treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / nvme / target / io-cmd-bdev.c
blobb6fca0e421ef1bc3c0cd96394a8649803c03eb81
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/module.h>
9 #include "nvmet.h"
11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
13 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14 /* Number of logical blocks per physical block. */
15 const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16 /* Logical blocks per physical block, 0's based. */
17 const __le16 lpp0b = to0based(lpp);
20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 * NAWUPF, and NACWU are defined for this namespace and should be
22 * used by the host for this namespace instead of the AWUN, AWUPF,
23 * and ACWU fields in the Identify Controller data structure. If
24 * any of these fields are zero that means that the corresponding
25 * field from the identify controller data structure should be used.
27 id->nsfeat |= 1 << 1;
28 id->nawun = lpp0b;
29 id->nawupf = lpp0b;
30 id->nacwu = lpp0b;
33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 * NOWS are defined for this namespace and should be used by
35 * the host for I/O optimization.
37 id->nsfeat |= 1 << 4;
38 /* NPWG = Namespace Preferred Write Granularity. 0's based */
39 id->npwg = lpp0b;
40 /* NPWA = Namespace Preferred Write Alignment. 0's based */
41 id->npwa = id->npwg;
42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44 /* NPDG = Namespace Preferred Deallocate Alignment */
45 id->npda = id->npdg;
46 /* NOWS = Namespace Optimal Write Size */
47 id->nows = to0based(ql->io_opt / ql->logical_block_size);
50 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
52 int ret;
54 ns->bdev = blkdev_get_by_path(ns->device_path,
55 FMODE_READ | FMODE_WRITE, NULL);
56 if (IS_ERR(ns->bdev)) {
57 ret = PTR_ERR(ns->bdev);
58 if (ret != -ENOTBLK) {
59 pr_err("failed to open block device %s: (%ld)\n",
60 ns->device_path, PTR_ERR(ns->bdev));
62 ns->bdev = NULL;
63 return ret;
65 ns->size = i_size_read(ns->bdev->bd_inode);
66 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
67 return 0;
70 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
72 if (ns->bdev) {
73 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
74 ns->bdev = NULL;
78 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
80 u16 status = NVME_SC_SUCCESS;
82 if (likely(blk_sts == BLK_STS_OK))
83 return status;
85 * Right now there exists M : 1 mapping between block layer error
86 * to the NVMe status code (see nvme_error_status()). For consistency,
87 * when we reverse map we use most appropriate NVMe Status code from
88 * the group of the NVMe staus codes used in the nvme_error_status().
90 switch (blk_sts) {
91 case BLK_STS_NOSPC:
92 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
93 req->error_loc = offsetof(struct nvme_rw_command, length);
94 break;
95 case BLK_STS_TARGET:
96 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
97 req->error_loc = offsetof(struct nvme_rw_command, slba);
98 break;
99 case BLK_STS_NOTSUPP:
100 req->error_loc = offsetof(struct nvme_common_command, opcode);
101 switch (req->cmd->common.opcode) {
102 case nvme_cmd_dsm:
103 case nvme_cmd_write_zeroes:
104 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
105 break;
106 default:
107 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
109 break;
110 case BLK_STS_MEDIUM:
111 status = NVME_SC_ACCESS_DENIED;
112 req->error_loc = offsetof(struct nvme_rw_command, nsid);
113 break;
114 case BLK_STS_IOERR:
115 /* fallthru */
116 default:
117 status = NVME_SC_INTERNAL | NVME_SC_DNR;
118 req->error_loc = offsetof(struct nvme_common_command, opcode);
121 switch (req->cmd->common.opcode) {
122 case nvme_cmd_read:
123 case nvme_cmd_write:
124 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
125 break;
126 case nvme_cmd_write_zeroes:
127 req->error_slba =
128 le64_to_cpu(req->cmd->write_zeroes.slba);
129 break;
130 default:
131 req->error_slba = 0;
133 return status;
136 static void nvmet_bio_done(struct bio *bio)
138 struct nvmet_req *req = bio->bi_private;
140 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
141 if (bio != &req->b.inline_bio)
142 bio_put(bio);
145 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
147 int sg_cnt = req->sg_cnt;
148 struct bio *bio;
149 struct scatterlist *sg;
150 struct blk_plug plug;
151 sector_t sector;
152 int op, i;
154 if (!nvmet_check_data_len(req, nvmet_rw_len(req)))
155 return;
157 if (!req->sg_cnt) {
158 nvmet_req_complete(req, 0);
159 return;
162 if (req->cmd->rw.opcode == nvme_cmd_write) {
163 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
164 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
165 op |= REQ_FUA;
166 } else {
167 op = REQ_OP_READ;
170 if (is_pci_p2pdma_page(sg_page(req->sg)))
171 op |= REQ_NOMERGE;
173 sector = le64_to_cpu(req->cmd->rw.slba);
174 sector <<= (req->ns->blksize_shift - 9);
176 if (req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN) {
177 bio = &req->b.inline_bio;
178 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
179 } else {
180 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
182 bio_set_dev(bio, req->ns->bdev);
183 bio->bi_iter.bi_sector = sector;
184 bio->bi_private = req;
185 bio->bi_end_io = nvmet_bio_done;
186 bio->bi_opf = op;
188 blk_start_plug(&plug);
189 for_each_sg(req->sg, sg, req->sg_cnt, i) {
190 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
191 != sg->length) {
192 struct bio *prev = bio;
194 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
195 bio_set_dev(bio, req->ns->bdev);
196 bio->bi_iter.bi_sector = sector;
197 bio->bi_opf = op;
199 bio_chain(bio, prev);
200 submit_bio(prev);
203 sector += sg->length >> 9;
204 sg_cnt--;
207 submit_bio(bio);
208 blk_finish_plug(&plug);
211 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
213 struct bio *bio = &req->b.inline_bio;
215 if (!nvmet_check_data_len(req, 0))
216 return;
218 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
219 bio_set_dev(bio, req->ns->bdev);
220 bio->bi_private = req;
221 bio->bi_end_io = nvmet_bio_done;
222 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
224 submit_bio(bio);
227 u16 nvmet_bdev_flush(struct nvmet_req *req)
229 if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL, NULL))
230 return NVME_SC_INTERNAL | NVME_SC_DNR;
231 return 0;
234 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
235 struct nvme_dsm_range *range, struct bio **bio)
237 struct nvmet_ns *ns = req->ns;
238 int ret;
240 ret = __blkdev_issue_discard(ns->bdev,
241 le64_to_cpu(range->slba) << (ns->blksize_shift - 9),
242 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
243 GFP_KERNEL, 0, bio);
244 if (ret && ret != -EOPNOTSUPP) {
245 req->error_slba = le64_to_cpu(range->slba);
246 return errno_to_nvme_status(req, ret);
248 return NVME_SC_SUCCESS;
251 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
253 struct nvme_dsm_range range;
254 struct bio *bio = NULL;
255 int i;
256 u16 status;
258 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
259 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
260 sizeof(range));
261 if (status)
262 break;
264 status = nvmet_bdev_discard_range(req, &range, &bio);
265 if (status)
266 break;
269 if (bio) {
270 bio->bi_private = req;
271 bio->bi_end_io = nvmet_bio_done;
272 if (status)
273 bio_io_error(bio);
274 else
275 submit_bio(bio);
276 } else {
277 nvmet_req_complete(req, status);
281 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
283 if (!nvmet_check_data_len(req, nvmet_dsm_len(req)))
284 return;
286 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
287 case NVME_DSMGMT_AD:
288 nvmet_bdev_execute_discard(req);
289 return;
290 case NVME_DSMGMT_IDR:
291 case NVME_DSMGMT_IDW:
292 default:
293 /* Not supported yet */
294 nvmet_req_complete(req, 0);
295 return;
299 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
301 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
302 struct bio *bio = NULL;
303 sector_t sector;
304 sector_t nr_sector;
305 int ret;
307 if (!nvmet_check_data_len(req, 0))
308 return;
310 sector = le64_to_cpu(write_zeroes->slba) <<
311 (req->ns->blksize_shift - 9);
312 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
313 (req->ns->blksize_shift - 9));
315 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
316 GFP_KERNEL, &bio, 0);
317 if (bio) {
318 bio->bi_private = req;
319 bio->bi_end_io = nvmet_bio_done;
320 submit_bio(bio);
321 } else {
322 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
326 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
328 struct nvme_command *cmd = req->cmd;
330 switch (cmd->common.opcode) {
331 case nvme_cmd_read:
332 case nvme_cmd_write:
333 req->execute = nvmet_bdev_execute_rw;
334 return 0;
335 case nvme_cmd_flush:
336 req->execute = nvmet_bdev_execute_flush;
337 return 0;
338 case nvme_cmd_dsm:
339 req->execute = nvmet_bdev_execute_dsm;
340 return 0;
341 case nvme_cmd_write_zeroes:
342 req->execute = nvmet_bdev_execute_write_zeroes;
343 return 0;
344 default:
345 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
346 req->sq->qid);
347 req->error_loc = offsetof(struct nvme_common_command, opcode);
348 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;