treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / nvme / host / fc.c
blob5a70ac395d53a0f724f3f29431c4c32afa235619
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
19 /* *************************** Data Structures/Defines ****************** */
22 enum nvme_fc_queue_flags {
23 NVME_FC_Q_CONNECTED = 0,
24 NVME_FC_Q_LIVE,
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
29 struct nvme_fc_queue {
30 struct nvme_fc_ctrl *ctrl;
31 struct device *dev;
32 struct blk_mq_hw_ctx *hctx;
33 void *lldd_handle;
34 size_t cmnd_capsule_len;
35 u32 qnum;
36 u32 rqcnt;
37 u32 seqno;
39 u64 connection_id;
40 atomic_t csn;
42 unsigned long flags;
43 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
45 enum nvme_fcop_flags {
46 FCOP_FLAGS_TERMIO = (1 << 0),
47 FCOP_FLAGS_AEN = (1 << 1),
50 struct nvmefc_ls_req_op {
51 struct nvmefc_ls_req ls_req;
53 struct nvme_fc_rport *rport;
54 struct nvme_fc_queue *queue;
55 struct request *rq;
56 u32 flags;
58 int ls_error;
59 struct completion ls_done;
60 struct list_head lsreq_list; /* rport->ls_req_list */
61 bool req_queued;
64 enum nvme_fcpop_state {
65 FCPOP_STATE_UNINIT = 0,
66 FCPOP_STATE_IDLE = 1,
67 FCPOP_STATE_ACTIVE = 2,
68 FCPOP_STATE_ABORTED = 3,
69 FCPOP_STATE_COMPLETE = 4,
72 struct nvme_fc_fcp_op {
73 struct nvme_request nreq; /*
74 * nvme/host/core.c
75 * requires this to be
76 * the 1st element in the
77 * private structure
78 * associated with the
79 * request.
81 struct nvmefc_fcp_req fcp_req;
83 struct nvme_fc_ctrl *ctrl;
84 struct nvme_fc_queue *queue;
85 struct request *rq;
87 atomic_t state;
88 u32 flags;
89 u32 rqno;
90 u32 nents;
92 struct nvme_fc_cmd_iu cmd_iu;
93 struct nvme_fc_ersp_iu rsp_iu;
96 struct nvme_fcp_op_w_sgl {
97 struct nvme_fc_fcp_op op;
98 struct scatterlist sgl[NVME_INLINE_SG_CNT];
99 uint8_t priv[0];
102 struct nvme_fc_lport {
103 struct nvme_fc_local_port localport;
105 struct ida endp_cnt;
106 struct list_head port_list; /* nvme_fc_port_list */
107 struct list_head endp_list;
108 struct device *dev; /* physical device for dma */
109 struct nvme_fc_port_template *ops;
110 struct kref ref;
111 atomic_t act_rport_cnt;
112 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
114 struct nvme_fc_rport {
115 struct nvme_fc_remote_port remoteport;
117 struct list_head endp_list; /* for lport->endp_list */
118 struct list_head ctrl_list;
119 struct list_head ls_req_list;
120 struct list_head disc_list;
121 struct device *dev; /* physical device for dma */
122 struct nvme_fc_lport *lport;
123 spinlock_t lock;
124 struct kref ref;
125 atomic_t act_ctrl_cnt;
126 unsigned long dev_loss_end;
127 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
129 enum nvme_fcctrl_flags {
130 FCCTRL_TERMIO = (1 << 0),
133 struct nvme_fc_ctrl {
134 spinlock_t lock;
135 struct nvme_fc_queue *queues;
136 struct device *dev;
137 struct nvme_fc_lport *lport;
138 struct nvme_fc_rport *rport;
139 u32 cnum;
141 bool ioq_live;
142 bool assoc_active;
143 atomic_t err_work_active;
144 u64 association_id;
146 struct list_head ctrl_list; /* rport->ctrl_list */
148 struct blk_mq_tag_set admin_tag_set;
149 struct blk_mq_tag_set tag_set;
151 struct delayed_work connect_work;
152 struct work_struct err_work;
154 struct kref ref;
155 u32 flags;
156 u32 iocnt;
157 wait_queue_head_t ioabort_wait;
159 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
161 struct nvme_ctrl ctrl;
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
167 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
173 return container_of(portptr, struct nvme_fc_lport, localport);
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
179 return container_of(portptr, struct nvme_fc_rport, remoteport);
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
185 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
191 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
196 /* *************************** Globals **************************** */
199 static DEFINE_SPINLOCK(nvme_fc_lock);
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
205 static struct workqueue_struct *nvme_fc_wq;
207 static bool nvme_fc_waiting_to_unload;
208 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
211 * These items are short-term. They will eventually be moved into
212 * a generic FC class. See comments in module init.
214 static struct device *fc_udev_device;
217 /* *********************** FC-NVME Port Management ************************ */
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
220 struct nvme_fc_queue *, unsigned int);
222 static void
223 nvme_fc_free_lport(struct kref *ref)
225 struct nvme_fc_lport *lport =
226 container_of(ref, struct nvme_fc_lport, ref);
227 unsigned long flags;
229 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
230 WARN_ON(!list_empty(&lport->endp_list));
232 /* remove from transport list */
233 spin_lock_irqsave(&nvme_fc_lock, flags);
234 list_del(&lport->port_list);
235 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
236 complete(&nvme_fc_unload_proceed);
237 spin_unlock_irqrestore(&nvme_fc_lock, flags);
239 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240 ida_destroy(&lport->endp_cnt);
242 put_device(lport->dev);
244 kfree(lport);
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
250 kref_put(&lport->ref, nvme_fc_free_lport);
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
256 return kref_get_unless_zero(&lport->ref);
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262 struct nvme_fc_port_template *ops,
263 struct device *dev)
265 struct nvme_fc_lport *lport;
266 unsigned long flags;
268 spin_lock_irqsave(&nvme_fc_lock, flags);
270 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271 if (lport->localport.node_name != pinfo->node_name ||
272 lport->localport.port_name != pinfo->port_name)
273 continue;
275 if (lport->dev != dev) {
276 lport = ERR_PTR(-EXDEV);
277 goto out_done;
280 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281 lport = ERR_PTR(-EEXIST);
282 goto out_done;
285 if (!nvme_fc_lport_get(lport)) {
287 * fails if ref cnt already 0. If so,
288 * act as if lport already deleted
290 lport = NULL;
291 goto out_done;
294 /* resume the lport */
296 lport->ops = ops;
297 lport->localport.port_role = pinfo->port_role;
298 lport->localport.port_id = pinfo->port_id;
299 lport->localport.port_state = FC_OBJSTATE_ONLINE;
301 spin_unlock_irqrestore(&nvme_fc_lock, flags);
303 return lport;
306 lport = NULL;
308 out_done:
309 spin_unlock_irqrestore(&nvme_fc_lock, flags);
311 return lport;
315 * nvme_fc_register_localport - transport entry point called by an
316 * LLDD to register the existence of a NVME
317 * host FC port.
318 * @pinfo: pointer to information about the port to be registered
319 * @template: LLDD entrypoints and operational parameters for the port
320 * @dev: physical hardware device node port corresponds to. Will be
321 * used for DMA mappings
322 * @portptr: pointer to a local port pointer. Upon success, the routine
323 * will allocate a nvme_fc_local_port structure and place its
324 * address in the local port pointer. Upon failure, local port
325 * pointer will be set to 0.
327 * Returns:
328 * a completion status. Must be 0 upon success; a negative errno
329 * (ex: -ENXIO) upon failure.
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333 struct nvme_fc_port_template *template,
334 struct device *dev,
335 struct nvme_fc_local_port **portptr)
337 struct nvme_fc_lport *newrec;
338 unsigned long flags;
339 int ret, idx;
341 if (!template->localport_delete || !template->remoteport_delete ||
342 !template->ls_req || !template->fcp_io ||
343 !template->ls_abort || !template->fcp_abort ||
344 !template->max_hw_queues || !template->max_sgl_segments ||
345 !template->max_dif_sgl_segments || !template->dma_boundary ||
346 !template->module) {
347 ret = -EINVAL;
348 goto out_reghost_failed;
352 * look to see if there is already a localport that had been
353 * deregistered and in the process of waiting for all the
354 * references to fully be removed. If the references haven't
355 * expired, we can simply re-enable the localport. Remoteports
356 * and controller reconnections should resume naturally.
358 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
360 /* found an lport, but something about its state is bad */
361 if (IS_ERR(newrec)) {
362 ret = PTR_ERR(newrec);
363 goto out_reghost_failed;
365 /* found existing lport, which was resumed */
366 } else if (newrec) {
367 *portptr = &newrec->localport;
368 return 0;
371 /* nothing found - allocate a new localport struct */
373 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
374 GFP_KERNEL);
375 if (!newrec) {
376 ret = -ENOMEM;
377 goto out_reghost_failed;
380 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
381 if (idx < 0) {
382 ret = -ENOSPC;
383 goto out_fail_kfree;
386 if (!get_device(dev) && dev) {
387 ret = -ENODEV;
388 goto out_ida_put;
391 INIT_LIST_HEAD(&newrec->port_list);
392 INIT_LIST_HEAD(&newrec->endp_list);
393 kref_init(&newrec->ref);
394 atomic_set(&newrec->act_rport_cnt, 0);
395 newrec->ops = template;
396 newrec->dev = dev;
397 ida_init(&newrec->endp_cnt);
398 newrec->localport.private = &newrec[1];
399 newrec->localport.node_name = pinfo->node_name;
400 newrec->localport.port_name = pinfo->port_name;
401 newrec->localport.port_role = pinfo->port_role;
402 newrec->localport.port_id = pinfo->port_id;
403 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
404 newrec->localport.port_num = idx;
406 spin_lock_irqsave(&nvme_fc_lock, flags);
407 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
408 spin_unlock_irqrestore(&nvme_fc_lock, flags);
410 if (dev)
411 dma_set_seg_boundary(dev, template->dma_boundary);
413 *portptr = &newrec->localport;
414 return 0;
416 out_ida_put:
417 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
418 out_fail_kfree:
419 kfree(newrec);
420 out_reghost_failed:
421 *portptr = NULL;
423 return ret;
425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
428 * nvme_fc_unregister_localport - transport entry point called by an
429 * LLDD to deregister/remove a previously
430 * registered a NVME host FC port.
431 * @portptr: pointer to the (registered) local port that is to be deregistered.
433 * Returns:
434 * a completion status. Must be 0 upon success; a negative errno
435 * (ex: -ENXIO) upon failure.
438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
440 struct nvme_fc_lport *lport = localport_to_lport(portptr);
441 unsigned long flags;
443 if (!portptr)
444 return -EINVAL;
446 spin_lock_irqsave(&nvme_fc_lock, flags);
448 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
449 spin_unlock_irqrestore(&nvme_fc_lock, flags);
450 return -EINVAL;
452 portptr->port_state = FC_OBJSTATE_DELETED;
454 spin_unlock_irqrestore(&nvme_fc_lock, flags);
456 if (atomic_read(&lport->act_rport_cnt) == 0)
457 lport->ops->localport_delete(&lport->localport);
459 nvme_fc_lport_put(lport);
461 return 0;
463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
466 * TRADDR strings, per FC-NVME are fixed format:
467 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
468 * udev event will only differ by prefix of what field is
469 * being specified:
470 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
471 * 19 + 43 + null_fudge = 64 characters
473 #define FCNVME_TRADDR_LENGTH 64
475 static void
476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
477 struct nvme_fc_rport *rport)
479 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
480 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
481 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
483 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
484 return;
486 snprintf(hostaddr, sizeof(hostaddr),
487 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
488 lport->localport.node_name, lport->localport.port_name);
489 snprintf(tgtaddr, sizeof(tgtaddr),
490 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
491 rport->remoteport.node_name, rport->remoteport.port_name);
492 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
495 static void
496 nvme_fc_free_rport(struct kref *ref)
498 struct nvme_fc_rport *rport =
499 container_of(ref, struct nvme_fc_rport, ref);
500 struct nvme_fc_lport *lport =
501 localport_to_lport(rport->remoteport.localport);
502 unsigned long flags;
504 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
505 WARN_ON(!list_empty(&rport->ctrl_list));
507 /* remove from lport list */
508 spin_lock_irqsave(&nvme_fc_lock, flags);
509 list_del(&rport->endp_list);
510 spin_unlock_irqrestore(&nvme_fc_lock, flags);
512 WARN_ON(!list_empty(&rport->disc_list));
513 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
515 kfree(rport);
517 nvme_fc_lport_put(lport);
520 static void
521 nvme_fc_rport_put(struct nvme_fc_rport *rport)
523 kref_put(&rport->ref, nvme_fc_free_rport);
526 static int
527 nvme_fc_rport_get(struct nvme_fc_rport *rport)
529 return kref_get_unless_zero(&rport->ref);
532 static void
533 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
535 switch (ctrl->ctrl.state) {
536 case NVME_CTRL_NEW:
537 case NVME_CTRL_CONNECTING:
539 * As all reconnects were suppressed, schedule a
540 * connect.
542 dev_info(ctrl->ctrl.device,
543 "NVME-FC{%d}: connectivity re-established. "
544 "Attempting reconnect\n", ctrl->cnum);
546 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
547 break;
549 case NVME_CTRL_RESETTING:
551 * Controller is already in the process of terminating the
552 * association. No need to do anything further. The reconnect
553 * step will naturally occur after the reset completes.
555 break;
557 default:
558 /* no action to take - let it delete */
559 break;
563 static struct nvme_fc_rport *
564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
565 struct nvme_fc_port_info *pinfo)
567 struct nvme_fc_rport *rport;
568 struct nvme_fc_ctrl *ctrl;
569 unsigned long flags;
571 spin_lock_irqsave(&nvme_fc_lock, flags);
573 list_for_each_entry(rport, &lport->endp_list, endp_list) {
574 if (rport->remoteport.node_name != pinfo->node_name ||
575 rport->remoteport.port_name != pinfo->port_name)
576 continue;
578 if (!nvme_fc_rport_get(rport)) {
579 rport = ERR_PTR(-ENOLCK);
580 goto out_done;
583 spin_unlock_irqrestore(&nvme_fc_lock, flags);
585 spin_lock_irqsave(&rport->lock, flags);
587 /* has it been unregistered */
588 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
589 /* means lldd called us twice */
590 spin_unlock_irqrestore(&rport->lock, flags);
591 nvme_fc_rport_put(rport);
592 return ERR_PTR(-ESTALE);
595 rport->remoteport.port_role = pinfo->port_role;
596 rport->remoteport.port_id = pinfo->port_id;
597 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
598 rport->dev_loss_end = 0;
601 * kick off a reconnect attempt on all associations to the
602 * remote port. A successful reconnects will resume i/o.
604 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
605 nvme_fc_resume_controller(ctrl);
607 spin_unlock_irqrestore(&rport->lock, flags);
609 return rport;
612 rport = NULL;
614 out_done:
615 spin_unlock_irqrestore(&nvme_fc_lock, flags);
617 return rport;
620 static inline void
621 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
622 struct nvme_fc_port_info *pinfo)
624 if (pinfo->dev_loss_tmo)
625 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
626 else
627 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
631 * nvme_fc_register_remoteport - transport entry point called by an
632 * LLDD to register the existence of a NVME
633 * subsystem FC port on its fabric.
634 * @localport: pointer to the (registered) local port that the remote
635 * subsystem port is connected to.
636 * @pinfo: pointer to information about the port to be registered
637 * @portptr: pointer to a remote port pointer. Upon success, the routine
638 * will allocate a nvme_fc_remote_port structure and place its
639 * address in the remote port pointer. Upon failure, remote port
640 * pointer will be set to 0.
642 * Returns:
643 * a completion status. Must be 0 upon success; a negative errno
644 * (ex: -ENXIO) upon failure.
647 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
648 struct nvme_fc_port_info *pinfo,
649 struct nvme_fc_remote_port **portptr)
651 struct nvme_fc_lport *lport = localport_to_lport(localport);
652 struct nvme_fc_rport *newrec;
653 unsigned long flags;
654 int ret, idx;
656 if (!nvme_fc_lport_get(lport)) {
657 ret = -ESHUTDOWN;
658 goto out_reghost_failed;
662 * look to see if there is already a remoteport that is waiting
663 * for a reconnect (within dev_loss_tmo) with the same WWN's.
664 * If so, transition to it and reconnect.
666 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
668 /* found an rport, but something about its state is bad */
669 if (IS_ERR(newrec)) {
670 ret = PTR_ERR(newrec);
671 goto out_lport_put;
673 /* found existing rport, which was resumed */
674 } else if (newrec) {
675 nvme_fc_lport_put(lport);
676 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
677 nvme_fc_signal_discovery_scan(lport, newrec);
678 *portptr = &newrec->remoteport;
679 return 0;
682 /* nothing found - allocate a new remoteport struct */
684 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
685 GFP_KERNEL);
686 if (!newrec) {
687 ret = -ENOMEM;
688 goto out_lport_put;
691 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
692 if (idx < 0) {
693 ret = -ENOSPC;
694 goto out_kfree_rport;
697 INIT_LIST_HEAD(&newrec->endp_list);
698 INIT_LIST_HEAD(&newrec->ctrl_list);
699 INIT_LIST_HEAD(&newrec->ls_req_list);
700 INIT_LIST_HEAD(&newrec->disc_list);
701 kref_init(&newrec->ref);
702 atomic_set(&newrec->act_ctrl_cnt, 0);
703 spin_lock_init(&newrec->lock);
704 newrec->remoteport.localport = &lport->localport;
705 newrec->dev = lport->dev;
706 newrec->lport = lport;
707 newrec->remoteport.private = &newrec[1];
708 newrec->remoteport.port_role = pinfo->port_role;
709 newrec->remoteport.node_name = pinfo->node_name;
710 newrec->remoteport.port_name = pinfo->port_name;
711 newrec->remoteport.port_id = pinfo->port_id;
712 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
713 newrec->remoteport.port_num = idx;
714 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
716 spin_lock_irqsave(&nvme_fc_lock, flags);
717 list_add_tail(&newrec->endp_list, &lport->endp_list);
718 spin_unlock_irqrestore(&nvme_fc_lock, flags);
720 nvme_fc_signal_discovery_scan(lport, newrec);
722 *portptr = &newrec->remoteport;
723 return 0;
725 out_kfree_rport:
726 kfree(newrec);
727 out_lport_put:
728 nvme_fc_lport_put(lport);
729 out_reghost_failed:
730 *portptr = NULL;
731 return ret;
733 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
735 static int
736 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
738 struct nvmefc_ls_req_op *lsop;
739 unsigned long flags;
741 restart:
742 spin_lock_irqsave(&rport->lock, flags);
744 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
745 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
746 lsop->flags |= FCOP_FLAGS_TERMIO;
747 spin_unlock_irqrestore(&rport->lock, flags);
748 rport->lport->ops->ls_abort(&rport->lport->localport,
749 &rport->remoteport,
750 &lsop->ls_req);
751 goto restart;
754 spin_unlock_irqrestore(&rport->lock, flags);
756 return 0;
759 static void
760 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
762 dev_info(ctrl->ctrl.device,
763 "NVME-FC{%d}: controller connectivity lost. Awaiting "
764 "Reconnect", ctrl->cnum);
766 switch (ctrl->ctrl.state) {
767 case NVME_CTRL_NEW:
768 case NVME_CTRL_LIVE:
770 * Schedule a controller reset. The reset will terminate the
771 * association and schedule the reconnect timer. Reconnects
772 * will be attempted until either the ctlr_loss_tmo
773 * (max_retries * connect_delay) expires or the remoteport's
774 * dev_loss_tmo expires.
776 if (nvme_reset_ctrl(&ctrl->ctrl)) {
777 dev_warn(ctrl->ctrl.device,
778 "NVME-FC{%d}: Couldn't schedule reset.\n",
779 ctrl->cnum);
780 nvme_delete_ctrl(&ctrl->ctrl);
782 break;
784 case NVME_CTRL_CONNECTING:
786 * The association has already been terminated and the
787 * controller is attempting reconnects. No need to do anything
788 * futher. Reconnects will be attempted until either the
789 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
790 * remoteport's dev_loss_tmo expires.
792 break;
794 case NVME_CTRL_RESETTING:
796 * Controller is already in the process of terminating the
797 * association. No need to do anything further. The reconnect
798 * step will kick in naturally after the association is
799 * terminated.
801 break;
803 case NVME_CTRL_DELETING:
804 default:
805 /* no action to take - let it delete */
806 break;
811 * nvme_fc_unregister_remoteport - transport entry point called by an
812 * LLDD to deregister/remove a previously
813 * registered a NVME subsystem FC port.
814 * @portptr: pointer to the (registered) remote port that is to be
815 * deregistered.
817 * Returns:
818 * a completion status. Must be 0 upon success; a negative errno
819 * (ex: -ENXIO) upon failure.
822 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
824 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
825 struct nvme_fc_ctrl *ctrl;
826 unsigned long flags;
828 if (!portptr)
829 return -EINVAL;
831 spin_lock_irqsave(&rport->lock, flags);
833 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
834 spin_unlock_irqrestore(&rport->lock, flags);
835 return -EINVAL;
837 portptr->port_state = FC_OBJSTATE_DELETED;
839 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
841 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
842 /* if dev_loss_tmo==0, dev loss is immediate */
843 if (!portptr->dev_loss_tmo) {
844 dev_warn(ctrl->ctrl.device,
845 "NVME-FC{%d}: controller connectivity lost.\n",
846 ctrl->cnum);
847 nvme_delete_ctrl(&ctrl->ctrl);
848 } else
849 nvme_fc_ctrl_connectivity_loss(ctrl);
852 spin_unlock_irqrestore(&rport->lock, flags);
854 nvme_fc_abort_lsops(rport);
856 if (atomic_read(&rport->act_ctrl_cnt) == 0)
857 rport->lport->ops->remoteport_delete(portptr);
860 * release the reference, which will allow, if all controllers
861 * go away, which should only occur after dev_loss_tmo occurs,
862 * for the rport to be torn down.
864 nvme_fc_rport_put(rport);
866 return 0;
868 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
871 * nvme_fc_rescan_remoteport - transport entry point called by an
872 * LLDD to request a nvme device rescan.
873 * @remoteport: pointer to the (registered) remote port that is to be
874 * rescanned.
876 * Returns: N/A
878 void
879 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
881 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
883 nvme_fc_signal_discovery_scan(rport->lport, rport);
885 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
888 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
889 u32 dev_loss_tmo)
891 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
892 unsigned long flags;
894 spin_lock_irqsave(&rport->lock, flags);
896 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
897 spin_unlock_irqrestore(&rport->lock, flags);
898 return -EINVAL;
901 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
902 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
904 spin_unlock_irqrestore(&rport->lock, flags);
906 return 0;
908 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
911 /* *********************** FC-NVME DMA Handling **************************** */
914 * The fcloop device passes in a NULL device pointer. Real LLD's will
915 * pass in a valid device pointer. If NULL is passed to the dma mapping
916 * routines, depending on the platform, it may or may not succeed, and
917 * may crash.
919 * As such:
920 * Wrapper all the dma routines and check the dev pointer.
922 * If simple mappings (return just a dma address, we'll noop them,
923 * returning a dma address of 0.
925 * On more complex mappings (dma_map_sg), a pseudo routine fills
926 * in the scatter list, setting all dma addresses to 0.
929 static inline dma_addr_t
930 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
931 enum dma_data_direction dir)
933 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
936 static inline int
937 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
939 return dev ? dma_mapping_error(dev, dma_addr) : 0;
942 static inline void
943 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
944 enum dma_data_direction dir)
946 if (dev)
947 dma_unmap_single(dev, addr, size, dir);
950 static inline void
951 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
952 enum dma_data_direction dir)
954 if (dev)
955 dma_sync_single_for_cpu(dev, addr, size, dir);
958 static inline void
959 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
960 enum dma_data_direction dir)
962 if (dev)
963 dma_sync_single_for_device(dev, addr, size, dir);
966 /* pseudo dma_map_sg call */
967 static int
968 fc_map_sg(struct scatterlist *sg, int nents)
970 struct scatterlist *s;
971 int i;
973 WARN_ON(nents == 0 || sg[0].length == 0);
975 for_each_sg(sg, s, nents, i) {
976 s->dma_address = 0L;
977 #ifdef CONFIG_NEED_SG_DMA_LENGTH
978 s->dma_length = s->length;
979 #endif
981 return nents;
984 static inline int
985 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
986 enum dma_data_direction dir)
988 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
991 static inline void
992 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
993 enum dma_data_direction dir)
995 if (dev)
996 dma_unmap_sg(dev, sg, nents, dir);
999 /* *********************** FC-NVME LS Handling **************************** */
1001 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1002 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1005 static void
1006 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1008 struct nvme_fc_rport *rport = lsop->rport;
1009 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1010 unsigned long flags;
1012 spin_lock_irqsave(&rport->lock, flags);
1014 if (!lsop->req_queued) {
1015 spin_unlock_irqrestore(&rport->lock, flags);
1016 return;
1019 list_del(&lsop->lsreq_list);
1021 lsop->req_queued = false;
1023 spin_unlock_irqrestore(&rport->lock, flags);
1025 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1026 (lsreq->rqstlen + lsreq->rsplen),
1027 DMA_BIDIRECTIONAL);
1029 nvme_fc_rport_put(rport);
1032 static int
1033 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1034 struct nvmefc_ls_req_op *lsop,
1035 void (*done)(struct nvmefc_ls_req *req, int status))
1037 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1038 unsigned long flags;
1039 int ret = 0;
1041 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1042 return -ECONNREFUSED;
1044 if (!nvme_fc_rport_get(rport))
1045 return -ESHUTDOWN;
1047 lsreq->done = done;
1048 lsop->rport = rport;
1049 lsop->req_queued = false;
1050 INIT_LIST_HEAD(&lsop->lsreq_list);
1051 init_completion(&lsop->ls_done);
1053 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1054 lsreq->rqstlen + lsreq->rsplen,
1055 DMA_BIDIRECTIONAL);
1056 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1057 ret = -EFAULT;
1058 goto out_putrport;
1060 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1062 spin_lock_irqsave(&rport->lock, flags);
1064 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1066 lsop->req_queued = true;
1068 spin_unlock_irqrestore(&rport->lock, flags);
1070 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1071 &rport->remoteport, lsreq);
1072 if (ret)
1073 goto out_unlink;
1075 return 0;
1077 out_unlink:
1078 lsop->ls_error = ret;
1079 spin_lock_irqsave(&rport->lock, flags);
1080 lsop->req_queued = false;
1081 list_del(&lsop->lsreq_list);
1082 spin_unlock_irqrestore(&rport->lock, flags);
1083 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1084 (lsreq->rqstlen + lsreq->rsplen),
1085 DMA_BIDIRECTIONAL);
1086 out_putrport:
1087 nvme_fc_rport_put(rport);
1089 return ret;
1092 static void
1093 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1095 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1097 lsop->ls_error = status;
1098 complete(&lsop->ls_done);
1101 static int
1102 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1104 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1105 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1106 int ret;
1108 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1110 if (!ret) {
1112 * No timeout/not interruptible as we need the struct
1113 * to exist until the lldd calls us back. Thus mandate
1114 * wait until driver calls back. lldd responsible for
1115 * the timeout action
1117 wait_for_completion(&lsop->ls_done);
1119 __nvme_fc_finish_ls_req(lsop);
1121 ret = lsop->ls_error;
1124 if (ret)
1125 return ret;
1127 /* ACC or RJT payload ? */
1128 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1129 return -ENXIO;
1131 return 0;
1134 static int
1135 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1136 struct nvmefc_ls_req_op *lsop,
1137 void (*done)(struct nvmefc_ls_req *req, int status))
1139 /* don't wait for completion */
1141 return __nvme_fc_send_ls_req(rport, lsop, done);
1144 /* Validation Error indexes into the string table below */
1145 enum {
1146 VERR_NO_ERROR = 0,
1147 VERR_LSACC = 1,
1148 VERR_LSDESC_RQST = 2,
1149 VERR_LSDESC_RQST_LEN = 3,
1150 VERR_ASSOC_ID = 4,
1151 VERR_ASSOC_ID_LEN = 5,
1152 VERR_CONN_ID = 6,
1153 VERR_CONN_ID_LEN = 7,
1154 VERR_CR_ASSOC = 8,
1155 VERR_CR_ASSOC_ACC_LEN = 9,
1156 VERR_CR_CONN = 10,
1157 VERR_CR_CONN_ACC_LEN = 11,
1158 VERR_DISCONN = 12,
1159 VERR_DISCONN_ACC_LEN = 13,
1162 static char *validation_errors[] = {
1163 "OK",
1164 "Not LS_ACC",
1165 "Not LSDESC_RQST",
1166 "Bad LSDESC_RQST Length",
1167 "Not Association ID",
1168 "Bad Association ID Length",
1169 "Not Connection ID",
1170 "Bad Connection ID Length",
1171 "Not CR_ASSOC Rqst",
1172 "Bad CR_ASSOC ACC Length",
1173 "Not CR_CONN Rqst",
1174 "Bad CR_CONN ACC Length",
1175 "Not Disconnect Rqst",
1176 "Bad Disconnect ACC Length",
1179 static int
1180 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1181 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1183 struct nvmefc_ls_req_op *lsop;
1184 struct nvmefc_ls_req *lsreq;
1185 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1186 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1187 int ret, fcret = 0;
1189 lsop = kzalloc((sizeof(*lsop) +
1190 ctrl->lport->ops->lsrqst_priv_sz +
1191 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1192 if (!lsop) {
1193 ret = -ENOMEM;
1194 goto out_no_memory;
1196 lsreq = &lsop->ls_req;
1198 lsreq->private = (void *)&lsop[1];
1199 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1200 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1201 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1203 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1204 assoc_rqst->desc_list_len =
1205 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1207 assoc_rqst->assoc_cmd.desc_tag =
1208 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1209 assoc_rqst->assoc_cmd.desc_len =
1210 fcnvme_lsdesc_len(
1211 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1213 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1214 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1215 /* Linux supports only Dynamic controllers */
1216 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1217 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1218 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1219 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1220 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1221 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1223 lsop->queue = queue;
1224 lsreq->rqstaddr = assoc_rqst;
1225 lsreq->rqstlen = sizeof(*assoc_rqst);
1226 lsreq->rspaddr = assoc_acc;
1227 lsreq->rsplen = sizeof(*assoc_acc);
1228 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1230 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1231 if (ret)
1232 goto out_free_buffer;
1234 /* process connect LS completion */
1236 /* validate the ACC response */
1237 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1238 fcret = VERR_LSACC;
1239 else if (assoc_acc->hdr.desc_list_len !=
1240 fcnvme_lsdesc_len(
1241 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1242 fcret = VERR_CR_ASSOC_ACC_LEN;
1243 else if (assoc_acc->hdr.rqst.desc_tag !=
1244 cpu_to_be32(FCNVME_LSDESC_RQST))
1245 fcret = VERR_LSDESC_RQST;
1246 else if (assoc_acc->hdr.rqst.desc_len !=
1247 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1248 fcret = VERR_LSDESC_RQST_LEN;
1249 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1250 fcret = VERR_CR_ASSOC;
1251 else if (assoc_acc->associd.desc_tag !=
1252 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1253 fcret = VERR_ASSOC_ID;
1254 else if (assoc_acc->associd.desc_len !=
1255 fcnvme_lsdesc_len(
1256 sizeof(struct fcnvme_lsdesc_assoc_id)))
1257 fcret = VERR_ASSOC_ID_LEN;
1258 else if (assoc_acc->connectid.desc_tag !=
1259 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1260 fcret = VERR_CONN_ID;
1261 else if (assoc_acc->connectid.desc_len !=
1262 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1263 fcret = VERR_CONN_ID_LEN;
1265 if (fcret) {
1266 ret = -EBADF;
1267 dev_err(ctrl->dev,
1268 "q %d Create Association LS failed: %s\n",
1269 queue->qnum, validation_errors[fcret]);
1270 } else {
1271 ctrl->association_id =
1272 be64_to_cpu(assoc_acc->associd.association_id);
1273 queue->connection_id =
1274 be64_to_cpu(assoc_acc->connectid.connection_id);
1275 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1278 out_free_buffer:
1279 kfree(lsop);
1280 out_no_memory:
1281 if (ret)
1282 dev_err(ctrl->dev,
1283 "queue %d connect admin queue failed (%d).\n",
1284 queue->qnum, ret);
1285 return ret;
1288 static int
1289 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1290 u16 qsize, u16 ersp_ratio)
1292 struct nvmefc_ls_req_op *lsop;
1293 struct nvmefc_ls_req *lsreq;
1294 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1295 struct fcnvme_ls_cr_conn_acc *conn_acc;
1296 int ret, fcret = 0;
1298 lsop = kzalloc((sizeof(*lsop) +
1299 ctrl->lport->ops->lsrqst_priv_sz +
1300 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1301 if (!lsop) {
1302 ret = -ENOMEM;
1303 goto out_no_memory;
1305 lsreq = &lsop->ls_req;
1307 lsreq->private = (void *)&lsop[1];
1308 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1309 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1310 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1312 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1313 conn_rqst->desc_list_len = cpu_to_be32(
1314 sizeof(struct fcnvme_lsdesc_assoc_id) +
1315 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1317 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1318 conn_rqst->associd.desc_len =
1319 fcnvme_lsdesc_len(
1320 sizeof(struct fcnvme_lsdesc_assoc_id));
1321 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1322 conn_rqst->connect_cmd.desc_tag =
1323 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1324 conn_rqst->connect_cmd.desc_len =
1325 fcnvme_lsdesc_len(
1326 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1327 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1328 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1329 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1331 lsop->queue = queue;
1332 lsreq->rqstaddr = conn_rqst;
1333 lsreq->rqstlen = sizeof(*conn_rqst);
1334 lsreq->rspaddr = conn_acc;
1335 lsreq->rsplen = sizeof(*conn_acc);
1336 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1338 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1339 if (ret)
1340 goto out_free_buffer;
1342 /* process connect LS completion */
1344 /* validate the ACC response */
1345 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1346 fcret = VERR_LSACC;
1347 else if (conn_acc->hdr.desc_list_len !=
1348 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1349 fcret = VERR_CR_CONN_ACC_LEN;
1350 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1351 fcret = VERR_LSDESC_RQST;
1352 else if (conn_acc->hdr.rqst.desc_len !=
1353 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1354 fcret = VERR_LSDESC_RQST_LEN;
1355 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1356 fcret = VERR_CR_CONN;
1357 else if (conn_acc->connectid.desc_tag !=
1358 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1359 fcret = VERR_CONN_ID;
1360 else if (conn_acc->connectid.desc_len !=
1361 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1362 fcret = VERR_CONN_ID_LEN;
1364 if (fcret) {
1365 ret = -EBADF;
1366 dev_err(ctrl->dev,
1367 "q %d Create I/O Connection LS failed: %s\n",
1368 queue->qnum, validation_errors[fcret]);
1369 } else {
1370 queue->connection_id =
1371 be64_to_cpu(conn_acc->connectid.connection_id);
1372 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1375 out_free_buffer:
1376 kfree(lsop);
1377 out_no_memory:
1378 if (ret)
1379 dev_err(ctrl->dev,
1380 "queue %d connect I/O queue failed (%d).\n",
1381 queue->qnum, ret);
1382 return ret;
1385 static void
1386 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1388 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1390 __nvme_fc_finish_ls_req(lsop);
1392 /* fc-nvme initiator doesn't care about success or failure of cmd */
1394 kfree(lsop);
1398 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1399 * the FC-NVME Association. Terminating the association also
1400 * terminates the FC-NVME connections (per queue, both admin and io
1401 * queues) that are part of the association. E.g. things are torn
1402 * down, and the related FC-NVME Association ID and Connection IDs
1403 * become invalid.
1405 * The behavior of the fc-nvme initiator is such that it's
1406 * understanding of the association and connections will implicitly
1407 * be torn down. The action is implicit as it may be due to a loss of
1408 * connectivity with the fc-nvme target, so you may never get a
1409 * response even if you tried. As such, the action of this routine
1410 * is to asynchronously send the LS, ignore any results of the LS, and
1411 * continue on with terminating the association. If the fc-nvme target
1412 * is present and receives the LS, it too can tear down.
1414 static void
1415 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1417 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1418 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1419 struct nvmefc_ls_req_op *lsop;
1420 struct nvmefc_ls_req *lsreq;
1421 int ret;
1423 lsop = kzalloc((sizeof(*lsop) +
1424 ctrl->lport->ops->lsrqst_priv_sz +
1425 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1426 GFP_KERNEL);
1427 if (!lsop)
1428 /* couldn't sent it... too bad */
1429 return;
1431 lsreq = &lsop->ls_req;
1433 lsreq->private = (void *)&lsop[1];
1434 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)
1435 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1436 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1438 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC;
1439 discon_rqst->desc_list_len = cpu_to_be32(
1440 sizeof(struct fcnvme_lsdesc_assoc_id) +
1441 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1443 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1444 discon_rqst->associd.desc_len =
1445 fcnvme_lsdesc_len(
1446 sizeof(struct fcnvme_lsdesc_assoc_id));
1448 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1450 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1451 FCNVME_LSDESC_DISCONN_CMD);
1452 discon_rqst->discon_cmd.desc_len =
1453 fcnvme_lsdesc_len(
1454 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1456 lsreq->rqstaddr = discon_rqst;
1457 lsreq->rqstlen = sizeof(*discon_rqst);
1458 lsreq->rspaddr = discon_acc;
1459 lsreq->rsplen = sizeof(*discon_acc);
1460 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1462 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1463 nvme_fc_disconnect_assoc_done);
1464 if (ret)
1465 kfree(lsop);
1469 /* *********************** NVME Ctrl Routines **************************** */
1471 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1473 static void
1474 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1475 struct nvme_fc_fcp_op *op)
1477 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1478 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1479 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1480 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1482 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1485 static void
1486 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1487 unsigned int hctx_idx)
1489 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1491 return __nvme_fc_exit_request(set->driver_data, op);
1494 static int
1495 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1497 unsigned long flags;
1498 int opstate;
1500 spin_lock_irqsave(&ctrl->lock, flags);
1501 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1502 if (opstate != FCPOP_STATE_ACTIVE)
1503 atomic_set(&op->state, opstate);
1504 else if (ctrl->flags & FCCTRL_TERMIO)
1505 ctrl->iocnt++;
1506 spin_unlock_irqrestore(&ctrl->lock, flags);
1508 if (opstate != FCPOP_STATE_ACTIVE)
1509 return -ECANCELED;
1511 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1512 &ctrl->rport->remoteport,
1513 op->queue->lldd_handle,
1514 &op->fcp_req);
1516 return 0;
1519 static void
1520 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1522 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1523 int i;
1525 /* ensure we've initialized the ops once */
1526 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1527 return;
1529 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1530 __nvme_fc_abort_op(ctrl, aen_op);
1533 static inline void
1534 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1535 struct nvme_fc_fcp_op *op, int opstate)
1537 unsigned long flags;
1539 if (opstate == FCPOP_STATE_ABORTED) {
1540 spin_lock_irqsave(&ctrl->lock, flags);
1541 if (ctrl->flags & FCCTRL_TERMIO) {
1542 if (!--ctrl->iocnt)
1543 wake_up(&ctrl->ioabort_wait);
1545 spin_unlock_irqrestore(&ctrl->lock, flags);
1549 static void
1550 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1552 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1553 struct request *rq = op->rq;
1554 struct nvmefc_fcp_req *freq = &op->fcp_req;
1555 struct nvme_fc_ctrl *ctrl = op->ctrl;
1556 struct nvme_fc_queue *queue = op->queue;
1557 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1558 struct nvme_command *sqe = &op->cmd_iu.sqe;
1559 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1560 union nvme_result result;
1561 bool terminate_assoc = true;
1562 int opstate;
1565 * WARNING:
1566 * The current linux implementation of a nvme controller
1567 * allocates a single tag set for all io queues and sizes
1568 * the io queues to fully hold all possible tags. Thus, the
1569 * implementation does not reference or care about the sqhd
1570 * value as it never needs to use the sqhd/sqtail pointers
1571 * for submission pacing.
1573 * This affects the FC-NVME implementation in two ways:
1574 * 1) As the value doesn't matter, we don't need to waste
1575 * cycles extracting it from ERSPs and stamping it in the
1576 * cases where the transport fabricates CQEs on successful
1577 * completions.
1578 * 2) The FC-NVME implementation requires that delivery of
1579 * ERSP completions are to go back to the nvme layer in order
1580 * relative to the rsn, such that the sqhd value will always
1581 * be "in order" for the nvme layer. As the nvme layer in
1582 * linux doesn't care about sqhd, there's no need to return
1583 * them in order.
1585 * Additionally:
1586 * As the core nvme layer in linux currently does not look at
1587 * every field in the cqe - in cases where the FC transport must
1588 * fabricate a CQE, the following fields will not be set as they
1589 * are not referenced:
1590 * cqe.sqid, cqe.sqhd, cqe.command_id
1592 * Failure or error of an individual i/o, in a transport
1593 * detected fashion unrelated to the nvme completion status,
1594 * potentially cause the initiator and target sides to get out
1595 * of sync on SQ head/tail (aka outstanding io count allowed).
1596 * Per FC-NVME spec, failure of an individual command requires
1597 * the connection to be terminated, which in turn requires the
1598 * association to be terminated.
1601 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1603 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1604 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1606 if (opstate == FCPOP_STATE_ABORTED)
1607 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1608 else if (freq->status) {
1609 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1610 dev_info(ctrl->ctrl.device,
1611 "NVME-FC{%d}: io failed due to lldd error %d\n",
1612 ctrl->cnum, freq->status);
1616 * For the linux implementation, if we have an unsuccesful
1617 * status, they blk-mq layer can typically be called with the
1618 * non-zero status and the content of the cqe isn't important.
1620 if (status)
1621 goto done;
1624 * command completed successfully relative to the wire
1625 * protocol. However, validate anything received and
1626 * extract the status and result from the cqe (create it
1627 * where necessary).
1630 switch (freq->rcv_rsplen) {
1632 case 0:
1633 case NVME_FC_SIZEOF_ZEROS_RSP:
1635 * No response payload or 12 bytes of payload (which
1636 * should all be zeros) are considered successful and
1637 * no payload in the CQE by the transport.
1639 if (freq->transferred_length !=
1640 be32_to_cpu(op->cmd_iu.data_len)) {
1641 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1642 dev_info(ctrl->ctrl.device,
1643 "NVME-FC{%d}: io failed due to bad transfer "
1644 "length: %d vs expected %d\n",
1645 ctrl->cnum, freq->transferred_length,
1646 be32_to_cpu(op->cmd_iu.data_len));
1647 goto done;
1649 result.u64 = 0;
1650 break;
1652 case sizeof(struct nvme_fc_ersp_iu):
1654 * The ERSP IU contains a full completion with CQE.
1655 * Validate ERSP IU and look at cqe.
1657 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1658 (freq->rcv_rsplen / 4) ||
1659 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1660 freq->transferred_length ||
1661 op->rsp_iu.ersp_result ||
1662 sqe->common.command_id != cqe->command_id)) {
1663 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1664 dev_info(ctrl->ctrl.device,
1665 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
1666 "iu len %d, xfr len %d vs %d, status code "
1667 "%d, cmdid %d vs %d\n",
1668 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
1669 be32_to_cpu(op->rsp_iu.xfrd_len),
1670 freq->transferred_length,
1671 op->rsp_iu.ersp_result,
1672 sqe->common.command_id,
1673 cqe->command_id);
1674 goto done;
1676 result = cqe->result;
1677 status = cqe->status;
1678 break;
1680 default:
1681 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1682 dev_info(ctrl->ctrl.device,
1683 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
1684 "len %d\n",
1685 ctrl->cnum, freq->rcv_rsplen);
1686 goto done;
1689 terminate_assoc = false;
1691 done:
1692 if (op->flags & FCOP_FLAGS_AEN) {
1693 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1694 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1695 atomic_set(&op->state, FCPOP_STATE_IDLE);
1696 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
1697 nvme_fc_ctrl_put(ctrl);
1698 goto check_error;
1701 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1702 nvme_end_request(rq, status, result);
1704 check_error:
1705 if (terminate_assoc)
1706 nvme_fc_error_recovery(ctrl, "transport detected io error");
1709 static int
1710 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1711 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1712 struct request *rq, u32 rqno)
1714 struct nvme_fcp_op_w_sgl *op_w_sgl =
1715 container_of(op, typeof(*op_w_sgl), op);
1716 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1717 int ret = 0;
1719 memset(op, 0, sizeof(*op));
1720 op->fcp_req.cmdaddr = &op->cmd_iu;
1721 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1722 op->fcp_req.rspaddr = &op->rsp_iu;
1723 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1724 op->fcp_req.done = nvme_fc_fcpio_done;
1725 op->ctrl = ctrl;
1726 op->queue = queue;
1727 op->rq = rq;
1728 op->rqno = rqno;
1730 cmdiu->format_id = NVME_CMD_FORMAT_ID;
1731 cmdiu->fc_id = NVME_CMD_FC_ID;
1732 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1733 if (queue->qnum)
1734 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
1735 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
1736 else
1737 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
1739 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1740 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1741 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1742 dev_err(ctrl->dev,
1743 "FCP Op failed - cmdiu dma mapping failed.\n");
1744 ret = EFAULT;
1745 goto out_on_error;
1748 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1749 &op->rsp_iu, sizeof(op->rsp_iu),
1750 DMA_FROM_DEVICE);
1751 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1752 dev_err(ctrl->dev,
1753 "FCP Op failed - rspiu dma mapping failed.\n");
1754 ret = EFAULT;
1757 atomic_set(&op->state, FCPOP_STATE_IDLE);
1758 out_on_error:
1759 return ret;
1762 static int
1763 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1764 unsigned int hctx_idx, unsigned int numa_node)
1766 struct nvme_fc_ctrl *ctrl = set->driver_data;
1767 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1768 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1769 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1770 int res;
1772 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1773 if (res)
1774 return res;
1775 op->op.fcp_req.first_sgl = &op->sgl[0];
1776 op->op.fcp_req.private = &op->priv[0];
1777 nvme_req(rq)->ctrl = &ctrl->ctrl;
1778 return res;
1781 static int
1782 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1784 struct nvme_fc_fcp_op *aen_op;
1785 struct nvme_fc_cmd_iu *cmdiu;
1786 struct nvme_command *sqe;
1787 void *private;
1788 int i, ret;
1790 aen_op = ctrl->aen_ops;
1791 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1792 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1793 GFP_KERNEL);
1794 if (!private)
1795 return -ENOMEM;
1797 cmdiu = &aen_op->cmd_iu;
1798 sqe = &cmdiu->sqe;
1799 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1800 aen_op, (struct request *)NULL,
1801 (NVME_AQ_BLK_MQ_DEPTH + i));
1802 if (ret) {
1803 kfree(private);
1804 return ret;
1807 aen_op->flags = FCOP_FLAGS_AEN;
1808 aen_op->fcp_req.private = private;
1810 memset(sqe, 0, sizeof(*sqe));
1811 sqe->common.opcode = nvme_admin_async_event;
1812 /* Note: core layer may overwrite the sqe.command_id value */
1813 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1815 return 0;
1818 static void
1819 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1821 struct nvme_fc_fcp_op *aen_op;
1822 int i;
1824 aen_op = ctrl->aen_ops;
1825 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1826 if (!aen_op->fcp_req.private)
1827 continue;
1829 __nvme_fc_exit_request(ctrl, aen_op);
1831 kfree(aen_op->fcp_req.private);
1832 aen_op->fcp_req.private = NULL;
1836 static inline void
1837 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1838 unsigned int qidx)
1840 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1842 hctx->driver_data = queue;
1843 queue->hctx = hctx;
1846 static int
1847 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1848 unsigned int hctx_idx)
1850 struct nvme_fc_ctrl *ctrl = data;
1852 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1854 return 0;
1857 static int
1858 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1859 unsigned int hctx_idx)
1861 struct nvme_fc_ctrl *ctrl = data;
1863 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1865 return 0;
1868 static void
1869 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1871 struct nvme_fc_queue *queue;
1873 queue = &ctrl->queues[idx];
1874 memset(queue, 0, sizeof(*queue));
1875 queue->ctrl = ctrl;
1876 queue->qnum = idx;
1877 atomic_set(&queue->csn, 0);
1878 queue->dev = ctrl->dev;
1880 if (idx > 0)
1881 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1882 else
1883 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1886 * Considered whether we should allocate buffers for all SQEs
1887 * and CQEs and dma map them - mapping their respective entries
1888 * into the request structures (kernel vm addr and dma address)
1889 * thus the driver could use the buffers/mappings directly.
1890 * It only makes sense if the LLDD would use them for its
1891 * messaging api. It's very unlikely most adapter api's would use
1892 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1893 * structures were used instead.
1898 * This routine terminates a queue at the transport level.
1899 * The transport has already ensured that all outstanding ios on
1900 * the queue have been terminated.
1901 * The transport will send a Disconnect LS request to terminate
1902 * the queue's connection. Termination of the admin queue will also
1903 * terminate the association at the target.
1905 static void
1906 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1908 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1909 return;
1911 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1913 * Current implementation never disconnects a single queue.
1914 * It always terminates a whole association. So there is never
1915 * a disconnect(queue) LS sent to the target.
1918 queue->connection_id = 0;
1919 atomic_set(&queue->csn, 0);
1922 static void
1923 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1924 struct nvme_fc_queue *queue, unsigned int qidx)
1926 if (ctrl->lport->ops->delete_queue)
1927 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1928 queue->lldd_handle);
1929 queue->lldd_handle = NULL;
1932 static void
1933 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1935 int i;
1937 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1938 nvme_fc_free_queue(&ctrl->queues[i]);
1941 static int
1942 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1943 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1945 int ret = 0;
1947 queue->lldd_handle = NULL;
1948 if (ctrl->lport->ops->create_queue)
1949 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1950 qidx, qsize, &queue->lldd_handle);
1952 return ret;
1955 static void
1956 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1958 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1959 int i;
1961 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1962 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1965 static int
1966 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1968 struct nvme_fc_queue *queue = &ctrl->queues[1];
1969 int i, ret;
1971 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1972 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1973 if (ret)
1974 goto delete_queues;
1977 return 0;
1979 delete_queues:
1980 for (; i >= 0; i--)
1981 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1982 return ret;
1985 static int
1986 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1988 int i, ret = 0;
1990 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1991 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1992 (qsize / 5));
1993 if (ret)
1994 break;
1995 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1996 if (ret)
1997 break;
1999 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2002 return ret;
2005 static void
2006 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2008 int i;
2010 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2011 nvme_fc_init_queue(ctrl, i);
2014 static void
2015 nvme_fc_ctrl_free(struct kref *ref)
2017 struct nvme_fc_ctrl *ctrl =
2018 container_of(ref, struct nvme_fc_ctrl, ref);
2019 struct nvme_fc_lport *lport = ctrl->lport;
2020 unsigned long flags;
2022 if (ctrl->ctrl.tagset) {
2023 blk_cleanup_queue(ctrl->ctrl.connect_q);
2024 blk_mq_free_tag_set(&ctrl->tag_set);
2027 /* remove from rport list */
2028 spin_lock_irqsave(&ctrl->rport->lock, flags);
2029 list_del(&ctrl->ctrl_list);
2030 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2032 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2033 blk_cleanup_queue(ctrl->ctrl.admin_q);
2034 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2035 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2037 kfree(ctrl->queues);
2039 put_device(ctrl->dev);
2040 nvme_fc_rport_put(ctrl->rport);
2042 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2043 if (ctrl->ctrl.opts)
2044 nvmf_free_options(ctrl->ctrl.opts);
2045 kfree(ctrl);
2046 module_put(lport->ops->module);
2049 static void
2050 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2052 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2055 static int
2056 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2058 return kref_get_unless_zero(&ctrl->ref);
2062 * All accesses from nvme core layer done - can now free the
2063 * controller. Called after last nvme_put_ctrl() call
2065 static void
2066 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2068 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2070 WARN_ON(nctrl != &ctrl->ctrl);
2072 nvme_fc_ctrl_put(ctrl);
2075 static void
2076 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2078 int active;
2081 * if an error (io timeout, etc) while (re)connecting,
2082 * it's an error on creating the new association.
2083 * Start the error recovery thread if it hasn't already
2084 * been started. It is expected there could be multiple
2085 * ios hitting this path before things are cleaned up.
2087 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2088 active = atomic_xchg(&ctrl->err_work_active, 1);
2089 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2090 atomic_set(&ctrl->err_work_active, 0);
2091 WARN_ON(1);
2093 return;
2096 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2097 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2098 return;
2100 dev_warn(ctrl->ctrl.device,
2101 "NVME-FC{%d}: transport association error detected: %s\n",
2102 ctrl->cnum, errmsg);
2103 dev_warn(ctrl->ctrl.device,
2104 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2106 nvme_reset_ctrl(&ctrl->ctrl);
2109 static enum blk_eh_timer_return
2110 nvme_fc_timeout(struct request *rq, bool reserved)
2112 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2113 struct nvme_fc_ctrl *ctrl = op->ctrl;
2116 * we can't individually ABTS an io without affecting the queue,
2117 * thus killing the queue, and thus the association.
2118 * So resolve by performing a controller reset, which will stop
2119 * the host/io stack, terminate the association on the link,
2120 * and recreate an association on the link.
2122 nvme_fc_error_recovery(ctrl, "io timeout error");
2125 * the io abort has been initiated. Have the reset timer
2126 * restarted and the abort completion will complete the io
2127 * shortly. Avoids a synchronous wait while the abort finishes.
2129 return BLK_EH_RESET_TIMER;
2132 static int
2133 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2134 struct nvme_fc_fcp_op *op)
2136 struct nvmefc_fcp_req *freq = &op->fcp_req;
2137 int ret;
2139 freq->sg_cnt = 0;
2141 if (!blk_rq_nr_phys_segments(rq))
2142 return 0;
2144 freq->sg_table.sgl = freq->first_sgl;
2145 ret = sg_alloc_table_chained(&freq->sg_table,
2146 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2147 NVME_INLINE_SG_CNT);
2148 if (ret)
2149 return -ENOMEM;
2151 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2152 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2153 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2154 op->nents, rq_dma_dir(rq));
2155 if (unlikely(freq->sg_cnt <= 0)) {
2156 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2157 freq->sg_cnt = 0;
2158 return -EFAULT;
2162 * TODO: blk_integrity_rq(rq) for DIF
2164 return 0;
2167 static void
2168 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2169 struct nvme_fc_fcp_op *op)
2171 struct nvmefc_fcp_req *freq = &op->fcp_req;
2173 if (!freq->sg_cnt)
2174 return;
2176 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2177 rq_dma_dir(rq));
2179 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2181 freq->sg_cnt = 0;
2185 * In FC, the queue is a logical thing. At transport connect, the target
2186 * creates its "queue" and returns a handle that is to be given to the
2187 * target whenever it posts something to the corresponding SQ. When an
2188 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2189 * command contained within the SQE, an io, and assigns a FC exchange
2190 * to it. The SQE and the associated SQ handle are sent in the initial
2191 * CMD IU sents on the exchange. All transfers relative to the io occur
2192 * as part of the exchange. The CQE is the last thing for the io,
2193 * which is transferred (explicitly or implicitly) with the RSP IU
2194 * sent on the exchange. After the CQE is received, the FC exchange is
2195 * terminaed and the Exchange may be used on a different io.
2197 * The transport to LLDD api has the transport making a request for a
2198 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2199 * resource and transfers the command. The LLDD will then process all
2200 * steps to complete the io. Upon completion, the transport done routine
2201 * is called.
2203 * So - while the operation is outstanding to the LLDD, there is a link
2204 * level FC exchange resource that is also outstanding. This must be
2205 * considered in all cleanup operations.
2207 static blk_status_t
2208 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2209 struct nvme_fc_fcp_op *op, u32 data_len,
2210 enum nvmefc_fcp_datadir io_dir)
2212 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2213 struct nvme_command *sqe = &cmdiu->sqe;
2214 int ret, opstate;
2217 * before attempting to send the io, check to see if we believe
2218 * the target device is present
2220 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2221 return BLK_STS_RESOURCE;
2223 if (!nvme_fc_ctrl_get(ctrl))
2224 return BLK_STS_IOERR;
2226 /* format the FC-NVME CMD IU and fcp_req */
2227 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2228 cmdiu->data_len = cpu_to_be32(data_len);
2229 switch (io_dir) {
2230 case NVMEFC_FCP_WRITE:
2231 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2232 break;
2233 case NVMEFC_FCP_READ:
2234 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2235 break;
2236 case NVMEFC_FCP_NODATA:
2237 cmdiu->flags = 0;
2238 break;
2240 op->fcp_req.payload_length = data_len;
2241 op->fcp_req.io_dir = io_dir;
2242 op->fcp_req.transferred_length = 0;
2243 op->fcp_req.rcv_rsplen = 0;
2244 op->fcp_req.status = NVME_SC_SUCCESS;
2245 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2248 * validate per fabric rules, set fields mandated by fabric spec
2249 * as well as those by FC-NVME spec.
2251 WARN_ON_ONCE(sqe->common.metadata);
2252 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2255 * format SQE DPTR field per FC-NVME rules:
2256 * type=0x5 Transport SGL Data Block Descriptor
2257 * subtype=0xA Transport-specific value
2258 * address=0
2259 * length=length of the data series
2261 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2262 NVME_SGL_FMT_TRANSPORT_A;
2263 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2264 sqe->rw.dptr.sgl.addr = 0;
2266 if (!(op->flags & FCOP_FLAGS_AEN)) {
2267 ret = nvme_fc_map_data(ctrl, op->rq, op);
2268 if (ret < 0) {
2269 nvme_cleanup_cmd(op->rq);
2270 nvme_fc_ctrl_put(ctrl);
2271 if (ret == -ENOMEM || ret == -EAGAIN)
2272 return BLK_STS_RESOURCE;
2273 return BLK_STS_IOERR;
2277 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2278 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2280 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2282 if (!(op->flags & FCOP_FLAGS_AEN))
2283 blk_mq_start_request(op->rq);
2285 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2286 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2287 &ctrl->rport->remoteport,
2288 queue->lldd_handle, &op->fcp_req);
2290 if (ret) {
2292 * If the lld fails to send the command is there an issue with
2293 * the csn value? If the command that fails is the Connect,
2294 * no - as the connection won't be live. If it is a command
2295 * post-connect, it's possible a gap in csn may be created.
2296 * Does this matter? As Linux initiators don't send fused
2297 * commands, no. The gap would exist, but as there's nothing
2298 * that depends on csn order to be delivered on the target
2299 * side, it shouldn't hurt. It would be difficult for a
2300 * target to even detect the csn gap as it has no idea when the
2301 * cmd with the csn was supposed to arrive.
2303 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2304 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2306 if (!(op->flags & FCOP_FLAGS_AEN))
2307 nvme_fc_unmap_data(ctrl, op->rq, op);
2309 nvme_cleanup_cmd(op->rq);
2310 nvme_fc_ctrl_put(ctrl);
2312 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2313 ret != -EBUSY)
2314 return BLK_STS_IOERR;
2316 return BLK_STS_RESOURCE;
2319 return BLK_STS_OK;
2322 static blk_status_t
2323 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2324 const struct blk_mq_queue_data *bd)
2326 struct nvme_ns *ns = hctx->queue->queuedata;
2327 struct nvme_fc_queue *queue = hctx->driver_data;
2328 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2329 struct request *rq = bd->rq;
2330 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2331 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2332 struct nvme_command *sqe = &cmdiu->sqe;
2333 enum nvmefc_fcp_datadir io_dir;
2334 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2335 u32 data_len;
2336 blk_status_t ret;
2338 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2339 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2340 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2342 ret = nvme_setup_cmd(ns, rq, sqe);
2343 if (ret)
2344 return ret;
2347 * nvme core doesn't quite treat the rq opaquely. Commands such
2348 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2349 * there is no actual payload to be transferred.
2350 * To get it right, key data transmission on there being 1 or
2351 * more physical segments in the sg list. If there is no
2352 * physical segments, there is no payload.
2354 if (blk_rq_nr_phys_segments(rq)) {
2355 data_len = blk_rq_payload_bytes(rq);
2356 io_dir = ((rq_data_dir(rq) == WRITE) ?
2357 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2358 } else {
2359 data_len = 0;
2360 io_dir = NVMEFC_FCP_NODATA;
2364 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2367 static void
2368 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2370 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2371 struct nvme_fc_fcp_op *aen_op;
2372 unsigned long flags;
2373 bool terminating = false;
2374 blk_status_t ret;
2376 spin_lock_irqsave(&ctrl->lock, flags);
2377 if (ctrl->flags & FCCTRL_TERMIO)
2378 terminating = true;
2379 spin_unlock_irqrestore(&ctrl->lock, flags);
2381 if (terminating)
2382 return;
2384 aen_op = &ctrl->aen_ops[0];
2386 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2387 NVMEFC_FCP_NODATA);
2388 if (ret)
2389 dev_err(ctrl->ctrl.device,
2390 "failed async event work\n");
2393 static void
2394 nvme_fc_complete_rq(struct request *rq)
2396 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2397 struct nvme_fc_ctrl *ctrl = op->ctrl;
2399 atomic_set(&op->state, FCPOP_STATE_IDLE);
2401 nvme_fc_unmap_data(ctrl, rq, op);
2402 nvme_complete_rq(rq);
2403 nvme_fc_ctrl_put(ctrl);
2407 * This routine is used by the transport when it needs to find active
2408 * io on a queue that is to be terminated. The transport uses
2409 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2410 * this routine to kill them on a 1 by 1 basis.
2412 * As FC allocates FC exchange for each io, the transport must contact
2413 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2414 * After terminating the exchange the LLDD will call the transport's
2415 * normal io done path for the request, but it will have an aborted
2416 * status. The done path will return the io request back to the block
2417 * layer with an error status.
2419 static bool
2420 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2422 struct nvme_ctrl *nctrl = data;
2423 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2424 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2426 __nvme_fc_abort_op(ctrl, op);
2427 return true;
2431 static const struct blk_mq_ops nvme_fc_mq_ops = {
2432 .queue_rq = nvme_fc_queue_rq,
2433 .complete = nvme_fc_complete_rq,
2434 .init_request = nvme_fc_init_request,
2435 .exit_request = nvme_fc_exit_request,
2436 .init_hctx = nvme_fc_init_hctx,
2437 .timeout = nvme_fc_timeout,
2440 static int
2441 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2443 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2444 unsigned int nr_io_queues;
2445 int ret;
2447 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2448 ctrl->lport->ops->max_hw_queues);
2449 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2450 if (ret) {
2451 dev_info(ctrl->ctrl.device,
2452 "set_queue_count failed: %d\n", ret);
2453 return ret;
2456 ctrl->ctrl.queue_count = nr_io_queues + 1;
2457 if (!nr_io_queues)
2458 return 0;
2460 nvme_fc_init_io_queues(ctrl);
2462 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2463 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2464 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2465 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2466 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2467 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2468 ctrl->tag_set.cmd_size =
2469 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2470 ctrl->lport->ops->fcprqst_priv_sz);
2471 ctrl->tag_set.driver_data = ctrl;
2472 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2473 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2475 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2476 if (ret)
2477 return ret;
2479 ctrl->ctrl.tagset = &ctrl->tag_set;
2481 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2482 if (IS_ERR(ctrl->ctrl.connect_q)) {
2483 ret = PTR_ERR(ctrl->ctrl.connect_q);
2484 goto out_free_tag_set;
2487 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2488 if (ret)
2489 goto out_cleanup_blk_queue;
2491 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2492 if (ret)
2493 goto out_delete_hw_queues;
2495 ctrl->ioq_live = true;
2497 return 0;
2499 out_delete_hw_queues:
2500 nvme_fc_delete_hw_io_queues(ctrl);
2501 out_cleanup_blk_queue:
2502 blk_cleanup_queue(ctrl->ctrl.connect_q);
2503 out_free_tag_set:
2504 blk_mq_free_tag_set(&ctrl->tag_set);
2505 nvme_fc_free_io_queues(ctrl);
2507 /* force put free routine to ignore io queues */
2508 ctrl->ctrl.tagset = NULL;
2510 return ret;
2513 static int
2514 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2516 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2517 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2518 unsigned int nr_io_queues;
2519 int ret;
2521 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2522 ctrl->lport->ops->max_hw_queues);
2523 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2524 if (ret) {
2525 dev_info(ctrl->ctrl.device,
2526 "set_queue_count failed: %d\n", ret);
2527 return ret;
2530 if (!nr_io_queues && prior_ioq_cnt) {
2531 dev_info(ctrl->ctrl.device,
2532 "Fail Reconnect: At least 1 io queue "
2533 "required (was %d)\n", prior_ioq_cnt);
2534 return -ENOSPC;
2537 ctrl->ctrl.queue_count = nr_io_queues + 1;
2538 /* check for io queues existing */
2539 if (ctrl->ctrl.queue_count == 1)
2540 return 0;
2542 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2543 if (ret)
2544 goto out_free_io_queues;
2546 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2547 if (ret)
2548 goto out_delete_hw_queues;
2550 if (prior_ioq_cnt != nr_io_queues)
2551 dev_info(ctrl->ctrl.device,
2552 "reconnect: revising io queue count from %d to %d\n",
2553 prior_ioq_cnt, nr_io_queues);
2554 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2556 return 0;
2558 out_delete_hw_queues:
2559 nvme_fc_delete_hw_io_queues(ctrl);
2560 out_free_io_queues:
2561 nvme_fc_free_io_queues(ctrl);
2562 return ret;
2565 static void
2566 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2568 struct nvme_fc_lport *lport = rport->lport;
2570 atomic_inc(&lport->act_rport_cnt);
2573 static void
2574 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2576 struct nvme_fc_lport *lport = rport->lport;
2577 u32 cnt;
2579 cnt = atomic_dec_return(&lport->act_rport_cnt);
2580 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2581 lport->ops->localport_delete(&lport->localport);
2584 static int
2585 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2587 struct nvme_fc_rport *rport = ctrl->rport;
2588 u32 cnt;
2590 if (ctrl->assoc_active)
2591 return 1;
2593 ctrl->assoc_active = true;
2594 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2595 if (cnt == 1)
2596 nvme_fc_rport_active_on_lport(rport);
2598 return 0;
2601 static int
2602 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2604 struct nvme_fc_rport *rport = ctrl->rport;
2605 struct nvme_fc_lport *lport = rport->lport;
2606 u32 cnt;
2608 /* ctrl->assoc_active=false will be set independently */
2610 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2611 if (cnt == 0) {
2612 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2613 lport->ops->remoteport_delete(&rport->remoteport);
2614 nvme_fc_rport_inactive_on_lport(rport);
2617 return 0;
2621 * This routine restarts the controller on the host side, and
2622 * on the link side, recreates the controller association.
2624 static int
2625 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2627 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2628 int ret;
2629 bool changed;
2631 ++ctrl->ctrl.nr_reconnects;
2633 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2634 return -ENODEV;
2636 if (nvme_fc_ctlr_active_on_rport(ctrl))
2637 return -ENOTUNIQ;
2639 dev_info(ctrl->ctrl.device,
2640 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
2641 " rport wwpn 0x%016llx: NQN \"%s\"\n",
2642 ctrl->cnum, ctrl->lport->localport.port_name,
2643 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2646 * Create the admin queue
2649 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2650 NVME_AQ_DEPTH);
2651 if (ret)
2652 goto out_free_queue;
2654 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2655 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2656 if (ret)
2657 goto out_delete_hw_queue;
2659 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2660 if (ret)
2661 goto out_disconnect_admin_queue;
2663 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2666 * Check controller capabilities
2668 * todo:- add code to check if ctrl attributes changed from
2669 * prior connection values
2672 ret = nvme_enable_ctrl(&ctrl->ctrl);
2673 if (ret)
2674 goto out_disconnect_admin_queue;
2676 ctrl->ctrl.max_hw_sectors =
2677 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2679 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2681 ret = nvme_init_identify(&ctrl->ctrl);
2682 if (ret)
2683 goto out_disconnect_admin_queue;
2685 /* sanity checks */
2687 /* FC-NVME does not have other data in the capsule */
2688 if (ctrl->ctrl.icdoff) {
2689 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2690 ctrl->ctrl.icdoff);
2691 goto out_disconnect_admin_queue;
2694 /* FC-NVME supports normal SGL Data Block Descriptors */
2696 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2697 /* warn if maxcmd is lower than queue_size */
2698 dev_warn(ctrl->ctrl.device,
2699 "queue_size %zu > ctrl maxcmd %u, reducing "
2700 "to maxcmd\n",
2701 opts->queue_size, ctrl->ctrl.maxcmd);
2702 opts->queue_size = ctrl->ctrl.maxcmd;
2705 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2706 /* warn if sqsize is lower than queue_size */
2707 dev_warn(ctrl->ctrl.device,
2708 "queue_size %zu > ctrl sqsize %u, reducing "
2709 "to sqsize\n",
2710 opts->queue_size, ctrl->ctrl.sqsize + 1);
2711 opts->queue_size = ctrl->ctrl.sqsize + 1;
2714 ret = nvme_fc_init_aen_ops(ctrl);
2715 if (ret)
2716 goto out_term_aen_ops;
2719 * Create the io queues
2722 if (ctrl->ctrl.queue_count > 1) {
2723 if (!ctrl->ioq_live)
2724 ret = nvme_fc_create_io_queues(ctrl);
2725 else
2726 ret = nvme_fc_recreate_io_queues(ctrl);
2727 if (ret)
2728 goto out_term_aen_ops;
2731 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2733 ctrl->ctrl.nr_reconnects = 0;
2735 if (changed)
2736 nvme_start_ctrl(&ctrl->ctrl);
2738 return 0; /* Success */
2740 out_term_aen_ops:
2741 nvme_fc_term_aen_ops(ctrl);
2742 out_disconnect_admin_queue:
2743 /* send a Disconnect(association) LS to fc-nvme target */
2744 nvme_fc_xmt_disconnect_assoc(ctrl);
2745 ctrl->association_id = 0;
2746 out_delete_hw_queue:
2747 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2748 out_free_queue:
2749 nvme_fc_free_queue(&ctrl->queues[0]);
2750 ctrl->assoc_active = false;
2751 nvme_fc_ctlr_inactive_on_rport(ctrl);
2753 return ret;
2757 * This routine stops operation of the controller on the host side.
2758 * On the host os stack side: Admin and IO queues are stopped,
2759 * outstanding ios on them terminated via FC ABTS.
2760 * On the link side: the association is terminated.
2762 static void
2763 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2765 unsigned long flags;
2767 if (!ctrl->assoc_active)
2768 return;
2769 ctrl->assoc_active = false;
2771 spin_lock_irqsave(&ctrl->lock, flags);
2772 ctrl->flags |= FCCTRL_TERMIO;
2773 ctrl->iocnt = 0;
2774 spin_unlock_irqrestore(&ctrl->lock, flags);
2777 * If io queues are present, stop them and terminate all outstanding
2778 * ios on them. As FC allocates FC exchange for each io, the
2779 * transport must contact the LLDD to terminate the exchange,
2780 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2781 * to tell us what io's are busy and invoke a transport routine
2782 * to kill them with the LLDD. After terminating the exchange
2783 * the LLDD will call the transport's normal io done path, but it
2784 * will have an aborted status. The done path will return the
2785 * io requests back to the block layer as part of normal completions
2786 * (but with error status).
2788 if (ctrl->ctrl.queue_count > 1) {
2789 nvme_stop_queues(&ctrl->ctrl);
2790 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2791 nvme_fc_terminate_exchange, &ctrl->ctrl);
2792 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2796 * Other transports, which don't have link-level contexts bound
2797 * to sqe's, would try to gracefully shutdown the controller by
2798 * writing the registers for shutdown and polling (call
2799 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2800 * just aborted and we will wait on those contexts, and given
2801 * there was no indication of how live the controlelr is on the
2802 * link, don't send more io to create more contexts for the
2803 * shutdown. Let the controller fail via keepalive failure if
2804 * its still present.
2808 * clean up the admin queue. Same thing as above.
2809 * use blk_mq_tagset_busy_itr() and the transport routine to
2810 * terminate the exchanges.
2812 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2813 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2814 nvme_fc_terminate_exchange, &ctrl->ctrl);
2815 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2817 /* kill the aens as they are a separate path */
2818 nvme_fc_abort_aen_ops(ctrl);
2820 /* wait for all io that had to be aborted */
2821 spin_lock_irq(&ctrl->lock);
2822 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2823 ctrl->flags &= ~FCCTRL_TERMIO;
2824 spin_unlock_irq(&ctrl->lock);
2826 nvme_fc_term_aen_ops(ctrl);
2829 * send a Disconnect(association) LS to fc-nvme target
2830 * Note: could have been sent at top of process, but
2831 * cleaner on link traffic if after the aborts complete.
2832 * Note: if association doesn't exist, association_id will be 0
2834 if (ctrl->association_id)
2835 nvme_fc_xmt_disconnect_assoc(ctrl);
2837 ctrl->association_id = 0;
2839 if (ctrl->ctrl.tagset) {
2840 nvme_fc_delete_hw_io_queues(ctrl);
2841 nvme_fc_free_io_queues(ctrl);
2844 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2845 nvme_fc_free_queue(&ctrl->queues[0]);
2847 /* re-enable the admin_q so anything new can fast fail */
2848 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2850 /* resume the io queues so that things will fast fail */
2851 nvme_start_queues(&ctrl->ctrl);
2853 nvme_fc_ctlr_inactive_on_rport(ctrl);
2856 static void
2857 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2859 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2861 cancel_work_sync(&ctrl->err_work);
2862 cancel_delayed_work_sync(&ctrl->connect_work);
2864 * kill the association on the link side. this will block
2865 * waiting for io to terminate
2867 nvme_fc_delete_association(ctrl);
2870 static void
2871 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2873 struct nvme_fc_rport *rport = ctrl->rport;
2874 struct nvme_fc_remote_port *portptr = &rport->remoteport;
2875 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2876 bool recon = true;
2878 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2879 return;
2881 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2882 dev_info(ctrl->ctrl.device,
2883 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2884 ctrl->cnum, status);
2885 else if (time_after_eq(jiffies, rport->dev_loss_end))
2886 recon = false;
2888 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2889 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2890 dev_info(ctrl->ctrl.device,
2891 "NVME-FC{%d}: Reconnect attempt in %ld "
2892 "seconds\n",
2893 ctrl->cnum, recon_delay / HZ);
2894 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2895 recon_delay = rport->dev_loss_end - jiffies;
2897 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2898 } else {
2899 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2900 dev_warn(ctrl->ctrl.device,
2901 "NVME-FC{%d}: Max reconnect attempts (%d) "
2902 "reached.\n",
2903 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2904 else
2905 dev_warn(ctrl->ctrl.device,
2906 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2907 "while waiting for remoteport connectivity.\n",
2908 ctrl->cnum, portptr->dev_loss_tmo);
2909 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2913 static void
2914 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2917 * if state is connecting - the error occurred as part of a
2918 * reconnect attempt. The create_association error paths will
2919 * clean up any outstanding io.
2921 * if it's a different state - ensure all pending io is
2922 * terminated. Given this can delay while waiting for the
2923 * aborted io to return, we recheck adapter state below
2924 * before changing state.
2926 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
2927 nvme_stop_keep_alive(&ctrl->ctrl);
2929 /* will block will waiting for io to terminate */
2930 nvme_fc_delete_association(ctrl);
2933 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2934 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2935 dev_err(ctrl->ctrl.device,
2936 "NVME-FC{%d}: error_recovery: Couldn't change state "
2937 "to CONNECTING\n", ctrl->cnum);
2940 static void
2941 nvme_fc_reset_ctrl_work(struct work_struct *work)
2943 struct nvme_fc_ctrl *ctrl =
2944 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2945 int ret;
2947 __nvme_fc_terminate_io(ctrl);
2949 nvme_stop_ctrl(&ctrl->ctrl);
2951 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2952 ret = nvme_fc_create_association(ctrl);
2953 else
2954 ret = -ENOTCONN;
2956 if (ret)
2957 nvme_fc_reconnect_or_delete(ctrl, ret);
2958 else
2959 dev_info(ctrl->ctrl.device,
2960 "NVME-FC{%d}: controller reset complete\n",
2961 ctrl->cnum);
2964 static void
2965 nvme_fc_connect_err_work(struct work_struct *work)
2967 struct nvme_fc_ctrl *ctrl =
2968 container_of(work, struct nvme_fc_ctrl, err_work);
2970 __nvme_fc_terminate_io(ctrl);
2972 atomic_set(&ctrl->err_work_active, 0);
2975 * Rescheduling the connection after recovering
2976 * from the io error is left to the reconnect work
2977 * item, which is what should have stalled waiting on
2978 * the io that had the error that scheduled this work.
2982 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2983 .name = "fc",
2984 .module = THIS_MODULE,
2985 .flags = NVME_F_FABRICS,
2986 .reg_read32 = nvmf_reg_read32,
2987 .reg_read64 = nvmf_reg_read64,
2988 .reg_write32 = nvmf_reg_write32,
2989 .free_ctrl = nvme_fc_nvme_ctrl_freed,
2990 .submit_async_event = nvme_fc_submit_async_event,
2991 .delete_ctrl = nvme_fc_delete_ctrl,
2992 .get_address = nvmf_get_address,
2995 static void
2996 nvme_fc_connect_ctrl_work(struct work_struct *work)
2998 int ret;
3000 struct nvme_fc_ctrl *ctrl =
3001 container_of(to_delayed_work(work),
3002 struct nvme_fc_ctrl, connect_work);
3004 ret = nvme_fc_create_association(ctrl);
3005 if (ret)
3006 nvme_fc_reconnect_or_delete(ctrl, ret);
3007 else
3008 dev_info(ctrl->ctrl.device,
3009 "NVME-FC{%d}: controller connect complete\n",
3010 ctrl->cnum);
3014 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3015 .queue_rq = nvme_fc_queue_rq,
3016 .complete = nvme_fc_complete_rq,
3017 .init_request = nvme_fc_init_request,
3018 .exit_request = nvme_fc_exit_request,
3019 .init_hctx = nvme_fc_init_admin_hctx,
3020 .timeout = nvme_fc_timeout,
3025 * Fails a controller request if it matches an existing controller
3026 * (association) with the same tuple:
3027 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3029 * The ports don't need to be compared as they are intrinsically
3030 * already matched by the port pointers supplied.
3032 static bool
3033 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3034 struct nvmf_ctrl_options *opts)
3036 struct nvme_fc_ctrl *ctrl;
3037 unsigned long flags;
3038 bool found = false;
3040 spin_lock_irqsave(&rport->lock, flags);
3041 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3042 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3043 if (found)
3044 break;
3046 spin_unlock_irqrestore(&rport->lock, flags);
3048 return found;
3051 static struct nvme_ctrl *
3052 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3053 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3055 struct nvme_fc_ctrl *ctrl;
3056 unsigned long flags;
3057 int ret, idx;
3059 if (!(rport->remoteport.port_role &
3060 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3061 ret = -EBADR;
3062 goto out_fail;
3065 if (!opts->duplicate_connect &&
3066 nvme_fc_existing_controller(rport, opts)) {
3067 ret = -EALREADY;
3068 goto out_fail;
3071 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3072 if (!ctrl) {
3073 ret = -ENOMEM;
3074 goto out_fail;
3077 if (!try_module_get(lport->ops->module)) {
3078 ret = -EUNATCH;
3079 goto out_free_ctrl;
3082 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3083 if (idx < 0) {
3084 ret = -ENOSPC;
3085 goto out_mod_put;
3088 ctrl->ctrl.opts = opts;
3089 ctrl->ctrl.nr_reconnects = 0;
3090 if (lport->dev)
3091 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3092 else
3093 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3094 INIT_LIST_HEAD(&ctrl->ctrl_list);
3095 ctrl->lport = lport;
3096 ctrl->rport = rport;
3097 ctrl->dev = lport->dev;
3098 ctrl->cnum = idx;
3099 ctrl->ioq_live = false;
3100 ctrl->assoc_active = false;
3101 atomic_set(&ctrl->err_work_active, 0);
3102 init_waitqueue_head(&ctrl->ioabort_wait);
3104 get_device(ctrl->dev);
3105 kref_init(&ctrl->ref);
3107 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3108 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3109 INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3110 spin_lock_init(&ctrl->lock);
3112 /* io queue count */
3113 ctrl->ctrl.queue_count = min_t(unsigned int,
3114 opts->nr_io_queues,
3115 lport->ops->max_hw_queues);
3116 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3118 ctrl->ctrl.sqsize = opts->queue_size - 1;
3119 ctrl->ctrl.kato = opts->kato;
3120 ctrl->ctrl.cntlid = 0xffff;
3122 ret = -ENOMEM;
3123 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3124 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3125 if (!ctrl->queues)
3126 goto out_free_ida;
3128 nvme_fc_init_queue(ctrl, 0);
3130 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3131 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3132 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3133 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3134 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3135 ctrl->admin_tag_set.cmd_size =
3136 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3137 ctrl->lport->ops->fcprqst_priv_sz);
3138 ctrl->admin_tag_set.driver_data = ctrl;
3139 ctrl->admin_tag_set.nr_hw_queues = 1;
3140 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3141 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3143 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3144 if (ret)
3145 goto out_free_queues;
3146 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3148 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3149 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3150 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3151 goto out_free_admin_tag_set;
3154 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3155 if (IS_ERR(ctrl->ctrl.admin_q)) {
3156 ret = PTR_ERR(ctrl->ctrl.admin_q);
3157 goto out_cleanup_fabrics_q;
3161 * Would have been nice to init io queues tag set as well.
3162 * However, we require interaction from the controller
3163 * for max io queue count before we can do so.
3164 * Defer this to the connect path.
3167 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3168 if (ret)
3169 goto out_cleanup_admin_q;
3171 /* at this point, teardown path changes to ref counting on nvme ctrl */
3173 spin_lock_irqsave(&rport->lock, flags);
3174 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3175 spin_unlock_irqrestore(&rport->lock, flags);
3177 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3178 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3179 dev_err(ctrl->ctrl.device,
3180 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3181 goto fail_ctrl;
3184 nvme_get_ctrl(&ctrl->ctrl);
3186 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3187 nvme_put_ctrl(&ctrl->ctrl);
3188 dev_err(ctrl->ctrl.device,
3189 "NVME-FC{%d}: failed to schedule initial connect\n",
3190 ctrl->cnum);
3191 goto fail_ctrl;
3194 flush_delayed_work(&ctrl->connect_work);
3196 dev_info(ctrl->ctrl.device,
3197 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3198 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3200 return &ctrl->ctrl;
3202 fail_ctrl:
3203 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3204 cancel_work_sync(&ctrl->ctrl.reset_work);
3205 cancel_work_sync(&ctrl->err_work);
3206 cancel_delayed_work_sync(&ctrl->connect_work);
3208 ctrl->ctrl.opts = NULL;
3210 /* initiate nvme ctrl ref counting teardown */
3211 nvme_uninit_ctrl(&ctrl->ctrl);
3213 /* Remove core ctrl ref. */
3214 nvme_put_ctrl(&ctrl->ctrl);
3216 /* as we're past the point where we transition to the ref
3217 * counting teardown path, if we return a bad pointer here,
3218 * the calling routine, thinking it's prior to the
3219 * transition, will do an rport put. Since the teardown
3220 * path also does a rport put, we do an extra get here to
3221 * so proper order/teardown happens.
3223 nvme_fc_rport_get(rport);
3225 return ERR_PTR(-EIO);
3227 out_cleanup_admin_q:
3228 blk_cleanup_queue(ctrl->ctrl.admin_q);
3229 out_cleanup_fabrics_q:
3230 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3231 out_free_admin_tag_set:
3232 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3233 out_free_queues:
3234 kfree(ctrl->queues);
3235 out_free_ida:
3236 put_device(ctrl->dev);
3237 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3238 out_mod_put:
3239 module_put(lport->ops->module);
3240 out_free_ctrl:
3241 kfree(ctrl);
3242 out_fail:
3243 /* exit via here doesn't follow ctlr ref points */
3244 return ERR_PTR(ret);
3248 struct nvmet_fc_traddr {
3249 u64 nn;
3250 u64 pn;
3253 static int
3254 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3256 u64 token64;
3258 if (match_u64(sstr, &token64))
3259 return -EINVAL;
3260 *val = token64;
3262 return 0;
3266 * This routine validates and extracts the WWN's from the TRADDR string.
3267 * As kernel parsers need the 0x to determine number base, universally
3268 * build string to parse with 0x prefix before parsing name strings.
3270 static int
3271 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3273 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3274 substring_t wwn = { name, &name[sizeof(name)-1] };
3275 int nnoffset, pnoffset;
3277 /* validate if string is one of the 2 allowed formats */
3278 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3279 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3280 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3281 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3282 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3283 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3284 NVME_FC_TRADDR_OXNNLEN;
3285 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3286 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3287 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3288 "pn-", NVME_FC_TRADDR_NNLEN))) {
3289 nnoffset = NVME_FC_TRADDR_NNLEN;
3290 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3291 } else
3292 goto out_einval;
3294 name[0] = '0';
3295 name[1] = 'x';
3296 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3298 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3299 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3300 goto out_einval;
3302 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3303 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3304 goto out_einval;
3306 return 0;
3308 out_einval:
3309 pr_warn("%s: bad traddr string\n", __func__);
3310 return -EINVAL;
3313 static struct nvme_ctrl *
3314 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3316 struct nvme_fc_lport *lport;
3317 struct nvme_fc_rport *rport;
3318 struct nvme_ctrl *ctrl;
3319 struct nvmet_fc_traddr laddr = { 0L, 0L };
3320 struct nvmet_fc_traddr raddr = { 0L, 0L };
3321 unsigned long flags;
3322 int ret;
3324 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3325 if (ret || !raddr.nn || !raddr.pn)
3326 return ERR_PTR(-EINVAL);
3328 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3329 if (ret || !laddr.nn || !laddr.pn)
3330 return ERR_PTR(-EINVAL);
3332 /* find the host and remote ports to connect together */
3333 spin_lock_irqsave(&nvme_fc_lock, flags);
3334 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3335 if (lport->localport.node_name != laddr.nn ||
3336 lport->localport.port_name != laddr.pn)
3337 continue;
3339 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3340 if (rport->remoteport.node_name != raddr.nn ||
3341 rport->remoteport.port_name != raddr.pn)
3342 continue;
3344 /* if fail to get reference fall through. Will error */
3345 if (!nvme_fc_rport_get(rport))
3346 break;
3348 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3350 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3351 if (IS_ERR(ctrl))
3352 nvme_fc_rport_put(rport);
3353 return ctrl;
3356 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3358 pr_warn("%s: %s - %s combination not found\n",
3359 __func__, opts->traddr, opts->host_traddr);
3360 return ERR_PTR(-ENOENT);
3364 static struct nvmf_transport_ops nvme_fc_transport = {
3365 .name = "fc",
3366 .module = THIS_MODULE,
3367 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3368 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3369 .create_ctrl = nvme_fc_create_ctrl,
3372 /* Arbitrary successive failures max. With lots of subsystems could be high */
3373 #define DISCOVERY_MAX_FAIL 20
3375 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3376 struct device_attribute *attr, const char *buf, size_t count)
3378 unsigned long flags;
3379 LIST_HEAD(local_disc_list);
3380 struct nvme_fc_lport *lport;
3381 struct nvme_fc_rport *rport;
3382 int failcnt = 0;
3384 spin_lock_irqsave(&nvme_fc_lock, flags);
3385 restart:
3386 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3387 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3388 if (!nvme_fc_lport_get(lport))
3389 continue;
3390 if (!nvme_fc_rport_get(rport)) {
3392 * This is a temporary condition. Upon restart
3393 * this rport will be gone from the list.
3395 * Revert the lport put and retry. Anything
3396 * added to the list already will be skipped (as
3397 * they are no longer list_empty). Loops should
3398 * resume at rports that were not yet seen.
3400 nvme_fc_lport_put(lport);
3402 if (failcnt++ < DISCOVERY_MAX_FAIL)
3403 goto restart;
3405 pr_err("nvme_discovery: too many reference "
3406 "failures\n");
3407 goto process_local_list;
3409 if (list_empty(&rport->disc_list))
3410 list_add_tail(&rport->disc_list,
3411 &local_disc_list);
3415 process_local_list:
3416 while (!list_empty(&local_disc_list)) {
3417 rport = list_first_entry(&local_disc_list,
3418 struct nvme_fc_rport, disc_list);
3419 list_del_init(&rport->disc_list);
3420 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3422 lport = rport->lport;
3423 /* signal discovery. Won't hurt if it repeats */
3424 nvme_fc_signal_discovery_scan(lport, rport);
3425 nvme_fc_rport_put(rport);
3426 nvme_fc_lport_put(lport);
3428 spin_lock_irqsave(&nvme_fc_lock, flags);
3430 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3432 return count;
3434 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3436 static struct attribute *nvme_fc_attrs[] = {
3437 &dev_attr_nvme_discovery.attr,
3438 NULL
3441 static struct attribute_group nvme_fc_attr_group = {
3442 .attrs = nvme_fc_attrs,
3445 static const struct attribute_group *nvme_fc_attr_groups[] = {
3446 &nvme_fc_attr_group,
3447 NULL
3450 static struct class fc_class = {
3451 .name = "fc",
3452 .dev_groups = nvme_fc_attr_groups,
3453 .owner = THIS_MODULE,
3456 static int __init nvme_fc_init_module(void)
3458 int ret;
3460 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3461 if (!nvme_fc_wq)
3462 return -ENOMEM;
3465 * NOTE:
3466 * It is expected that in the future the kernel will combine
3467 * the FC-isms that are currently under scsi and now being
3468 * added to by NVME into a new standalone FC class. The SCSI
3469 * and NVME protocols and their devices would be under this
3470 * new FC class.
3472 * As we need something to post FC-specific udev events to,
3473 * specifically for nvme probe events, start by creating the
3474 * new device class. When the new standalone FC class is
3475 * put in place, this code will move to a more generic
3476 * location for the class.
3478 ret = class_register(&fc_class);
3479 if (ret) {
3480 pr_err("couldn't register class fc\n");
3481 goto out_destroy_wq;
3485 * Create a device for the FC-centric udev events
3487 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3488 "fc_udev_device");
3489 if (IS_ERR(fc_udev_device)) {
3490 pr_err("couldn't create fc_udev device!\n");
3491 ret = PTR_ERR(fc_udev_device);
3492 goto out_destroy_class;
3495 ret = nvmf_register_transport(&nvme_fc_transport);
3496 if (ret)
3497 goto out_destroy_device;
3499 return 0;
3501 out_destroy_device:
3502 device_destroy(&fc_class, MKDEV(0, 0));
3503 out_destroy_class:
3504 class_unregister(&fc_class);
3505 out_destroy_wq:
3506 destroy_workqueue(nvme_fc_wq);
3508 return ret;
3511 static void
3512 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3514 struct nvme_fc_ctrl *ctrl;
3516 spin_lock(&rport->lock);
3517 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3518 dev_warn(ctrl->ctrl.device,
3519 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3520 ctrl->cnum);
3521 nvme_delete_ctrl(&ctrl->ctrl);
3523 spin_unlock(&rport->lock);
3526 static void
3527 nvme_fc_cleanup_for_unload(void)
3529 struct nvme_fc_lport *lport;
3530 struct nvme_fc_rport *rport;
3532 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3533 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3534 nvme_fc_delete_controllers(rport);
3539 static void __exit nvme_fc_exit_module(void)
3541 unsigned long flags;
3542 bool need_cleanup = false;
3544 spin_lock_irqsave(&nvme_fc_lock, flags);
3545 nvme_fc_waiting_to_unload = true;
3546 if (!list_empty(&nvme_fc_lport_list)) {
3547 need_cleanup = true;
3548 nvme_fc_cleanup_for_unload();
3550 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3551 if (need_cleanup) {
3552 pr_info("%s: waiting for ctlr deletes\n", __func__);
3553 wait_for_completion(&nvme_fc_unload_proceed);
3554 pr_info("%s: ctrl deletes complete\n", __func__);
3557 nvmf_unregister_transport(&nvme_fc_transport);
3559 ida_destroy(&nvme_fc_local_port_cnt);
3560 ida_destroy(&nvme_fc_ctrl_cnt);
3562 device_destroy(&fc_class, MKDEV(0, 0));
3563 class_unregister(&fc_class);
3564 destroy_workqueue(nvme_fc_wq);
3567 module_init(nvme_fc_init_module);
3568 module_exit(nvme_fc_exit_module);
3570 MODULE_LICENSE("GPL v2");