1 // SPDX-License-Identifier: GPL-2.0+
3 * Compaq Hot Plug Controller Driver
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
11 * Send feedback to <greg@kroah.com>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
28 static u32
configure_new_device(struct controller
*ctrl
, struct pci_func
*func
,
29 u8 behind_bridge
, struct resource_lists
*resources
);
30 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
31 u8 behind_bridge
, struct resource_lists
*resources
);
32 static void interrupt_event_handler(struct controller
*ctrl
);
35 static struct task_struct
*cpqhp_event_thread
;
36 static struct timer_list
*pushbutton_pending
; /* = NULL */
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay
)
42 * XXX(hch): if someone is bored please convert all callers
43 * to call msleep_interruptible directly. They really want
44 * to specify timeouts in natural units and spend a lot of
45 * effort converting them to jiffies..
47 msleep_interruptible(jiffies_to_msecs(delay
));
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8
handle_switch_change(u8 change
, struct controller
*ctrl
)
58 struct pci_func
*func
;
59 struct event_info
*taskInfo
;
65 dbg("cpqsbd: Switch interrupt received.\n");
67 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
68 if (change
& (0x1L
<< hp_slot
)) {
72 func
= cpqhp_slot_find(ctrl
->bus
,
73 (hp_slot
+ ctrl
->slot_device_offset
), 0);
75 /* this is the structure that tells the worker thread
78 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
79 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
80 taskInfo
->hp_slot
= hp_slot
;
84 temp_word
= ctrl
->ctrl_int_comp
>> 16;
85 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
86 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
88 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
93 func
->switch_save
= 0;
95 taskInfo
->event_type
= INT_SWITCH_OPEN
;
101 func
->switch_save
= 0x10;
103 taskInfo
->event_type
= INT_SWITCH_CLOSE
;
112 * cpqhp_find_slot - find the struct slot of given device
113 * @ctrl: scan lots of this controller
114 * @device: the device id to find
116 static struct slot
*cpqhp_find_slot(struct controller
*ctrl
, u8 device
)
118 struct slot
*slot
= ctrl
->slot
;
120 while (slot
&& (slot
->device
!= device
))
127 static u8
handle_presence_change(u16 change
, struct controller
*ctrl
)
133 struct pci_func
*func
;
134 struct event_info
*taskInfo
;
143 dbg("cpqsbd: Presence/Notify input change.\n");
144 dbg(" Changed bits are 0x%4.4x\n", change
);
146 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
147 if (change
& (0x0101 << hp_slot
)) {
151 func
= cpqhp_slot_find(ctrl
->bus
,
152 (hp_slot
+ ctrl
->slot_device_offset
), 0);
154 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
155 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
156 taskInfo
->hp_slot
= hp_slot
;
160 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ (readb(ctrl
->hpc_reg
+ SLOT_MASK
) >> 4));
164 /* If the switch closed, must be a button
165 * If not in button mode, nevermind
167 if (func
->switch_save
&& (ctrl
->push_button
== 1)) {
168 temp_word
= ctrl
->ctrl_int_comp
>> 16;
169 temp_byte
= (temp_word
>> hp_slot
) & 0x01;
170 temp_byte
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
172 if (temp_byte
!= func
->presence_save
) {
174 * button Pressed (doesn't do anything)
176 dbg("hp_slot %d button pressed\n", hp_slot
);
177 taskInfo
->event_type
= INT_BUTTON_PRESS
;
180 * button Released - TAKE ACTION!!!!
182 dbg("hp_slot %d button released\n", hp_slot
);
183 taskInfo
->event_type
= INT_BUTTON_RELEASE
;
185 /* Cancel if we are still blinking */
186 if ((p_slot
->state
== BLINKINGON_STATE
)
187 || (p_slot
->state
== BLINKINGOFF_STATE
)) {
188 taskInfo
->event_type
= INT_BUTTON_CANCEL
;
189 dbg("hp_slot %d button cancel\n", hp_slot
);
190 } else if ((p_slot
->state
== POWERON_STATE
)
191 || (p_slot
->state
== POWEROFF_STATE
)) {
192 /* info(msg_button_ignore, p_slot->number); */
193 taskInfo
->event_type
= INT_BUTTON_IGNORE
;
194 dbg("hp_slot %d button ignore\n", hp_slot
);
198 /* Switch is open, assume a presence change
199 * Save the presence state
201 temp_word
= ctrl
->ctrl_int_comp
>> 16;
202 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
203 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
205 if ((!(ctrl
->ctrl_int_comp
& (0x010000 << hp_slot
))) ||
206 (!(ctrl
->ctrl_int_comp
& (0x01000000 << hp_slot
)))) {
208 taskInfo
->event_type
= INT_PRESENCE_ON
;
211 taskInfo
->event_type
= INT_PRESENCE_OFF
;
221 static u8
handle_power_fault(u8 change
, struct controller
*ctrl
)
225 struct pci_func
*func
;
226 struct event_info
*taskInfo
;
235 info("power fault interrupt\n");
237 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
238 if (change
& (0x01 << hp_slot
)) {
242 func
= cpqhp_slot_find(ctrl
->bus
,
243 (hp_slot
+ ctrl
->slot_device_offset
), 0);
245 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
246 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
247 taskInfo
->hp_slot
= hp_slot
;
251 if (ctrl
->ctrl_int_comp
& (0x00000100 << hp_slot
)) {
253 * power fault Cleared
257 taskInfo
->event_type
= INT_POWER_FAULT_CLEAR
;
262 taskInfo
->event_type
= INT_POWER_FAULT
;
265 amber_LED_on(ctrl
, hp_slot
);
266 green_LED_off(ctrl
, hp_slot
);
269 /* this is a fatal condition, we want
270 * to crash the machine to protect from
271 * data corruption. simulated_NMI
272 * shouldn't ever return */
274 simulated_NMI(hp_slot, ctrl); */
276 /* The following code causes a software
277 * crash just in case simulated_NMI did
280 panic(msg_power_fault); */
282 /* set power fault status for this board */
284 info("power fault bit %x set\n", hp_slot
);
295 * sort_by_size - sort nodes on the list by their length, smallest first.
296 * @head: list to sort
298 static int sort_by_size(struct pci_resource
**head
)
300 struct pci_resource
*current_res
;
301 struct pci_resource
*next_res
;
302 int out_of_order
= 1;
307 if (!((*head
)->next
))
310 while (out_of_order
) {
313 /* Special case for swapping list head */
314 if (((*head
)->next
) &&
315 ((*head
)->length
> (*head
)->next
->length
)) {
318 *head
= (*head
)->next
;
319 current_res
->next
= (*head
)->next
;
320 (*head
)->next
= current_res
;
325 while (current_res
->next
&& current_res
->next
->next
) {
326 if (current_res
->next
->length
> current_res
->next
->next
->length
) {
328 next_res
= current_res
->next
;
329 current_res
->next
= current_res
->next
->next
;
330 current_res
= current_res
->next
;
331 next_res
->next
= current_res
->next
;
332 current_res
->next
= next_res
;
334 current_res
= current_res
->next
;
336 } /* End of out_of_order loop */
343 * sort_by_max_size - sort nodes on the list by their length, largest first.
344 * @head: list to sort
346 static int sort_by_max_size(struct pci_resource
**head
)
348 struct pci_resource
*current_res
;
349 struct pci_resource
*next_res
;
350 int out_of_order
= 1;
355 if (!((*head
)->next
))
358 while (out_of_order
) {
361 /* Special case for swapping list head */
362 if (((*head
)->next
) &&
363 ((*head
)->length
< (*head
)->next
->length
)) {
366 *head
= (*head
)->next
;
367 current_res
->next
= (*head
)->next
;
368 (*head
)->next
= current_res
;
373 while (current_res
->next
&& current_res
->next
->next
) {
374 if (current_res
->next
->length
< current_res
->next
->next
->length
) {
376 next_res
= current_res
->next
;
377 current_res
->next
= current_res
->next
->next
;
378 current_res
= current_res
->next
;
379 next_res
->next
= current_res
->next
;
380 current_res
->next
= next_res
;
382 current_res
= current_res
->next
;
384 } /* End of out_of_order loop */
391 * do_pre_bridge_resource_split - find node of resources that are unused
392 * @head: new list head
393 * @orig_head: original list head
394 * @alignment: max node size (?)
396 static struct pci_resource
*do_pre_bridge_resource_split(struct pci_resource
**head
,
397 struct pci_resource
**orig_head
, u32 alignment
)
399 struct pci_resource
*prevnode
= NULL
;
400 struct pci_resource
*node
;
401 struct pci_resource
*split_node
;
404 dbg("do_pre_bridge_resource_split\n");
406 if (!(*head
) || !(*orig_head
))
409 rc
= cpqhp_resource_sort_and_combine(head
);
414 if ((*head
)->base
!= (*orig_head
)->base
)
417 if ((*head
)->length
== (*orig_head
)->length
)
421 /* If we got here, there the bridge requires some of the resource, but
422 * we may be able to split some off of the front
427 if (node
->length
& (alignment
- 1)) {
428 /* this one isn't an aligned length, so we'll make a new entry
431 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
436 temp_dword
= (node
->length
| (alignment
-1)) + 1 - alignment
;
438 split_node
->base
= node
->base
;
439 split_node
->length
= temp_dword
;
441 node
->length
-= temp_dword
;
442 node
->base
+= split_node
->length
;
444 /* Put it in the list */
446 split_node
->next
= node
;
449 if (node
->length
< alignment
)
457 while (prevnode
->next
!= node
)
458 prevnode
= prevnode
->next
;
460 prevnode
->next
= node
->next
;
469 * do_bridge_resource_split - find one node of resources that aren't in use
471 * @alignment: max node size (?)
473 static struct pci_resource
*do_bridge_resource_split(struct pci_resource
**head
, u32 alignment
)
475 struct pci_resource
*prevnode
= NULL
;
476 struct pci_resource
*node
;
480 rc
= cpqhp_resource_sort_and_combine(head
);
493 if (node
->length
< alignment
)
496 if (node
->base
& (alignment
- 1)) {
497 /* Short circuit if adjusted size is too small */
498 temp_dword
= (node
->base
| (alignment
-1)) + 1;
499 if ((node
->length
- (temp_dword
- node
->base
)) < alignment
)
502 node
->length
-= (temp_dword
- node
->base
);
503 node
->base
= temp_dword
;
506 if (node
->length
& (alignment
- 1))
507 /* There's stuff in use after this node */
518 * get_io_resource - find first node of given size not in ISA aliasing window.
519 * @head: list to search
520 * @size: size of node to find, must be a power of two.
522 * Description: This function sorts the resource list by size and then returns
523 * returns the first node of "size" length that is not in the ISA aliasing
524 * window. If it finds a node larger than "size" it will split it up.
526 static struct pci_resource
*get_io_resource(struct pci_resource
**head
, u32 size
)
528 struct pci_resource
*prevnode
;
529 struct pci_resource
*node
;
530 struct pci_resource
*split_node
;
536 if (cpqhp_resource_sort_and_combine(head
))
539 if (sort_by_size(head
))
542 for (node
= *head
; node
; node
= node
->next
) {
543 if (node
->length
< size
)
546 if (node
->base
& (size
- 1)) {
547 /* this one isn't base aligned properly
548 * so we'll make a new entry and split it up
550 temp_dword
= (node
->base
| (size
-1)) + 1;
552 /* Short circuit if adjusted size is too small */
553 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
556 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
561 split_node
->base
= node
->base
;
562 split_node
->length
= temp_dword
- node
->base
;
563 node
->base
= temp_dword
;
564 node
->length
-= split_node
->length
;
566 /* Put it in the list */
567 split_node
->next
= node
->next
;
568 node
->next
= split_node
;
569 } /* End of non-aligned base */
571 /* Don't need to check if too small since we already did */
572 if (node
->length
> size
) {
573 /* this one is longer than we need
574 * so we'll make a new entry and split it up
576 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
581 split_node
->base
= node
->base
+ size
;
582 split_node
->length
= node
->length
- size
;
585 /* Put it in the list */
586 split_node
->next
= node
->next
;
587 node
->next
= split_node
;
588 } /* End of too big on top end */
590 /* For IO make sure it's not in the ISA aliasing space */
591 if (node
->base
& 0x300L
)
594 /* If we got here, then it is the right size
595 * Now take it out of the list and break
601 while (prevnode
->next
!= node
)
602 prevnode
= prevnode
->next
;
604 prevnode
->next
= node
->next
;
615 * get_max_resource - get largest node which has at least the given size.
616 * @head: the list to search the node in
617 * @size: the minimum size of the node to find
619 * Description: Gets the largest node that is at least "size" big from the
620 * list pointed to by head. It aligns the node on top and bottom
621 * to "size" alignment before returning it.
623 static struct pci_resource
*get_max_resource(struct pci_resource
**head
, u32 size
)
625 struct pci_resource
*max
;
626 struct pci_resource
*temp
;
627 struct pci_resource
*split_node
;
630 if (cpqhp_resource_sort_and_combine(head
))
633 if (sort_by_max_size(head
))
636 for (max
= *head
; max
; max
= max
->next
) {
637 /* If not big enough we could probably just bail,
638 * instead we'll continue to the next.
640 if (max
->length
< size
)
643 if (max
->base
& (size
- 1)) {
644 /* this one isn't base aligned properly
645 * so we'll make a new entry and split it up
647 temp_dword
= (max
->base
| (size
-1)) + 1;
649 /* Short circuit if adjusted size is too small */
650 if ((max
->length
- (temp_dword
- max
->base
)) < size
)
653 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
658 split_node
->base
= max
->base
;
659 split_node
->length
= temp_dword
- max
->base
;
660 max
->base
= temp_dword
;
661 max
->length
-= split_node
->length
;
663 split_node
->next
= max
->next
;
664 max
->next
= split_node
;
667 if ((max
->base
+ max
->length
) & (size
- 1)) {
668 /* this one isn't end aligned properly at the top
669 * so we'll make a new entry and split it up
671 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
675 temp_dword
= ((max
->base
+ max
->length
) & ~(size
- 1));
676 split_node
->base
= temp_dword
;
677 split_node
->length
= max
->length
+ max
->base
679 max
->length
-= split_node
->length
;
681 split_node
->next
= max
->next
;
682 max
->next
= split_node
;
685 /* Make sure it didn't shrink too much when we aligned it */
686 if (max
->length
< size
)
689 /* Now take it out of the list */
694 while (temp
&& temp
->next
!= max
)
698 temp
->next
= max
->next
;
710 * get_resource - find resource of given size and split up larger ones.
711 * @head: the list to search for resources
712 * @size: the size limit to use
714 * Description: This function sorts the resource list by size and then
715 * returns the first node of "size" length. If it finds a node
716 * larger than "size" it will split it up.
718 * size must be a power of two.
720 static struct pci_resource
*get_resource(struct pci_resource
**head
, u32 size
)
722 struct pci_resource
*prevnode
;
723 struct pci_resource
*node
;
724 struct pci_resource
*split_node
;
727 if (cpqhp_resource_sort_and_combine(head
))
730 if (sort_by_size(head
))
733 for (node
= *head
; node
; node
= node
->next
) {
734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 __func__
, size
, node
, node
->base
, node
->length
);
736 if (node
->length
< size
)
739 if (node
->base
& (size
- 1)) {
740 dbg("%s: not aligned\n", __func__
);
741 /* this one isn't base aligned properly
742 * so we'll make a new entry and split it up
744 temp_dword
= (node
->base
| (size
-1)) + 1;
746 /* Short circuit if adjusted size is too small */
747 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
750 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
755 split_node
->base
= node
->base
;
756 split_node
->length
= temp_dword
- node
->base
;
757 node
->base
= temp_dword
;
758 node
->length
-= split_node
->length
;
760 split_node
->next
= node
->next
;
761 node
->next
= split_node
;
762 } /* End of non-aligned base */
764 /* Don't need to check if too small since we already did */
765 if (node
->length
> size
) {
766 dbg("%s: too big\n", __func__
);
767 /* this one is longer than we need
768 * so we'll make a new entry and split it up
770 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
775 split_node
->base
= node
->base
+ size
;
776 split_node
->length
= node
->length
- size
;
779 /* Put it in the list */
780 split_node
->next
= node
->next
;
781 node
->next
= split_node
;
782 } /* End of too big on top end */
784 dbg("%s: got one!!!\n", __func__
);
785 /* If we got here, then it is the right size
786 * Now take it out of the list */
791 while (prevnode
->next
!= node
)
792 prevnode
= prevnode
->next
;
794 prevnode
->next
= node
->next
;
804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805 * @head: the list to sort and clean up
807 * Description: Sorts all of the nodes in the list in ascending order by
808 * their base addresses. Also does garbage collection by
809 * combining adjacent nodes.
811 * Returns %0 if success.
813 int cpqhp_resource_sort_and_combine(struct pci_resource
**head
)
815 struct pci_resource
*node1
;
816 struct pci_resource
*node2
;
817 int out_of_order
= 1;
819 dbg("%s: head = %p, *head = %p\n", __func__
, head
, *head
);
824 dbg("*head->next = %p\n", (*head
)->next
);
827 return 0; /* only one item on the list, already sorted! */
829 dbg("*head->base = 0x%x\n", (*head
)->base
);
830 dbg("*head->next->base = 0x%x\n", (*head
)->next
->base
);
831 while (out_of_order
) {
834 /* Special case for swapping list head */
835 if (((*head
)->next
) &&
836 ((*head
)->base
> (*head
)->next
->base
)) {
838 (*head
) = (*head
)->next
;
839 node1
->next
= (*head
)->next
;
840 (*head
)->next
= node1
;
846 while (node1
->next
&& node1
->next
->next
) {
847 if (node1
->next
->base
> node1
->next
->next
->base
) {
850 node1
->next
= node1
->next
->next
;
852 node2
->next
= node1
->next
;
857 } /* End of out_of_order loop */
861 while (node1
&& node1
->next
) {
862 if ((node1
->base
+ node1
->length
) == node1
->next
->base
) {
865 node1
->length
+= node1
->next
->length
;
867 node1
->next
= node1
->next
->next
;
877 irqreturn_t
cpqhp_ctrl_intr(int IRQ
, void *data
)
879 struct controller
*ctrl
= data
;
880 u8 schedule_flag
= 0;
887 misc
= readw(ctrl
->hpc_reg
+ MISC
);
889 * Check to see if it was our interrupt
891 if (!(misc
& 0x000C))
896 * Serial Output interrupt Pending
899 /* Clear the interrupt */
901 writew(misc
, ctrl
->hpc_reg
+ MISC
);
903 /* Read to clear posted writes */
904 misc
= readw(ctrl
->hpc_reg
+ MISC
);
906 dbg("%s - waking up\n", __func__
);
907 wake_up_interruptible(&ctrl
->queue
);
911 /* General-interrupt-input interrupt Pending */
912 Diff
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) ^ ctrl
->ctrl_int_comp
;
914 ctrl
->ctrl_int_comp
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
916 /* Clear the interrupt */
917 writel(Diff
, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
919 /* Read it back to clear any posted writes */
920 temp_dword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
923 /* Clear all interrupts */
924 writel(0xFFFFFFFF, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
926 schedule_flag
+= handle_switch_change((u8
)(Diff
& 0xFFL
), ctrl
);
927 schedule_flag
+= handle_presence_change((u16
)((Diff
& 0xFFFF0000L
) >> 16), ctrl
);
928 schedule_flag
+= handle_power_fault((u8
)((Diff
& 0xFF00L
) >> 8), ctrl
);
931 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
933 /* Bus reset has completed */
935 writeb(reset
, ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
936 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
937 wake_up_interruptible(&ctrl
->queue
);
941 wake_up_process(cpqhp_event_thread
);
942 dbg("Waking even thread");
949 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950 * @busnumber: bus where new node is to be located
952 * Returns pointer to the new node or %NULL if unsuccessful.
954 struct pci_func
*cpqhp_slot_create(u8 busnumber
)
956 struct pci_func
*new_slot
;
957 struct pci_func
*next
;
959 new_slot
= kzalloc(sizeof(*new_slot
), GFP_KERNEL
);
960 if (new_slot
== NULL
)
963 new_slot
->next
= NULL
;
964 new_slot
->configured
= 1;
966 if (cpqhp_slot_list
[busnumber
] == NULL
) {
967 cpqhp_slot_list
[busnumber
] = new_slot
;
969 next
= cpqhp_slot_list
[busnumber
];
970 while (next
->next
!= NULL
)
972 next
->next
= new_slot
;
979 * slot_remove - Removes a node from the linked list of slots.
980 * @old_slot: slot to remove
982 * Returns %0 if successful, !0 otherwise.
984 static int slot_remove(struct pci_func
*old_slot
)
986 struct pci_func
*next
;
988 if (old_slot
== NULL
)
991 next
= cpqhp_slot_list
[old_slot
->bus
];
995 if (next
== old_slot
) {
996 cpqhp_slot_list
[old_slot
->bus
] = old_slot
->next
;
997 cpqhp_destroy_board_resources(old_slot
);
1002 while ((next
->next
!= old_slot
) && (next
->next
!= NULL
))
1005 if (next
->next
== old_slot
) {
1006 next
->next
= old_slot
->next
;
1007 cpqhp_destroy_board_resources(old_slot
);
1016 * bridge_slot_remove - Removes a node from the linked list of slots.
1017 * @bridge: bridge to remove
1019 * Returns %0 if successful, !0 otherwise.
1021 static int bridge_slot_remove(struct pci_func
*bridge
)
1023 u8 subordinateBus
, secondaryBus
;
1025 struct pci_func
*next
;
1027 secondaryBus
= (bridge
->config_space
[0x06] >> 8) & 0xFF;
1028 subordinateBus
= (bridge
->config_space
[0x06] >> 16) & 0xFF;
1030 for (tempBus
= secondaryBus
; tempBus
<= subordinateBus
; tempBus
++) {
1031 next
= cpqhp_slot_list
[tempBus
];
1033 while (!slot_remove(next
))
1034 next
= cpqhp_slot_list
[tempBus
];
1037 next
= cpqhp_slot_list
[bridge
->bus
];
1042 if (next
== bridge
) {
1043 cpqhp_slot_list
[bridge
->bus
] = bridge
->next
;
1047 while ((next
->next
!= bridge
) && (next
->next
!= NULL
))
1050 if (next
->next
!= bridge
)
1052 next
->next
= bridge
->next
;
1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1062 * @device: device to find
1063 * @index: is %0 for first function found, %1 for the second...
1065 * Returns pointer to the node if successful, %NULL otherwise.
1067 struct pci_func
*cpqhp_slot_find(u8 bus
, u8 device
, u8 index
)
1070 struct pci_func
*func
;
1072 func
= cpqhp_slot_list
[bus
];
1074 if ((func
== NULL
) || ((func
->device
== device
) && (index
== 0)))
1077 if (func
->device
== device
)
1080 while (func
->next
!= NULL
) {
1083 if (func
->device
== device
)
1094 /* DJZ: I don't think is_bridge will work as is.
1096 static int is_bridge(struct pci_func
*func
)
1098 /* Check the header type */
1099 if (((func
->config_space
[0x03] >> 16) & 0xFF) == 0x01)
1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108 * @ctrl: controller to change frequency/mode for.
1109 * @adapter_speed: the speed of the adapter we want to match.
1110 * @hp_slot: the slot number where the adapter is installed.
1112 * Returns %0 if we successfully change frequency and/or mode to match the
1115 static u8
set_controller_speed(struct controller
*ctrl
, u8 adapter_speed
, u8 hp_slot
)
1118 struct pci_bus
*bus
= ctrl
->pci_bus
;
1120 u8 slot_power
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1122 u32 leds
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
1124 if (bus
->cur_bus_speed
== adapter_speed
)
1127 /* We don't allow freq/mode changes if we find another adapter running
1128 * in another slot on this controller
1130 for (slot
= ctrl
->slot
; slot
; slot
= slot
->next
) {
1131 if (slot
->device
== (hp_slot
+ ctrl
->slot_device_offset
))
1133 if (get_presence_status(ctrl
, slot
) == 0)
1135 /* If another adapter is running on the same segment but at a
1136 * lower speed/mode, we allow the new adapter to function at
1137 * this rate if supported
1139 if (bus
->cur_bus_speed
< adapter_speed
)
1145 /* If the controller doesn't support freq/mode changes and the
1146 * controller is running at a higher mode, we bail
1148 if ((bus
->cur_bus_speed
> adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1151 /* But we allow the adapter to run at a lower rate if possible */
1152 if ((bus
->cur_bus_speed
< adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1155 /* We try to set the max speed supported by both the adapter and
1158 if (bus
->max_bus_speed
< adapter_speed
) {
1159 if (bus
->cur_bus_speed
== bus
->max_bus_speed
)
1161 adapter_speed
= bus
->max_bus_speed
;
1164 writel(0x0L
, ctrl
->hpc_reg
+ LED_CONTROL
);
1165 writeb(0x00, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1168 wait_for_ctrl_irq(ctrl
);
1170 if (adapter_speed
!= PCI_SPEED_133MHz_PCIX
)
1174 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1176 reg16
= readw(ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1178 switch (adapter_speed
) {
1179 case(PCI_SPEED_133MHz_PCIX
):
1183 case(PCI_SPEED_100MHz_PCIX
):
1187 case(PCI_SPEED_66MHz_PCIX
):
1191 case(PCI_SPEED_66MHz
):
1195 default: /* 33MHz PCI 2.2 */
1201 writew(reg16
, ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1205 /* Reenable interrupts */
1206 writel(0, ctrl
->hpc_reg
+ INT_MASK
);
1208 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1210 /* Restart state machine */
1212 pci_read_config_byte(ctrl
->pci_dev
, 0x43, ®
);
1213 pci_write_config_byte(ctrl
->pci_dev
, 0x43, reg
);
1215 /* Only if mode change...*/
1216 if (((bus
->cur_bus_speed
== PCI_SPEED_66MHz
) && (adapter_speed
== PCI_SPEED_66MHz_PCIX
)) ||
1217 ((bus
->cur_bus_speed
== PCI_SPEED_66MHz_PCIX
) && (adapter_speed
== PCI_SPEED_66MHz
)))
1220 wait_for_ctrl_irq(ctrl
);
1223 /* Restore LED/Slot state */
1224 writel(leds
, ctrl
->hpc_reg
+ LED_CONTROL
);
1225 writeb(slot_power
, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1228 wait_for_ctrl_irq(ctrl
);
1230 bus
->cur_bus_speed
= adapter_speed
;
1231 slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1233 info("Successfully changed frequency/mode for adapter in slot %d\n",
1238 /* the following routines constitute the bulk of the
1239 * hotplug controller logic
1244 * board_replaced - Called after a board has been replaced in the system.
1245 * @func: PCI device/function information
1246 * @ctrl: hotplug controller
1248 * This is only used if we don't have resources for hot add.
1249 * Turns power on for the board.
1250 * Checks to see if board is the same.
1251 * If board is same, reconfigures it.
1252 * If board isn't same, turns it back off.
1254 static u32
board_replaced(struct pci_func
*func
, struct controller
*ctrl
)
1256 struct pci_bus
*bus
= ctrl
->pci_bus
;
1262 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1265 * The switch is open.
1267 if (readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) & (0x01L
<< hp_slot
))
1268 rc
= INTERLOCK_OPEN
;
1270 * The board is already on
1272 else if (is_slot_enabled(ctrl
, hp_slot
))
1273 rc
= CARD_FUNCTIONING
;
1275 mutex_lock(&ctrl
->crit_sect
);
1277 /* turn on board without attaching to the bus */
1278 enable_slot_power(ctrl
, hp_slot
);
1282 /* Wait for SOBS to be unset */
1283 wait_for_ctrl_irq(ctrl
);
1285 /* Change bits in slot power register to force another shift out
1286 * NOTE: this is to work around the timer bug */
1287 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1288 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1289 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1293 /* Wait for SOBS to be unset */
1294 wait_for_ctrl_irq(ctrl
);
1296 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1297 if (bus
->cur_bus_speed
!= adapter_speed
)
1298 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1299 rc
= WRONG_BUS_FREQUENCY
;
1301 /* turn off board without attaching to the bus */
1302 disable_slot_power(ctrl
, hp_slot
);
1306 /* Wait for SOBS to be unset */
1307 wait_for_ctrl_irq(ctrl
);
1309 mutex_unlock(&ctrl
->crit_sect
);
1314 mutex_lock(&ctrl
->crit_sect
);
1316 slot_enable(ctrl
, hp_slot
);
1317 green_LED_blink(ctrl
, hp_slot
);
1319 amber_LED_off(ctrl
, hp_slot
);
1323 /* Wait for SOBS to be unset */
1324 wait_for_ctrl_irq(ctrl
);
1326 mutex_unlock(&ctrl
->crit_sect
);
1328 /* Wait for ~1 second because of hot plug spec */
1331 /* Check for a power fault */
1332 if (func
->status
== 0xFF) {
1333 /* power fault occurred, but it was benign */
1337 rc
= cpqhp_valid_replace(ctrl
, func
);
1340 /* It must be the same board */
1342 rc
= cpqhp_configure_board(ctrl
, func
);
1344 /* If configuration fails, turn it off
1345 * Get slot won't work for devices behind
1346 * bridges, but in this case it will always be
1347 * called for the "base" bus/dev/func of an
1351 mutex_lock(&ctrl
->crit_sect
);
1353 amber_LED_on(ctrl
, hp_slot
);
1354 green_LED_off(ctrl
, hp_slot
);
1355 slot_disable(ctrl
, hp_slot
);
1359 /* Wait for SOBS to be unset */
1360 wait_for_ctrl_irq(ctrl
);
1362 mutex_unlock(&ctrl
->crit_sect
);
1370 /* Something is wrong
1372 * Get slot won't work for devices behind bridges, but
1373 * in this case it will always be called for the "base"
1374 * bus/dev/func of an adapter.
1377 mutex_lock(&ctrl
->crit_sect
);
1379 amber_LED_on(ctrl
, hp_slot
);
1380 green_LED_off(ctrl
, hp_slot
);
1381 slot_disable(ctrl
, hp_slot
);
1385 /* Wait for SOBS to be unset */
1386 wait_for_ctrl_irq(ctrl
);
1388 mutex_unlock(&ctrl
->crit_sect
);
1398 * board_added - Called after a board has been added to the system.
1399 * @func: PCI device/function info
1400 * @ctrl: hotplug controller
1402 * Turns power on for the board.
1405 static u32
board_added(struct pci_func
*func
, struct controller
*ctrl
)
1411 u32 temp_register
= 0xFFFFFFFF;
1413 struct pci_func
*new_slot
= NULL
;
1414 struct pci_bus
*bus
= ctrl
->pci_bus
;
1415 struct slot
*p_slot
;
1416 struct resource_lists res_lists
;
1418 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1419 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1420 __func__
, func
->device
, ctrl
->slot_device_offset
, hp_slot
);
1422 mutex_lock(&ctrl
->crit_sect
);
1424 /* turn on board without attaching to the bus */
1425 enable_slot_power(ctrl
, hp_slot
);
1429 /* Wait for SOBS to be unset */
1430 wait_for_ctrl_irq(ctrl
);
1432 /* Change bits in slot power register to force another shift out
1433 * NOTE: this is to work around the timer bug
1435 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1436 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1437 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1441 /* Wait for SOBS to be unset */
1442 wait_for_ctrl_irq(ctrl
);
1444 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1445 if (bus
->cur_bus_speed
!= adapter_speed
)
1446 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1447 rc
= WRONG_BUS_FREQUENCY
;
1449 /* turn off board without attaching to the bus */
1450 disable_slot_power(ctrl
, hp_slot
);
1454 /* Wait for SOBS to be unset */
1455 wait_for_ctrl_irq(ctrl
);
1457 mutex_unlock(&ctrl
->crit_sect
);
1462 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1464 /* turn on board and blink green LED */
1466 dbg("%s: before down\n", __func__
);
1467 mutex_lock(&ctrl
->crit_sect
);
1468 dbg("%s: after down\n", __func__
);
1470 dbg("%s: before slot_enable\n", __func__
);
1471 slot_enable(ctrl
, hp_slot
);
1473 dbg("%s: before green_LED_blink\n", __func__
);
1474 green_LED_blink(ctrl
, hp_slot
);
1476 dbg("%s: before amber_LED_blink\n", __func__
);
1477 amber_LED_off(ctrl
, hp_slot
);
1479 dbg("%s: before set_SOGO\n", __func__
);
1482 /* Wait for SOBS to be unset */
1483 dbg("%s: before wait_for_ctrl_irq\n", __func__
);
1484 wait_for_ctrl_irq(ctrl
);
1485 dbg("%s: after wait_for_ctrl_irq\n", __func__
);
1487 dbg("%s: before up\n", __func__
);
1488 mutex_unlock(&ctrl
->crit_sect
);
1489 dbg("%s: after up\n", __func__
);
1491 /* Wait for ~1 second because of hot plug spec */
1492 dbg("%s: before long_delay\n", __func__
);
1494 dbg("%s: after long_delay\n", __func__
);
1496 dbg("%s: func status = %x\n", __func__
, func
->status
);
1497 /* Check for a power fault */
1498 if (func
->status
== 0xFF) {
1499 /* power fault occurred, but it was benign */
1500 temp_register
= 0xFFFFFFFF;
1501 dbg("%s: temp register set to %x by power fault\n", __func__
, temp_register
);
1505 /* Get vendor/device ID u32 */
1506 ctrl
->pci_bus
->number
= func
->bus
;
1507 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), PCI_VENDOR_ID
, &temp_register
);
1508 dbg("%s: pci_read_config_dword returns %d\n", __func__
, rc
);
1509 dbg("%s: temp_register is %x\n", __func__
, temp_register
);
1512 /* Something's wrong here */
1513 temp_register
= 0xFFFFFFFF;
1514 dbg("%s: temp register set to %x by error\n", __func__
, temp_register
);
1516 /* Preset return code. It will be changed later if things go okay. */
1517 rc
= NO_ADAPTER_PRESENT
;
1520 /* All F's is an empty slot or an invalid board */
1521 if (temp_register
!= 0xFFFFFFFF) {
1522 res_lists
.io_head
= ctrl
->io_head
;
1523 res_lists
.mem_head
= ctrl
->mem_head
;
1524 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1525 res_lists
.bus_head
= ctrl
->bus_head
;
1526 res_lists
.irqs
= NULL
;
1528 rc
= configure_new_device(ctrl
, func
, 0, &res_lists
);
1530 dbg("%s: back from configure_new_device\n", __func__
);
1531 ctrl
->io_head
= res_lists
.io_head
;
1532 ctrl
->mem_head
= res_lists
.mem_head
;
1533 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1534 ctrl
->bus_head
= res_lists
.bus_head
;
1536 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1537 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1538 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1539 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1542 mutex_lock(&ctrl
->crit_sect
);
1544 amber_LED_on(ctrl
, hp_slot
);
1545 green_LED_off(ctrl
, hp_slot
);
1546 slot_disable(ctrl
, hp_slot
);
1550 /* Wait for SOBS to be unset */
1551 wait_for_ctrl_irq(ctrl
);
1553 mutex_unlock(&ctrl
->crit_sect
);
1556 cpqhp_save_slot_config(ctrl
, func
);
1561 func
->switch_save
= 0x10;
1562 func
->is_a_board
= 0x01;
1564 /* next, we will instantiate the linux pci_dev structures (with
1565 * appropriate driver notification, if already present) */
1566 dbg("%s: configure linux pci_dev structure\n", __func__
);
1569 new_slot
= cpqhp_slot_find(ctrl
->bus
, func
->device
, index
++);
1570 if (new_slot
&& !new_slot
->pci_dev
)
1571 cpqhp_configure_device(ctrl
, new_slot
);
1574 mutex_lock(&ctrl
->crit_sect
);
1576 green_LED_on(ctrl
, hp_slot
);
1580 /* Wait for SOBS to be unset */
1581 wait_for_ctrl_irq(ctrl
);
1583 mutex_unlock(&ctrl
->crit_sect
);
1585 mutex_lock(&ctrl
->crit_sect
);
1587 amber_LED_on(ctrl
, hp_slot
);
1588 green_LED_off(ctrl
, hp_slot
);
1589 slot_disable(ctrl
, hp_slot
);
1593 /* Wait for SOBS to be unset */
1594 wait_for_ctrl_irq(ctrl
);
1596 mutex_unlock(&ctrl
->crit_sect
);
1605 * remove_board - Turns off slot and LEDs
1606 * @func: PCI device/function info
1607 * @replace_flag: whether replacing or adding a new device
1608 * @ctrl: target controller
1610 static u32
remove_board(struct pci_func
*func
, u32 replace_flag
, struct controller
*ctrl
)
1618 struct resource_lists res_lists
;
1619 struct pci_func
*temp_func
;
1621 if (cpqhp_unconfigure_device(func
))
1624 device
= func
->device
;
1626 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1627 dbg("In %s, hp_slot = %d\n", __func__
, hp_slot
);
1629 /* When we get here, it is safe to change base address registers.
1630 * We will attempt to save the base address register lengths */
1631 if (replace_flag
|| !ctrl
->add_support
)
1632 rc
= cpqhp_save_base_addr_length(ctrl
, func
);
1633 else if (!func
->bus_head
&& !func
->mem_head
&&
1634 !func
->p_mem_head
&& !func
->io_head
) {
1635 /* Here we check to see if we've saved any of the board's
1636 * resources already. If so, we'll skip the attempt to
1637 * determine what's being used. */
1639 temp_func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1641 if (temp_func
->bus_head
|| temp_func
->mem_head
1642 || temp_func
->p_mem_head
|| temp_func
->io_head
) {
1646 temp_func
= cpqhp_slot_find(temp_func
->bus
, temp_func
->device
, index
++);
1650 rc
= cpqhp_save_used_resources(ctrl
, func
);
1652 /* Change status to shutdown */
1653 if (func
->is_a_board
)
1654 func
->status
= 0x01;
1655 func
->configured
= 0;
1657 mutex_lock(&ctrl
->crit_sect
);
1659 green_LED_off(ctrl
, hp_slot
);
1660 slot_disable(ctrl
, hp_slot
);
1664 /* turn off SERR for slot */
1665 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_SERR
);
1666 temp_byte
&= ~(0x01 << hp_slot
);
1667 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_SERR
);
1669 /* Wait for SOBS to be unset */
1670 wait_for_ctrl_irq(ctrl
);
1672 mutex_unlock(&ctrl
->crit_sect
);
1674 if (!replace_flag
&& ctrl
->add_support
) {
1676 res_lists
.io_head
= ctrl
->io_head
;
1677 res_lists
.mem_head
= ctrl
->mem_head
;
1678 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1679 res_lists
.bus_head
= ctrl
->bus_head
;
1681 cpqhp_return_board_resources(func
, &res_lists
);
1683 ctrl
->io_head
= res_lists
.io_head
;
1684 ctrl
->mem_head
= res_lists
.mem_head
;
1685 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1686 ctrl
->bus_head
= res_lists
.bus_head
;
1688 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1689 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1690 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1691 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1693 if (is_bridge(func
)) {
1694 bridge_slot_remove(func
);
1698 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
1701 /* Setup slot structure with entry for empty slot */
1702 func
= cpqhp_slot_create(ctrl
->bus
);
1707 func
->bus
= ctrl
->bus
;
1708 func
->device
= device
;
1710 func
->configured
= 0;
1711 func
->switch_save
= 0x10;
1712 func
->is_a_board
= 0;
1713 func
->p_task_event
= NULL
;
1719 static void pushbutton_helper_thread(struct timer_list
*t
)
1721 pushbutton_pending
= t
;
1723 wake_up_process(cpqhp_event_thread
);
1727 /* this is the main worker thread */
1728 static int event_thread(void *data
)
1730 struct controller
*ctrl
;
1733 dbg("!!!!event_thread sleeping\n");
1734 set_current_state(TASK_INTERRUPTIBLE
);
1737 if (kthread_should_stop())
1740 if (pushbutton_pending
)
1741 cpqhp_pushbutton_thread(pushbutton_pending
);
1743 for (ctrl
= cpqhp_ctrl_list
; ctrl
; ctrl
= ctrl
->next
)
1744 interrupt_event_handler(ctrl
);
1746 dbg("event_thread signals exit\n");
1750 int cpqhp_event_start_thread(void)
1752 cpqhp_event_thread
= kthread_run(event_thread
, NULL
, "phpd_event");
1753 if (IS_ERR(cpqhp_event_thread
)) {
1754 err("Can't start up our event thread\n");
1755 return PTR_ERR(cpqhp_event_thread
);
1762 void cpqhp_event_stop_thread(void)
1764 kthread_stop(cpqhp_event_thread
);
1768 static void interrupt_event_handler(struct controller
*ctrl
)
1772 struct pci_func
*func
;
1774 struct slot
*p_slot
;
1779 for (loop
= 0; loop
< 10; loop
++) {
1780 /* dbg("loop %d\n", loop); */
1781 if (ctrl
->event_queue
[loop
].event_type
!= 0) {
1782 hp_slot
= ctrl
->event_queue
[loop
].hp_slot
;
1784 func
= cpqhp_slot_find(ctrl
->bus
, (hp_slot
+ ctrl
->slot_device_offset
), 0);
1788 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1792 dbg("hp_slot %d, func %p, p_slot %p\n",
1793 hp_slot
, func
, p_slot
);
1795 if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_PRESS
) {
1796 dbg("button pressed\n");
1797 } else if (ctrl
->event_queue
[loop
].event_type
==
1798 INT_BUTTON_CANCEL
) {
1799 dbg("button cancel\n");
1800 del_timer(&p_slot
->task_event
);
1802 mutex_lock(&ctrl
->crit_sect
);
1804 if (p_slot
->state
== BLINKINGOFF_STATE
) {
1806 dbg("turn on green LED\n");
1807 green_LED_on(ctrl
, hp_slot
);
1808 } else if (p_slot
->state
== BLINKINGON_STATE
) {
1810 dbg("turn off green LED\n");
1811 green_LED_off(ctrl
, hp_slot
);
1814 info(msg_button_cancel
, p_slot
->number
);
1816 p_slot
->state
= STATIC_STATE
;
1818 amber_LED_off(ctrl
, hp_slot
);
1822 /* Wait for SOBS to be unset */
1823 wait_for_ctrl_irq(ctrl
);
1825 mutex_unlock(&ctrl
->crit_sect
);
1827 /*** button Released (No action on press...) */
1828 else if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_RELEASE
) {
1829 dbg("button release\n");
1831 if (is_slot_enabled(ctrl
, hp_slot
)) {
1832 dbg("slot is on\n");
1833 p_slot
->state
= BLINKINGOFF_STATE
;
1834 info(msg_button_off
, p_slot
->number
);
1836 dbg("slot is off\n");
1837 p_slot
->state
= BLINKINGON_STATE
;
1838 info(msg_button_on
, p_slot
->number
);
1840 mutex_lock(&ctrl
->crit_sect
);
1842 dbg("blink green LED and turn off amber\n");
1844 amber_LED_off(ctrl
, hp_slot
);
1845 green_LED_blink(ctrl
, hp_slot
);
1849 /* Wait for SOBS to be unset */
1850 wait_for_ctrl_irq(ctrl
);
1852 mutex_unlock(&ctrl
->crit_sect
);
1853 timer_setup(&p_slot
->task_event
,
1854 pushbutton_helper_thread
,
1856 p_slot
->hp_slot
= hp_slot
;
1857 p_slot
->ctrl
= ctrl
;
1858 /* p_slot->physical_slot = physical_slot; */
1859 p_slot
->task_event
.expires
= jiffies
+ 5 * HZ
; /* 5 second delay */
1861 dbg("add_timer p_slot = %p\n", p_slot
);
1862 add_timer(&p_slot
->task_event
);
1864 /***********POWER FAULT */
1865 else if (ctrl
->event_queue
[loop
].event_type
== INT_POWER_FAULT
) {
1866 dbg("power fault\n");
1869 ctrl
->event_queue
[loop
].event_type
= 0;
1873 } /* End of FOR loop */
1879 * cpqhp_pushbutton_thread - handle pushbutton events
1880 * @slot: target slot (struct)
1882 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1883 * Handles all pending events and exits.
1885 void cpqhp_pushbutton_thread(struct timer_list
*t
)
1889 struct pci_func
*func
;
1890 struct slot
*p_slot
= from_timer(p_slot
, t
, task_event
);
1891 struct controller
*ctrl
= (struct controller
*) p_slot
->ctrl
;
1893 pushbutton_pending
= NULL
;
1894 hp_slot
= p_slot
->hp_slot
;
1896 device
= p_slot
->device
;
1898 if (is_slot_enabled(ctrl
, hp_slot
)) {
1899 p_slot
->state
= POWEROFF_STATE
;
1900 /* power Down board */
1901 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1902 dbg("In power_down_board, func = %p, ctrl = %p\n", func
, ctrl
);
1904 dbg("Error! func NULL in %s\n", __func__
);
1908 if (cpqhp_process_SS(ctrl
, func
) != 0) {
1909 amber_LED_on(ctrl
, hp_slot
);
1910 green_LED_on(ctrl
, hp_slot
);
1914 /* Wait for SOBS to be unset */
1915 wait_for_ctrl_irq(ctrl
);
1918 p_slot
->state
= STATIC_STATE
;
1920 p_slot
->state
= POWERON_STATE
;
1923 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1924 dbg("In add_board, func = %p, ctrl = %p\n", func
, ctrl
);
1926 dbg("Error! func NULL in %s\n", __func__
);
1931 if (cpqhp_process_SI(ctrl
, func
) != 0) {
1932 amber_LED_on(ctrl
, hp_slot
);
1933 green_LED_off(ctrl
, hp_slot
);
1937 /* Wait for SOBS to be unset */
1938 wait_for_ctrl_irq(ctrl
);
1942 p_slot
->state
= STATIC_STATE
;
1947 int cpqhp_process_SI(struct controller
*ctrl
, struct pci_func
*func
)
1953 struct slot
*p_slot
;
1954 int physical_slot
= 0;
1958 device
= func
->device
;
1959 hp_slot
= device
- ctrl
->slot_device_offset
;
1960 p_slot
= cpqhp_find_slot(ctrl
, device
);
1962 physical_slot
= p_slot
->number
;
1964 /* Check to see if the interlock is closed */
1965 tempdword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
1967 if (tempdword
& (0x01 << hp_slot
))
1970 if (func
->is_a_board
) {
1971 rc
= board_replaced(func
, ctrl
);
1976 func
= cpqhp_slot_create(ctrl
->bus
);
1980 func
->bus
= ctrl
->bus
;
1981 func
->device
= device
;
1983 func
->configured
= 0;
1984 func
->is_a_board
= 1;
1986 /* We have to save the presence info for these slots */
1987 temp_word
= ctrl
->ctrl_int_comp
>> 16;
1988 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
1989 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
1991 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
1992 func
->switch_save
= 0;
1994 func
->switch_save
= 0x10;
1997 rc
= board_added(func
, ctrl
);
1999 if (is_bridge(func
)) {
2000 bridge_slot_remove(func
);
2004 /* Setup slot structure with entry for empty slot */
2005 func
= cpqhp_slot_create(ctrl
->bus
);
2010 func
->bus
= ctrl
->bus
;
2011 func
->device
= device
;
2013 func
->configured
= 0;
2014 func
->is_a_board
= 0;
2016 /* We have to save the presence info for these slots */
2017 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2018 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2019 func
->presence_save
|=
2020 (temp_word
>> (hp_slot
+ 7)) & 0x02;
2022 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2023 func
->switch_save
= 0;
2025 func
->switch_save
= 0x10;
2031 dbg("%s: rc = %d\n", __func__
, rc
);
2037 int cpqhp_process_SS(struct controller
*ctrl
, struct pci_func
*func
)
2039 u8 device
, class_code
, header_type
, BCR
;
2044 struct slot
*p_slot
;
2045 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
2046 int physical_slot
= 0;
2048 device
= func
->device
;
2049 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2050 p_slot
= cpqhp_find_slot(ctrl
, device
);
2052 physical_slot
= p_slot
->number
;
2054 /* Make sure there are no video controllers here */
2055 while (func
&& !rc
) {
2056 pci_bus
->number
= func
->bus
;
2057 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2059 /* Check the Class Code */
2060 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2064 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2065 /* Display/Video adapter (not supported) */
2066 rc
= REMOVE_NOT_SUPPORTED
;
2068 /* See if it's a bridge */
2069 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
2073 /* If it's a bridge, check the VGA Enable bit */
2074 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2075 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, &BCR
);
2079 /* If the VGA Enable bit is set, remove isn't
2081 if (BCR
& PCI_BRIDGE_CTL_VGA
)
2082 rc
= REMOVE_NOT_SUPPORTED
;
2086 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2089 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
2090 if ((func
!= NULL
) && !rc
) {
2091 /* FIXME: Replace flag should be passed into process_SS */
2092 replace_flag
= !(ctrl
->add_support
);
2093 rc
= remove_board(func
, replace_flag
, ctrl
);
2102 * switch_leds - switch the leds, go from one site to the other.
2103 * @ctrl: controller to use
2104 * @num_of_slots: number of slots to use
2105 * @work_LED: LED control value
2106 * @direction: 1 to start from the left side, 0 to start right.
2108 static void switch_leds(struct controller
*ctrl
, const int num_of_slots
,
2109 u32
*work_LED
, const int direction
)
2113 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2115 *work_LED
= *work_LED
>> 1;
2117 *work_LED
= *work_LED
<< 1;
2118 writel(*work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2122 /* Wait for SOGO interrupt */
2123 wait_for_ctrl_irq(ctrl
);
2125 /* Get ready for next iteration */
2126 long_delay((2*HZ
)/10);
2131 * cpqhp_hardware_test - runs hardware tests
2132 * @ctrl: target controller
2133 * @test_num: the number written to the "test" file in sysfs.
2135 * For hot plug ctrl folks to play with.
2137 int cpqhp_hardware_test(struct controller
*ctrl
, int test_num
)
2144 num_of_slots
= readb(ctrl
->hpc_reg
+ SLOT_MASK
) & 0x0f;
2148 /* Do stuff here! */
2150 /* Do that funky LED thing */
2151 /* so we can restore them later */
2152 save_LED
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
2153 work_LED
= 0x01010101;
2154 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2155 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2156 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2157 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2159 work_LED
= 0x01010000;
2160 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2161 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2162 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2163 work_LED
= 0x00000101;
2164 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2165 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2166 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2168 work_LED
= 0x01010000;
2169 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2170 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2173 /* Wait for SOGO interrupt */
2174 wait_for_ctrl_irq(ctrl
);
2176 /* Get ready for next iteration */
2177 long_delay((3*HZ
)/10);
2178 work_LED
= work_LED
>> 16;
2179 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2183 /* Wait for SOGO interrupt */
2184 wait_for_ctrl_irq(ctrl
);
2186 /* Get ready for next iteration */
2187 long_delay((3*HZ
)/10);
2188 work_LED
= work_LED
<< 16;
2189 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2190 work_LED
= work_LED
<< 1;
2191 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2194 /* put it back the way it was */
2195 writel(save_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2199 /* Wait for SOBS to be unset */
2200 wait_for_ctrl_irq(ctrl
);
2203 /* Do other stuff here! */
2214 * configure_new_device - Configures the PCI header information of one board.
2215 * @ctrl: pointer to controller structure
2216 * @func: pointer to function structure
2217 * @behind_bridge: 1 if this is a recursive call, 0 if not
2218 * @resources: pointer to set of resource lists
2220 * Returns 0 if success.
2222 static u32
configure_new_device(struct controller
*ctrl
, struct pci_func
*func
,
2223 u8 behind_bridge
, struct resource_lists
*resources
)
2225 u8 temp_byte
, function
, max_functions
, stop_it
;
2228 struct pci_func
*new_slot
;
2233 dbg("%s\n", __func__
);
2234 /* Check for Multi-function device */
2235 ctrl
->pci_bus
->number
= func
->bus
;
2236 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), 0x0E, &temp_byte
);
2238 dbg("%s: rc = %d\n", __func__
, rc
);
2242 if (temp_byte
& 0x80) /* Multi-function device */
2250 rc
= configure_new_function(ctrl
, new_slot
, behind_bridge
, resources
);
2253 dbg("configure_new_function failed %d\n", rc
);
2257 new_slot
= cpqhp_slot_find(new_slot
->bus
, new_slot
->device
, index
++);
2260 cpqhp_return_board_resources(new_slot
, resources
);
2270 /* The following loop skips to the next present function
2271 * and creates a board structure */
2273 while ((function
< max_functions
) && (!stop_it
)) {
2274 pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, function
), 0x00, &ID
);
2276 if (ID
== 0xFFFFFFFF) {
2279 /* Setup slot structure. */
2280 new_slot
= cpqhp_slot_create(func
->bus
);
2282 if (new_slot
== NULL
)
2285 new_slot
->bus
= func
->bus
;
2286 new_slot
->device
= func
->device
;
2287 new_slot
->function
= function
;
2288 new_slot
->is_a_board
= 1;
2289 new_slot
->status
= 0;
2295 } while (function
< max_functions
);
2296 dbg("returning from configure_new_device\n");
2303 * Configuration logic that involves the hotplug data structures and
2309 * configure_new_function - Configures the PCI header information of one device
2310 * @ctrl: pointer to controller structure
2311 * @func: pointer to function structure
2312 * @behind_bridge: 1 if this is a recursive call, 0 if not
2313 * @resources: pointer to set of resource lists
2315 * Calls itself recursively for bridged devices.
2316 * Returns 0 if success.
2318 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
2320 struct resource_lists
*resources
)
2335 struct pci_resource
*mem_node
;
2336 struct pci_resource
*p_mem_node
;
2337 struct pci_resource
*io_node
;
2338 struct pci_resource
*bus_node
;
2339 struct pci_resource
*hold_mem_node
;
2340 struct pci_resource
*hold_p_mem_node
;
2341 struct pci_resource
*hold_IO_node
;
2342 struct pci_resource
*hold_bus_node
;
2343 struct irq_mapping irqs
;
2344 struct pci_func
*new_slot
;
2345 struct pci_bus
*pci_bus
;
2346 struct resource_lists temp_resources
;
2348 pci_bus
= ctrl
->pci_bus
;
2349 pci_bus
->number
= func
->bus
;
2350 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2352 /* Check for Bridge */
2353 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &temp_byte
);
2357 if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2358 /* set Primary bus */
2359 dbg("set Primary bus = %d\n", func
->bus
);
2360 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_PRIMARY_BUS
, func
->bus
);
2364 /* find range of buses to use */
2365 dbg("find ranges of buses to use\n");
2366 bus_node
= get_max_resource(&(resources
->bus_head
), 1);
2368 /* If we don't have any buses to allocate, we can't continue */
2372 /* set Secondary bus */
2373 temp_byte
= bus_node
->base
;
2374 dbg("set Secondary bus = %d\n", bus_node
->base
);
2375 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, temp_byte
);
2379 /* set subordinate bus */
2380 temp_byte
= bus_node
->base
+ bus_node
->length
- 1;
2381 dbg("set subordinate bus = %d\n", bus_node
->base
+ bus_node
->length
- 1);
2382 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2386 /* set subordinate Latency Timer and base Latency Timer */
2388 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SEC_LATENCY_TIMER
, temp_byte
);
2391 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_LATENCY_TIMER
, temp_byte
);
2395 /* set Cache Line size */
2397 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_CACHE_LINE_SIZE
, temp_byte
);
2401 /* Setup the IO, memory, and prefetchable windows */
2402 io_node
= get_max_resource(&(resources
->io_head
), 0x1000);
2405 mem_node
= get_max_resource(&(resources
->mem_head
), 0x100000);
2408 p_mem_node
= get_max_resource(&(resources
->p_mem_head
), 0x100000);
2411 dbg("Setup the IO, memory, and prefetchable windows\n");
2413 dbg("(base, len, next) (%x, %x, %p)\n", io_node
->base
,
2414 io_node
->length
, io_node
->next
);
2416 dbg("(base, len, next) (%x, %x, %p)\n", mem_node
->base
,
2417 mem_node
->length
, mem_node
->next
);
2418 dbg("p_mem_node\n");
2419 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node
->base
,
2420 p_mem_node
->length
, p_mem_node
->next
);
2422 /* set up the IRQ info */
2423 if (!resources
->irqs
) {
2424 irqs
.barber_pole
= 0;
2425 irqs
.interrupt
[0] = 0;
2426 irqs
.interrupt
[1] = 0;
2427 irqs
.interrupt
[2] = 0;
2428 irqs
.interrupt
[3] = 0;
2431 irqs
.barber_pole
= resources
->irqs
->barber_pole
;
2432 irqs
.interrupt
[0] = resources
->irqs
->interrupt
[0];
2433 irqs
.interrupt
[1] = resources
->irqs
->interrupt
[1];
2434 irqs
.interrupt
[2] = resources
->irqs
->interrupt
[2];
2435 irqs
.interrupt
[3] = resources
->irqs
->interrupt
[3];
2436 irqs
.valid_INT
= resources
->irqs
->valid_INT
;
2439 /* set up resource lists that are now aligned on top and bottom
2440 * for anything behind the bridge. */
2441 temp_resources
.bus_head
= bus_node
;
2442 temp_resources
.io_head
= io_node
;
2443 temp_resources
.mem_head
= mem_node
;
2444 temp_resources
.p_mem_head
= p_mem_node
;
2445 temp_resources
.irqs
= &irqs
;
2447 /* Make copies of the nodes we are going to pass down so that
2448 * if there is a problem,we can just use these to free resources
2450 hold_bus_node
= kmalloc(sizeof(*hold_bus_node
), GFP_KERNEL
);
2451 hold_IO_node
= kmalloc(sizeof(*hold_IO_node
), GFP_KERNEL
);
2452 hold_mem_node
= kmalloc(sizeof(*hold_mem_node
), GFP_KERNEL
);
2453 hold_p_mem_node
= kmalloc(sizeof(*hold_p_mem_node
), GFP_KERNEL
);
2455 if (!hold_bus_node
|| !hold_IO_node
|| !hold_mem_node
|| !hold_p_mem_node
) {
2456 kfree(hold_bus_node
);
2457 kfree(hold_IO_node
);
2458 kfree(hold_mem_node
);
2459 kfree(hold_p_mem_node
);
2464 memcpy(hold_bus_node
, bus_node
, sizeof(struct pci_resource
));
2466 bus_node
->base
+= 1;
2467 bus_node
->length
-= 1;
2468 bus_node
->next
= NULL
;
2470 /* If we have IO resources copy them and fill in the bridge's
2471 * IO range registers */
2472 memcpy(hold_IO_node
, io_node
, sizeof(struct pci_resource
));
2473 io_node
->next
= NULL
;
2475 /* set IO base and Limit registers */
2476 temp_byte
= io_node
->base
>> 8;
2477 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2479 temp_byte
= (io_node
->base
+ io_node
->length
- 1) >> 8;
2480 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2482 /* Copy the memory resources and fill in the bridge's memory
2485 memcpy(hold_mem_node
, mem_node
, sizeof(struct pci_resource
));
2486 mem_node
->next
= NULL
;
2488 /* set Mem base and Limit registers */
2489 temp_word
= mem_node
->base
>> 16;
2490 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2492 temp_word
= (mem_node
->base
+ mem_node
->length
- 1) >> 16;
2493 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2495 memcpy(hold_p_mem_node
, p_mem_node
, sizeof(struct pci_resource
));
2496 p_mem_node
->next
= NULL
;
2498 /* set Pre Mem base and Limit registers */
2499 temp_word
= p_mem_node
->base
>> 16;
2500 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2502 temp_word
= (p_mem_node
->base
+ p_mem_node
->length
- 1) >> 16;
2503 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2505 /* Adjust this to compensate for extra adjustment in first loop
2511 /* Here we actually find the devices and configure them */
2512 for (device
= 0; (device
<= 0x1F) && !rc
; device
++) {
2513 irqs
.barber_pole
= (irqs
.barber_pole
+ 1) & 0x03;
2516 pci_bus
->number
= hold_bus_node
->base
;
2517 pci_bus_read_config_dword(pci_bus
, PCI_DEVFN(device
, 0), 0x00, &ID
);
2518 pci_bus
->number
= func
->bus
;
2520 if (ID
!= 0xFFFFFFFF) { /* device present */
2521 /* Setup slot structure. */
2522 new_slot
= cpqhp_slot_create(hold_bus_node
->base
);
2524 if (new_slot
== NULL
) {
2529 new_slot
->bus
= hold_bus_node
->base
;
2530 new_slot
->device
= device
;
2531 new_slot
->function
= 0;
2532 new_slot
->is_a_board
= 1;
2533 new_slot
->status
= 0;
2535 rc
= configure_new_device(ctrl
, new_slot
, 1, &temp_resources
);
2536 dbg("configure_new_device rc=0x%x\n", rc
);
2537 } /* End of IF (device in slot?) */
2538 } /* End of FOR loop */
2542 /* save the interrupt routing information */
2543 if (resources
->irqs
) {
2544 resources
->irqs
->interrupt
[0] = irqs
.interrupt
[0];
2545 resources
->irqs
->interrupt
[1] = irqs
.interrupt
[1];
2546 resources
->irqs
->interrupt
[2] = irqs
.interrupt
[2];
2547 resources
->irqs
->interrupt
[3] = irqs
.interrupt
[3];
2548 resources
->irqs
->valid_INT
= irqs
.valid_INT
;
2549 } else if (!behind_bridge
) {
2550 /* We need to hook up the interrupts here */
2551 for (cloop
= 0; cloop
< 4; cloop
++) {
2552 if (irqs
.valid_INT
& (0x01 << cloop
)) {
2553 rc
= cpqhp_set_irq(func
->bus
, func
->device
,
2554 cloop
+ 1, irqs
.interrupt
[cloop
]);
2558 } /* end of for loop */
2560 /* Return unused bus resources
2561 * First use the temporary node to store information for
2563 if (bus_node
&& temp_resources
.bus_head
) {
2564 hold_bus_node
->length
= bus_node
->base
- hold_bus_node
->base
;
2566 hold_bus_node
->next
= func
->bus_head
;
2567 func
->bus_head
= hold_bus_node
;
2569 temp_byte
= temp_resources
.bus_head
->base
- 1;
2571 /* set subordinate bus */
2572 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2574 if (temp_resources
.bus_head
->length
== 0) {
2575 kfree(temp_resources
.bus_head
);
2576 temp_resources
.bus_head
= NULL
;
2578 return_resource(&(resources
->bus_head
), temp_resources
.bus_head
);
2582 /* If we have IO space available and there is some left,
2583 * return the unused portion */
2584 if (hold_IO_node
&& temp_resources
.io_head
) {
2585 io_node
= do_pre_bridge_resource_split(&(temp_resources
.io_head
),
2586 &hold_IO_node
, 0x1000);
2588 /* Check if we were able to split something off */
2590 hold_IO_node
->base
= io_node
->base
+ io_node
->length
;
2592 temp_byte
= (hold_IO_node
->base
) >> 8;
2593 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2595 return_resource(&(resources
->io_head
), io_node
);
2598 io_node
= do_bridge_resource_split(&(temp_resources
.io_head
), 0x1000);
2600 /* Check if we were able to split something off */
2602 /* First use the temporary node to store
2603 * information for the board */
2604 hold_IO_node
->length
= io_node
->base
- hold_IO_node
->base
;
2606 /* If we used any, add it to the board's list */
2607 if (hold_IO_node
->length
) {
2608 hold_IO_node
->next
= func
->io_head
;
2609 func
->io_head
= hold_IO_node
;
2611 temp_byte
= (io_node
->base
- 1) >> 8;
2612 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2614 return_resource(&(resources
->io_head
), io_node
);
2616 /* it doesn't need any IO */
2618 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_word
);
2620 return_resource(&(resources
->io_head
), io_node
);
2621 kfree(hold_IO_node
);
2624 /* it used most of the range */
2625 hold_IO_node
->next
= func
->io_head
;
2626 func
->io_head
= hold_IO_node
;
2628 } else if (hold_IO_node
) {
2629 /* it used the whole range */
2630 hold_IO_node
->next
= func
->io_head
;
2631 func
->io_head
= hold_IO_node
;
2633 /* If we have memory space available and there is some left,
2634 * return the unused portion */
2635 if (hold_mem_node
&& temp_resources
.mem_head
) {
2636 mem_node
= do_pre_bridge_resource_split(&(temp_resources
. mem_head
),
2637 &hold_mem_node
, 0x100000);
2639 /* Check if we were able to split something off */
2641 hold_mem_node
->base
= mem_node
->base
+ mem_node
->length
;
2643 temp_word
= (hold_mem_node
->base
) >> 16;
2644 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2646 return_resource(&(resources
->mem_head
), mem_node
);
2649 mem_node
= do_bridge_resource_split(&(temp_resources
.mem_head
), 0x100000);
2651 /* Check if we were able to split something off */
2653 /* First use the temporary node to store
2654 * information for the board */
2655 hold_mem_node
->length
= mem_node
->base
- hold_mem_node
->base
;
2657 if (hold_mem_node
->length
) {
2658 hold_mem_node
->next
= func
->mem_head
;
2659 func
->mem_head
= hold_mem_node
;
2661 /* configure end address */
2662 temp_word
= (mem_node
->base
- 1) >> 16;
2663 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2665 /* Return unused resources to the pool */
2666 return_resource(&(resources
->mem_head
), mem_node
);
2668 /* it doesn't need any Mem */
2670 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2672 return_resource(&(resources
->mem_head
), mem_node
);
2673 kfree(hold_mem_node
);
2676 /* it used most of the range */
2677 hold_mem_node
->next
= func
->mem_head
;
2678 func
->mem_head
= hold_mem_node
;
2680 } else if (hold_mem_node
) {
2681 /* it used the whole range */
2682 hold_mem_node
->next
= func
->mem_head
;
2683 func
->mem_head
= hold_mem_node
;
2685 /* If we have prefetchable memory space available and there
2686 * is some left at the end, return the unused portion */
2687 if (temp_resources
.p_mem_head
) {
2688 p_mem_node
= do_pre_bridge_resource_split(&(temp_resources
.p_mem_head
),
2689 &hold_p_mem_node
, 0x100000);
2691 /* Check if we were able to split something off */
2693 hold_p_mem_node
->base
= p_mem_node
->base
+ p_mem_node
->length
;
2695 temp_word
= (hold_p_mem_node
->base
) >> 16;
2696 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2698 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2701 p_mem_node
= do_bridge_resource_split(&(temp_resources
.p_mem_head
), 0x100000);
2703 /* Check if we were able to split something off */
2705 /* First use the temporary node to store
2706 * information for the board */
2707 hold_p_mem_node
->length
= p_mem_node
->base
- hold_p_mem_node
->base
;
2709 /* If we used any, add it to the board's list */
2710 if (hold_p_mem_node
->length
) {
2711 hold_p_mem_node
->next
= func
->p_mem_head
;
2712 func
->p_mem_head
= hold_p_mem_node
;
2714 temp_word
= (p_mem_node
->base
- 1) >> 16;
2715 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2717 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2719 /* it doesn't need any PMem */
2721 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2723 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2724 kfree(hold_p_mem_node
);
2727 /* it used the most of the range */
2728 hold_p_mem_node
->next
= func
->p_mem_head
;
2729 func
->p_mem_head
= hold_p_mem_node
;
2731 } else if (hold_p_mem_node
) {
2732 /* it used the whole range */
2733 hold_p_mem_node
->next
= func
->p_mem_head
;
2734 func
->p_mem_head
= hold_p_mem_node
;
2736 /* We should be configuring an IRQ and the bridge's base address
2737 * registers if it needs them. Although we have never seen such
2741 command
= 0x0157; /* = PCI_COMMAND_IO |
2742 * PCI_COMMAND_MEMORY |
2743 * PCI_COMMAND_MASTER |
2744 * PCI_COMMAND_INVALIDATE |
2745 * PCI_COMMAND_PARITY |
2746 * PCI_COMMAND_SERR */
2747 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_COMMAND
, command
);
2749 /* set Bridge Control Register */
2750 command
= 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2751 * PCI_BRIDGE_CTL_SERR |
2752 * PCI_BRIDGE_CTL_NO_ISA */
2753 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
2754 } else if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
2755 /* Standard device */
2756 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2758 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2759 /* Display (video) adapter (not supported) */
2760 return DEVICE_TYPE_NOT_SUPPORTED
;
2762 /* Figure out IO and memory needs */
2763 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
2764 temp_register
= 0xFFFFFFFF;
2766 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus
->number
, devfn
, cloop
);
2767 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
2769 rc
= pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &temp_register
);
2770 dbg("CND: base = 0x%x\n", temp_register
);
2772 if (temp_register
) { /* If this register is implemented */
2773 if ((temp_register
& 0x03L
) == 0x01) {
2776 /* set base = amount of IO space */
2777 base
= temp_register
& 0xFFFFFFFC;
2780 dbg("CND: length = 0x%x\n", base
);
2781 io_node
= get_io_resource(&(resources
->io_head
), base
);
2784 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2785 io_node
->base
, io_node
->length
, io_node
->next
);
2786 dbg("func (%p) io_head (%p)\n", func
, func
->io_head
);
2788 /* allocate the resource to the board */
2789 base
= io_node
->base
;
2790 io_node
->next
= func
->io_head
;
2791 func
->io_head
= io_node
;
2792 } else if ((temp_register
& 0x0BL
) == 0x08) {
2793 /* Map prefetchable memory */
2794 base
= temp_register
& 0xFFFFFFF0;
2797 dbg("CND: length = 0x%x\n", base
);
2798 p_mem_node
= get_resource(&(resources
->p_mem_head
), base
);
2800 /* allocate the resource to the board */
2802 base
= p_mem_node
->base
;
2804 p_mem_node
->next
= func
->p_mem_head
;
2805 func
->p_mem_head
= p_mem_node
;
2808 } else if ((temp_register
& 0x0BL
) == 0x00) {
2810 base
= temp_register
& 0xFFFFFFF0;
2813 dbg("CND: length = 0x%x\n", base
);
2814 mem_node
= get_resource(&(resources
->mem_head
), base
);
2816 /* allocate the resource to the board */
2818 base
= mem_node
->base
;
2820 mem_node
->next
= func
->mem_head
;
2821 func
->mem_head
= mem_node
;
2825 /* Reserved bits or requesting space below 1M */
2826 return NOT_ENOUGH_RESOURCES
;
2829 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2831 /* Check for 64-bit base */
2832 if ((temp_register
& 0x07L
) == 0x04) {
2835 /* Upper 32 bits of address always zero
2836 * on today's systems */
2837 /* FIXME this is probably not true on
2838 * Alpha and ia64??? */
2840 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2843 } /* End of base register loop */
2844 if (cpqhp_legacy_mode
) {
2845 /* Figure out which interrupt pin this function uses */
2846 rc
= pci_bus_read_config_byte(pci_bus
, devfn
,
2847 PCI_INTERRUPT_PIN
, &temp_byte
);
2849 /* If this function needs an interrupt and we are behind
2850 * a bridge and the pin is tied to something that's
2851 * already mapped, set this one the same */
2852 if (temp_byte
&& resources
->irqs
&&
2853 (resources
->irqs
->valid_INT
&
2854 (0x01 << ((temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03)))) {
2855 /* We have to share with something already set up */
2856 IRQ
= resources
->irqs
->interrupt
[(temp_byte
+
2857 resources
->irqs
->barber_pole
- 1) & 0x03];
2859 /* Program IRQ based on card type */
2860 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2862 if (class_code
== PCI_BASE_CLASS_STORAGE
)
2863 IRQ
= cpqhp_disk_irq
;
2865 IRQ
= cpqhp_nic_irq
;
2869 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_INTERRUPT_LINE
, IRQ
);
2872 if (!behind_bridge
) {
2873 rc
= cpqhp_set_irq(func
->bus
, func
->device
, temp_byte
, IRQ
);
2877 /* TBD - this code may also belong in the other clause
2878 * of this If statement */
2879 resources
->irqs
->interrupt
[(temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03] = IRQ
;
2880 resources
->irqs
->valid_INT
|= 0x01 << (temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03;
2885 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2886 PCI_LATENCY_TIMER
, temp_byte
);
2888 /* Cache Line size */
2890 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2891 PCI_CACHE_LINE_SIZE
, temp_byte
);
2893 /* disable ROM base Address */
2895 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
2896 PCI_ROM_ADDRESS
, temp_dword
);
2899 temp_word
= 0x0157; /* = PCI_COMMAND_IO |
2900 * PCI_COMMAND_MEMORY |
2901 * PCI_COMMAND_MASTER |
2902 * PCI_COMMAND_INVALIDATE |
2903 * PCI_COMMAND_PARITY |
2904 * PCI_COMMAND_SERR */
2905 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
2906 PCI_COMMAND
, temp_word
);
2907 } else { /* End of Not-A-Bridge else */
2908 /* It's some strange type of PCI adapter (Cardbus?) */
2909 return DEVICE_TYPE_NOT_SUPPORTED
;
2912 func
->configured
= 1;
2916 cpqhp_destroy_resource_list(&temp_resources
);
2918 return_resource(&(resources
->bus_head
), hold_bus_node
);
2919 return_resource(&(resources
->io_head
), hold_IO_node
);
2920 return_resource(&(resources
->mem_head
), hold_mem_node
);
2921 return_resource(&(resources
->p_mem_head
), hold_p_mem_node
);