and controller reconnections should resume naturally.
358 newrec
= nvme_fc_attach_to_unreg_lport(pinfo
, template, dev
);
360 /* found an lport, but something about its state is bad */
361 if (IS_ERR(newrec
)) {
362 ret
= PTR_ERR(newrec
);
363 goto out_reghost_failed
;
365 /* found existing lport, which was resumed */
367 *portptr
= &newrec
->localport
;
371 /* nothing found - allocate a new localport struct */
373 newrec
= kmalloc((sizeof(*newrec
) + template->local_priv_sz
),
377 goto out_reghost_failed
;
380 idx
= ida_simple_get(&nvme_fc_local_port_cnt
, 0, 0, GFP_KERNEL
);
386 if (!get_device(dev
) && dev
) {
391 INIT_LIST_HEAD(&newrec
->port_list
);
392 INIT_LIST_HEAD(&newrec
->endp_list
);
393 kref_init(&newrec
->ref
);
394 atomic_set(&newrec
->act_rport_cnt
, 0);
395 newrec
->ops
= template;
397 ida_init(&newrec
->endp_cnt
);
398 newrec
->localport
.private = &newrec
[1];
399 newrec
->localport
.node_name
= pinfo
->node_name
;
400 newrec
->localport
.port_name
= pinfo
->port_name
;
401 newrec
->localport
.port_role
= pinfo
->port_role
;
402 newrec
->localport
.port_id
= pinfo
->port_id
;
403 newrec
->localport
.port_state
= FC_OBJSTATE_ONLINE
;
404 newrec
->localport
.port_num
= idx
;
406 spin_lock_irqsave(&nvme_fc_lock
, flags
);
407 list_add_tail(&newrec
->port_list
, &nvme_fc_lport_list
);
408 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
411 dma_set_seg_boundary(dev
, template->dma_boundary
);
413 *portptr
= &newrec
->localport
;
417 ida_simple_remove(&nvme_fc_local_port_cnt
, idx
);
425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport
);
428 * nvme_fc_unregister_localport - transport entry point called by an
429 * LLDD to deregister/remove a previously
430 * registered a NVME host FC port.
431 * @portptr: pointer to the (registered) local port that is to be deregistered.
434 * a completion status. Must be 0 upon success; a negative errno
435 * (ex: -ENXIO) upon failure.
438 nvme_fc_unregister_localport(struct nvme_fc_local_port
*portptr
)
440 struct nvme_fc_lport
*lport
= localport_to_lport(portptr
);
446 spin_lock_irqsave(&nvme_fc_lock
, flags
);
448 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
449 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
452 portptr
->port_state
= FC_OBJSTATE_DELETED
;
454 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
456 if (atomic_read(&lport
->act_rport_cnt
) == 0)
457 lport
->ops
->localport_delete(&lport
->localport
);
459 nvme_fc_lport_put(lport
);
463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport
);
466 * TRADDR strings, per FC-NVME are fixed format:
467 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
468 * udev event will only differ by prefix of what field is
470 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
471 * 19 + 43 + null_fudge = 64 characters
473 #define FCNVME_TRADDR_LENGTH 64
476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport
*lport
,
477 struct nvme_fc_rport
*rport
)
479 char hostaddr
[FCNVME_TRADDR_LENGTH
]; /* NVMEFC_HOST_TRADDR=...*/
480 char tgtaddr
[FCNVME_TRADDR_LENGTH
]; /* NVMEFC_TRADDR=...*/
481 char *envp
[4] = { "FC_EVENT=nvmediscovery", hostaddr
, tgtaddr
, NULL
};
483 if (!(rport
->remoteport
.port_role
& FC_PORT_ROLE_NVME_DISCOVERY
))
486 snprintf(hostaddr
, sizeof(hostaddr
),
487 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
488 lport
->localport
.node_name
, lport
->localport
.port_name
);
489 snprintf(tgtaddr
, sizeof(tgtaddr
),
490 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
491 rport
->remoteport
.node_name
, rport
->remoteport
.port_name
);
492 kobject_uevent_env(&fc_udev_device
->kobj
, KOBJ_CHANGE
, envp
);
496 nvme_fc_free_rport(struct kref
*ref
)
498 struct nvme_fc_rport
*rport
=
499 container_of(ref
, struct nvme_fc_rport
, ref
);
500 struct nvme_fc_lport
*lport
=
501 localport_to_lport(rport
->remoteport
.localport
);
504 WARN_ON(rport
->remoteport
.port_state
!= FC_OBJSTATE_DELETED
);
505 WARN_ON(!list_empty(&rport
->ctrl_list
));
507 /* remove from lport list */
508 spin_lock_irqsave(&nvme_fc_lock
, flags
);
509 list_del(&rport
->endp_list
);
510 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
512 WARN_ON(!list_empty(&rport
->disc_list
));
513 ida_simple_remove(&lport
->endp_cnt
, rport
->remoteport
.port_num
);
517 nvme_fc_lport_put(lport
);
521 nvme_fc_rport_put(struct nvme_fc_rport
*rport
)
523 kref_put(&rport
->ref
, nvme_fc_free_rport
);
527 nvme_fc_rport_get(struct nvme_fc_rport
*rport
)
529 return kref_get_unless_zero(&rport
->ref
);
533 nvme_fc_resume_controller(struct nvme_fc_ctrl
*ctrl
)
535 switch (ctrl
->ctrl
.state
) {
537 case NVME_CTRL_CONNECTING
:
539 * As all reconnects were suppressed, schedule a
542 dev_info(ctrl
->ctrl
.device
,
543 "NVME-FC{%d}: connectivity re-established. "
544 "Attempting reconnect\n", ctrl
->cnum
);
546 queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, 0);
549 case NVME_CTRL_RESETTING
:
551 * Controller is already in the process of terminating the
552 * association. No need to do anything further. The reconnect
553 * step will naturally occur after the reset completes.
558 /* no action to take - let it delete */
563 static struct nvme_fc_rport
*
564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport
*lport
,
565 struct nvme_fc_port_info
*pinfo
)
567 struct nvme_fc_rport
*rport
;
568 struct nvme_fc_ctrl
*ctrl
;
571 spin_lock_irqsave(&nvme_fc_lock
, flags
);
573 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
574 if (rport
->remoteport
.node_name
!= pinfo
->node_name
||
575 rport
->remoteport
.port_name
!= pinfo
->port_name
)
578 if (!nvme_fc_rport_get(rport
)) {
579 rport
= ERR_PTR(-ENOLCK
);
583 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
585 spin_lock_irqsave(&rport
->lock
, flags
);
587 /* has it been unregistered */
588 if (rport
->remoteport
.port_state
!= FC_OBJSTATE_DELETED
) {
589 /* means lldd called us twice */
590 spin_unlock_irqrestore(&rport
->lock
, flags
);
591 nvme_fc_rport_put(rport
);
592 return ERR_PTR(-ESTALE
);
595 rport
->remoteport
.port_role
= pinfo
->port_role
;
596 rport
->remoteport
.port_id
= pinfo
->port_id
;
597 rport
->remoteport
.port_state
= FC_OBJSTATE_ONLINE
;
598 rport
->dev_loss_end
= 0;
601 * kick off a reconnect attempt on all associations to the
602 * remote port. A successful reconnects will resume i/o.
604 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
)
605 nvme_fc_resume_controller(ctrl
);
607 spin_unlock_irqrestore(&rport
->lock
, flags
);
615 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
621 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport
*rport
,
622 struct nvme_fc_port_info
*pinfo
)
624 if (pinfo
->dev_loss_tmo
)
625 rport
->remoteport
.dev_loss_tmo
= pinfo
->dev_loss_tmo
;
627 rport
->remoteport
.dev_loss_tmo
= NVME_FC_DEFAULT_DEV_LOSS_TMO
;
631 * nvme_fc_register_remoteport - transport entry point called by an
632 * LLDD to register the existence of a NVME
633 * subsystem FC port on its fabric.
634 * @localport: pointer to the (registered) local port that the remote
635 * subsystem port is connected to.
636 * @pinfo: pointer to information about the port to be registered
637 * @portptr: pointer to a remote port pointer. Upon success, the routine
638 * will allocate a nvme_fc_remote_port structure and place its
639 * address in the remote port pointer. Upon failure, remote port
640 * pointer will be set to 0.
643 * a completion status. Must be 0 upon success; a negative errno
644 * (ex: -ENXIO) upon failure.
647 nvme_fc_register_remoteport(struct nvme_fc_local_port
*localport
,
648 struct nvme_fc_port_info
*pinfo
,
649 struct nvme_fc_remote_port
**portptr
)
651 struct nvme_fc_lport
*lport
= localport_to_lport(localport
);
652 struct nvme_fc_rport
*newrec
;
656 if (!nvme_fc_lport_get(lport
)) {
658 goto out_reghost_failed
;
662 * look to see if there is already a remoteport that is waiting
663 * for a reconnect (within dev_loss_tmo) with the same WWN's.
664 * If so, transition to it and reconnect.
666 newrec
= nvme_fc_attach_to_suspended_rport(lport
, pinfo
);
668 /* found an rport, but something about its state is bad */
669 if (IS_ERR(newrec
)) {
670 ret
= PTR_ERR(newrec
);
673 /* found existing rport, which was resumed */
675 nvme_fc_lport_put(lport
);
676 __nvme_fc_set_dev_loss_tmo(newrec
, pinfo
);
677 nvme_fc_signal_discovery_scan(lport
, newrec
);
678 *portptr
= &newrec
->remoteport
;
682 /* nothing found - allocate a new remoteport struct */
684 newrec
= kmalloc((sizeof(*newrec
) + lport
->ops
->remote_priv_sz
),
691 idx
= ida_simple_get(&lport
->endp_cnt
, 0, 0, GFP_KERNEL
);
694 goto out_kfree_rport
;
697 INIT_LIST_HEAD(&newrec
->endp_list
);
698 INIT_LIST_HEAD(&newrec
->ctrl_list
);
699 INIT_LIST_HEAD(&newrec
->ls_req_list
);
700 INIT_LIST_HEAD(&newrec
->disc_list
);
701 kref_init(&newrec
->ref
);
702 atomic_set(&newrec
->act_ctrl_cnt
, 0);
703 spin_lock_init(&newrec
->lock
);
704 newrec
->remoteport
.localport
= &lport
->localport
;
705 newrec
->dev
= lport
->dev
;
706 newrec
->lport
= lport
;
707 newrec
->remoteport
.private = &newrec
[1];
708 newrec
->remoteport
.port_role
= pinfo
->port_role
;
709 newrec
->remoteport
.node_name
= pinfo
->node_name
;
710 newrec
->remoteport
.port_name
= pinfo
->port_name
;
711 newrec
->remoteport
.port_id
= pinfo
->port_id
;
712 newrec
->remoteport
.port_state
= FC_OBJSTATE_ONLINE
;
713 newrec
->remoteport
.port_num
= idx
;
714 __nvme_fc_set_dev_loss_tmo(newrec
, pinfo
);
716 spin_lock_irqsave(&nvme_fc_lock
, flags
);
717 list_add_tail(&newrec
->endp_list
, &lport
->endp_list
);
718 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
720 nvme_fc_signal_discovery_scan(lport
, newrec
);
722 *portptr
= &newrec
->remoteport
;
728 nvme_fc_lport_put(lport
);
733 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport
);
736 nvme_fc_abort_lsops(struct nvme_fc_rport
*rport
)
738 struct nvmefc_ls_req_op
*lsop
;
742 spin_lock_irqsave(&rport
->lock
, flags
);
744 list_for_each_entry(lsop
, &rport
->ls_req_list
, lsreq_list
) {
745 if (!(lsop
->flags
& FCOP_FLAGS_TERMIO
)) {
746 lsop
->flags
|= FCOP_FLAGS_TERMIO
;
747 spin_unlock_irqrestore(&rport
->lock
, flags
);
748 rport
->lport
->ops
->ls_abort(&rport
->lport
->localport
,
754 spin_unlock_irqrestore(&rport
->lock
, flags
);
760 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl
*ctrl
)
762 dev_info(ctrl
->ctrl
.device
,
763 "NVME-FC{%d}: controller connectivity lost. Awaiting "
764 "Reconnect", ctrl
->cnum
);
766 switch (ctrl
->ctrl
.state
) {
770 * Schedule a controller reset. The reset will terminate the
771 * association and schedule the reconnect timer. Reconnects
772 * will be attempted until either the ctlr_loss_tmo
773 * (max_retries * connect_delay) expires or the remoteport's
774 * dev_loss_tmo expires.
776 if (nvme_reset_ctrl(&ctrl
->ctrl
)) {
777 dev_warn(ctrl
->ctrl
.device
,
778 "NVME-FC{%d}: Couldn't schedule reset.\n",
780 nvme_delete_ctrl(&ctrl
->ctrl
);
784 case NVME_CTRL_CONNECTING
:
786 * The association has already been terminated and the
787 * controller is attempting reconnects. No need to do anything
788 * futher. Reconnects will be attempted until either the
789 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
790 * remoteport's dev_loss_tmo expires.
794 case NVME_CTRL_RESETTING
:
796 * Controller is already in the process of terminating the
797 * association. No need to do anything further. The reconnect
798 * step will kick in naturally after the association is
803 case NVME_CTRL_DELETING
:
805 /* no action to take - let it delete */
811 * nvme_fc_unregister_remoteport - transport entry point called by an
812 * LLDD to deregister/remove a previously
813 * registered a NVME subsystem FC port.
814 * @portptr: pointer to the (registered) remote port that is to be
818 * a completion status. Must be 0 upon success; a negative errno
819 * (ex: -ENXIO) upon failure.
822 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port
*portptr
)
824 struct nvme_fc_rport
*rport
= remoteport_to_rport(portptr
);
825 struct nvme_fc_ctrl
*ctrl
;
831 spin_lock_irqsave(&rport
->lock
, flags
);
833 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
834 spin_unlock_irqrestore(&rport
->lock
, flags
);
837 portptr
->port_state
= FC_OBJSTATE_DELETED
;
839 rport
->dev_loss_end
= jiffies
+ (portptr
->dev_loss_tmo
* HZ
);
841 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
842 /* if dev_loss_tmo==0, dev loss is immediate */
843 if (!portptr
->dev_loss_tmo
) {
844 dev_warn(ctrl
->ctrl
.device
,
845 "NVME-FC{%d}: controller connectivity lost.\n",
847 nvme_delete_ctrl(&ctrl
->ctrl
);
849 nvme_fc_ctrl_connectivity_loss(ctrl
);
852 spin_unlock_irqrestore(&rport
->lock
, flags
);
854 nvme_fc_abort_lsops(rport
);
856 if (atomic_read(&rport
->act_ctrl_cnt
) == 0)
857 rport
->lport
->ops
->remoteport_delete(portptr
);
860 * release the reference, which will allow, if all controllers
861 * go away, which should only occur after dev_loss_tmo occurs,
862 * for the rport to be torn down.
864 nvme_fc_rport_put(rport
);
868 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport
);
871 * nvme_fc_rescan_remoteport - transport entry point called by an
872 * LLDD to request a nvme device rescan.
873 * @remoteport: pointer to the (registered) remote port that is to be
879 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port
*remoteport
)
881 struct nvme_fc_rport
*rport
= remoteport_to_rport(remoteport
);
883 nvme_fc_signal_discovery_scan(rport
->lport
, rport
);
885 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport
);
888 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port
*portptr
,
891 struct nvme_fc_rport
*rport
= remoteport_to_rport(portptr
);
894 spin_lock_irqsave(&rport
->lock
, flags
);
896 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
897 spin_unlock_irqrestore(&rport
->lock
, flags
);
901 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
902 rport
->remoteport
.dev_loss_tmo
= dev_loss_tmo
;
904 spin_unlock_irqrestore(&rport
->lock
, flags
);
908 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss
);
911 /* *********************** FC-NVME DMA Handling **************************** */
914 * The fcloop device passes in a NULL device pointer. Real LLD's will
915 * pass in a valid device pointer. If NULL is passed to the dma mapping
916 * routines, depending on the platform, it may or may not succeed, and
920 * Wrapper all the dma routines and check the dev pointer.
922 * If simple mappings (return just a dma address, we'll noop them,
923 * returning a dma address of 0.
925 * On more complex mappings (dma_map_sg), a pseudo routine fills
926 * in the scatter list, setting all dma addresses to 0.
929 static inline dma_addr_t
930 fc_dma_map_single(struct device
*dev
, void *ptr
, size_t size
,
931 enum dma_data_direction dir
)
933 return dev
? dma_map_single(dev
, ptr
, size
, dir
) : (dma_addr_t
)0L;
937 fc_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
939 return dev
? dma_mapping_error(dev
, dma_addr
) : 0;
943 fc_dma_unmap_single(struct device
*dev
, dma_addr_t addr
, size_t size
,
944 enum dma_data_direction dir
)
947 dma_unmap_single(dev
, addr
, size
, dir
);
951 fc_dma_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
, size_t size
,
952 enum dma_data_direction dir
)
955 dma_sync_single_for_cpu(dev
, addr
, size
, dir
);
959 fc_dma_sync_single_for_device(struct device
*dev
, dma_addr_t addr
, size_t size
,
960 enum dma_data_direction dir
)
963 dma_sync_single_for_device(dev
, addr
, size
, dir
);
966 /* pseudo dma_map_sg call */
968 fc_map_sg(struct scatterlist
*sg
, int nents
)
970 struct scatterlist
*s
;
973 WARN_ON(nents
== 0 || sg
[0].length
== 0);
975 for_each_sg(sg
, s
, nents
, i
) {
977 #ifdef CONFIG_NEED_SG_DMA_LENGTH
978 s
->dma_length
= s
->length
;
985 fc_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
986 enum dma_data_direction dir
)
988 return dev
? dma_map_sg(dev
, sg
, nents
, dir
) : fc_map_sg(sg
, nents
);
992 fc_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
993 enum dma_data_direction dir
)
996 dma_unmap_sg(dev
, sg
, nents
, dir
);
999 /* *********************** FC-NVME LS Handling **************************** */
1001 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl
*);
1002 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl
*);
1006 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op
*lsop
)
1008 struct nvme_fc_rport
*rport
= lsop
->rport
;
1009 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1010 unsigned long flags
;
1012 spin_lock_irqsave(&rport
->lock
, flags
);
1014 if (!lsop
->req_queued
) {
1015 spin_unlock_irqrestore(&rport
->lock
, flags
);
1019 list_del(&lsop
->lsreq_list
);
1021 lsop
->req_queued
= false;
1023 spin_unlock_irqrestore(&rport
->lock
, flags
);
1025 fc_dma_unmap_single(rport
->dev
, lsreq
->rqstdma
,
1026 (lsreq
->rqstlen
+ lsreq
->rsplen
),
1029 nvme_fc_rport_put(rport
);
1033 __nvme_fc_send_ls_req(struct nvme_fc_rport
*rport
,
1034 struct nvmefc_ls_req_op
*lsop
,
1035 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
1037 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1038 unsigned long flags
;
1041 if (rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
1042 return -ECONNREFUSED
;
1044 if (!nvme_fc_rport_get(rport
))
1048 lsop
->rport
= rport
;
1049 lsop
->req_queued
= false;
1050 INIT_LIST_HEAD(&lsop
->lsreq_list
);
1051 init_completion(&lsop
->ls_done
);
1053 lsreq
->rqstdma
= fc_dma_map_single(rport
->dev
, lsreq
->rqstaddr
,
1054 lsreq
->rqstlen
+ lsreq
->rsplen
,
1056 if (fc_dma_mapping_error(rport
->dev
, lsreq
->rqstdma
)) {
1060 lsreq
->rspdma
= lsreq
->rqstdma
+ lsreq
->rqstlen
;
1062 spin_lock_irqsave(&rport
->lock
, flags
);
1064 list_add_tail(&lsop
->lsreq_list
, &rport
->ls_req_list
);
1066 lsop
->req_queued
= true;
1068 spin_unlock_irqrestore(&rport
->lock
, flags
);
1070 ret
= rport
->lport
->ops
->ls_req(&rport
->lport
->localport
,
1071 &rport
->remoteport
, lsreq
);
1078 lsop
->ls_error
= ret
;
1079 spin_lock_irqsave(&rport
->lock
, flags
);
1080 lsop
->req_queued
= false;
1081 list_del(&lsop
->lsreq_list
);
1082 spin_unlock_irqrestore(&rport
->lock
, flags
);
1083 fc_dma_unmap_single(rport
->dev
, lsreq
->rqstdma
,
1084 (lsreq
->rqstlen
+ lsreq
->rsplen
),
1087 nvme_fc_rport_put(rport
);
1093 nvme_fc_send_ls_req_done(struct nvmefc_ls_req
*lsreq
, int status
)
1095 struct nvmefc_ls_req_op
*lsop
= ls_req_to_lsop(lsreq
);
1097 lsop
->ls_error
= status
;
1098 complete(&lsop
->ls_done
);
1102 nvme_fc_send_ls_req(struct nvme_fc_rport
*rport
, struct nvmefc_ls_req_op
*lsop
)
1104 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1105 struct fcnvme_ls_rjt
*rjt
= lsreq
->rspaddr
;
1108 ret
= __nvme_fc_send_ls_req(rport
, lsop
, nvme_fc_send_ls_req_done
);
1112 * No timeout/not interruptible as we need the struct
1113 * to exist until the lldd calls us back. Thus mandate
1114 * wait until driver calls back. lldd responsible for
1115 * the timeout action
1117 wait_for_completion(&lsop
->ls_done
);
1119 __nvme_fc_finish_ls_req(lsop
);
1121 ret
= lsop
->ls_error
;
1127 /* ACC or RJT payload ? */
1128 if (rjt
->w0
.ls_cmd
== FCNVME_LS_RJT
)
1135 nvme_fc_send_ls_req_async(struct nvme_fc_rport
*rport
,
1136 struct nvmefc_ls_req_op
*lsop
,
1137 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
1139 /* don't wait for completion */
1141 return __nvme_fc_send_ls_req(rport
, lsop
, done
);
1144 /* Validation Error indexes into the string table below */
1148 VERR_LSDESC_RQST
= 2,
1149 VERR_LSDESC_RQST_LEN
= 3,
1151 VERR_ASSOC_ID_LEN
= 5,
1153 VERR_CONN_ID_LEN
= 7,
1155 VERR_CR_ASSOC_ACC_LEN
= 9,
1157 VERR_CR_CONN_ACC_LEN
= 11,
1159 VERR_DISCONN_ACC_LEN
= 13,
1162 static char *validation_errors
[] = {
1166 "Bad LSDESC_RQST Length",
1167 "Not Association ID",
1168 "Bad Association ID Length",
1169 "Not Connection ID",
1170 "Bad Connection ID Length",
1171 "Not CR_ASSOC Rqst",
1172 "Bad CR_ASSOC ACC Length",
1174 "Bad CR_CONN ACC Length",
1175 "Not Disconnect Rqst",
1176 "Bad Disconnect ACC Length",
1180 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl
*ctrl
,
1181 struct nvme_fc_queue
*queue
, u16 qsize
, u16 ersp_ratio
)
1183 struct nvmefc_ls_req_op
*lsop
;
1184 struct nvmefc_ls_req
*lsreq
;
1185 struct fcnvme_ls_cr_assoc_rqst
*assoc_rqst
;
1186 struct fcnvme_ls_cr_assoc_acc
*assoc_acc
;
1189 lsop
= kzalloc((sizeof(*lsop
) +
1190 ctrl
->lport
->ops
->lsrqst_priv_sz
+
1191 sizeof(*assoc_rqst
) + sizeof(*assoc_acc
)), GFP_KERNEL
);
1196 lsreq
= &lsop
->ls_req
;
1198 lsreq
->private = (void *)&lsop
[1];
1199 assoc_rqst
= (struct fcnvme_ls_cr_assoc_rqst
*)
1200 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
1201 assoc_acc
= (struct fcnvme_ls_cr_assoc_acc
*)&assoc_rqst
[1];
1203 assoc_rqst
->w0
.ls_cmd
= FCNVME_LS_CREATE_ASSOCIATION
;
1204 assoc_rqst
->desc_list_len
=
1205 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd
));
1207 assoc_rqst
->assoc_cmd
.desc_tag
=
1208 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD
);
1209 assoc_rqst
->assoc_cmd
.desc_len
=
1211 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd
));
1213 assoc_rqst
->assoc_cmd
.ersp_ratio
= cpu_to_be16(ersp_ratio
);
1214 assoc_rqst
->assoc_cmd
.sqsize
= cpu_to_be16(qsize
- 1);
1215 /* Linux supports only Dynamic controllers */
1216 assoc_rqst
->assoc_cmd
.cntlid
= cpu_to_be16(0xffff);
1217 uuid_copy(&assoc_rqst
->assoc_cmd
.hostid
, &ctrl
->ctrl
.opts
->host
->id
);
1218 strncpy(assoc_rqst
->assoc_cmd
.hostnqn
, ctrl
->ctrl
.opts
->host
->nqn
,
1219 min(FCNVME_ASSOC_HOSTNQN_LEN
, NVMF_NQN_SIZE
));
1220 strncpy(assoc_rqst
->assoc_cmd
.subnqn
, ctrl
->ctrl
.opts
->subsysnqn
,
1221 min(FCNVME_ASSOC_SUBNQN_LEN
, NVMF_NQN_SIZE
));
1223 lsop
->queue
= queue
;
1224 lsreq
->rqstaddr
= assoc_rqst
;
1225 lsreq
->rqstlen
= sizeof(*assoc_rqst
);
1226 lsreq
->rspaddr
= assoc_acc
;
1227 lsreq
->rsplen
= sizeof(*assoc_acc
);
1228 lsreq
->timeout
= NVME_FC_LS_TIMEOUT_SEC
;
1230 ret
= nvme_fc_send_ls_req(ctrl
->rport
, lsop
);
1232 goto out_free_buffer
;
1234 /* process connect LS completion */
1236 /* validate the ACC response */
1237 if (assoc_acc
->hdr
.w0
.ls_cmd
!= FCNVME_LS_ACC
)
1239 else if (assoc_acc
->hdr
.desc_list_len
!=
1241 sizeof(struct fcnvme_ls_cr_assoc_acc
)))
1242 fcret
= VERR_CR_ASSOC_ACC_LEN
;
1243 else if (assoc_acc
->hdr
.rqst
.desc_tag
!=
1244 cpu_to_be32(FCNVME_LSDESC_RQST
))
1245 fcret
= VERR_LSDESC_RQST
;
1246 else if (assoc_acc
->hdr
.rqst
.desc_len
!=
1247 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
)))
1248 fcret
= VERR_LSDESC_RQST_LEN
;
1249 else if (assoc_acc
->hdr
.rqst
.w0
.ls_cmd
!= FCNVME_LS_CREATE_ASSOCIATION
)
1250 fcret
= VERR_CR_ASSOC
;
1251 else if (assoc_acc
->associd
.desc_tag
!=
1252 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
))
1253 fcret
= VERR_ASSOC_ID
;
1254 else if (assoc_acc
->associd
.desc_len
!=
1256 sizeof(struct fcnvme_lsdesc_assoc_id
)))
1257 fcret
= VERR_ASSOC_ID_LEN
;
1258 else if (assoc_acc
->connectid
.desc_tag
!=
1259 cpu_to_be32(FCNVME_LSDESC_CONN_ID
))
1260 fcret
= VERR_CONN_ID
;
1261 else if (assoc_acc
->connectid
.desc_len
!=
1262 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id
)))
1263 fcret
= VERR_CONN_ID_LEN
;
1268 "q %d Create Association LS failed: %s\n",
1269 queue
->qnum
, validation_errors
[fcret
]);
1271 ctrl
->association_id
=
1272 be64_to_cpu(assoc_acc
->associd
.association_id
);
1273 queue
->connection_id
=
1274 be64_to_cpu(assoc_acc
->connectid
.connection_id
);
1275 set_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
1283 "queue %d connect admin queue failed (%d).\n",
1289 nvme_fc_connect_queue(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_queue
*queue
,
1290 u16 qsize
, u16 ersp_ratio
)
1292 struct nvmefc_ls_req_op
*lsop
;
1293 struct nvmefc_ls_req
*lsreq
;
1294 struct fcnvme_ls_cr_conn_rqst
*conn_rqst
;
1295 struct fcnvme_ls_cr_conn_acc
*conn_acc
;
1298 lsop
= kzalloc((sizeof(*lsop
) +
1299 ctrl
->lport
->ops
->lsrqst_priv_sz
+
1300 sizeof(*conn_rqst
) + sizeof(*conn_acc
)), GFP_KERNEL
);
1305 lsreq
= &lsop
->ls_req
;
1307 lsreq
->private = (void *)&lsop
[1];
1308 conn_rqst
= (struct fcnvme_ls_cr_conn_rqst
*)
1309 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
1310 conn_acc
= (struct fcnvme_ls_cr_conn_acc
*)&conn_rqst
[1];
1312 conn_rqst
->w0
.ls_cmd
= FCNVME_LS_CREATE_CONNECTION
;
1313 conn_rqst
->desc_list_len
= cpu_to_be32(
1314 sizeof(struct fcnvme_lsdesc_assoc_id
) +
1315 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
));
1317 conn_rqst
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1318 conn_rqst
->associd
.desc_len
=
1320 sizeof(struct fcnvme_lsdesc_assoc_id
));
1321 conn_rqst
->associd
.association_id
= cpu_to_be64(ctrl
->association_id
);
1322 conn_rqst
->connect_cmd
.desc_tag
=
1323 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD
);
1324 conn_rqst
->connect_cmd
.desc_len
=
1326 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
));
1327 conn_rqst
->connect_cmd
.ersp_ratio
= cpu_to_be16(ersp_ratio
);
1328 conn_rqst
->connect_cmd
.qid
= cpu_to_be16(queue
->qnum
);
1329 conn_rqst
->connect_cmd
.sqsize
= cpu_to_be16(qsize
- 1);
1331 lsop
->queue
= queue
;
1332 lsreq
->rqstaddr
= conn_rqst
;
1333 lsreq
->rqstlen
= sizeof(*conn_rqst
);
1334 lsreq
->rspaddr
= conn_acc
;
1335 lsreq
->rsplen
= sizeof(*conn_acc
);
1336 lsreq
->timeout
= NVME_FC_LS_TIMEOUT_SEC
;
1338 ret
= nvme_fc_send_ls_req(ctrl
->rport
, lsop
);
1340 goto out_free_buffer
;
1342 /* process connect LS completion */
1344 /* validate the ACC response */
1345 if (conn_acc
->hdr
.w0
.ls_cmd
!= FCNVME_LS_ACC
)
1347 else if (conn_acc
->hdr
.desc_list_len
!=
1348 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc
)))
1349 fcret
= VERR_CR_CONN_ACC_LEN
;
1350 else if (conn_acc
->hdr
.rqst
.desc_tag
!= cpu_to_be32(FCNVME_LSDESC_RQST
))
1351 fcret
= VERR_LSDESC_RQST
;
1352 else if (conn_acc
->hdr
.rqst
.desc_len
!=
1353 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
)))
1354 fcret
= VERR_LSDESC_RQST_LEN
;
1355 else if (conn_acc
->hdr
.rqst
.w0
.ls_cmd
!= FCNVME_LS_CREATE_CONNECTION
)
1356 fcret
= VERR_CR_CONN
;
1357 else if (conn_acc
->connectid
.desc_tag
!=
1358 cpu_to_be32(FCNVME_LSDESC_CONN_ID
))
1359 fcret
= VERR_CONN_ID
;
1360 else if (conn_acc
->connectid
.desc_len
!=
1361 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id
)))
1362 fcret
= VERR_CONN_ID_LEN
;
1367 "q %d Create I/O Connection LS failed: %s\n",
1368 queue
->qnum
, validation_errors
[fcret
]);
1370 queue
->connection_id
=
1371 be64_to_cpu(conn_acc
->connectid
.connection_id
);
1372 set_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
1380 "queue %d connect I/O queue failed (%d).\n",
1386 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req
*lsreq
, int status
)
1388 struct nvmefc_ls_req_op
*lsop
= ls_req_to_lsop(lsreq
);
1390 __nvme_fc_finish_ls_req(lsop
);
1392 /* fc-nvme initiator doesn't care about success or failure of cmd */
1398 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1399 * the FC-NVME Association. Terminating the association also
1400 * terminates the FC-NVME connections (per queue, both admin and io
1401 * queues) that are part of the association. E.g. things are torn
1402 * down, and the related FC-NVME Association ID and Connection IDs
1405 * The behavior of the fc-nvme initiator is such that it's
1406 * understanding of the association and connections will implicitly
1407 * be torn down. The action is implicit as it may be due to a loss of
1408 * connectivity with the fc-nvme target, so you may never get a
1409 * response even if you tried. As such, the action of this routine
1410 * is to asynchronously send the LS, ignore any results of the LS, and
1411 * continue on with terminating the association. If the fc-nvme target
1412 * is present and receives the LS, it too can tear down.
1415 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl
*ctrl
)
1417 struct fcnvme_ls_disconnect_assoc_rqst
*discon_rqst
;
1418 struct fcnvme_ls_disconnect_assoc_acc
*discon_acc
;
1419 struct nvmefc_ls_req_op
*lsop
;
1420 struct nvmefc_ls_req
*lsreq
;
1423 lsop
= kzalloc((sizeof(*lsop
) +
1424 ctrl
->lport
->ops
->lsrqst_priv_sz
+
1425 sizeof(*discon_rqst
) + sizeof(*discon_acc
)),
1428 /* couldn't sent it... too bad */
1431 lsreq
= &lsop
->ls_req
;
1433 lsreq
->private = (void *)&lsop
[1];
1434 discon_rqst
= (struct fcnvme_ls_disconnect_assoc_rqst
*)
1435 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
1436 discon_acc
= (struct fcnvme_ls_disconnect_assoc_acc
*)&discon_rqst
[1];
1438 discon_rqst
->w0
.ls_cmd
= FCNVME_LS_DISCONNECT_ASSOC
;
1439 discon_rqst
->desc_list_len
= cpu_to_be32(
1440 sizeof(struct fcnvme_lsdesc_assoc_id
) +
1441 sizeof(struct fcnvme_lsdesc_disconn_cmd
));
1443 discon_rqst
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1444 discon_rqst
->associd
.desc_len
=
1446 sizeof(struct fcnvme_lsdesc_assoc_id
));
1448 discon_rqst
->associd
.association_id
= cpu_to_be64(ctrl
->association_id
);
1450 discon_rqst
->discon_cmd
.desc_tag
= cpu_to_be32(
1451 FCNVME_LSDESC_DISCONN_CMD
);
1452 discon_rqst
->discon_cmd
.desc_len
=
1454 sizeof(struct fcnvme_lsdesc_disconn_cmd
));
1456 lsreq
->rqstaddr
= discon_rqst
;
1457 lsreq
->rqstlen
= sizeof(*discon_rqst
);
1458 lsreq
->rspaddr
= discon_acc
;
1459 lsreq
->rsplen
= sizeof(*discon_acc
);
1460 lsreq
->timeout
= NVME_FC_LS_TIMEOUT_SEC
;
1462 ret
= nvme_fc_send_ls_req_async(ctrl
->rport
, lsop
,
1463 nvme_fc_disconnect_assoc_done
);
1469 /* *********************** NVME Ctrl Routines **************************** */
1471 static void nvme_fc_error_recovery(struct nvme_fc_ctrl
*ctrl
, char *errmsg
);
1474 __nvme_fc_exit_request(struct nvme_fc_ctrl
*ctrl
,
1475 struct nvme_fc_fcp_op
*op
)
1477 fc_dma_unmap_single(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
,
1478 sizeof(op
->rsp_iu
), DMA_FROM_DEVICE
);
1479 fc_dma_unmap_single(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
,
1480 sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
1482 atomic_set(&op
->state
, FCPOP_STATE_UNINIT
);
1486 nvme_fc_exit_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1487 unsigned int hctx_idx
)
1489 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1491 return __nvme_fc_exit_request(set
->driver_data
, op
);
1495 __nvme_fc_abort_op(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_fcp_op
*op
)
1497 unsigned long flags
;
1500 spin_lock_irqsave(&ctrl
->lock
, flags
);
1501 opstate
= atomic_xchg(&op
->state
, FCPOP_STATE_ABORTED
);
1502 if (opstate
!= FCPOP_STATE_ACTIVE
)
1503 atomic_set(&op
->state
, opstate
);
1504 else if (ctrl
->flags
& FCCTRL_TERMIO
)
1506 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1508 if (opstate
!= FCPOP_STATE_ACTIVE
)
1511 ctrl
->lport
->ops
->fcp_abort(&ctrl
->lport
->localport
,
1512 &ctrl
->rport
->remoteport
,
1513 op
->queue
->lldd_handle
,
1520 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1522 struct nvme_fc_fcp_op
*aen_op
= ctrl
->aen_ops
;
1525 /* ensure we've initialized the ops once */
1526 if (!(aen_op
->flags
& FCOP_FLAGS_AEN
))
1529 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++)
1530 __nvme_fc_abort_op(ctrl
, aen_op
);
1534 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl
*ctrl
,
1535 struct nvme_fc_fcp_op
*op
, int opstate
)
1537 unsigned long flags
;
1539 if (opstate
== FCPOP_STATE_ABORTED
) {
1540 spin_lock_irqsave(&ctrl
->lock
, flags
);
1541 if (ctrl
->flags
& FCCTRL_TERMIO
) {
1543 wake_up(&ctrl
->ioabort_wait
);
1545 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1550 nvme_fc_fcpio_done(struct nvmefc_fcp_req
*req
)
1552 struct nvme_fc_fcp_op
*op
= fcp_req_to_fcp_op(req
);
1553 struct request
*rq
= op
->rq
;
1554 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
1555 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
1556 struct nvme_fc_queue
*queue
= op
->queue
;
1557 struct nvme_completion
*cqe
= &op
->rsp_iu
.cqe
;
1558 struct nvme_command
*sqe
= &op
->cmd_iu
.sqe
;
1559 __le16 status
= cpu_to_le16(NVME_SC_SUCCESS
<< 1);
1560 union nvme_result result
;
1561 bool terminate_assoc
= true;
1566 * The current linux implementation of a nvme controller
1567 * allocates a single tag set for all io queues and sizes
1568 * the io queues to fully hold all possible tags. Thus, the
1569 * implementation does not reference or care about the sqhd
1570 * value as it never needs to use the sqhd/sqtail pointers
1571 * for submission pacing.
1573 * This affects the FC-NVME implementation in two ways:
1574 * 1) As the value doesn't matter, we don't need to waste
1575 * cycles extracting it from ERSPs and stamping it in the
1576 * cases where the transport fabricates CQEs on successful
1578 * 2) The FC-NVME implementation requires that delivery of
1579 * ERSP completions are to go back to the nvme layer in order
1580 * relative to the rsn, such that the sqhd value will always
1581 * be "in order" for the nvme layer. As the nvme layer in
1582 * linux doesn't care about sqhd, there's no need to return
1586 * As the core nvme layer in linux currently does not look at
1587 * every field in the cqe - in cases where the FC transport must
1588 * fabricate a CQE, the following fields will not be set as they
1589 * are not referenced:
1590 * cqe.sqid, cqe.sqhd, cqe.command_id
1592 * Failure or error of an individual i/o, in a transport
1593 * detected fashion unrelated to the nvme completion status,
1594 * potentially cause the initiator and target sides to get out
1595 * of sync on SQ head/tail (aka outstanding io count allowed).
1596 * Per FC-NVME spec, failure of an individual command requires
1597 * the connection to be terminated, which in turn requires the
1598 * association to be terminated.
1601 opstate
= atomic_xchg(&op
->state
, FCPOP_STATE_COMPLETE
);
1603 fc_dma_sync_single_for_cpu(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
,
1604 sizeof(op
->rsp_iu
), DMA_FROM_DEVICE
);
1606 if (opstate
== FCPOP_STATE_ABORTED
)
1607 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
1608 else if (freq
->status
) {
1609 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
1610 dev_info(ctrl
->ctrl
.device
,
1611 "NVME-FC{%d}: io failed due to lldd error %d\n",
1612 ctrl
->cnum
, freq
->status
);
1616 * For the linux implementation, if we have an unsuccesful
1617 * status, they blk-mq layer can typically be called with the
1618 * non-zero status and the content of the cqe isn't important.
1624 * command completed successfully relative to the wire
1625 * protocol. However, validate anything received and
1626 * extract the status and result from the cqe (create it
1630 switch (freq
->rcv_rsplen
) {
1633 case NVME_FC_SIZEOF_ZEROS_RSP
:
1635 * No response payload or 12 bytes of payload (which
1636 * should all be zeros) are considered successful and
1637 * no payload in the CQE by the transport.
1639 if (freq
->transferred_length
!=
1640 be32_to_cpu(op
->cmd_iu
.data_len
)) {
1641 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
1642 dev_info(ctrl
->ctrl
.device
,
1643 "NVME-FC{%d}: io failed due to bad transfer "
1644 "length: %d vs expected %d\n",
1645 ctrl
->cnum
, freq
->transferred_length
,
1646 be32_to_cpu(op
->cmd_iu
.data_len
));
1652 case sizeof(struct nvme_fc_ersp_iu
):
1654 * The ERSP IU contains a full completion with CQE.
1655 * Validate ERSP IU and look at cqe.
1657 if (unlikely(be16_to_cpu(op
->rsp_iu
.iu_len
) !=
1658 (freq
->rcv_rsplen
/ 4) ||
1659 be32_to_cpu(op
->rsp_iu
.xfrd_len
) !=
1660 freq
->transferred_length
||
1661 op
->rsp_iu
.ersp_result
||
1662 sqe
->common
.command_id
!= cqe
->command_id
)) {
1663 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
1664 dev_info(ctrl
->ctrl
.device
,
1665 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
1666 "iu len %d, xfr len %d vs %d, status code "
1667 "%d, cmdid %d vs %d\n",
1668 ctrl
->cnum
, be16_to_cpu(op
->rsp_iu
.iu_len
),
1669 be32_to_cpu(op
->rsp_iu
.xfrd_len
),
1670 freq
->transferred_length
,
1671 op
->rsp_iu
.ersp_result
,
1672 sqe
->common
.command_id
,
1676 result
= cqe
->result
;
1677 status
= cqe
->status
;
1681 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
1682 dev_info(ctrl
->ctrl
.device
,
1683 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
1685 ctrl
->cnum
, freq
->rcv_rsplen
);
1689 terminate_assoc
= false;
1692 if (op
->flags
& FCOP_FLAGS_AEN
) {
1693 nvme_complete_async_event(&queue
->ctrl
->ctrl
, status
, &result
);
1694 __nvme_fc_fcpop_chk_teardowns(ctrl
, op
, opstate
);
1695 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
1696 op
->flags
= FCOP_FLAGS_AEN
; /* clear other flags */
1697 nvme_fc_ctrl_put(ctrl
);
1701 __nvme_fc_fcpop_chk_teardowns(ctrl
, op
, opstate
);
1702 nvme_end_request(rq
, status
, result
);
1705 if (terminate_assoc
)
1706 nvme_fc_error_recovery(ctrl
, "transport detected io error");
1710 __nvme_fc_init_request(struct nvme_fc_ctrl
*ctrl
,
1711 struct nvme_fc_queue
*queue
, struct nvme_fc_fcp_op
*op
,
1712 struct request
*rq
, u32 rqno
)
1714 struct nvme_fcp_op_w_sgl
*op_w_sgl
=
1715 container_of(op
, typeof(*op_w_sgl
), op
);
1716 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
1719 memset(op
, 0, sizeof(*op
));
1720 op
->fcp_req
.cmdaddr
= &op
->cmd_iu
;
1721 op
->fcp_req
.cmdlen
= sizeof(op
->cmd_iu
);
1722 op
->fcp_req
.rspaddr
= &op
->rsp_iu
;
1723 op
->fcp_req
.rsplen
= sizeof(op
->rsp_iu
);
1724 op
->fcp_req
.done
= nvme_fc_fcpio_done
;
1730 cmdiu
->format_id
= NVME_CMD_FORMAT_ID
;
1731 cmdiu
->fc_id
= NVME_CMD_FC_ID
;
1732 cmdiu
->iu_len
= cpu_to_be16(sizeof(*cmdiu
) / sizeof(u32
));
1734 cmdiu
->rsv_cat
= fccmnd_set_cat_css(0,
1735 (NVME_CC_CSS_NVM
>> NVME_CC_CSS_SHIFT
));
1737 cmdiu
->rsv_cat
= fccmnd_set_cat_admin(0);
1739 op
->fcp_req
.cmddma
= fc_dma_map_single(ctrl
->lport
->dev
,
1740 &op
->cmd_iu
, sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
1741 if (fc_dma_mapping_error(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
)) {
1743 "FCP Op failed - cmdiu dma mapping failed.\n");
1748 op
->fcp_req
.rspdma
= fc_dma_map_single(ctrl
->lport
->dev
,
1749 &op
->rsp_iu
, sizeof(op
->rsp_iu
),
1751 if (fc_dma_mapping_error(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
)) {
1753 "FCP Op failed - rspiu dma mapping failed.\n");
1757 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
1763 nvme_fc_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1764 unsigned int hctx_idx
, unsigned int numa_node
)
1766 struct nvme_fc_ctrl
*ctrl
= set
->driver_data
;
1767 struct nvme_fcp_op_w_sgl
*op
= blk_mq_rq_to_pdu(rq
);
1768 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
1769 struct nvme_fc_queue
*queue
= &ctrl
->queues
[queue_idx
];
1772 res
= __nvme_fc_init_request(ctrl
, queue
, &op
->op
, rq
, queue
->rqcnt
++);
1775 op
->op
.fcp_req
.first_sgl
= &op
->sgl
[0];
1776 op
->op
.fcp_req
.private = &op
->priv
[0];
1777 nvme_req(rq
)->ctrl
= &ctrl
->ctrl
;
1782 nvme_fc_init_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1784 struct nvme_fc_fcp_op
*aen_op
;
1785 struct nvme_fc_cmd_iu
*cmdiu
;
1786 struct nvme_command
*sqe
;
1790 aen_op
= ctrl
->aen_ops
;
1791 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++) {
1792 private = kzalloc(ctrl
->lport
->ops
->fcprqst_priv_sz
,
1797 cmdiu
= &aen_op
->cmd_iu
;
1799 ret
= __nvme_fc_init_request(ctrl
, &ctrl
->queues
[0],
1800 aen_op
, (struct request
*)NULL
,
1801 (NVME_AQ_BLK_MQ_DEPTH
+ i
));
1807 aen_op
->flags
= FCOP_FLAGS_AEN
;
1808 aen_op
->fcp_req
.private = private;
1810 memset(sqe
, 0, sizeof(*sqe
));
1811 sqe
->common
.opcode
= nvme_admin_async_event
;
1812 /* Note: core layer may overwrite the sqe.command_id value */
1813 sqe
->common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
+ i
;
1819 nvme_fc_term_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1821 struct nvme_fc_fcp_op
*aen_op
;
1824 aen_op
= ctrl
->aen_ops
;
1825 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++) {
1826 if (!aen_op
->fcp_req
.private)
1829 __nvme_fc_exit_request(ctrl
, aen_op
);
1831 kfree(aen_op
->fcp_req
.private);
1832 aen_op
->fcp_req
.private = NULL
;
1837 __nvme_fc_init_hctx(struct blk_mq_hw_ctx
*hctx
, struct nvme_fc_ctrl
*ctrl
,
1840 struct nvme_fc_queue
*queue
= &ctrl
->queues
[qidx
];
1842 hctx
->driver_data
= queue
;
1847 nvme_fc_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
1848 unsigned int hctx_idx
)
1850 struct nvme_fc_ctrl
*ctrl
= data
;
1852 __nvme_fc_init_hctx(hctx
, ctrl
, hctx_idx
+ 1);
1858 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
1859 unsigned int hctx_idx
)
1861 struct nvme_fc_ctrl
*ctrl
= data
;
1863 __nvme_fc_init_hctx(hctx
, ctrl
, hctx_idx
);
1869 nvme_fc_init_queue(struct nvme_fc_ctrl
*ctrl
, int idx
)
1871 struct nvme_fc_queue
*queue
;
1873 queue
= &ctrl
->queues
[idx
];
1874 memset(queue
, 0, sizeof(*queue
));
1877 atomic_set(&queue
->csn
, 0);
1878 queue
->dev
= ctrl
->dev
;
1881 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
1883 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
);
1886 * Considered whether we should allocate buffers for all SQEs
1887 * and CQEs and dma map them - mapping their respective entries
1888 * into the request structures (kernel vm addr and dma address)
1889 * thus the driver could use the buffers/mappings directly.
1890 * It only makes sense if the LLDD would use them for its
1891 * messaging api. It's very unlikely most adapter api's would use
1892 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1893 * structures were used instead.
1898 * This routine terminates a queue at the transport level.
1899 * The transport has already ensured that all outstanding ios on
1900 * the queue have been terminated.
1901 * The transport will send a Disconnect LS request to terminate
1902 * the queue's connection. Termination of the admin queue will also
1903 * terminate the association at the target.
1906 nvme_fc_free_queue(struct nvme_fc_queue
*queue
)
1908 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
))
1911 clear_bit(NVME_FC_Q_LIVE
, &queue
->flags
);
1913 * Current implementation never disconnects a single queue.
1914 * It always terminates a whole association. So there is never
1915 * a disconnect(queue) LS sent to the target.
1918 queue
->connection_id
= 0;
1919 atomic_set(&queue
->csn
, 0);
1923 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl
*ctrl
,
1924 struct nvme_fc_queue
*queue
, unsigned int qidx
)
1926 if (ctrl
->lport
->ops
->delete_queue
)
1927 ctrl
->lport
->ops
->delete_queue(&ctrl
->lport
->localport
, qidx
,
1928 queue
->lldd_handle
);
1929 queue
->lldd_handle
= NULL
;
1933 nvme_fc_free_io_queues(struct nvme_fc_ctrl
*ctrl
)
1937 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
1938 nvme_fc_free_queue(&ctrl
->queues
[i
]);
1942 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl
*ctrl
,
1943 struct nvme_fc_queue
*queue
, unsigned int qidx
, u16 qsize
)
1947 queue
->lldd_handle
= NULL
;
1948 if (ctrl
->lport
->ops
->create_queue
)
1949 ret
= ctrl
->lport
->ops
->create_queue(&ctrl
->lport
->localport
,
1950 qidx
, qsize
, &queue
->lldd_handle
);
1956 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl
*ctrl
)
1958 struct nvme_fc_queue
*queue
= &ctrl
->queues
[ctrl
->ctrl
.queue_count
- 1];
1961 for (i
= ctrl
->ctrl
.queue_count
- 1; i
>= 1; i
--, queue
--)
1962 __nvme_fc_delete_hw_queue(ctrl
, queue
, i
);
1966 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl
*ctrl
, u16 qsize
)
1968 struct nvme_fc_queue
*queue
= &ctrl
->queues
[1];
1971 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++, queue
++) {
1972 ret
= __nvme_fc_create_hw_queue(ctrl
, queue
, i
, qsize
);
1981 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[i
], i
);
1986 nvme_fc_connect_io_queues(struct nvme_fc_ctrl
*ctrl
, u16 qsize
)
1990 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
1991 ret
= nvme_fc_connect_queue(ctrl
, &ctrl
->queues
[i
], qsize
,
1995 ret
= nvmf_connect_io_queue(&ctrl
->ctrl
, i
, false);
1999 set_bit(NVME_FC_Q_LIVE
, &ctrl
->queues
[i
].flags
);
2006 nvme_fc_init_io_queues(struct nvme_fc_ctrl
*ctrl
)
2010 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
2011 nvme_fc_init_queue(ctrl
, i
);
2015 nvme_fc_ctrl_free(struct kref
*ref
)
2017 struct nvme_fc_ctrl
*ctrl
=
2018 container_of(ref
, struct nvme_fc_ctrl
, ref
);
2019 struct nvme_fc_lport
*lport
= ctrl
->lport
;
2020 unsigned long flags
;
2022 if (ctrl
->ctrl
.tagset
) {
2023 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
2024 blk_mq_free_tag_set(&ctrl
->tag_set
);
2027 /* remove from rport list */
2028 spin_lock_irqsave(&ctrl
->rport
->lock
, flags
);
2029 list_del(&ctrl
->ctrl_list
);
2030 spin_unlock_irqrestore(&ctrl
->rport
->lock
, flags
);
2032 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
2033 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
2034 blk_cleanup_queue(ctrl
->ctrl
.fabrics_q
);
2035 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
2037 kfree(ctrl
->queues
);
2039 put_device(ctrl
->dev
);
2040 nvme_fc_rport_put(ctrl
->rport
);
2042 ida_simple_remove(&nvme_fc_ctrl_cnt
, ctrl
->cnum
);
2043 if (ctrl
->ctrl
.opts
)
2044 nvmf_free_options(ctrl
->ctrl
.opts
);
2046 module_put(lport
->ops
->module
);
2050 nvme_fc_ctrl_put(struct nvme_fc_ctrl
*ctrl
)
2052 kref_put(&ctrl
->ref
, nvme_fc_ctrl_free
);
2056 nvme_fc_ctrl_get(struct nvme_fc_ctrl
*ctrl
)
2058 return kref_get_unless_zero(&ctrl
->ref
);
2062 * All accesses from nvme core layer done - can now free the
2063 * controller. Called after last nvme_put_ctrl() call
2066 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl
*nctrl
)
2068 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2070 WARN_ON(nctrl
!= &ctrl
->ctrl
);
2072 nvme_fc_ctrl_put(ctrl
);
2076 nvme_fc_error_recovery(struct nvme_fc_ctrl
*ctrl
, char *errmsg
)
2081 * if an error (io timeout, etc) while (re)connecting,
2082 * it's an error on creating the new association.
2083 * Start the error recovery thread if it hasn't already
2084 * been started. It is expected there could be multiple
2085 * ios hitting this path before things are cleaned up.
2087 if (ctrl
->ctrl
.state
== NVME_CTRL_CONNECTING
) {
2088 active
= atomic_xchg(&ctrl
->err_work_active
, 1);
2089 if (!active
&& !queue_work(nvme_fc_wq
, &ctrl
->err_work
)) {
2090 atomic_set(&ctrl
->err_work_active
, 0);
2096 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2097 if (ctrl
->ctrl
.state
!= NVME_CTRL_LIVE
)
2100 dev_warn(ctrl
->ctrl
.device
,
2101 "NVME-FC{%d}: transport association error detected: %s\n",
2102 ctrl
->cnum
, errmsg
);
2103 dev_warn(ctrl
->ctrl
.device
,
2104 "NVME-FC{%d}: resetting controller\n", ctrl
->cnum
);
2106 nvme_reset_ctrl(&ctrl
->ctrl
);
2109 static enum blk_eh_timer_return
2110 nvme_fc_timeout(struct request
*rq
, bool reserved
)
2112 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2113 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2116 * we can't individually ABTS an io without affecting the queue,
2117 * thus killing the queue, and thus the association.
2118 * So resolve by performing a controller reset, which will stop
2119 * the host/io stack, terminate the association on the link,
2120 * and recreate an association on the link.
2122 nvme_fc_error_recovery(ctrl
, "io timeout error");
2125 * the io abort has been initiated. Have the reset timer
2126 * restarted and the abort completion will complete the io
2127 * shortly. Avoids a synchronous wait while the abort finishes.
2129 return BLK_EH_RESET_TIMER
;
2133 nvme_fc_map_data(struct nvme_fc_ctrl
*ctrl
, struct request
*rq
,
2134 struct nvme_fc_fcp_op
*op
)
2136 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
2141 if (!blk_rq_nr_phys_segments(rq
))
2144 freq
->sg_table
.sgl
= freq
->first_sgl
;
2145 ret
= sg_alloc_table_chained(&freq
->sg_table
,
2146 blk_rq_nr_phys_segments(rq
), freq
->sg_table
.sgl
,
2147 NVME_INLINE_SG_CNT
);
2151 op
->nents
= blk_rq_map_sg(rq
->q
, rq
, freq
->sg_table
.sgl
);
2152 WARN_ON(op
->nents
> blk_rq_nr_phys_segments(rq
));
2153 freq
->sg_cnt
= fc_dma_map_sg(ctrl
->lport
->dev
, freq
->sg_table
.sgl
,
2154 op
->nents
, rq_dma_dir(rq
));
2155 if (unlikely(freq
->sg_cnt
<= 0)) {
2156 sg_free_table_chained(&freq
->sg_table
, NVME_INLINE_SG_CNT
);
2162 * TODO: blk_integrity_rq(rq) for DIF
2168 nvme_fc_unmap_data(struct nvme_fc_ctrl
*ctrl
, struct request
*rq
,
2169 struct nvme_fc_fcp_op
*op
)
2171 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
2176 fc_dma_unmap_sg(ctrl
->lport
->dev
, freq
->sg_table
.sgl
, op
->nents
,
2179 sg_free_table_chained(&freq
->sg_table
, NVME_INLINE_SG_CNT
);
2185 * In FC, the queue is a logical thing. At transport connect, the target
2186 * creates its "queue" and returns a handle that is to be given to the
2187 * target whenever it posts something to the corresponding SQ. When an
2188 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2189 * command contained within the SQE, an io, and assigns a FC exchange
2190 * to it. The SQE and the associated SQ handle are sent in the initial
2191 * CMD IU sents on the exchange. All transfers relative to the io occur
2192 * as part of the exchange. The CQE is the last thing for the io,
2193 * which is transferred (explicitly or implicitly) with the RSP IU
2194 * sent on the exchange. After the CQE is received, the FC exchange is
2195 * terminaed and the Exchange may be used on a different io.
2197 * The transport to LLDD api has the transport making a request for a
2198 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2199 * resource and transfers the command. The LLDD will then process all
2200 * steps to complete the io. Upon completion, the transport done routine
2203 * So - while the operation is outstanding to the LLDD, there is a link
2204 * level FC exchange resource that is also outstanding. This must be
2205 * considered in all cleanup operations.
2208 nvme_fc_start_fcp_op(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_queue
*queue
,
2209 struct nvme_fc_fcp_op
*op
, u32 data_len
,
2210 enum nvmefc_fcp_datadir io_dir
)
2212 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
2213 struct nvme_command
*sqe
= &cmdiu
->sqe
;
2217 * before attempting to send the io, check to see if we believe
2218 * the target device is present
2220 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
2221 return BLK_STS_RESOURCE
;
2223 if (!nvme_fc_ctrl_get(ctrl
))
2224 return BLK_STS_IOERR
;
2226 /* format the FC-NVME CMD IU and fcp_req */
2227 cmdiu
->connection_id
= cpu_to_be64(queue
->connection_id
);
2228 cmdiu
->data_len
= cpu_to_be32(data_len
);
2230 case NVMEFC_FCP_WRITE
:
2231 cmdiu
->flags
= FCNVME_CMD_FLAGS_WRITE
;
2233 case NVMEFC_FCP_READ
:
2234 cmdiu
->flags
= FCNVME_CMD_FLAGS_READ
;
2236 case NVMEFC_FCP_NODATA
:
2240 op
->fcp_req
.payload_length
= data_len
;
2241 op
->fcp_req
.io_dir
= io_dir
;
2242 op
->fcp_req
.transferred_length
= 0;
2243 op
->fcp_req
.rcv_rsplen
= 0;
2244 op
->fcp_req
.status
= NVME_SC_SUCCESS
;
2245 op
->fcp_req
.sqid
= cpu_to_le16(queue
->qnum
);
2248 * validate per fabric rules, set fields mandated by fabric spec
2249 * as well as those by FC-NVME spec.
2251 WARN_ON_ONCE(sqe
->common
.metadata
);
2252 sqe
->common
.flags
|= NVME_CMD_SGL_METABUF
;
2255 * format SQE DPTR field per FC-NVME rules:
2256 * type=0x5 Transport SGL Data Block Descriptor
2257 * subtype=0xA Transport-specific value
2259 * length=length of the data series
2261 sqe
->rw
.dptr
.sgl
.type
= (NVME_TRANSPORT_SGL_DATA_DESC
<< 4) |
2262 NVME_SGL_FMT_TRANSPORT_A
;
2263 sqe
->rw
.dptr
.sgl
.length
= cpu_to_le32(data_len
);
2264 sqe
->rw
.dptr
.sgl
.addr
= 0;
2266 if (!(op
->flags
& FCOP_FLAGS_AEN
)) {
2267 ret
= nvme_fc_map_data(ctrl
, op
->rq
, op
);
2269 nvme_cleanup_cmd(op
->rq
);
2270 nvme_fc_ctrl_put(ctrl
);
2271 if (ret
== -ENOMEM
|| ret
== -EAGAIN
)
2272 return BLK_STS_RESOURCE
;
2273 return BLK_STS_IOERR
;
2277 fc_dma_sync_single_for_device(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
,
2278 sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
2280 atomic_set(&op
->state
, FCPOP_STATE_ACTIVE
);
2282 if (!(op
->flags
& FCOP_FLAGS_AEN
))
2283 blk_mq_start_request(op
->rq
);
2285 cmdiu
->csn
= cpu_to_be32(atomic_inc_return(&queue
->csn
));
2286 ret
= ctrl
->lport
->ops
->fcp_io(&ctrl
->lport
->localport
,
2287 &ctrl
->rport
->remoteport
,
2288 queue
->lldd_handle
, &op
->fcp_req
);
2292 * If the lld fails to send the command is there an issue with
2293 * the csn value? If the command that fails is the Connect,
2294 * no - as the connection won't be live. If it is a command
2295 * post-connect, it's possible a gap in csn may be created.
2296 * Does this matter? As Linux initiators don't send fused
2297 * commands, no. The gap would exist, but as there's nothing
2298 * that depends on csn order to be delivered on the target
2299 * side, it shouldn't hurt. It would be difficult for a
2300 * target to even detect the csn gap as it has no idea when the
2301 * cmd with the csn was supposed to arrive.
2303 opstate
= atomic_xchg(&op
->state
, FCPOP_STATE_COMPLETE
);
2304 __nvme_fc_fcpop_chk_teardowns(ctrl
, op
, opstate
);
2306 if (!(op
->flags
& FCOP_FLAGS_AEN
))
2307 nvme_fc_unmap_data(ctrl
, op
->rq
, op
);
2309 nvme_cleanup_cmd(op
->rq
);
2310 nvme_fc_ctrl_put(ctrl
);
2312 if (ctrl
->rport
->remoteport
.port_state
== FC_OBJSTATE_ONLINE
&&
2314 return BLK_STS_IOERR
;
2316 return BLK_STS_RESOURCE
;
2323 nvme_fc_queue_rq(struct blk_mq_hw_ctx
*hctx
,
2324 const struct blk_mq_queue_data
*bd
)
2326 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
2327 struct nvme_fc_queue
*queue
= hctx
->driver_data
;
2328 struct nvme_fc_ctrl
*ctrl
= queue
->ctrl
;
2329 struct request
*rq
= bd
->rq
;
2330 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2331 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
2332 struct nvme_command
*sqe
= &cmdiu
->sqe
;
2333 enum nvmefc_fcp_datadir io_dir
;
2334 bool queue_ready
= test_bit(NVME_FC_Q_LIVE
, &queue
->flags
);
2338 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
||
2339 !nvmf_check_ready(&queue
->ctrl
->ctrl
, rq
, queue_ready
))
2340 return nvmf_fail_nonready_command(&queue
->ctrl
->ctrl
, rq
);
2342 ret
= nvme_setup_cmd(ns
, rq
, sqe
);
2347 * nvme core doesn't quite treat the rq opaquely. Commands such
2348 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2349 * there is no actual payload to be transferred.
2350 * To get it right, key data transmission on there being 1 or
2351 * more physical segments in the sg list. If there is no
2352 * physical segments, there is no payload.
2354 if (blk_rq_nr_phys_segments(rq
)) {
2355 data_len
= blk_rq_payload_bytes(rq
);
2356 io_dir
= ((rq_data_dir(rq
) == WRITE
) ?
2357 NVMEFC_FCP_WRITE
: NVMEFC_FCP_READ
);
2360 io_dir
= NVMEFC_FCP_NODATA
;
2364 return nvme_fc_start_fcp_op(ctrl
, queue
, op
, data_len
, io_dir
);
2368 nvme_fc_submit_async_event(struct nvme_ctrl
*arg
)
2370 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(arg
);
2371 struct nvme_fc_fcp_op
*aen_op
;
2372 unsigned long flags
;
2373 bool terminating
= false;
2376 spin_lock_irqsave(&ctrl
->lock
, flags
);
2377 if (ctrl
->flags
& FCCTRL_TERMIO
)
2379 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2384 aen_op
= &ctrl
->aen_ops
[0];
2386 ret
= nvme_fc_start_fcp_op(ctrl
, aen_op
->queue
, aen_op
, 0,
2389 dev_err(ctrl
->ctrl
.device
,
2390 "failed async event work\n");
2394 nvme_fc_complete_rq(struct request
*rq
)
2396 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2397 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2399 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
2401 nvme_fc_unmap_data(ctrl
, rq
, op
);
2402 nvme_complete_rq(rq
);
2403 nvme_fc_ctrl_put(ctrl
);
2407 * This routine is used by the transport when it needs to find active
2408 * io on a queue that is to be terminated. The transport uses
2409 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2410 * this routine to kill them on a 1 by 1 basis.
2412 * As FC allocates FC exchange for each io, the transport must contact
2413 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2414 * After terminating the exchange the LLDD will call the transport's
2415 * normal io done path for the request, but it will have an aborted
2416 * status. The done path will return the io request back to the block
2417 * layer with an error status.
2420 nvme_fc_terminate_exchange(struct request
*req
, void *data
, bool reserved
)
2422 struct nvme_ctrl
*nctrl
= data
;
2423 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2424 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(req
);
2426 __nvme_fc_abort_op(ctrl
, op
);
2431 static const struct blk_mq_ops nvme_fc_mq_ops
= {
2432 .queue_rq
= nvme_fc_queue_rq
,
2433 .complete
= nvme_fc_complete_rq
,
2434 .init_request
= nvme_fc_init_request
,
2435 .exit_request
= nvme_fc_exit_request
,
2436 .init_hctx
= nvme_fc_init_hctx
,
2437 .timeout
= nvme_fc_timeout
,
2441 nvme_fc_create_io_queues(struct nvme_fc_ctrl
*ctrl
)
2443 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2444 unsigned int nr_io_queues
;
2447 nr_io_queues
= min(min(opts
->nr_io_queues
, num_online_cpus()),
2448 ctrl
->lport
->ops
->max_hw_queues
);
2449 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
2451 dev_info(ctrl
->ctrl
.device
,
2452 "set_queue_count failed: %d\n", ret
);
2456 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
2460 nvme_fc_init_io_queues(ctrl
);
2462 memset(&ctrl
->tag_set
, 0, sizeof(ctrl
->tag_set
));
2463 ctrl
->tag_set
.ops
= &nvme_fc_mq_ops
;
2464 ctrl
->tag_set
.queue_depth
= ctrl
->ctrl
.opts
->queue_size
;
2465 ctrl
->tag_set
.reserved_tags
= 1; /* fabric connect */
2466 ctrl
->tag_set
.numa_node
= ctrl
->ctrl
.numa_node
;
2467 ctrl
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2468 ctrl
->tag_set
.cmd_size
=
2469 struct_size((struct nvme_fcp_op_w_sgl
*)NULL
, priv
,
2470 ctrl
->lport
->ops
->fcprqst_priv_sz
);
2471 ctrl
->tag_set
.driver_data
= ctrl
;
2472 ctrl
->tag_set
.nr_hw_queues
= ctrl
->ctrl
.queue_count
- 1;
2473 ctrl
->tag_set
.timeout
= NVME_IO_TIMEOUT
;
2475 ret
= blk_mq_alloc_tag_set(&ctrl
->tag_set
);
2479 ctrl
->ctrl
.tagset
= &ctrl
->tag_set
;
2481 ctrl
->ctrl
.connect_q
= blk_mq_init_queue(&ctrl
->tag_set
);
2482 if (IS_ERR(ctrl
->ctrl
.connect_q
)) {
2483 ret
= PTR_ERR(ctrl
->ctrl
.connect_q
);
2484 goto out_free_tag_set
;
2487 ret
= nvme_fc_create_hw_io_queues(ctrl
, ctrl
->ctrl
.sqsize
+ 1);
2489 goto out_cleanup_blk_queue
;
2491 ret
= nvme_fc_connect_io_queues(ctrl
, ctrl
->ctrl
.sqsize
+ 1);
2493 goto out_delete_hw_queues
;
2495 ctrl
->ioq_live
= true;
2499 out_delete_hw_queues
:
2500 nvme_fc_delete_hw_io_queues(ctrl
);
2501 out_cleanup_blk_queue
:
2502 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
2504 blk_mq_free_tag_set(&ctrl
->tag_set
);
2505 nvme_fc_free_io_queues(ctrl
);
2507 /* force put free routine to ignore io queues */
2508 ctrl
->ctrl
.tagset
= NULL
;
2514 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl
*ctrl
)
2516 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2517 u32 prior_ioq_cnt
= ctrl
->ctrl
.queue_count
- 1;
2518 unsigned int nr_io_queues
;
2521 nr_io_queues
= min(min(opts
->nr_io_queues
, num_online_cpus()),
2522 ctrl
->lport
->ops
->max_hw_queues
);
2523 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
2525 dev_info(ctrl
->ctrl
.device
,
2526 "set_queue_count failed: %d\n", ret
);
2530 if (!nr_io_queues
&& prior_ioq_cnt
) {
2531 dev_info(ctrl
->ctrl
.device
,
2532 "Fail Reconnect: At least 1 io queue "
2533 "required (was %d)\n", prior_ioq_cnt
);
2537 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
2538 /* check for io queues existing */
2539 if (ctrl
->ctrl
.queue_count
== 1)
2542 ret
= nvme_fc_create_hw_io_queues(ctrl
, ctrl
->ctrl
.sqsize
+ 1);
2544 goto out_free_io_queues
;
2546 ret
= nvme_fc_connect_io_queues(ctrl
, ctrl
->ctrl
.sqsize
+ 1);
2548 goto out_delete_hw_queues
;
2550 if (prior_ioq_cnt
!= nr_io_queues
)
2551 dev_info(ctrl
->ctrl
.device
,
2552 "reconnect: revising io queue count from %d to %d\n",
2553 prior_ioq_cnt
, nr_io_queues
);
2554 blk_mq_update_nr_hw_queues(&ctrl
->tag_set
, nr_io_queues
);
2558 out_delete_hw_queues
:
2559 nvme_fc_delete_hw_io_queues(ctrl
);
2561 nvme_fc_free_io_queues(ctrl
);
2566 nvme_fc_rport_active_on_lport(struct nvme_fc_rport
*rport
)
2568 struct nvme_fc_lport
*lport
= rport
->lport
;
2570 atomic_inc(&lport
->act_rport_cnt
);
2574 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport
*rport
)
2576 struct nvme_fc_lport
*lport
= rport
->lport
;
2579 cnt
= atomic_dec_return(&lport
->act_rport_cnt
);
2580 if (cnt
== 0 && lport
->localport
.port_state
== FC_OBJSTATE_DELETED
)
2581 lport
->ops
->localport_delete(&lport
->localport
);
2585 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl
*ctrl
)
2587 struct nvme_fc_rport
*rport
= ctrl
->rport
;
2590 if (ctrl
->assoc_active
)
2593 ctrl
->assoc_active
= true;
2594 cnt
= atomic_inc_return(&rport
->act_ctrl_cnt
);
2596 nvme_fc_rport_active_on_lport(rport
);
2602 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl
*ctrl
)
2604 struct nvme_fc_rport
*rport
= ctrl
->rport
;
2605 struct nvme_fc_lport
*lport
= rport
->lport
;
2608 /* ctrl->assoc_active=false will be set independently */
2610 cnt
= atomic_dec_return(&rport
->act_ctrl_cnt
);
2612 if (rport
->remoteport
.port_state
== FC_OBJSTATE_DELETED
)
2613 lport
->ops
->remoteport_delete(&rport
->remoteport
);
2614 nvme_fc_rport_inactive_on_lport(rport
);
2621 * This routine restarts the controller on the host side, and
2622 * on the link side, recreates the controller association.
2625 nvme_fc_create_association(struct nvme_fc_ctrl
*ctrl
)
2627 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2631 ++ctrl
->ctrl
.nr_reconnects
;
2633 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
2636 if (nvme_fc_ctlr_active_on_rport(ctrl
))
2639 dev_info(ctrl
->ctrl
.device
,
2640 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
2641 " rport wwpn 0x%016llx: NQN \"%s\"\n",
2642 ctrl
->cnum
, ctrl
->lport
->localport
.port_name
,
2643 ctrl
->rport
->remoteport
.port_name
, ctrl
->ctrl
.opts
->subsysnqn
);
2646 * Create the admin queue
2649 ret
= __nvme_fc_create_hw_queue(ctrl
, &ctrl
->queues
[0], 0,
2652 goto out_free_queue
;
2654 ret
= nvme_fc_connect_admin_queue(ctrl
, &ctrl
->queues
[0],
2655 NVME_AQ_DEPTH
, (NVME_AQ_DEPTH
/ 4));
2657 goto out_delete_hw_queue
;
2659 ret
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
2661 goto out_disconnect_admin_queue
;
2663 set_bit(NVME_FC_Q_LIVE
, &ctrl
->queues
[0].flags
);
2666 * Check controller capabilities
2668 * todo:- add code to check if ctrl attributes changed from
2669 * prior connection values
2672 ret
= nvme_enable_ctrl(&ctrl
->ctrl
);
2674 goto out_disconnect_admin_queue
;
2676 ctrl
->ctrl
.max_hw_sectors
=
2677 (ctrl
->lport
->ops
->max_sgl_segments
- 1) << (PAGE_SHIFT
- 9);
2679 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
2681 ret
= nvme_init_identify(&ctrl
->ctrl
);
2683 goto out_disconnect_admin_queue
;
2687 /* FC-NVME does not have other data in the capsule */
2688 if (ctrl
->ctrl
.icdoff
) {
2689 dev_err(ctrl
->ctrl
.device
, "icdoff %d is not supported!\n",
2691 goto out_disconnect_admin_queue
;
2694 /* FC-NVME supports normal SGL Data Block Descriptors */
2696 if (opts
->queue_size
> ctrl
->ctrl
.maxcmd
) {
2697 /* warn if maxcmd is lower than queue_size */
2698 dev_warn(ctrl
->ctrl
.device
,
2699 "queue_size %zu > ctrl maxcmd %u, reducing "
2701 opts
->queue_size
, ctrl
->ctrl
.maxcmd
);
2702 opts
->queue_size
= ctrl
->ctrl
.maxcmd
;
2705 if (opts
->queue_size
> ctrl
->ctrl
.sqsize
+ 1) {
2706 /* warn if sqsize is lower than queue_size */
2707 dev_warn(ctrl
->ctrl
.device
,
2708 "queue_size %zu > ctrl sqsize %u, reducing "
2710 opts
->queue_size
, ctrl
->ctrl
.sqsize
+ 1);
2711 opts
->queue_size
= ctrl
->ctrl
.sqsize
+ 1;
2714 ret
= nvme_fc_init_aen_ops(ctrl
);
2716 goto out_term_aen_ops
;
2719 * Create the io queues
2722 if (ctrl
->ctrl
.queue_count
> 1) {
2723 if (!ctrl
->ioq_live
)
2724 ret
= nvme_fc_create_io_queues(ctrl
);
2726 ret
= nvme_fc_recreate_io_queues(ctrl
);
2728 goto out_term_aen_ops
;
2731 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
2733 ctrl
->ctrl
.nr_reconnects
= 0;
2736 nvme_start_ctrl(&ctrl
->ctrl
);
2738 return 0; /* Success */
2741 nvme_fc_term_aen_ops(ctrl
);
2742 out_disconnect_admin_queue
:
2743 /* send a Disconnect(association) LS to fc-nvme target */
2744 nvme_fc_xmt_disconnect_assoc(ctrl
);
2745 ctrl
->association_id
= 0;
2746 out_delete_hw_queue
:
2747 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[0], 0);
2749 nvme_fc_free_queue(&ctrl
->queues
[0]);
2750 ctrl
->assoc_active
= false;
2751 nvme_fc_ctlr_inactive_on_rport(ctrl
);
2757 * This routine stops operation of the controller on the host side.
2758 * On the host os stack side: Admin and IO queues are stopped,
2759 * outstanding ios on them terminated via FC ABTS.
2760 * On the link side: the association is terminated.
2763 nvme_fc_delete_association(struct nvme_fc_ctrl
*ctrl
)
2765 unsigned long flags
;
2767 if (!ctrl
->assoc_active
)
2769 ctrl
->assoc_active
= false;
2771 spin_lock_irqsave(&ctrl
->lock
, flags
);
2772 ctrl
->flags
|= FCCTRL_TERMIO
;
2774 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2777 * If io queues are present, stop them and terminate all outstanding
2778 * ios on them. As FC allocates FC exchange for each io, the
2779 * transport must contact the LLDD to terminate the exchange,
2780 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2781 * to tell us what io's are busy and invoke a transport routine
2782 * to kill them with the LLDD. After terminating the exchange
2783 * the LLDD will call the transport's normal io done path, but it
2784 * will have an aborted status. The done path will return the
2785 * io requests back to the block layer as part of normal completions
2786 * (but with error status).
2788 if (ctrl
->ctrl
.queue_count
> 1) {
2789 nvme_stop_queues(&ctrl
->ctrl
);
2790 blk_mq_tagset_busy_iter(&ctrl
->tag_set
,
2791 nvme_fc_terminate_exchange
, &ctrl
->ctrl
);
2792 blk_mq_tagset_wait_completed_request(&ctrl
->tag_set
);
2796 * Other transports, which don't have link-level contexts bound
2797 * to sqe's, would try to gracefully shutdown the controller by
2798 * writing the registers for shutdown and polling (call
2799 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2800 * just aborted and we will wait on those contexts, and given
2801 * there was no indication of how live the controlelr is on the
2802 * link, don't send more io to create more contexts for the
2803 * shutdown. Let the controller fail via keepalive failure if
2804 * its still present.
2808 * clean up the admin queue. Same thing as above.
2809 * use blk_mq_tagset_busy_itr() and the transport routine to
2810 * terminate the exchanges.
2812 blk_mq_quiesce_queue(ctrl
->ctrl
.admin_q
);
2813 blk_mq_tagset_busy_iter(&ctrl
->admin_tag_set
,
2814 nvme_fc_terminate_exchange
, &ctrl
->ctrl
);
2815 blk_mq_tagset_wait_completed_request(&ctrl
->admin_tag_set
);
2817 /* kill the aens as they are a separate path */
2818 nvme_fc_abort_aen_ops(ctrl
);
2820 /* wait for all io that had to be aborted */
2821 spin_lock_irq(&ctrl
->lock
);
2822 wait_event_lock_irq(ctrl
->ioabort_wait
, ctrl
->iocnt
== 0, ctrl
->lock
);
2823 ctrl
->flags
&= ~FCCTRL_TERMIO
;
2824 spin_unlock_irq(&ctrl
->lock
);
2826 nvme_fc_term_aen_ops(ctrl
);
2829 * send a Disconnect(association) LS to fc-nvme target
2830 * Note: could have been sent at top of process, but
2831 * cleaner on link traffic if after the aborts complete.
2832 * Note: if association doesn't exist, association_id will be 0
2834 if (ctrl
->association_id
)
2835 nvme_fc_xmt_disconnect_assoc(ctrl
);
2837 ctrl
->association_id
= 0;
2839 if (ctrl
->ctrl
.tagset
) {
2840 nvme_fc_delete_hw_io_queues(ctrl
);
2841 nvme_fc_free_io_queues(ctrl
);
2844 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[0], 0);
2845 nvme_fc_free_queue(&ctrl
->queues
[0]);
2847 /* re-enable the admin_q so anything new can fast fail */
2848 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
2850 /* resume the io queues so that things will fast fail */
2851 nvme_start_queues(&ctrl
->ctrl
);
2853 nvme_fc_ctlr_inactive_on_rport(ctrl
);
2857 nvme_fc_delete_ctrl(struct nvme_ctrl
*nctrl
)
2859 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2861 cancel_work_sync(&ctrl
->err_work
);
2862 cancel_delayed_work_sync(&ctrl
->connect_work
);
2864 * kill the association on the link side. this will block
2865 * waiting for io to terminate
2867 nvme_fc_delete_association(ctrl
);
2871 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl
*ctrl
, int status
)
2873 struct nvme_fc_rport
*rport
= ctrl
->rport
;
2874 struct nvme_fc_remote_port
*portptr
= &rport
->remoteport
;
2875 unsigned long recon_delay
= ctrl
->ctrl
.opts
->reconnect_delay
* HZ
;
2878 if (ctrl
->ctrl
.state
!= NVME_CTRL_CONNECTING
)
2881 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
2882 dev_info(ctrl
->ctrl
.device
,
2883 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2884 ctrl
->cnum
, status
);
2885 else if (time_after_eq(jiffies
, rport
->dev_loss_end
))
2888 if (recon
&& nvmf_should_reconnect(&ctrl
->ctrl
)) {
2889 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
2890 dev_info(ctrl
->ctrl
.device
,
2891 "NVME-FC{%d}: Reconnect attempt in %ld "
2893 ctrl
->cnum
, recon_delay
/ HZ
);
2894 else if (time_after(jiffies
+ recon_delay
, rport
->dev_loss_end
))
2895 recon_delay
= rport
->dev_loss_end
- jiffies
;
2897 queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, recon_delay
);
2899 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
2900 dev_warn(ctrl
->ctrl
.device
,
2901 "NVME-FC{%d}: Max reconnect attempts (%d) "
2903 ctrl
->cnum
, ctrl
->ctrl
.nr_reconnects
);
2905 dev_warn(ctrl
->ctrl
.device
,
2906 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2907 "while waiting for remoteport connectivity.\n",
2908 ctrl
->cnum
, portptr
->dev_loss_tmo
);
2909 WARN_ON(nvme_delete_ctrl(&ctrl
->ctrl
));
2914 __nvme_fc_terminate_io(struct nvme_fc_ctrl
*ctrl
)
2917 * if state is connecting - the error occurred as part of a
2918 * reconnect attempt. The create_association error paths will
2919 * clean up any outstanding io.
2921 * if it's a different state - ensure all pending io is
2922 * terminated. Given this can delay while waiting for the
2923 * aborted io to return, we recheck adapter state below
2924 * before changing state.
2926 if (ctrl
->ctrl
.state
!= NVME_CTRL_CONNECTING
) {
2927 nvme_stop_keep_alive(&ctrl
->ctrl
);
2929 /* will block will waiting for io to terminate */
2930 nvme_fc_delete_association(ctrl
);
2933 if (ctrl
->ctrl
.state
!= NVME_CTRL_CONNECTING
&&
2934 !nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
))
2935 dev_err(ctrl
->ctrl
.device
,
2936 "NVME-FC{%d}: error_recovery: Couldn't change state "
2937 "to CONNECTING\n", ctrl
->cnum
);
2941 nvme_fc_reset_ctrl_work(struct work_struct
*work
)
2943 struct nvme_fc_ctrl
*ctrl
=
2944 container_of(work
, struct nvme_fc_ctrl
, ctrl
.reset_work
);
2947 __nvme_fc_terminate_io(ctrl
);
2949 nvme_stop_ctrl(&ctrl
->ctrl
);
2951 if (ctrl
->rport
->remoteport
.port_state
== FC_OBJSTATE_ONLINE
)
2952 ret
= nvme_fc_create_association(ctrl
);
2957 nvme_fc_reconnect_or_delete(ctrl
, ret
);
2959 dev_info(ctrl
->ctrl
.device
,
2960 "NVME-FC{%d}: controller reset complete\n",
2965 nvme_fc_connect_err_work(struct work_struct
*work
)
2967 struct nvme_fc_ctrl
*ctrl
=
2968 container_of(work
, struct nvme_fc_ctrl
, err_work
);
2970 __nvme_fc_terminate_io(ctrl
);
2972 atomic_set(&ctrl
->err_work_active
, 0);
2975 * Rescheduling the connection after recovering
2976 * from the io error is left to the reconnect work
2977 * item, which is what should have stalled waiting on
2978 * the io that had the error that scheduled this work.
2982 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops
= {
2984 .module
= THIS_MODULE
,
2985 .flags
= NVME_F_FABRICS
,
2986 .reg_read32
= nvmf_reg_read32
,
2987 .reg_read64
= nvmf_reg_read64
,
2988 .reg_write32
= nvmf_reg_write32
,
2989 .free_ctrl
= nvme_fc_nvme_ctrl_freed
,
2990 .submit_async_event
= nvme_fc_submit_async_event
,
2991 .delete_ctrl
= nvme_fc_delete_ctrl
,
2992 .get_address
= nvmf_get_address
,
2996 nvme_fc_connect_ctrl_work(struct work_struct
*work
)
3000 struct nvme_fc_ctrl
*ctrl
=
3001 container_of(to_delayed_work(work
),
3002 struct nvme_fc_ctrl
, connect_work
);
3004 ret
= nvme_fc_create_association(ctrl
);
3006 nvme_fc_reconnect_or_delete(ctrl
, ret
);
3008 dev_info(ctrl
->ctrl
.device
,
3009 "NVME-FC{%d}: controller connect complete\n",
3014 static const struct blk_mq_ops nvme_fc_admin_mq_ops
= {
3015 .queue_rq
= nvme_fc_queue_rq
,
3016 .complete
= nvme_fc_complete_rq
,
3017 .init_request
= nvme_fc_init_request
,
3018 .exit_request
= nvme_fc_exit_request
,
3019 .init_hctx
= nvme_fc_init_admin_hctx
,
3020 .timeout
= nvme_fc_timeout
,
3025 * Fails a controller request if it matches an existing controller
3026 * (association) with the same tuple:
3027 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3029 * The ports don't need to be compared as they are intrinsically
3030 * already matched by the port pointers supplied.
3033 nvme_fc_existing_controller(struct nvme_fc_rport
*rport
,
3034 struct nvmf_ctrl_options
*opts
)
3036 struct nvme_fc_ctrl
*ctrl
;
3037 unsigned long flags
;
3040 spin_lock_irqsave(&rport
->lock
, flags
);
3041 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
3042 found
= nvmf_ctlr_matches_baseopts(&ctrl
->ctrl
, opts
);
3046 spin_unlock_irqrestore(&rport
->lock
, flags
);
3051 static struct nvme_ctrl
*
3052 nvme_fc_init_ctrl(struct device
*dev
, struct nvmf_ctrl_options
*opts
,
3053 struct nvme_fc_lport
*lport
, struct nvme_fc_rport
*rport
)
3055 struct nvme_fc_ctrl
*ctrl
;
3056 unsigned long flags
;
3059 if (!(rport
->remoteport
.port_role
&
3060 (FC_PORT_ROLE_NVME_DISCOVERY
| FC_PORT_ROLE_NVME_TARGET
))) {
3065 if (!opts
->duplicate_connect
&&
3066 nvme_fc_existing_controller(rport
, opts
)) {
3071 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
3077 if (!try_module_get(lport
->ops
->module
)) {
3082 idx
= ida_simple_get(&nvme_fc_ctrl_cnt
, 0, 0, GFP_KERNEL
);
3088 ctrl
->ctrl
.opts
= opts
;
3089 ctrl
->ctrl
.nr_reconnects
= 0;
3091 ctrl
->ctrl
.numa_node
= dev_to_node(lport
->dev
);
3093 ctrl
->ctrl
.numa_node
= NUMA_NO_NODE
;
3094 INIT_LIST_HEAD(&ctrl
->ctrl_list
);
3095 ctrl
->lport
= lport
;
3096 ctrl
->rport
= rport
;
3097 ctrl
->dev
= lport
->dev
;
3099 ctrl
->ioq_live
= false;
3100 ctrl
->assoc_active
= false;
3101 atomic_set(&ctrl
->err_work_active
, 0);
3102 init_waitqueue_head(&ctrl
->ioabort_wait
);
3104 get_device(ctrl
->dev
);
3105 kref_init(&ctrl
->ref
);
3107 INIT_WORK(&ctrl
->ctrl
.reset_work
, nvme_fc_reset_ctrl_work
);
3108 INIT_DELAYED_WORK(&ctrl
->connect_work
, nvme_fc_connect_ctrl_work
);
3109 INIT_WORK(&ctrl
->err_work
, nvme_fc_connect_err_work
);
3110 spin_lock_init(&ctrl
->lock
);
3112 /* io queue count */
3113 ctrl
->ctrl
.queue_count
= min_t(unsigned int,
3115 lport
->ops
->max_hw_queues
);
3116 ctrl
->ctrl
.queue_count
++; /* +1 for admin queue */
3118 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
3119 ctrl
->ctrl
.kato
= opts
->kato
;
3120 ctrl
->ctrl
.cntlid
= 0xffff;
3123 ctrl
->queues
= kcalloc(ctrl
->ctrl
.queue_count
,
3124 sizeof(struct nvme_fc_queue
), GFP_KERNEL
);
3128 nvme_fc_init_queue(ctrl
, 0);
3130 memset(&ctrl
->admin_tag_set
, 0, sizeof(ctrl
->admin_tag_set
));
3131 ctrl
->admin_tag_set
.ops
= &nvme_fc_admin_mq_ops
;
3132 ctrl
->admin_tag_set
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
3133 ctrl
->admin_tag_set
.reserved_tags
= 2; /* fabric connect + Keep-Alive */
3134 ctrl
->admin_tag_set
.numa_node
= ctrl
->ctrl
.numa_node
;
3135 ctrl
->admin_tag_set
.cmd_size
=
3136 struct_size((struct nvme_fcp_op_w_sgl
*)NULL
, priv
,
3137 ctrl
->lport
->ops
->fcprqst_priv_sz
);
3138 ctrl
->admin_tag_set
.driver_data
= ctrl
;
3139 ctrl
->admin_tag_set
.nr_hw_queues
= 1;
3140 ctrl
->admin_tag_set
.timeout
= ADMIN_TIMEOUT
;
3141 ctrl
->admin_tag_set
.flags
= BLK_MQ_F_NO_SCHED
;
3143 ret
= blk_mq_alloc_tag_set(&ctrl
->admin_tag_set
);
3145 goto out_free_queues
;
3146 ctrl
->ctrl
.admin_tagset
= &ctrl
->admin_tag_set
;
3148 ctrl
->ctrl
.fabrics_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
3149 if (IS_ERR(ctrl
->ctrl
.fabrics_q
)) {
3150 ret
= PTR_ERR(ctrl
->ctrl
.fabrics_q
);
3151 goto out_free_admin_tag_set
;
3154 ctrl
->ctrl
.admin_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
3155 if (IS_ERR(ctrl
->ctrl
.admin_q
)) {
3156 ret
= PTR_ERR(ctrl
->ctrl
.admin_q
);
3157 goto out_cleanup_fabrics_q
;
3161 * Would have been nice to init io queues tag set as well.
3162 * However, we require interaction from the controller
3163 * for max io queue count before we can do so.
3164 * Defer this to the connect path.
3167 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_fc_ctrl_ops
, 0);
3169 goto out_cleanup_admin_q
;
3171 /* at this point, teardown path changes to ref counting on nvme ctrl */
3173 spin_lock_irqsave(&rport
->lock
, flags
);
3174 list_add_tail(&ctrl
->ctrl_list
, &rport
->ctrl_list
);
3175 spin_unlock_irqrestore(&rport
->lock
, flags
);
3177 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RESETTING
) ||
3178 !nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
)) {
3179 dev_err(ctrl
->ctrl
.device
,
3180 "NVME-FC{%d}: failed to init ctrl state\n", ctrl
->cnum
);
3184 nvme_get_ctrl(&ctrl
->ctrl
);
3186 if (!queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, 0)) {
3187 nvme_put_ctrl(&ctrl
->ctrl
);
3188 dev_err(ctrl
->ctrl
.device
,
3189 "NVME-FC{%d}: failed to schedule initial connect\n",
3194 flush_delayed_work(&ctrl
->connect_work
);
3196 dev_info(ctrl
->ctrl
.device
,
3197 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3198 ctrl
->cnum
, ctrl
->ctrl
.opts
->subsysnqn
);
3203 nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_DELETING
);
3204 cancel_work_sync(&ctrl
->ctrl
.reset_work
);
3205 cancel_work_sync(&ctrl
->err_work
);
3206 cancel_delayed_work_sync(&ctrl
->connect_work
);
3208 ctrl
->ctrl
.opts
= NULL
;
3210 /* initiate nvme ctrl ref counting teardown */
3211 nvme_uninit_ctrl(&ctrl
->ctrl
);
3213 /* Remove core ctrl ref. */
3214 nvme_put_ctrl(&ctrl
->ctrl
);
3216 /* as we're past the point where we transition to the ref
3217 * counting teardown path, if we return a bad pointer here,
3218 * the calling routine, thinking it's prior to the
3219 * transition, will do an rport put. Since the teardown
3220 * path also does a rport put, we do an extra get here to
3221 * so proper order/teardown happens.
3223 nvme_fc_rport_get(rport
);
3225 return ERR_PTR(-EIO
);
3227 out_cleanup_admin_q
:
3228 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
3229 out_cleanup_fabrics_q
:
3230 blk_cleanup_queue(ctrl
->ctrl
.fabrics_q
);
3231 out_free_admin_tag_set
:
3232 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
3234 kfree(ctrl
->queues
);
3236 put_device(ctrl
->dev
);
3237 ida_simple_remove(&nvme_fc_ctrl_cnt
, ctrl
->cnum
);
3239 module_put(lport
->ops
->module
);
3243 /* exit via here doesn't follow ctlr ref points */
3244 return ERR_PTR(ret
);
3248 struct nvmet_fc_traddr
{
3254 __nvme_fc_parse_u64(substring_t
*sstr
, u64
*val
)
3258 if (match_u64(sstr
, &token64
))
3266 * This routine validates and extracts the WWN's from the TRADDR string.
3267 * As kernel parsers need the 0x to determine number base, universally
3268 * build string to parse with 0x prefix before parsing name strings.
3271 nvme_fc_parse_traddr(struct nvmet_fc_traddr
*traddr
, char *buf
, size_t blen
)
3273 char name
[2 + NVME_FC_TRADDR_HEXNAMELEN
+ 1];
3274 substring_t wwn
= { name
, &name
[sizeof(name
)-1] };
3275 int nnoffset
, pnoffset
;
3277 /* validate if string is one of the 2 allowed formats */
3278 if (strnlen(buf
, blen
) == NVME_FC_TRADDR_MAXLENGTH
&&
3279 !strncmp(buf
, "nn-0x", NVME_FC_TRADDR_OXNNLEN
) &&
3280 !strncmp(&buf
[NVME_FC_TRADDR_MAX_PN_OFFSET
],
3281 "pn-0x", NVME_FC_TRADDR_OXNNLEN
)) {
3282 nnoffset
= NVME_FC_TRADDR_OXNNLEN
;
3283 pnoffset
= NVME_FC_TRADDR_MAX_PN_OFFSET
+
3284 NVME_FC_TRADDR_OXNNLEN
;
3285 } else if ((strnlen(buf
, blen
) == NVME_FC_TRADDR_MINLENGTH
&&
3286 !strncmp(buf
, "nn-", NVME_FC_TRADDR_NNLEN
) &&
3287 !strncmp(&buf
[NVME_FC_TRADDR_MIN_PN_OFFSET
],
3288 "pn-", NVME_FC_TRADDR_NNLEN
))) {
3289 nnoffset
= NVME_FC_TRADDR_NNLEN
;
3290 pnoffset
= NVME_FC_TRADDR_MIN_PN_OFFSET
+ NVME_FC_TRADDR_NNLEN
;
3296 name
[2 + NVME_FC_TRADDR_HEXNAMELEN
] = 0;
3298 memcpy(&name
[2], &buf
[nnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
3299 if (__nvme_fc_parse_u64(&wwn
, &traddr
->nn
))
3302 memcpy(&name
[2], &buf
[pnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
3303 if (__nvme_fc_parse_u64(&wwn
, &traddr
->pn
))
3309 pr_warn("%s: bad traddr string\n", __func__
);
3313 static struct nvme_ctrl
*
3314 nvme_fc_create_ctrl(struct device
*dev
, struct nvmf_ctrl_options
*opts
)
3316 struct nvme_fc_lport
*lport
;
3317 struct nvme_fc_rport
*rport
;
3318 struct nvme_ctrl
*ctrl
;
3319 struct nvmet_fc_traddr laddr
= { 0L, 0L };
3320 struct nvmet_fc_traddr raddr
= { 0L, 0L };
3321 unsigned long flags
;
3324 ret
= nvme_fc_parse_traddr(&raddr
, opts
->traddr
, NVMF_TRADDR_SIZE
);
3325 if (ret
|| !raddr
.nn
|| !raddr
.pn
)
3326 return ERR_PTR(-EINVAL
);
3328 ret
= nvme_fc_parse_traddr(&laddr
, opts
->host_traddr
, NVMF_TRADDR_SIZE
);
3329 if (ret
|| !laddr
.nn
|| !laddr
.pn
)
3330 return ERR_PTR(-EINVAL
);
3332 /* find the host and remote ports to connect together */
3333 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3334 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
3335 if (lport
->localport
.node_name
!= laddr
.nn
||
3336 lport
->localport
.port_name
!= laddr
.pn
)
3339 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
3340 if (rport
->remoteport
.node_name
!= raddr
.nn
||
3341 rport
->remoteport
.port_name
!= raddr
.pn
)
3344 /* if fail to get reference fall through. Will error */
3345 if (!nvme_fc_rport_get(rport
))
3348 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3350 ctrl
= nvme_fc_init_ctrl(dev
, opts
, lport
, rport
);
3352 nvme_fc_rport_put(rport
);
3356 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3358 pr_warn("%s: %s - %s combination not found\n",
3359 __func__
, opts
->traddr
, opts
->host_traddr
);
3360 return ERR_PTR(-ENOENT
);
3364 static struct nvmf_transport_ops nvme_fc_transport
= {
3366 .module
= THIS_MODULE
,
3367 .required_opts
= NVMF_OPT_TRADDR
| NVMF_OPT_HOST_TRADDR
,
3368 .allowed_opts
= NVMF_OPT_RECONNECT_DELAY
| NVMF_OPT_CTRL_LOSS_TMO
,
3369 .create_ctrl
= nvme_fc_create_ctrl
,
3372 /* Arbitrary successive failures max. With lots of subsystems could be high */
3373 #define DISCOVERY_MAX_FAIL 20
3375 static ssize_t
nvme_fc_nvme_discovery_store(struct device
*dev
,
3376 struct device_attribute
*attr
, const char *buf
, size_t count
)
3378 unsigned long flags
;
3379 LIST_HEAD(local_disc_list
);
3380 struct nvme_fc_lport
*lport
;
3381 struct nvme_fc_rport
*rport
;
3384 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3386 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
3387 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
3388 if (!nvme_fc_lport_get(lport
))
3390 if (!nvme_fc_rport_get(rport
)) {
3392 * This is a temporary condition. Upon restart
3393 * this rport will be gone from the list.
3395 * Revert the lport put and retry. Anything
3396 * added to the list already will be skipped (as
3397 * they are no longer list_empty). Loops should
3398 * resume at rports that were not yet seen.
3400 nvme_fc_lport_put(lport
);
3402 if (failcnt
++ < DISCOVERY_MAX_FAIL
)
3405 pr_err("nvme_discovery: too many reference "
3407 goto process_local_list
;
3409 if (list_empty(&rport
->disc_list
))
3410 list_add_tail(&rport
->disc_list
,
3416 while (!list_empty(&local_disc_list
)) {
3417 rport
= list_first_entry(&local_disc_list
,
3418 struct nvme_fc_rport
, disc_list
);
3419 list_del_init(&rport
->disc_list
);
3420 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3422 lport
= rport
->lport
;
3423 /* signal discovery. Won't hurt if it repeats */
3424 nvme_fc_signal_discovery_scan(lport
, rport
);
3425 nvme_fc_rport_put(rport
);
3426 nvme_fc_lport_put(lport
);
3428 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3430 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3434 static DEVICE_ATTR(nvme_discovery
, 0200, NULL
, nvme_fc_nvme_discovery_store
);
3436 static struct attribute
*nvme_fc_attrs
[] = {
3437 &dev_attr_nvme_discovery
.attr
,
3441 static struct attribute_group nvme_fc_attr_group
= {
3442 .attrs
= nvme_fc_attrs
,
3445 static const struct attribute_group
*nvme_fc_attr_groups
[] = {
3446 &nvme_fc_attr_group
,
3450 static struct class fc_class
= {
3452 .dev_groups
= nvme_fc_attr_groups
,
3453 .owner
= THIS_MODULE
,
3456 static int __init
nvme_fc_init_module(void)
3460 nvme_fc_wq
= alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM
, 0);
3466 * It is expected that in the future the kernel will combine
3467 * the FC-isms that are currently under scsi and now being
3468 * added to by NVME into a new standalone FC class. The SCSI
3469 * and NVME protocols and their devices would be under this
3472 * As we need something to post FC-specific udev events to,
3473 * specifically for nvme probe events, start by creating the
3474 * new device class. When the new standalone FC class is
3475 * put in place, this code will move to a more generic
3476 * location for the class.
3478 ret
= class_register(&fc_class
);
3480 pr_err("couldn't register class fc\n");
3481 goto out_destroy_wq
;
3485 * Create a device for the FC-centric udev events
3487 fc_udev_device
= device_create(&fc_class
, NULL
, MKDEV(0, 0), NULL
,
3489 if (IS_ERR(fc_udev_device
)) {
3490 pr_err("couldn't create fc_udev device!\n");
3491 ret
= PTR_ERR(fc_udev_device
);
3492 goto out_destroy_class
;
3495 ret
= nvmf_register_transport(&nvme_fc_transport
);
3497 goto out_destroy_device
;
3502 device_destroy(&fc_class
, MKDEV(0, 0));
3504 class_unregister(&fc_class
);
3506 destroy_workqueue(nvme_fc_wq
);
3512 nvme_fc_delete_controllers(struct nvme_fc_rport
*rport
)
3514 struct nvme_fc_ctrl
*ctrl
;
3516 spin_lock(&rport
->lock
);
3517 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
3518 dev_warn(ctrl
->ctrl
.device
,
3519 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3521 nvme_delete_ctrl(&ctrl
->ctrl
);
3523 spin_unlock(&rport
->lock
);
3527 nvme_fc_cleanup_for_unload(void)
3529 struct nvme_fc_lport
*lport
;
3530 struct nvme_fc_rport
*rport
;
3532 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
3533 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
3534 nvme_fc_delete_controllers(rport
);
3539 static void __exit
nvme_fc_exit_module(void)
3541 unsigned long flags
;
3542 bool need_cleanup
= false;
3544 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3545 nvme_fc_waiting_to_unload
= true;
3546 if (!list_empty(&nvme_fc_lport_list
)) {
3547 need_cleanup
= true;
3548 nvme_fc_cleanup_for_unload();
3550 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3552 pr_info("%s: waiting for ctlr deletes\n", __func__
);
3553 wait_for_completion(&nvme_fc_unload_proceed
);
3554 pr_info("%s: ctrl deletes complete\n", __func__
);
3557 nvmf_unregister_transport(&nvme_fc_transport
);
3559 ida_destroy(&nvme_fc_local_port_cnt
);
3560 ida_destroy(&nvme_fc_ctrl_cnt
);
3562 device_destroy(&fc_class
, MKDEV(0, 0));
3563 class_unregister(&fc_class
);
3564 destroy_workqueue(nvme_fc_wq
);
3567 module_init(nvme_fc_init_module
);
3568 module_exit(nvme_fc_exit_module
);
3570 MODULE_LICENSE("GPL v2");