treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / of / address.c
blobe8a39c3ec4d4f75e49f73f18e2e71852c02433c1
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
17 #include "of_private.h"
19 /* Max address size we deal with */
20 #define OF_MAX_ADDR_CELLS 4
21 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
22 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24 static struct of_bus *of_match_bus(struct device_node *np);
25 static int __of_address_to_resource(struct device_node *dev,
26 const __be32 *addrp, u64 size, unsigned int flags,
27 const char *name, struct resource *r);
29 /* Debug utility */
30 #ifdef DEBUG
31 static void of_dump_addr(const char *s, const __be32 *addr, int na)
33 pr_debug("%s", s);
34 while (na--)
35 pr_cont(" %08x", be32_to_cpu(*(addr++)));
36 pr_cont("\n");
38 #else
39 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
40 #endif
42 /* Callbacks for bus specific translators */
43 struct of_bus {
44 const char *name;
45 const char *addresses;
46 int (*match)(struct device_node *parent);
47 void (*count_cells)(struct device_node *child,
48 int *addrc, int *sizec);
49 u64 (*map)(__be32 *addr, const __be32 *range,
50 int na, int ns, int pna);
51 int (*translate)(__be32 *addr, u64 offset, int na);
52 unsigned int (*get_flags)(const __be32 *addr);
56 * Default translator (generic bus)
59 static void of_bus_default_count_cells(struct device_node *dev,
60 int *addrc, int *sizec)
62 if (addrc)
63 *addrc = of_n_addr_cells(dev);
64 if (sizec)
65 *sizec = of_n_size_cells(dev);
68 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
69 int na, int ns, int pna)
71 u64 cp, s, da;
73 cp = of_read_number(range, na);
74 s = of_read_number(range + na + pna, ns);
75 da = of_read_number(addr, na);
77 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
78 (unsigned long long)cp, (unsigned long long)s,
79 (unsigned long long)da);
81 if (da < cp || da >= (cp + s))
82 return OF_BAD_ADDR;
83 return da - cp;
86 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
88 u64 a = of_read_number(addr, na);
89 memset(addr, 0, na * 4);
90 a += offset;
91 if (na > 1)
92 addr[na - 2] = cpu_to_be32(a >> 32);
93 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
95 return 0;
98 static unsigned int of_bus_default_get_flags(const __be32 *addr)
100 return IORESOURCE_MEM;
103 #ifdef CONFIG_PCI
105 * PCI bus specific translator
108 static int of_bus_pci_match(struct device_node *np)
111 * "pciex" is PCI Express
112 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
113 * "ht" is hypertransport
115 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
116 of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
119 static void of_bus_pci_count_cells(struct device_node *np,
120 int *addrc, int *sizec)
122 if (addrc)
123 *addrc = 3;
124 if (sizec)
125 *sizec = 2;
128 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
130 unsigned int flags = 0;
131 u32 w = be32_to_cpup(addr);
133 switch((w >> 24) & 0x03) {
134 case 0x01:
135 flags |= IORESOURCE_IO;
136 break;
137 case 0x02: /* 32 bits */
138 case 0x03: /* 64 bits */
139 flags |= IORESOURCE_MEM;
140 break;
142 if (w & 0x40000000)
143 flags |= IORESOURCE_PREFETCH;
144 return flags;
147 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
148 int pna)
150 u64 cp, s, da;
151 unsigned int af, rf;
153 af = of_bus_pci_get_flags(addr);
154 rf = of_bus_pci_get_flags(range);
156 /* Check address type match */
157 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
158 return OF_BAD_ADDR;
160 /* Read address values, skipping high cell */
161 cp = of_read_number(range + 1, na - 1);
162 s = of_read_number(range + na + pna, ns);
163 da = of_read_number(addr + 1, na - 1);
165 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
166 (unsigned long long)cp, (unsigned long long)s,
167 (unsigned long long)da);
169 if (da < cp || da >= (cp + s))
170 return OF_BAD_ADDR;
171 return da - cp;
174 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
176 return of_bus_default_translate(addr + 1, offset, na - 1);
179 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
180 unsigned int *flags)
182 const __be32 *prop;
183 unsigned int psize;
184 struct device_node *parent;
185 struct of_bus *bus;
186 int onesize, i, na, ns;
188 /* Get parent & match bus type */
189 parent = of_get_parent(dev);
190 if (parent == NULL)
191 return NULL;
192 bus = of_match_bus(parent);
193 if (strcmp(bus->name, "pci")) {
194 of_node_put(parent);
195 return NULL;
197 bus->count_cells(dev, &na, &ns);
198 of_node_put(parent);
199 if (!OF_CHECK_ADDR_COUNT(na))
200 return NULL;
202 /* Get "reg" or "assigned-addresses" property */
203 prop = of_get_property(dev, bus->addresses, &psize);
204 if (prop == NULL)
205 return NULL;
206 psize /= 4;
208 onesize = na + ns;
209 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
210 u32 val = be32_to_cpu(prop[0]);
211 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
212 if (size)
213 *size = of_read_number(prop + na, ns);
214 if (flags)
215 *flags = bus->get_flags(prop);
216 return prop;
219 return NULL;
221 EXPORT_SYMBOL(of_get_pci_address);
223 int of_pci_address_to_resource(struct device_node *dev, int bar,
224 struct resource *r)
226 const __be32 *addrp;
227 u64 size;
228 unsigned int flags;
230 addrp = of_get_pci_address(dev, bar, &size, &flags);
231 if (addrp == NULL)
232 return -EINVAL;
233 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
235 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
237 static int parser_init(struct of_pci_range_parser *parser,
238 struct device_node *node, const char *name)
240 const int na = 3, ns = 2;
241 int rlen;
243 parser->node = node;
244 parser->pna = of_n_addr_cells(node);
245 parser->np = parser->pna + na + ns;
246 parser->dma = !strcmp(name, "dma-ranges");
248 parser->range = of_get_property(node, name, &rlen);
249 if (parser->range == NULL)
250 return -ENOENT;
252 parser->end = parser->range + rlen / sizeof(__be32);
254 return 0;
257 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
258 struct device_node *node)
260 return parser_init(parser, node, "ranges");
262 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
264 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
265 struct device_node *node)
267 return parser_init(parser, node, "dma-ranges");
269 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
271 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
272 struct of_pci_range *range)
274 const int na = 3, ns = 2;
276 if (!range)
277 return NULL;
279 if (!parser->range || parser->range + parser->np > parser->end)
280 return NULL;
282 range->pci_space = be32_to_cpup(parser->range);
283 range->flags = of_bus_pci_get_flags(parser->range);
284 range->pci_addr = of_read_number(parser->range + 1, ns);
285 if (parser->dma)
286 range->cpu_addr = of_translate_dma_address(parser->node,
287 parser->range + na);
288 else
289 range->cpu_addr = of_translate_address(parser->node,
290 parser->range + na);
291 range->size = of_read_number(parser->range + parser->pna + na, ns);
293 parser->range += parser->np;
295 /* Now consume following elements while they are contiguous */
296 while (parser->range + parser->np <= parser->end) {
297 u32 flags;
298 u64 pci_addr, cpu_addr, size;
300 flags = of_bus_pci_get_flags(parser->range);
301 pci_addr = of_read_number(parser->range + 1, ns);
302 if (parser->dma)
303 cpu_addr = of_translate_dma_address(parser->node,
304 parser->range + na);
305 else
306 cpu_addr = of_translate_address(parser->node,
307 parser->range + na);
308 size = of_read_number(parser->range + parser->pna + na, ns);
310 if (flags != range->flags)
311 break;
312 if (pci_addr != range->pci_addr + range->size ||
313 cpu_addr != range->cpu_addr + range->size)
314 break;
316 range->size += size;
317 parser->range += parser->np;
320 return range;
322 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
325 * of_pci_range_to_resource - Create a resource from an of_pci_range
326 * @range: the PCI range that describes the resource
327 * @np: device node where the range belongs to
328 * @res: pointer to a valid resource that will be updated to
329 * reflect the values contained in the range.
331 * Returns EINVAL if the range cannot be converted to resource.
333 * Note that if the range is an IO range, the resource will be converted
334 * using pci_address_to_pio() which can fail if it is called too early or
335 * if the range cannot be matched to any host bridge IO space (our case here).
336 * To guard against that we try to register the IO range first.
337 * If that fails we know that pci_address_to_pio() will do too.
339 int of_pci_range_to_resource(struct of_pci_range *range,
340 struct device_node *np, struct resource *res)
342 int err;
343 res->flags = range->flags;
344 res->parent = res->child = res->sibling = NULL;
345 res->name = np->full_name;
347 if (res->flags & IORESOURCE_IO) {
348 unsigned long port;
349 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
350 range->size);
351 if (err)
352 goto invalid_range;
353 port = pci_address_to_pio(range->cpu_addr);
354 if (port == (unsigned long)-1) {
355 err = -EINVAL;
356 goto invalid_range;
358 res->start = port;
359 } else {
360 if ((sizeof(resource_size_t) < 8) &&
361 upper_32_bits(range->cpu_addr)) {
362 err = -EINVAL;
363 goto invalid_range;
366 res->start = range->cpu_addr;
368 res->end = res->start + range->size - 1;
369 return 0;
371 invalid_range:
372 res->start = (resource_size_t)OF_BAD_ADDR;
373 res->end = (resource_size_t)OF_BAD_ADDR;
374 return err;
376 EXPORT_SYMBOL(of_pci_range_to_resource);
377 #endif /* CONFIG_PCI */
380 * ISA bus specific translator
383 static int of_bus_isa_match(struct device_node *np)
385 return of_node_name_eq(np, "isa");
388 static void of_bus_isa_count_cells(struct device_node *child,
389 int *addrc, int *sizec)
391 if (addrc)
392 *addrc = 2;
393 if (sizec)
394 *sizec = 1;
397 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
398 int pna)
400 u64 cp, s, da;
402 /* Check address type match */
403 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
404 return OF_BAD_ADDR;
406 /* Read address values, skipping high cell */
407 cp = of_read_number(range + 1, na - 1);
408 s = of_read_number(range + na + pna, ns);
409 da = of_read_number(addr + 1, na - 1);
411 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
412 (unsigned long long)cp, (unsigned long long)s,
413 (unsigned long long)da);
415 if (da < cp || da >= (cp + s))
416 return OF_BAD_ADDR;
417 return da - cp;
420 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
422 return of_bus_default_translate(addr + 1, offset, na - 1);
425 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
427 unsigned int flags = 0;
428 u32 w = be32_to_cpup(addr);
430 if (w & 1)
431 flags |= IORESOURCE_IO;
432 else
433 flags |= IORESOURCE_MEM;
434 return flags;
438 * Array of bus specific translators
441 static struct of_bus of_busses[] = {
442 #ifdef CONFIG_PCI
443 /* PCI */
445 .name = "pci",
446 .addresses = "assigned-addresses",
447 .match = of_bus_pci_match,
448 .count_cells = of_bus_pci_count_cells,
449 .map = of_bus_pci_map,
450 .translate = of_bus_pci_translate,
451 .get_flags = of_bus_pci_get_flags,
453 #endif /* CONFIG_PCI */
454 /* ISA */
456 .name = "isa",
457 .addresses = "reg",
458 .match = of_bus_isa_match,
459 .count_cells = of_bus_isa_count_cells,
460 .map = of_bus_isa_map,
461 .translate = of_bus_isa_translate,
462 .get_flags = of_bus_isa_get_flags,
464 /* Default */
466 .name = "default",
467 .addresses = "reg",
468 .match = NULL,
469 .count_cells = of_bus_default_count_cells,
470 .map = of_bus_default_map,
471 .translate = of_bus_default_translate,
472 .get_flags = of_bus_default_get_flags,
476 static struct of_bus *of_match_bus(struct device_node *np)
478 int i;
480 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
481 if (!of_busses[i].match || of_busses[i].match(np))
482 return &of_busses[i];
483 BUG();
484 return NULL;
487 static int of_empty_ranges_quirk(struct device_node *np)
489 if (IS_ENABLED(CONFIG_PPC)) {
490 /* To save cycles, we cache the result for global "Mac" setting */
491 static int quirk_state = -1;
493 /* PA-SEMI sdc DT bug */
494 if (of_device_is_compatible(np, "1682m-sdc"))
495 return true;
497 /* Make quirk cached */
498 if (quirk_state < 0)
499 quirk_state =
500 of_machine_is_compatible("Power Macintosh") ||
501 of_machine_is_compatible("MacRISC");
502 return quirk_state;
504 return false;
507 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
508 struct of_bus *pbus, __be32 *addr,
509 int na, int ns, int pna, const char *rprop)
511 const __be32 *ranges;
512 unsigned int rlen;
513 int rone;
514 u64 offset = OF_BAD_ADDR;
517 * Normally, an absence of a "ranges" property means we are
518 * crossing a non-translatable boundary, and thus the addresses
519 * below the current cannot be converted to CPU physical ones.
520 * Unfortunately, while this is very clear in the spec, it's not
521 * what Apple understood, and they do have things like /uni-n or
522 * /ht nodes with no "ranges" property and a lot of perfectly
523 * useable mapped devices below them. Thus we treat the absence of
524 * "ranges" as equivalent to an empty "ranges" property which means
525 * a 1:1 translation at that level. It's up to the caller not to try
526 * to translate addresses that aren't supposed to be translated in
527 * the first place. --BenH.
529 * As far as we know, this damage only exists on Apple machines, so
530 * This code is only enabled on powerpc. --gcl
532 * This quirk also applies for 'dma-ranges' which frequently exist in
533 * child nodes without 'dma-ranges' in the parent nodes. --RobH
535 ranges = of_get_property(parent, rprop, &rlen);
536 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
537 strcmp(rprop, "dma-ranges")) {
538 pr_debug("no ranges; cannot translate\n");
539 return 1;
541 if (ranges == NULL || rlen == 0) {
542 offset = of_read_number(addr, na);
543 memset(addr, 0, pna * 4);
544 pr_debug("empty ranges; 1:1 translation\n");
545 goto finish;
548 pr_debug("walking ranges...\n");
550 /* Now walk through the ranges */
551 rlen /= 4;
552 rone = na + pna + ns;
553 for (; rlen >= rone; rlen -= rone, ranges += rone) {
554 offset = bus->map(addr, ranges, na, ns, pna);
555 if (offset != OF_BAD_ADDR)
556 break;
558 if (offset == OF_BAD_ADDR) {
559 pr_debug("not found !\n");
560 return 1;
562 memcpy(addr, ranges + na, 4 * pna);
564 finish:
565 of_dump_addr("parent translation for:", addr, pna);
566 pr_debug("with offset: %llx\n", (unsigned long long)offset);
568 /* Translate it into parent bus space */
569 return pbus->translate(addr, offset, pna);
573 * Translate an address from the device-tree into a CPU physical address,
574 * this walks up the tree and applies the various bus mappings on the
575 * way.
577 * Note: We consider that crossing any level with #size-cells == 0 to mean
578 * that translation is impossible (that is we are not dealing with a value
579 * that can be mapped to a cpu physical address). This is not really specified
580 * that way, but this is traditionally the way IBM at least do things
582 * Whenever the translation fails, the *host pointer will be set to the
583 * device that had registered logical PIO mapping, and the return code is
584 * relative to that node.
586 static u64 __of_translate_address(struct device_node *dev,
587 struct device_node *(*get_parent)(const struct device_node *),
588 const __be32 *in_addr, const char *rprop,
589 struct device_node **host)
591 struct device_node *parent = NULL;
592 struct of_bus *bus, *pbus;
593 __be32 addr[OF_MAX_ADDR_CELLS];
594 int na, ns, pna, pns;
595 u64 result = OF_BAD_ADDR;
597 pr_debug("** translation for device %pOF **\n", dev);
599 /* Increase refcount at current level */
600 of_node_get(dev);
602 *host = NULL;
603 /* Get parent & match bus type */
604 parent = get_parent(dev);
605 if (parent == NULL)
606 goto bail;
607 bus = of_match_bus(parent);
609 /* Count address cells & copy address locally */
610 bus->count_cells(dev, &na, &ns);
611 if (!OF_CHECK_COUNTS(na, ns)) {
612 pr_debug("Bad cell count for %pOF\n", dev);
613 goto bail;
615 memcpy(addr, in_addr, na * 4);
617 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
618 bus->name, na, ns, parent);
619 of_dump_addr("translating address:", addr, na);
621 /* Translate */
622 for (;;) {
623 struct logic_pio_hwaddr *iorange;
625 /* Switch to parent bus */
626 of_node_put(dev);
627 dev = parent;
628 parent = get_parent(dev);
630 /* If root, we have finished */
631 if (parent == NULL) {
632 pr_debug("reached root node\n");
633 result = of_read_number(addr, na);
634 break;
638 * For indirectIO device which has no ranges property, get
639 * the address from reg directly.
641 iorange = find_io_range_by_fwnode(&dev->fwnode);
642 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
643 result = of_read_number(addr + 1, na - 1);
644 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
645 dev, result);
646 *host = of_node_get(dev);
647 break;
650 /* Get new parent bus and counts */
651 pbus = of_match_bus(parent);
652 pbus->count_cells(dev, &pna, &pns);
653 if (!OF_CHECK_COUNTS(pna, pns)) {
654 pr_err("Bad cell count for %pOF\n", dev);
655 break;
658 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
659 pbus->name, pna, pns, parent);
661 /* Apply bus translation */
662 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
663 break;
665 /* Complete the move up one level */
666 na = pna;
667 ns = pns;
668 bus = pbus;
670 of_dump_addr("one level translation:", addr, na);
672 bail:
673 of_node_put(parent);
674 of_node_put(dev);
676 return result;
679 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
681 struct device_node *host;
682 u64 ret;
684 ret = __of_translate_address(dev, of_get_parent,
685 in_addr, "ranges", &host);
686 if (host) {
687 of_node_put(host);
688 return OF_BAD_ADDR;
691 return ret;
693 EXPORT_SYMBOL(of_translate_address);
695 static struct device_node *__of_get_dma_parent(const struct device_node *np)
697 struct of_phandle_args args;
698 int ret, index;
700 index = of_property_match_string(np, "interconnect-names", "dma-mem");
701 if (index < 0)
702 return of_get_parent(np);
704 ret = of_parse_phandle_with_args(np, "interconnects",
705 "#interconnect-cells",
706 index, &args);
707 if (ret < 0)
708 return of_get_parent(np);
710 return of_node_get(args.np);
713 static struct device_node *of_get_next_dma_parent(struct device_node *np)
715 struct device_node *parent;
717 parent = __of_get_dma_parent(np);
718 of_node_put(np);
720 return parent;
723 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
725 struct device_node *host;
726 u64 ret;
728 ret = __of_translate_address(dev, __of_get_dma_parent,
729 in_addr, "dma-ranges", &host);
731 if (host) {
732 of_node_put(host);
733 return OF_BAD_ADDR;
736 return ret;
738 EXPORT_SYMBOL(of_translate_dma_address);
740 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
741 unsigned int *flags)
743 const __be32 *prop;
744 unsigned int psize;
745 struct device_node *parent;
746 struct of_bus *bus;
747 int onesize, i, na, ns;
749 /* Get parent & match bus type */
750 parent = of_get_parent(dev);
751 if (parent == NULL)
752 return NULL;
753 bus = of_match_bus(parent);
754 bus->count_cells(dev, &na, &ns);
755 of_node_put(parent);
756 if (!OF_CHECK_ADDR_COUNT(na))
757 return NULL;
759 /* Get "reg" or "assigned-addresses" property */
760 prop = of_get_property(dev, bus->addresses, &psize);
761 if (prop == NULL)
762 return NULL;
763 psize /= 4;
765 onesize = na + ns;
766 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
767 if (i == index) {
768 if (size)
769 *size = of_read_number(prop + na, ns);
770 if (flags)
771 *flags = bus->get_flags(prop);
772 return prop;
774 return NULL;
776 EXPORT_SYMBOL(of_get_address);
778 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
779 u64 size)
781 u64 taddr;
782 unsigned long port;
783 struct device_node *host;
785 taddr = __of_translate_address(dev, of_get_parent,
786 in_addr, "ranges", &host);
787 if (host) {
788 /* host-specific port access */
789 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
790 of_node_put(host);
791 } else {
792 /* memory-mapped I/O range */
793 port = pci_address_to_pio(taddr);
796 if (port == (unsigned long)-1)
797 return OF_BAD_ADDR;
799 return port;
802 static int __of_address_to_resource(struct device_node *dev,
803 const __be32 *addrp, u64 size, unsigned int flags,
804 const char *name, struct resource *r)
806 u64 taddr;
808 if (flags & IORESOURCE_MEM)
809 taddr = of_translate_address(dev, addrp);
810 else if (flags & IORESOURCE_IO)
811 taddr = of_translate_ioport(dev, addrp, size);
812 else
813 return -EINVAL;
815 if (taddr == OF_BAD_ADDR)
816 return -EINVAL;
817 memset(r, 0, sizeof(struct resource));
819 r->start = taddr;
820 r->end = taddr + size - 1;
821 r->flags = flags;
822 r->name = name ? name : dev->full_name;
824 return 0;
828 * of_address_to_resource - Translate device tree address and return as resource
830 * Note that if your address is a PIO address, the conversion will fail if
831 * the physical address can't be internally converted to an IO token with
832 * pci_address_to_pio(), that is because it's either called too early or it
833 * can't be matched to any host bridge IO space
835 int of_address_to_resource(struct device_node *dev, int index,
836 struct resource *r)
838 const __be32 *addrp;
839 u64 size;
840 unsigned int flags;
841 const char *name = NULL;
843 addrp = of_get_address(dev, index, &size, &flags);
844 if (addrp == NULL)
845 return -EINVAL;
847 /* Get optional "reg-names" property to add a name to a resource */
848 of_property_read_string_index(dev, "reg-names", index, &name);
850 return __of_address_to_resource(dev, addrp, size, flags, name, r);
852 EXPORT_SYMBOL_GPL(of_address_to_resource);
855 * of_iomap - Maps the memory mapped IO for a given device_node
856 * @device: the device whose io range will be mapped
857 * @index: index of the io range
859 * Returns a pointer to the mapped memory
861 void __iomem *of_iomap(struct device_node *np, int index)
863 struct resource res;
865 if (of_address_to_resource(np, index, &res))
866 return NULL;
868 return ioremap(res.start, resource_size(&res));
870 EXPORT_SYMBOL(of_iomap);
873 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
874 * for a given device_node
875 * @device: the device whose io range will be mapped
876 * @index: index of the io range
877 * @name: name "override" for the memory region request or NULL
879 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
880 * error code on failure. Usage example:
882 * base = of_io_request_and_map(node, 0, "foo");
883 * if (IS_ERR(base))
884 * return PTR_ERR(base);
886 void __iomem *of_io_request_and_map(struct device_node *np, int index,
887 const char *name)
889 struct resource res;
890 void __iomem *mem;
892 if (of_address_to_resource(np, index, &res))
893 return IOMEM_ERR_PTR(-EINVAL);
895 if (!name)
896 name = res.name;
897 if (!request_mem_region(res.start, resource_size(&res), name))
898 return IOMEM_ERR_PTR(-EBUSY);
900 mem = ioremap(res.start, resource_size(&res));
901 if (!mem) {
902 release_mem_region(res.start, resource_size(&res));
903 return IOMEM_ERR_PTR(-ENOMEM);
906 return mem;
908 EXPORT_SYMBOL(of_io_request_and_map);
911 * of_dma_get_range - Get DMA range info
912 * @np: device node to get DMA range info
913 * @dma_addr: pointer to store initial DMA address of DMA range
914 * @paddr: pointer to store initial CPU address of DMA range
915 * @size: pointer to store size of DMA range
917 * Look in bottom up direction for the first "dma-ranges" property
918 * and parse it.
919 * dma-ranges format:
920 * DMA addr (dma_addr) : naddr cells
921 * CPU addr (phys_addr_t) : pna cells
922 * size : nsize cells
924 * It returns -ENODEV if "dma-ranges" property was not found
925 * for this device in DT.
927 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
929 struct device_node *node = of_node_get(np);
930 const __be32 *ranges = NULL;
931 int len, naddr, nsize, pna;
932 int ret = 0;
933 bool found_dma_ranges = false;
934 u64 dmaaddr;
936 while (node) {
937 ranges = of_get_property(node, "dma-ranges", &len);
939 /* Ignore empty ranges, they imply no translation required */
940 if (ranges && len > 0)
941 break;
943 /* Once we find 'dma-ranges', then a missing one is an error */
944 if (found_dma_ranges && !ranges) {
945 ret = -ENODEV;
946 goto out;
948 found_dma_ranges = true;
950 node = of_get_next_dma_parent(node);
953 if (!node || !ranges) {
954 pr_debug("no dma-ranges found for node(%pOF)\n", np);
955 ret = -ENODEV;
956 goto out;
959 naddr = of_bus_n_addr_cells(node);
960 nsize = of_bus_n_size_cells(node);
961 pna = of_n_addr_cells(node);
962 if ((len / sizeof(__be32)) % (pna + naddr + nsize)) {
963 ret = -EINVAL;
964 goto out;
967 /* dma-ranges format:
968 * DMA addr : naddr cells
969 * CPU addr : pna cells
970 * size : nsize cells
972 dmaaddr = of_read_number(ranges, naddr);
973 *paddr = of_translate_dma_address(node, ranges + naddr);
974 if (*paddr == OF_BAD_ADDR) {
975 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
976 dmaaddr, np);
977 ret = -EINVAL;
978 goto out;
980 *dma_addr = dmaaddr;
982 *size = of_read_number(ranges + naddr + pna, nsize);
984 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
985 *dma_addr, *paddr, *size);
987 out:
988 of_node_put(node);
990 return ret;
994 * of_dma_is_coherent - Check if device is coherent
995 * @np: device node
997 * It returns true if "dma-coherent" property was found
998 * for this device in the DT, or if DMA is coherent by
999 * default for OF devices on the current platform.
1001 bool of_dma_is_coherent(struct device_node *np)
1003 struct device_node *node = of_node_get(np);
1005 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1006 return true;
1008 while (node) {
1009 if (of_property_read_bool(node, "dma-coherent")) {
1010 of_node_put(node);
1011 return true;
1013 node = of_get_next_dma_parent(node);
1015 of_node_put(node);
1016 return false;
1018 EXPORT_SYMBOL_GPL(of_dma_is_coherent);