treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / pci / pci.c
blob3c30e72e79ecdb678ddf36e6c5c2b17f4916c098
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
39 DEFINE_MUTEX(pci_slot_mutex);
41 const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
44 EXPORT_SYMBOL_GPL(pci_power_names);
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
69 unsigned int delay = dev->d3_delay;
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
74 if (delay)
75 msleep(delay);
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
82 #define DEFAULT_CARDBUS_IO_SIZE (256)
83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
88 #define DEFAULT_HOTPLUG_IO_SIZE (256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
101 #define DEFAULT_HOTPLUG_BUS_SIZE 1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
119 unsigned int pcibios_max_latency = 255;
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
130 bool pci_ats_disabled(void)
132 return pcie_ats_disabled;
135 /* Disable bridge_d3 for all PCIe ports */
136 static bool pci_bridge_d3_disable;
137 /* Force bridge_d3 for all PCIe ports */
138 static bool pci_bridge_d3_force;
140 static int __init pcie_port_pm_setup(char *str)
142 if (!strcmp(str, "off"))
143 pci_bridge_d3_disable = true;
144 else if (!strcmp(str, "force"))
145 pci_bridge_d3_force = true;
146 return 1;
148 __setup("pcie_port_pm=", pcie_port_pm_setup);
150 /* Time to wait after a reset for device to become responsive */
151 #define PCIE_RESET_READY_POLL_MS 60000
154 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
155 * @bus: pointer to PCI bus structure to search
157 * Given a PCI bus, returns the highest PCI bus number present in the set
158 * including the given PCI bus and its list of child PCI buses.
160 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162 struct pci_bus *tmp;
163 unsigned char max, n;
165 max = bus->busn_res.end;
166 list_for_each_entry(tmp, &bus->children, node) {
167 n = pci_bus_max_busnr(tmp);
168 if (n > max)
169 max = n;
171 return max;
173 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175 #ifdef CONFIG_HAS_IOMEM
176 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
178 struct resource *res = &pdev->resource[bar];
181 * Make sure the BAR is actually a memory resource, not an IO resource
183 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
184 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
185 return NULL;
187 return ioremap(res->start, resource_size(res));
189 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
191 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
194 * Make sure the BAR is actually a memory resource, not an IO resource
196 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
197 WARN_ON(1);
198 return NULL;
200 return ioremap_wc(pci_resource_start(pdev, bar),
201 pci_resource_len(pdev, bar));
203 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
204 #endif
207 * pci_dev_str_match_path - test if a path string matches a device
208 * @dev: the PCI device to test
209 * @path: string to match the device against
210 * @endptr: pointer to the string after the match
212 * Test if a string (typically from a kernel parameter) formatted as a
213 * path of device/function addresses matches a PCI device. The string must
214 * be of the form:
216 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
218 * A path for a device can be obtained using 'lspci -t'. Using a path
219 * is more robust against bus renumbering than using only a single bus,
220 * device and function address.
222 * Returns 1 if the string matches the device, 0 if it does not and
223 * a negative error code if it fails to parse the string.
225 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
226 const char **endptr)
228 int ret;
229 int seg, bus, slot, func;
230 char *wpath, *p;
231 char end;
233 *endptr = strchrnul(path, ';');
235 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
236 if (!wpath)
237 return -ENOMEM;
239 while (1) {
240 p = strrchr(wpath, '/');
241 if (!p)
242 break;
243 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
244 if (ret != 2) {
245 ret = -EINVAL;
246 goto free_and_exit;
249 if (dev->devfn != PCI_DEVFN(slot, func)) {
250 ret = 0;
251 goto free_and_exit;
255 * Note: we don't need to get a reference to the upstream
256 * bridge because we hold a reference to the top level
257 * device which should hold a reference to the bridge,
258 * and so on.
260 dev = pci_upstream_bridge(dev);
261 if (!dev) {
262 ret = 0;
263 goto free_and_exit;
266 *p = 0;
269 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
270 &func, &end);
271 if (ret != 4) {
272 seg = 0;
273 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
274 if (ret != 3) {
275 ret = -EINVAL;
276 goto free_and_exit;
280 ret = (seg == pci_domain_nr(dev->bus) &&
281 bus == dev->bus->number &&
282 dev->devfn == PCI_DEVFN(slot, func));
284 free_and_exit:
285 kfree(wpath);
286 return ret;
290 * pci_dev_str_match - test if a string matches a device
291 * @dev: the PCI device to test
292 * @p: string to match the device against
293 * @endptr: pointer to the string after the match
295 * Test if a string (typically from a kernel parameter) matches a specified
296 * PCI device. The string may be of one of the following formats:
298 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
299 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
301 * The first format specifies a PCI bus/device/function address which
302 * may change if new hardware is inserted, if motherboard firmware changes,
303 * or due to changes caused in kernel parameters. If the domain is
304 * left unspecified, it is taken to be 0. In order to be robust against
305 * bus renumbering issues, a path of PCI device/function numbers may be used
306 * to address the specific device. The path for a device can be determined
307 * through the use of 'lspci -t'.
309 * The second format matches devices using IDs in the configuration
310 * space which may match multiple devices in the system. A value of 0
311 * for any field will match all devices. (Note: this differs from
312 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
313 * legacy reasons and convenience so users don't have to specify
314 * FFFFFFFFs on the command line.)
316 * Returns 1 if the string matches the device, 0 if it does not and
317 * a negative error code if the string cannot be parsed.
319 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
320 const char **endptr)
322 int ret;
323 int count;
324 unsigned short vendor, device, subsystem_vendor, subsystem_device;
326 if (strncmp(p, "pci:", 4) == 0) {
327 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
328 p += 4;
329 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
330 &subsystem_vendor, &subsystem_device, &count);
331 if (ret != 4) {
332 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
333 if (ret != 2)
334 return -EINVAL;
336 subsystem_vendor = 0;
337 subsystem_device = 0;
340 p += count;
342 if ((!vendor || vendor == dev->vendor) &&
343 (!device || device == dev->device) &&
344 (!subsystem_vendor ||
345 subsystem_vendor == dev->subsystem_vendor) &&
346 (!subsystem_device ||
347 subsystem_device == dev->subsystem_device))
348 goto found;
349 } else {
351 * PCI Bus, Device, Function IDs are specified
352 * (optionally, may include a path of devfns following it)
354 ret = pci_dev_str_match_path(dev, p, &p);
355 if (ret < 0)
356 return ret;
357 else if (ret)
358 goto found;
361 *endptr = p;
362 return 0;
364 found:
365 *endptr = p;
366 return 1;
369 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
370 u8 pos, int cap, int *ttl)
372 u8 id;
373 u16 ent;
375 pci_bus_read_config_byte(bus, devfn, pos, &pos);
377 while ((*ttl)--) {
378 if (pos < 0x40)
379 break;
380 pos &= ~3;
381 pci_bus_read_config_word(bus, devfn, pos, &ent);
383 id = ent & 0xff;
384 if (id == 0xff)
385 break;
386 if (id == cap)
387 return pos;
388 pos = (ent >> 8);
390 return 0;
393 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
394 u8 pos, int cap)
396 int ttl = PCI_FIND_CAP_TTL;
398 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
401 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
403 return __pci_find_next_cap(dev->bus, dev->devfn,
404 pos + PCI_CAP_LIST_NEXT, cap);
406 EXPORT_SYMBOL_GPL(pci_find_next_capability);
408 static int __pci_bus_find_cap_start(struct pci_bus *bus,
409 unsigned int devfn, u8 hdr_type)
411 u16 status;
413 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
414 if (!(status & PCI_STATUS_CAP_LIST))
415 return 0;
417 switch (hdr_type) {
418 case PCI_HEADER_TYPE_NORMAL:
419 case PCI_HEADER_TYPE_BRIDGE:
420 return PCI_CAPABILITY_LIST;
421 case PCI_HEADER_TYPE_CARDBUS:
422 return PCI_CB_CAPABILITY_LIST;
425 return 0;
429 * pci_find_capability - query for devices' capabilities
430 * @dev: PCI device to query
431 * @cap: capability code
433 * Tell if a device supports a given PCI capability.
434 * Returns the address of the requested capability structure within the
435 * device's PCI configuration space or 0 in case the device does not
436 * support it. Possible values for @cap include:
438 * %PCI_CAP_ID_PM Power Management
439 * %PCI_CAP_ID_AGP Accelerated Graphics Port
440 * %PCI_CAP_ID_VPD Vital Product Data
441 * %PCI_CAP_ID_SLOTID Slot Identification
442 * %PCI_CAP_ID_MSI Message Signalled Interrupts
443 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
444 * %PCI_CAP_ID_PCIX PCI-X
445 * %PCI_CAP_ID_EXP PCI Express
447 int pci_find_capability(struct pci_dev *dev, int cap)
449 int pos;
451 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
452 if (pos)
453 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
455 return pos;
457 EXPORT_SYMBOL(pci_find_capability);
460 * pci_bus_find_capability - query for devices' capabilities
461 * @bus: the PCI bus to query
462 * @devfn: PCI device to query
463 * @cap: capability code
465 * Like pci_find_capability() but works for PCI devices that do not have a
466 * pci_dev structure set up yet.
468 * Returns the address of the requested capability structure within the
469 * device's PCI configuration space or 0 in case the device does not
470 * support it.
472 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
474 int pos;
475 u8 hdr_type;
477 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
479 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
480 if (pos)
481 pos = __pci_find_next_cap(bus, devfn, pos, cap);
483 return pos;
485 EXPORT_SYMBOL(pci_bus_find_capability);
488 * pci_find_next_ext_capability - Find an extended capability
489 * @dev: PCI device to query
490 * @start: address at which to start looking (0 to start at beginning of list)
491 * @cap: capability code
493 * Returns the address of the next matching extended capability structure
494 * within the device's PCI configuration space or 0 if the device does
495 * not support it. Some capabilities can occur several times, e.g., the
496 * vendor-specific capability, and this provides a way to find them all.
498 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
500 u32 header;
501 int ttl;
502 int pos = PCI_CFG_SPACE_SIZE;
504 /* minimum 8 bytes per capability */
505 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
507 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
508 return 0;
510 if (start)
511 pos = start;
513 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
514 return 0;
517 * If we have no capabilities, this is indicated by cap ID,
518 * cap version and next pointer all being 0.
520 if (header == 0)
521 return 0;
523 while (ttl-- > 0) {
524 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
525 return pos;
527 pos = PCI_EXT_CAP_NEXT(header);
528 if (pos < PCI_CFG_SPACE_SIZE)
529 break;
531 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
532 break;
535 return 0;
537 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
540 * pci_find_ext_capability - Find an extended capability
541 * @dev: PCI device to query
542 * @cap: capability code
544 * Returns the address of the requested extended capability structure
545 * within the device's PCI configuration space or 0 if the device does
546 * not support it. Possible values for @cap include:
548 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
549 * %PCI_EXT_CAP_ID_VC Virtual Channel
550 * %PCI_EXT_CAP_ID_DSN Device Serial Number
551 * %PCI_EXT_CAP_ID_PWR Power Budgeting
553 int pci_find_ext_capability(struct pci_dev *dev, int cap)
555 return pci_find_next_ext_capability(dev, 0, cap);
557 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
559 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
561 int rc, ttl = PCI_FIND_CAP_TTL;
562 u8 cap, mask;
564 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
565 mask = HT_3BIT_CAP_MASK;
566 else
567 mask = HT_5BIT_CAP_MASK;
569 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
570 PCI_CAP_ID_HT, &ttl);
571 while (pos) {
572 rc = pci_read_config_byte(dev, pos + 3, &cap);
573 if (rc != PCIBIOS_SUCCESSFUL)
574 return 0;
576 if ((cap & mask) == ht_cap)
577 return pos;
579 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
580 pos + PCI_CAP_LIST_NEXT,
581 PCI_CAP_ID_HT, &ttl);
584 return 0;
587 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
588 * @dev: PCI device to query
589 * @pos: Position from which to continue searching
590 * @ht_cap: Hypertransport capability code
592 * To be used in conjunction with pci_find_ht_capability() to search for
593 * all capabilities matching @ht_cap. @pos should always be a value returned
594 * from pci_find_ht_capability().
596 * NB. To be 100% safe against broken PCI devices, the caller should take
597 * steps to avoid an infinite loop.
599 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
601 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
603 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
606 * pci_find_ht_capability - query a device's Hypertransport capabilities
607 * @dev: PCI device to query
608 * @ht_cap: Hypertransport capability code
610 * Tell if a device supports a given Hypertransport capability.
611 * Returns an address within the device's PCI configuration space
612 * or 0 in case the device does not support the request capability.
613 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
614 * which has a Hypertransport capability matching @ht_cap.
616 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
618 int pos;
620 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
621 if (pos)
622 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
624 return pos;
626 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
629 * pci_find_parent_resource - return resource region of parent bus of given
630 * region
631 * @dev: PCI device structure contains resources to be searched
632 * @res: child resource record for which parent is sought
634 * For given resource region of given device, return the resource region of
635 * parent bus the given region is contained in.
637 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
638 struct resource *res)
640 const struct pci_bus *bus = dev->bus;
641 struct resource *r;
642 int i;
644 pci_bus_for_each_resource(bus, r, i) {
645 if (!r)
646 continue;
647 if (resource_contains(r, res)) {
650 * If the window is prefetchable but the BAR is
651 * not, the allocator made a mistake.
653 if (r->flags & IORESOURCE_PREFETCH &&
654 !(res->flags & IORESOURCE_PREFETCH))
655 return NULL;
658 * If we're below a transparent bridge, there may
659 * be both a positively-decoded aperture and a
660 * subtractively-decoded region that contain the BAR.
661 * We want the positively-decoded one, so this depends
662 * on pci_bus_for_each_resource() giving us those
663 * first.
665 return r;
668 return NULL;
670 EXPORT_SYMBOL(pci_find_parent_resource);
673 * pci_find_resource - Return matching PCI device resource
674 * @dev: PCI device to query
675 * @res: Resource to look for
677 * Goes over standard PCI resources (BARs) and checks if the given resource
678 * is partially or fully contained in any of them. In that case the
679 * matching resource is returned, %NULL otherwise.
681 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
683 int i;
685 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
686 struct resource *r = &dev->resource[i];
688 if (r->start && resource_contains(r, res))
689 return r;
692 return NULL;
694 EXPORT_SYMBOL(pci_find_resource);
697 * pci_find_pcie_root_port - return PCIe Root Port
698 * @dev: PCI device to query
700 * Traverse up the parent chain and return the PCIe Root Port PCI Device
701 * for a given PCI Device.
703 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
705 struct pci_dev *bridge, *highest_pcie_bridge = dev;
707 bridge = pci_upstream_bridge(dev);
708 while (bridge && pci_is_pcie(bridge)) {
709 highest_pcie_bridge = bridge;
710 bridge = pci_upstream_bridge(bridge);
713 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
714 return NULL;
716 return highest_pcie_bridge;
718 EXPORT_SYMBOL(pci_find_pcie_root_port);
721 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
722 * @dev: the PCI device to operate on
723 * @pos: config space offset of status word
724 * @mask: mask of bit(s) to care about in status word
726 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
728 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
730 int i;
732 /* Wait for Transaction Pending bit clean */
733 for (i = 0; i < 4; i++) {
734 u16 status;
735 if (i)
736 msleep((1 << (i - 1)) * 100);
738 pci_read_config_word(dev, pos, &status);
739 if (!(status & mask))
740 return 1;
743 return 0;
747 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
748 * @dev: PCI device to have its BARs restored
750 * Restore the BAR values for a given device, so as to make it
751 * accessible by its driver.
753 static void pci_restore_bars(struct pci_dev *dev)
755 int i;
757 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
758 pci_update_resource(dev, i);
761 static const struct pci_platform_pm_ops *pci_platform_pm;
763 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
765 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
766 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
767 return -EINVAL;
768 pci_platform_pm = ops;
769 return 0;
772 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
774 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
777 static inline int platform_pci_set_power_state(struct pci_dev *dev,
778 pci_power_t t)
780 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
783 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
785 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
788 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
790 if (pci_platform_pm && pci_platform_pm->refresh_state)
791 pci_platform_pm->refresh_state(dev);
794 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
796 return pci_platform_pm ?
797 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
800 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
802 return pci_platform_pm ?
803 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
806 static inline bool platform_pci_need_resume(struct pci_dev *dev)
808 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
811 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
813 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
817 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
818 * given PCI device
819 * @dev: PCI device to handle.
820 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
822 * RETURN VALUE:
823 * -EINVAL if the requested state is invalid.
824 * -EIO if device does not support PCI PM or its PM capabilities register has a
825 * wrong version, or device doesn't support the requested state.
826 * 0 if device already is in the requested state.
827 * 0 if device's power state has been successfully changed.
829 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
831 u16 pmcsr;
832 bool need_restore = false;
834 /* Check if we're already there */
835 if (dev->current_state == state)
836 return 0;
838 if (!dev->pm_cap)
839 return -EIO;
841 if (state < PCI_D0 || state > PCI_D3hot)
842 return -EINVAL;
845 * Validate transition: We can enter D0 from any state, but if
846 * we're already in a low-power state, we can only go deeper. E.g.,
847 * we can go from D1 to D3, but we can't go directly from D3 to D1;
848 * we'd have to go from D3 to D0, then to D1.
850 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
851 && dev->current_state > state) {
852 pci_err(dev, "invalid power transition (from %s to %s)\n",
853 pci_power_name(dev->current_state),
854 pci_power_name(state));
855 return -EINVAL;
858 /* Check if this device supports the desired state */
859 if ((state == PCI_D1 && !dev->d1_support)
860 || (state == PCI_D2 && !dev->d2_support))
861 return -EIO;
863 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
864 if (pmcsr == (u16) ~0) {
865 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
866 pci_power_name(dev->current_state),
867 pci_power_name(state));
868 return -EIO;
872 * If we're (effectively) in D3, force entire word to 0.
873 * This doesn't affect PME_Status, disables PME_En, and
874 * sets PowerState to 0.
876 switch (dev->current_state) {
877 case PCI_D0:
878 case PCI_D1:
879 case PCI_D2:
880 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
881 pmcsr |= state;
882 break;
883 case PCI_D3hot:
884 case PCI_D3cold:
885 case PCI_UNKNOWN: /* Boot-up */
886 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
887 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
888 need_restore = true;
889 /* Fall-through - force to D0 */
890 default:
891 pmcsr = 0;
892 break;
895 /* Enter specified state */
896 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
899 * Mandatory power management transition delays; see PCI PM 1.1
900 * 5.6.1 table 18
902 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
903 pci_dev_d3_sleep(dev);
904 else if (state == PCI_D2 || dev->current_state == PCI_D2)
905 msleep(PCI_PM_D2_DELAY);
907 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
908 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
909 if (dev->current_state != state)
910 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
911 pci_power_name(dev->current_state),
912 pci_power_name(state));
915 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
916 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
917 * from D3hot to D0 _may_ perform an internal reset, thereby
918 * going to "D0 Uninitialized" rather than "D0 Initialized".
919 * For example, at least some versions of the 3c905B and the
920 * 3c556B exhibit this behaviour.
922 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
923 * devices in a D3hot state at boot. Consequently, we need to
924 * restore at least the BARs so that the device will be
925 * accessible to its driver.
927 if (need_restore)
928 pci_restore_bars(dev);
930 if (dev->bus->self)
931 pcie_aspm_pm_state_change(dev->bus->self);
933 return 0;
937 * pci_update_current_state - Read power state of given device and cache it
938 * @dev: PCI device to handle.
939 * @state: State to cache in case the device doesn't have the PM capability
941 * The power state is read from the PMCSR register, which however is
942 * inaccessible in D3cold. The platform firmware is therefore queried first
943 * to detect accessibility of the register. In case the platform firmware
944 * reports an incorrect state or the device isn't power manageable by the
945 * platform at all, we try to detect D3cold by testing accessibility of the
946 * vendor ID in config space.
948 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
950 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
951 !pci_device_is_present(dev)) {
952 dev->current_state = PCI_D3cold;
953 } else if (dev->pm_cap) {
954 u16 pmcsr;
956 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
957 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
958 } else {
959 dev->current_state = state;
964 * pci_refresh_power_state - Refresh the given device's power state data
965 * @dev: Target PCI device.
967 * Ask the platform to refresh the devices power state information and invoke
968 * pci_update_current_state() to update its current PCI power state.
970 void pci_refresh_power_state(struct pci_dev *dev)
972 if (platform_pci_power_manageable(dev))
973 platform_pci_refresh_power_state(dev);
975 pci_update_current_state(dev, dev->current_state);
979 * pci_platform_power_transition - Use platform to change device power state
980 * @dev: PCI device to handle.
981 * @state: State to put the device into.
983 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
985 int error;
987 if (platform_pci_power_manageable(dev)) {
988 error = platform_pci_set_power_state(dev, state);
989 if (!error)
990 pci_update_current_state(dev, state);
991 } else
992 error = -ENODEV;
994 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
995 dev->current_state = PCI_D0;
997 return error;
999 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1002 * pci_wakeup - Wake up a PCI device
1003 * @pci_dev: Device to handle.
1004 * @ign: ignored parameter
1006 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1008 pci_wakeup_event(pci_dev);
1009 pm_request_resume(&pci_dev->dev);
1010 return 0;
1014 * pci_wakeup_bus - Walk given bus and wake up devices on it
1015 * @bus: Top bus of the subtree to walk.
1017 void pci_wakeup_bus(struct pci_bus *bus)
1019 if (bus)
1020 pci_walk_bus(bus, pci_wakeup, NULL);
1023 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1025 int delay = 1;
1026 u32 id;
1029 * After reset, the device should not silently discard config
1030 * requests, but it may still indicate that it needs more time by
1031 * responding to them with CRS completions. The Root Port will
1032 * generally synthesize ~0 data to complete the read (except when
1033 * CRS SV is enabled and the read was for the Vendor ID; in that
1034 * case it synthesizes 0x0001 data).
1036 * Wait for the device to return a non-CRS completion. Read the
1037 * Command register instead of Vendor ID so we don't have to
1038 * contend with the CRS SV value.
1040 pci_read_config_dword(dev, PCI_COMMAND, &id);
1041 while (id == ~0) {
1042 if (delay > timeout) {
1043 pci_warn(dev, "not ready %dms after %s; giving up\n",
1044 delay - 1, reset_type);
1045 return -ENOTTY;
1048 if (delay > 1000)
1049 pci_info(dev, "not ready %dms after %s; waiting\n",
1050 delay - 1, reset_type);
1052 msleep(delay);
1053 delay *= 2;
1054 pci_read_config_dword(dev, PCI_COMMAND, &id);
1057 if (delay > 1000)
1058 pci_info(dev, "ready %dms after %s\n", delay - 1,
1059 reset_type);
1061 return 0;
1065 * pci_power_up - Put the given device into D0
1066 * @dev: PCI device to power up
1068 int pci_power_up(struct pci_dev *dev)
1070 pci_platform_power_transition(dev, PCI_D0);
1073 * Mandatory power management transition delays are handled in
1074 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1075 * corresponding bridge.
1077 if (dev->runtime_d3cold) {
1079 * When powering on a bridge from D3cold, the whole hierarchy
1080 * may be powered on into D0uninitialized state, resume them to
1081 * give them a chance to suspend again
1083 pci_wakeup_bus(dev->subordinate);
1086 return pci_raw_set_power_state(dev, PCI_D0);
1090 * __pci_dev_set_current_state - Set current state of a PCI device
1091 * @dev: Device to handle
1092 * @data: pointer to state to be set
1094 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1096 pci_power_t state = *(pci_power_t *)data;
1098 dev->current_state = state;
1099 return 0;
1103 * pci_bus_set_current_state - Walk given bus and set current state of devices
1104 * @bus: Top bus of the subtree to walk.
1105 * @state: state to be set
1107 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1109 if (bus)
1110 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1114 * pci_set_power_state - Set the power state of a PCI device
1115 * @dev: PCI device to handle.
1116 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1118 * Transition a device to a new power state, using the platform firmware and/or
1119 * the device's PCI PM registers.
1121 * RETURN VALUE:
1122 * -EINVAL if the requested state is invalid.
1123 * -EIO if device does not support PCI PM or its PM capabilities register has a
1124 * wrong version, or device doesn't support the requested state.
1125 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1126 * 0 if device already is in the requested state.
1127 * 0 if the transition is to D3 but D3 is not supported.
1128 * 0 if device's power state has been successfully changed.
1130 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1132 int error;
1134 /* Bound the state we're entering */
1135 if (state > PCI_D3cold)
1136 state = PCI_D3cold;
1137 else if (state < PCI_D0)
1138 state = PCI_D0;
1139 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1142 * If the device or the parent bridge do not support PCI
1143 * PM, ignore the request if we're doing anything other
1144 * than putting it into D0 (which would only happen on
1145 * boot).
1147 return 0;
1149 /* Check if we're already there */
1150 if (dev->current_state == state)
1151 return 0;
1153 if (state == PCI_D0)
1154 return pci_power_up(dev);
1157 * This device is quirked not to be put into D3, so don't put it in
1158 * D3
1160 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1161 return 0;
1164 * To put device in D3cold, we put device into D3hot in native
1165 * way, then put device into D3cold with platform ops
1167 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1168 PCI_D3hot : state);
1170 if (pci_platform_power_transition(dev, state))
1171 return error;
1173 /* Powering off a bridge may power off the whole hierarchy */
1174 if (state == PCI_D3cold)
1175 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1177 return 0;
1179 EXPORT_SYMBOL(pci_set_power_state);
1182 * pci_choose_state - Choose the power state of a PCI device
1183 * @dev: PCI device to be suspended
1184 * @state: target sleep state for the whole system. This is the value
1185 * that is passed to suspend() function.
1187 * Returns PCI power state suitable for given device and given system
1188 * message.
1190 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1192 pci_power_t ret;
1194 if (!dev->pm_cap)
1195 return PCI_D0;
1197 ret = platform_pci_choose_state(dev);
1198 if (ret != PCI_POWER_ERROR)
1199 return ret;
1201 switch (state.event) {
1202 case PM_EVENT_ON:
1203 return PCI_D0;
1204 case PM_EVENT_FREEZE:
1205 case PM_EVENT_PRETHAW:
1206 /* REVISIT both freeze and pre-thaw "should" use D0 */
1207 case PM_EVENT_SUSPEND:
1208 case PM_EVENT_HIBERNATE:
1209 return PCI_D3hot;
1210 default:
1211 pci_info(dev, "unrecognized suspend event %d\n",
1212 state.event);
1213 BUG();
1215 return PCI_D0;
1217 EXPORT_SYMBOL(pci_choose_state);
1219 #define PCI_EXP_SAVE_REGS 7
1221 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1222 u16 cap, bool extended)
1224 struct pci_cap_saved_state *tmp;
1226 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1227 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1228 return tmp;
1230 return NULL;
1233 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1235 return _pci_find_saved_cap(dev, cap, false);
1238 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1240 return _pci_find_saved_cap(dev, cap, true);
1243 static int pci_save_pcie_state(struct pci_dev *dev)
1245 int i = 0;
1246 struct pci_cap_saved_state *save_state;
1247 u16 *cap;
1249 if (!pci_is_pcie(dev))
1250 return 0;
1252 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1253 if (!save_state) {
1254 pci_err(dev, "buffer not found in %s\n", __func__);
1255 return -ENOMEM;
1258 cap = (u16 *)&save_state->cap.data[0];
1259 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1260 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1261 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1262 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1263 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1264 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1265 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1267 return 0;
1270 static void pci_restore_pcie_state(struct pci_dev *dev)
1272 int i = 0;
1273 struct pci_cap_saved_state *save_state;
1274 u16 *cap;
1276 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1277 if (!save_state)
1278 return;
1280 cap = (u16 *)&save_state->cap.data[0];
1281 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1282 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1283 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1284 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1285 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1286 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1287 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1290 static int pci_save_pcix_state(struct pci_dev *dev)
1292 int pos;
1293 struct pci_cap_saved_state *save_state;
1295 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1296 if (!pos)
1297 return 0;
1299 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1300 if (!save_state) {
1301 pci_err(dev, "buffer not found in %s\n", __func__);
1302 return -ENOMEM;
1305 pci_read_config_word(dev, pos + PCI_X_CMD,
1306 (u16 *)save_state->cap.data);
1308 return 0;
1311 static void pci_restore_pcix_state(struct pci_dev *dev)
1313 int i = 0, pos;
1314 struct pci_cap_saved_state *save_state;
1315 u16 *cap;
1317 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1318 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1319 if (!save_state || !pos)
1320 return;
1321 cap = (u16 *)&save_state->cap.data[0];
1323 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1326 static void pci_save_ltr_state(struct pci_dev *dev)
1328 int ltr;
1329 struct pci_cap_saved_state *save_state;
1330 u16 *cap;
1332 if (!pci_is_pcie(dev))
1333 return;
1335 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1336 if (!ltr)
1337 return;
1339 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1340 if (!save_state) {
1341 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1342 return;
1345 cap = (u16 *)&save_state->cap.data[0];
1346 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1347 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1350 static void pci_restore_ltr_state(struct pci_dev *dev)
1352 struct pci_cap_saved_state *save_state;
1353 int ltr;
1354 u16 *cap;
1356 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1357 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1358 if (!save_state || !ltr)
1359 return;
1361 cap = (u16 *)&save_state->cap.data[0];
1362 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1363 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1367 * pci_save_state - save the PCI configuration space of a device before
1368 * suspending
1369 * @dev: PCI device that we're dealing with
1371 int pci_save_state(struct pci_dev *dev)
1373 int i;
1374 /* XXX: 100% dword access ok here? */
1375 for (i = 0; i < 16; i++) {
1376 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1377 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1378 i * 4, dev->saved_config_space[i]);
1380 dev->state_saved = true;
1382 i = pci_save_pcie_state(dev);
1383 if (i != 0)
1384 return i;
1386 i = pci_save_pcix_state(dev);
1387 if (i != 0)
1388 return i;
1390 pci_save_ltr_state(dev);
1391 pci_save_dpc_state(dev);
1392 pci_save_aer_state(dev);
1393 return pci_save_vc_state(dev);
1395 EXPORT_SYMBOL(pci_save_state);
1397 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1398 u32 saved_val, int retry, bool force)
1400 u32 val;
1402 pci_read_config_dword(pdev, offset, &val);
1403 if (!force && val == saved_val)
1404 return;
1406 for (;;) {
1407 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1408 offset, val, saved_val);
1409 pci_write_config_dword(pdev, offset, saved_val);
1410 if (retry-- <= 0)
1411 return;
1413 pci_read_config_dword(pdev, offset, &val);
1414 if (val == saved_val)
1415 return;
1417 mdelay(1);
1421 static void pci_restore_config_space_range(struct pci_dev *pdev,
1422 int start, int end, int retry,
1423 bool force)
1425 int index;
1427 for (index = end; index >= start; index--)
1428 pci_restore_config_dword(pdev, 4 * index,
1429 pdev->saved_config_space[index],
1430 retry, force);
1433 static void pci_restore_config_space(struct pci_dev *pdev)
1435 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1436 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1437 /* Restore BARs before the command register. */
1438 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1439 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1440 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1441 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1444 * Force rewriting of prefetch registers to avoid S3 resume
1445 * issues on Intel PCI bridges that occur when these
1446 * registers are not explicitly written.
1448 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1449 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1450 } else {
1451 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1455 static void pci_restore_rebar_state(struct pci_dev *pdev)
1457 unsigned int pos, nbars, i;
1458 u32 ctrl;
1460 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1461 if (!pos)
1462 return;
1464 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1465 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1466 PCI_REBAR_CTRL_NBAR_SHIFT;
1468 for (i = 0; i < nbars; i++, pos += 8) {
1469 struct resource *res;
1470 int bar_idx, size;
1472 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1473 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1474 res = pdev->resource + bar_idx;
1475 size = ilog2(resource_size(res)) - 20;
1476 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1477 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1478 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1483 * pci_restore_state - Restore the saved state of a PCI device
1484 * @dev: PCI device that we're dealing with
1486 void pci_restore_state(struct pci_dev *dev)
1488 if (!dev->state_saved)
1489 return;
1492 * Restore max latencies (in the LTR capability) before enabling
1493 * LTR itself (in the PCIe capability).
1495 pci_restore_ltr_state(dev);
1497 pci_restore_pcie_state(dev);
1498 pci_restore_pasid_state(dev);
1499 pci_restore_pri_state(dev);
1500 pci_restore_ats_state(dev);
1501 pci_restore_vc_state(dev);
1502 pci_restore_rebar_state(dev);
1503 pci_restore_dpc_state(dev);
1505 pci_cleanup_aer_error_status_regs(dev);
1506 pci_restore_aer_state(dev);
1508 pci_restore_config_space(dev);
1510 pci_restore_pcix_state(dev);
1511 pci_restore_msi_state(dev);
1513 /* Restore ACS and IOV configuration state */
1514 pci_enable_acs(dev);
1515 pci_restore_iov_state(dev);
1517 dev->state_saved = false;
1519 EXPORT_SYMBOL(pci_restore_state);
1521 struct pci_saved_state {
1522 u32 config_space[16];
1523 struct pci_cap_saved_data cap[0];
1527 * pci_store_saved_state - Allocate and return an opaque struct containing
1528 * the device saved state.
1529 * @dev: PCI device that we're dealing with
1531 * Return NULL if no state or error.
1533 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1535 struct pci_saved_state *state;
1536 struct pci_cap_saved_state *tmp;
1537 struct pci_cap_saved_data *cap;
1538 size_t size;
1540 if (!dev->state_saved)
1541 return NULL;
1543 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1545 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1546 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1548 state = kzalloc(size, GFP_KERNEL);
1549 if (!state)
1550 return NULL;
1552 memcpy(state->config_space, dev->saved_config_space,
1553 sizeof(state->config_space));
1555 cap = state->cap;
1556 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1557 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1558 memcpy(cap, &tmp->cap, len);
1559 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1561 /* Empty cap_save terminates list */
1563 return state;
1565 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1568 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1569 * @dev: PCI device that we're dealing with
1570 * @state: Saved state returned from pci_store_saved_state()
1572 int pci_load_saved_state(struct pci_dev *dev,
1573 struct pci_saved_state *state)
1575 struct pci_cap_saved_data *cap;
1577 dev->state_saved = false;
1579 if (!state)
1580 return 0;
1582 memcpy(dev->saved_config_space, state->config_space,
1583 sizeof(state->config_space));
1585 cap = state->cap;
1586 while (cap->size) {
1587 struct pci_cap_saved_state *tmp;
1589 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1590 if (!tmp || tmp->cap.size != cap->size)
1591 return -EINVAL;
1593 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1594 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1595 sizeof(struct pci_cap_saved_data) + cap->size);
1598 dev->state_saved = true;
1599 return 0;
1601 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1604 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1605 * and free the memory allocated for it.
1606 * @dev: PCI device that we're dealing with
1607 * @state: Pointer to saved state returned from pci_store_saved_state()
1609 int pci_load_and_free_saved_state(struct pci_dev *dev,
1610 struct pci_saved_state **state)
1612 int ret = pci_load_saved_state(dev, *state);
1613 kfree(*state);
1614 *state = NULL;
1615 return ret;
1617 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1619 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1621 return pci_enable_resources(dev, bars);
1624 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1626 int err;
1627 struct pci_dev *bridge;
1628 u16 cmd;
1629 u8 pin;
1631 err = pci_set_power_state(dev, PCI_D0);
1632 if (err < 0 && err != -EIO)
1633 return err;
1635 bridge = pci_upstream_bridge(dev);
1636 if (bridge)
1637 pcie_aspm_powersave_config_link(bridge);
1639 err = pcibios_enable_device(dev, bars);
1640 if (err < 0)
1641 return err;
1642 pci_fixup_device(pci_fixup_enable, dev);
1644 if (dev->msi_enabled || dev->msix_enabled)
1645 return 0;
1647 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1648 if (pin) {
1649 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1650 if (cmd & PCI_COMMAND_INTX_DISABLE)
1651 pci_write_config_word(dev, PCI_COMMAND,
1652 cmd & ~PCI_COMMAND_INTX_DISABLE);
1655 return 0;
1659 * pci_reenable_device - Resume abandoned device
1660 * @dev: PCI device to be resumed
1662 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1663 * to be called by normal code, write proper resume handler and use it instead.
1665 int pci_reenable_device(struct pci_dev *dev)
1667 if (pci_is_enabled(dev))
1668 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1669 return 0;
1671 EXPORT_SYMBOL(pci_reenable_device);
1673 static void pci_enable_bridge(struct pci_dev *dev)
1675 struct pci_dev *bridge;
1676 int retval;
1678 bridge = pci_upstream_bridge(dev);
1679 if (bridge)
1680 pci_enable_bridge(bridge);
1682 if (pci_is_enabled(dev)) {
1683 if (!dev->is_busmaster)
1684 pci_set_master(dev);
1685 return;
1688 retval = pci_enable_device(dev);
1689 if (retval)
1690 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1691 retval);
1692 pci_set_master(dev);
1695 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1697 struct pci_dev *bridge;
1698 int err;
1699 int i, bars = 0;
1702 * Power state could be unknown at this point, either due to a fresh
1703 * boot or a device removal call. So get the current power state
1704 * so that things like MSI message writing will behave as expected
1705 * (e.g. if the device really is in D0 at enable time).
1707 if (dev->pm_cap) {
1708 u16 pmcsr;
1709 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1710 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1713 if (atomic_inc_return(&dev->enable_cnt) > 1)
1714 return 0; /* already enabled */
1716 bridge = pci_upstream_bridge(dev);
1717 if (bridge)
1718 pci_enable_bridge(bridge);
1720 /* only skip sriov related */
1721 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1722 if (dev->resource[i].flags & flags)
1723 bars |= (1 << i);
1724 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1725 if (dev->resource[i].flags & flags)
1726 bars |= (1 << i);
1728 err = do_pci_enable_device(dev, bars);
1729 if (err < 0)
1730 atomic_dec(&dev->enable_cnt);
1731 return err;
1735 * pci_enable_device_io - Initialize a device for use with IO space
1736 * @dev: PCI device to be initialized
1738 * Initialize device before it's used by a driver. Ask low-level code
1739 * to enable I/O resources. Wake up the device if it was suspended.
1740 * Beware, this function can fail.
1742 int pci_enable_device_io(struct pci_dev *dev)
1744 return pci_enable_device_flags(dev, IORESOURCE_IO);
1746 EXPORT_SYMBOL(pci_enable_device_io);
1749 * pci_enable_device_mem - Initialize a device for use with Memory space
1750 * @dev: PCI device to be initialized
1752 * Initialize device before it's used by a driver. Ask low-level code
1753 * to enable Memory resources. Wake up the device if it was suspended.
1754 * Beware, this function can fail.
1756 int pci_enable_device_mem(struct pci_dev *dev)
1758 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1760 EXPORT_SYMBOL(pci_enable_device_mem);
1763 * pci_enable_device - Initialize device before it's used by a driver.
1764 * @dev: PCI device to be initialized
1766 * Initialize device before it's used by a driver. Ask low-level code
1767 * to enable I/O and memory. Wake up the device if it was suspended.
1768 * Beware, this function can fail.
1770 * Note we don't actually enable the device many times if we call
1771 * this function repeatedly (we just increment the count).
1773 int pci_enable_device(struct pci_dev *dev)
1775 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1777 EXPORT_SYMBOL(pci_enable_device);
1780 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1781 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1782 * there's no need to track it separately. pci_devres is initialized
1783 * when a device is enabled using managed PCI device enable interface.
1785 struct pci_devres {
1786 unsigned int enabled:1;
1787 unsigned int pinned:1;
1788 unsigned int orig_intx:1;
1789 unsigned int restore_intx:1;
1790 unsigned int mwi:1;
1791 u32 region_mask;
1794 static void pcim_release(struct device *gendev, void *res)
1796 struct pci_dev *dev = to_pci_dev(gendev);
1797 struct pci_devres *this = res;
1798 int i;
1800 if (dev->msi_enabled)
1801 pci_disable_msi(dev);
1802 if (dev->msix_enabled)
1803 pci_disable_msix(dev);
1805 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1806 if (this->region_mask & (1 << i))
1807 pci_release_region(dev, i);
1809 if (this->mwi)
1810 pci_clear_mwi(dev);
1812 if (this->restore_intx)
1813 pci_intx(dev, this->orig_intx);
1815 if (this->enabled && !this->pinned)
1816 pci_disable_device(dev);
1819 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1821 struct pci_devres *dr, *new_dr;
1823 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1824 if (dr)
1825 return dr;
1827 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1828 if (!new_dr)
1829 return NULL;
1830 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1833 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1835 if (pci_is_managed(pdev))
1836 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1837 return NULL;
1841 * pcim_enable_device - Managed pci_enable_device()
1842 * @pdev: PCI device to be initialized
1844 * Managed pci_enable_device().
1846 int pcim_enable_device(struct pci_dev *pdev)
1848 struct pci_devres *dr;
1849 int rc;
1851 dr = get_pci_dr(pdev);
1852 if (unlikely(!dr))
1853 return -ENOMEM;
1854 if (dr->enabled)
1855 return 0;
1857 rc = pci_enable_device(pdev);
1858 if (!rc) {
1859 pdev->is_managed = 1;
1860 dr->enabled = 1;
1862 return rc;
1864 EXPORT_SYMBOL(pcim_enable_device);
1867 * pcim_pin_device - Pin managed PCI device
1868 * @pdev: PCI device to pin
1870 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1871 * driver detach. @pdev must have been enabled with
1872 * pcim_enable_device().
1874 void pcim_pin_device(struct pci_dev *pdev)
1876 struct pci_devres *dr;
1878 dr = find_pci_dr(pdev);
1879 WARN_ON(!dr || !dr->enabled);
1880 if (dr)
1881 dr->pinned = 1;
1883 EXPORT_SYMBOL(pcim_pin_device);
1886 * pcibios_add_device - provide arch specific hooks when adding device dev
1887 * @dev: the PCI device being added
1889 * Permits the platform to provide architecture specific functionality when
1890 * devices are added. This is the default implementation. Architecture
1891 * implementations can override this.
1893 int __weak pcibios_add_device(struct pci_dev *dev)
1895 return 0;
1899 * pcibios_release_device - provide arch specific hooks when releasing
1900 * device dev
1901 * @dev: the PCI device being released
1903 * Permits the platform to provide architecture specific functionality when
1904 * devices are released. This is the default implementation. Architecture
1905 * implementations can override this.
1907 void __weak pcibios_release_device(struct pci_dev *dev) {}
1910 * pcibios_disable_device - disable arch specific PCI resources for device dev
1911 * @dev: the PCI device to disable
1913 * Disables architecture specific PCI resources for the device. This
1914 * is the default implementation. Architecture implementations can
1915 * override this.
1917 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1920 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1921 * @irq: ISA IRQ to penalize
1922 * @active: IRQ active or not
1924 * Permits the platform to provide architecture-specific functionality when
1925 * penalizing ISA IRQs. This is the default implementation. Architecture
1926 * implementations can override this.
1928 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1930 static void do_pci_disable_device(struct pci_dev *dev)
1932 u16 pci_command;
1934 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1935 if (pci_command & PCI_COMMAND_MASTER) {
1936 pci_command &= ~PCI_COMMAND_MASTER;
1937 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1940 pcibios_disable_device(dev);
1944 * pci_disable_enabled_device - Disable device without updating enable_cnt
1945 * @dev: PCI device to disable
1947 * NOTE: This function is a backend of PCI power management routines and is
1948 * not supposed to be called drivers.
1950 void pci_disable_enabled_device(struct pci_dev *dev)
1952 if (pci_is_enabled(dev))
1953 do_pci_disable_device(dev);
1957 * pci_disable_device - Disable PCI device after use
1958 * @dev: PCI device to be disabled
1960 * Signal to the system that the PCI device is not in use by the system
1961 * anymore. This only involves disabling PCI bus-mastering, if active.
1963 * Note we don't actually disable the device until all callers of
1964 * pci_enable_device() have called pci_disable_device().
1966 void pci_disable_device(struct pci_dev *dev)
1968 struct pci_devres *dr;
1970 dr = find_pci_dr(dev);
1971 if (dr)
1972 dr->enabled = 0;
1974 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1975 "disabling already-disabled device");
1977 if (atomic_dec_return(&dev->enable_cnt) != 0)
1978 return;
1980 do_pci_disable_device(dev);
1982 dev->is_busmaster = 0;
1984 EXPORT_SYMBOL(pci_disable_device);
1987 * pcibios_set_pcie_reset_state - set reset state for device dev
1988 * @dev: the PCIe device reset
1989 * @state: Reset state to enter into
1991 * Set the PCIe reset state for the device. This is the default
1992 * implementation. Architecture implementations can override this.
1994 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1995 enum pcie_reset_state state)
1997 return -EINVAL;
2001 * pci_set_pcie_reset_state - set reset state for device dev
2002 * @dev: the PCIe device reset
2003 * @state: Reset state to enter into
2005 * Sets the PCI reset state for the device.
2007 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2009 return pcibios_set_pcie_reset_state(dev, state);
2011 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2014 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2015 * @dev: PCIe root port or event collector.
2017 void pcie_clear_root_pme_status(struct pci_dev *dev)
2019 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2023 * pci_check_pme_status - Check if given device has generated PME.
2024 * @dev: Device to check.
2026 * Check the PME status of the device and if set, clear it and clear PME enable
2027 * (if set). Return 'true' if PME status and PME enable were both set or
2028 * 'false' otherwise.
2030 bool pci_check_pme_status(struct pci_dev *dev)
2032 int pmcsr_pos;
2033 u16 pmcsr;
2034 bool ret = false;
2036 if (!dev->pm_cap)
2037 return false;
2039 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2040 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2041 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2042 return false;
2044 /* Clear PME status. */
2045 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2046 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2047 /* Disable PME to avoid interrupt flood. */
2048 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2049 ret = true;
2052 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2054 return ret;
2058 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2059 * @dev: Device to handle.
2060 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2062 * Check if @dev has generated PME and queue a resume request for it in that
2063 * case.
2065 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2067 if (pme_poll_reset && dev->pme_poll)
2068 dev->pme_poll = false;
2070 if (pci_check_pme_status(dev)) {
2071 pci_wakeup_event(dev);
2072 pm_request_resume(&dev->dev);
2074 return 0;
2078 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2079 * @bus: Top bus of the subtree to walk.
2081 void pci_pme_wakeup_bus(struct pci_bus *bus)
2083 if (bus)
2084 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2089 * pci_pme_capable - check the capability of PCI device to generate PME#
2090 * @dev: PCI device to handle.
2091 * @state: PCI state from which device will issue PME#.
2093 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2095 if (!dev->pm_cap)
2096 return false;
2098 return !!(dev->pme_support & (1 << state));
2100 EXPORT_SYMBOL(pci_pme_capable);
2102 static void pci_pme_list_scan(struct work_struct *work)
2104 struct pci_pme_device *pme_dev, *n;
2106 mutex_lock(&pci_pme_list_mutex);
2107 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2108 if (pme_dev->dev->pme_poll) {
2109 struct pci_dev *bridge;
2111 bridge = pme_dev->dev->bus->self;
2113 * If bridge is in low power state, the
2114 * configuration space of subordinate devices
2115 * may be not accessible
2117 if (bridge && bridge->current_state != PCI_D0)
2118 continue;
2120 * If the device is in D3cold it should not be
2121 * polled either.
2123 if (pme_dev->dev->current_state == PCI_D3cold)
2124 continue;
2126 pci_pme_wakeup(pme_dev->dev, NULL);
2127 } else {
2128 list_del(&pme_dev->list);
2129 kfree(pme_dev);
2132 if (!list_empty(&pci_pme_list))
2133 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2134 msecs_to_jiffies(PME_TIMEOUT));
2135 mutex_unlock(&pci_pme_list_mutex);
2138 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2140 u16 pmcsr;
2142 if (!dev->pme_support)
2143 return;
2145 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2146 /* Clear PME_Status by writing 1 to it and enable PME# */
2147 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2148 if (!enable)
2149 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2151 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2155 * pci_pme_restore - Restore PME configuration after config space restore.
2156 * @dev: PCI device to update.
2158 void pci_pme_restore(struct pci_dev *dev)
2160 u16 pmcsr;
2162 if (!dev->pme_support)
2163 return;
2165 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2166 if (dev->wakeup_prepared) {
2167 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2168 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2169 } else {
2170 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2171 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2173 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2177 * pci_pme_active - enable or disable PCI device's PME# function
2178 * @dev: PCI device to handle.
2179 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2181 * The caller must verify that the device is capable of generating PME# before
2182 * calling this function with @enable equal to 'true'.
2184 void pci_pme_active(struct pci_dev *dev, bool enable)
2186 __pci_pme_active(dev, enable);
2189 * PCI (as opposed to PCIe) PME requires that the device have
2190 * its PME# line hooked up correctly. Not all hardware vendors
2191 * do this, so the PME never gets delivered and the device
2192 * remains asleep. The easiest way around this is to
2193 * periodically walk the list of suspended devices and check
2194 * whether any have their PME flag set. The assumption is that
2195 * we'll wake up often enough anyway that this won't be a huge
2196 * hit, and the power savings from the devices will still be a
2197 * win.
2199 * Although PCIe uses in-band PME message instead of PME# line
2200 * to report PME, PME does not work for some PCIe devices in
2201 * reality. For example, there are devices that set their PME
2202 * status bits, but don't really bother to send a PME message;
2203 * there are PCI Express Root Ports that don't bother to
2204 * trigger interrupts when they receive PME messages from the
2205 * devices below. So PME poll is used for PCIe devices too.
2208 if (dev->pme_poll) {
2209 struct pci_pme_device *pme_dev;
2210 if (enable) {
2211 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2212 GFP_KERNEL);
2213 if (!pme_dev) {
2214 pci_warn(dev, "can't enable PME#\n");
2215 return;
2217 pme_dev->dev = dev;
2218 mutex_lock(&pci_pme_list_mutex);
2219 list_add(&pme_dev->list, &pci_pme_list);
2220 if (list_is_singular(&pci_pme_list))
2221 queue_delayed_work(system_freezable_wq,
2222 &pci_pme_work,
2223 msecs_to_jiffies(PME_TIMEOUT));
2224 mutex_unlock(&pci_pme_list_mutex);
2225 } else {
2226 mutex_lock(&pci_pme_list_mutex);
2227 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2228 if (pme_dev->dev == dev) {
2229 list_del(&pme_dev->list);
2230 kfree(pme_dev);
2231 break;
2234 mutex_unlock(&pci_pme_list_mutex);
2238 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2240 EXPORT_SYMBOL(pci_pme_active);
2243 * __pci_enable_wake - enable PCI device as wakeup event source
2244 * @dev: PCI device affected
2245 * @state: PCI state from which device will issue wakeup events
2246 * @enable: True to enable event generation; false to disable
2248 * This enables the device as a wakeup event source, or disables it.
2249 * When such events involves platform-specific hooks, those hooks are
2250 * called automatically by this routine.
2252 * Devices with legacy power management (no standard PCI PM capabilities)
2253 * always require such platform hooks.
2255 * RETURN VALUE:
2256 * 0 is returned on success
2257 * -EINVAL is returned if device is not supposed to wake up the system
2258 * Error code depending on the platform is returned if both the platform and
2259 * the native mechanism fail to enable the generation of wake-up events
2261 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2263 int ret = 0;
2266 * Bridges that are not power-manageable directly only signal
2267 * wakeup on behalf of subordinate devices which is set up
2268 * elsewhere, so skip them. However, bridges that are
2269 * power-manageable may signal wakeup for themselves (for example,
2270 * on a hotplug event) and they need to be covered here.
2272 if (!pci_power_manageable(dev))
2273 return 0;
2275 /* Don't do the same thing twice in a row for one device. */
2276 if (!!enable == !!dev->wakeup_prepared)
2277 return 0;
2280 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2281 * Anderson we should be doing PME# wake enable followed by ACPI wake
2282 * enable. To disable wake-up we call the platform first, for symmetry.
2285 if (enable) {
2286 int error;
2288 if (pci_pme_capable(dev, state))
2289 pci_pme_active(dev, true);
2290 else
2291 ret = 1;
2292 error = platform_pci_set_wakeup(dev, true);
2293 if (ret)
2294 ret = error;
2295 if (!ret)
2296 dev->wakeup_prepared = true;
2297 } else {
2298 platform_pci_set_wakeup(dev, false);
2299 pci_pme_active(dev, false);
2300 dev->wakeup_prepared = false;
2303 return ret;
2307 * pci_enable_wake - change wakeup settings for a PCI device
2308 * @pci_dev: Target device
2309 * @state: PCI state from which device will issue wakeup events
2310 * @enable: Whether or not to enable event generation
2312 * If @enable is set, check device_may_wakeup() for the device before calling
2313 * __pci_enable_wake() for it.
2315 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2317 if (enable && !device_may_wakeup(&pci_dev->dev))
2318 return -EINVAL;
2320 return __pci_enable_wake(pci_dev, state, enable);
2322 EXPORT_SYMBOL(pci_enable_wake);
2325 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2326 * @dev: PCI device to prepare
2327 * @enable: True to enable wake-up event generation; false to disable
2329 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2330 * and this function allows them to set that up cleanly - pci_enable_wake()
2331 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2332 * ordering constraints.
2334 * This function only returns error code if the device is not allowed to wake
2335 * up the system from sleep or it is not capable of generating PME# from both
2336 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2338 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2340 return pci_pme_capable(dev, PCI_D3cold) ?
2341 pci_enable_wake(dev, PCI_D3cold, enable) :
2342 pci_enable_wake(dev, PCI_D3hot, enable);
2344 EXPORT_SYMBOL(pci_wake_from_d3);
2347 * pci_target_state - find an appropriate low power state for a given PCI dev
2348 * @dev: PCI device
2349 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2351 * Use underlying platform code to find a supported low power state for @dev.
2352 * If the platform can't manage @dev, return the deepest state from which it
2353 * can generate wake events, based on any available PME info.
2355 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2357 pci_power_t target_state = PCI_D3hot;
2359 if (platform_pci_power_manageable(dev)) {
2361 * Call the platform to find the target state for the device.
2363 pci_power_t state = platform_pci_choose_state(dev);
2365 switch (state) {
2366 case PCI_POWER_ERROR:
2367 case PCI_UNKNOWN:
2368 break;
2369 case PCI_D1:
2370 case PCI_D2:
2371 if (pci_no_d1d2(dev))
2372 break;
2373 /* else, fall through */
2374 default:
2375 target_state = state;
2378 return target_state;
2381 if (!dev->pm_cap)
2382 target_state = PCI_D0;
2385 * If the device is in D3cold even though it's not power-manageable by
2386 * the platform, it may have been powered down by non-standard means.
2387 * Best to let it slumber.
2389 if (dev->current_state == PCI_D3cold)
2390 target_state = PCI_D3cold;
2392 if (wakeup) {
2394 * Find the deepest state from which the device can generate
2395 * PME#.
2397 if (dev->pme_support) {
2398 while (target_state
2399 && !(dev->pme_support & (1 << target_state)))
2400 target_state--;
2404 return target_state;
2408 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2409 * into a sleep state
2410 * @dev: Device to handle.
2412 * Choose the power state appropriate for the device depending on whether
2413 * it can wake up the system and/or is power manageable by the platform
2414 * (PCI_D3hot is the default) and put the device into that state.
2416 int pci_prepare_to_sleep(struct pci_dev *dev)
2418 bool wakeup = device_may_wakeup(&dev->dev);
2419 pci_power_t target_state = pci_target_state(dev, wakeup);
2420 int error;
2422 if (target_state == PCI_POWER_ERROR)
2423 return -EIO;
2425 pci_enable_wake(dev, target_state, wakeup);
2427 error = pci_set_power_state(dev, target_state);
2429 if (error)
2430 pci_enable_wake(dev, target_state, false);
2432 return error;
2434 EXPORT_SYMBOL(pci_prepare_to_sleep);
2437 * pci_back_from_sleep - turn PCI device on during system-wide transition
2438 * into working state
2439 * @dev: Device to handle.
2441 * Disable device's system wake-up capability and put it into D0.
2443 int pci_back_from_sleep(struct pci_dev *dev)
2445 pci_enable_wake(dev, PCI_D0, false);
2446 return pci_set_power_state(dev, PCI_D0);
2448 EXPORT_SYMBOL(pci_back_from_sleep);
2451 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2452 * @dev: PCI device being suspended.
2454 * Prepare @dev to generate wake-up events at run time and put it into a low
2455 * power state.
2457 int pci_finish_runtime_suspend(struct pci_dev *dev)
2459 pci_power_t target_state;
2460 int error;
2462 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2463 if (target_state == PCI_POWER_ERROR)
2464 return -EIO;
2466 dev->runtime_d3cold = target_state == PCI_D3cold;
2468 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2470 error = pci_set_power_state(dev, target_state);
2472 if (error) {
2473 pci_enable_wake(dev, target_state, false);
2474 dev->runtime_d3cold = false;
2477 return error;
2481 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2482 * @dev: Device to check.
2484 * Return true if the device itself is capable of generating wake-up events
2485 * (through the platform or using the native PCIe PME) or if the device supports
2486 * PME and one of its upstream bridges can generate wake-up events.
2488 bool pci_dev_run_wake(struct pci_dev *dev)
2490 struct pci_bus *bus = dev->bus;
2492 if (!dev->pme_support)
2493 return false;
2495 /* PME-capable in principle, but not from the target power state */
2496 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2497 return false;
2499 if (device_can_wakeup(&dev->dev))
2500 return true;
2502 while (bus->parent) {
2503 struct pci_dev *bridge = bus->self;
2505 if (device_can_wakeup(&bridge->dev))
2506 return true;
2508 bus = bus->parent;
2511 /* We have reached the root bus. */
2512 if (bus->bridge)
2513 return device_can_wakeup(bus->bridge);
2515 return false;
2517 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2520 * pci_dev_need_resume - Check if it is necessary to resume the device.
2521 * @pci_dev: Device to check.
2523 * Return 'true' if the device is not runtime-suspended or it has to be
2524 * reconfigured due to wakeup settings difference between system and runtime
2525 * suspend, or the current power state of it is not suitable for the upcoming
2526 * (system-wide) transition.
2528 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2530 struct device *dev = &pci_dev->dev;
2531 pci_power_t target_state;
2533 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2534 return true;
2536 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2539 * If the earlier platform check has not triggered, D3cold is just power
2540 * removal on top of D3hot, so no need to resume the device in that
2541 * case.
2543 return target_state != pci_dev->current_state &&
2544 target_state != PCI_D3cold &&
2545 pci_dev->current_state != PCI_D3hot;
2549 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2550 * @pci_dev: Device to check.
2552 * If the device is suspended and it is not configured for system wakeup,
2553 * disable PME for it to prevent it from waking up the system unnecessarily.
2555 * Note that if the device's power state is D3cold and the platform check in
2556 * pci_dev_need_resume() has not triggered, the device's configuration need not
2557 * be changed.
2559 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2561 struct device *dev = &pci_dev->dev;
2563 spin_lock_irq(&dev->power.lock);
2565 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2566 pci_dev->current_state < PCI_D3cold)
2567 __pci_pme_active(pci_dev, false);
2569 spin_unlock_irq(&dev->power.lock);
2573 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2574 * @pci_dev: Device to handle.
2576 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2577 * it might have been disabled during the prepare phase of system suspend if
2578 * the device was not configured for system wakeup.
2580 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2582 struct device *dev = &pci_dev->dev;
2584 if (!pci_dev_run_wake(pci_dev))
2585 return;
2587 spin_lock_irq(&dev->power.lock);
2589 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2590 __pci_pme_active(pci_dev, true);
2592 spin_unlock_irq(&dev->power.lock);
2595 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2597 struct device *dev = &pdev->dev;
2598 struct device *parent = dev->parent;
2600 if (parent)
2601 pm_runtime_get_sync(parent);
2602 pm_runtime_get_noresume(dev);
2604 * pdev->current_state is set to PCI_D3cold during suspending,
2605 * so wait until suspending completes
2607 pm_runtime_barrier(dev);
2609 * Only need to resume devices in D3cold, because config
2610 * registers are still accessible for devices suspended but
2611 * not in D3cold.
2613 if (pdev->current_state == PCI_D3cold)
2614 pm_runtime_resume(dev);
2617 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2619 struct device *dev = &pdev->dev;
2620 struct device *parent = dev->parent;
2622 pm_runtime_put(dev);
2623 if (parent)
2624 pm_runtime_put_sync(parent);
2627 static const struct dmi_system_id bridge_d3_blacklist[] = {
2628 #ifdef CONFIG_X86
2631 * Gigabyte X299 root port is not marked as hotplug capable
2632 * which allows Linux to power manage it. However, this
2633 * confuses the BIOS SMI handler so don't power manage root
2634 * ports on that system.
2636 .ident = "X299 DESIGNARE EX-CF",
2637 .matches = {
2638 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2639 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2642 #endif
2647 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2648 * @bridge: Bridge to check
2650 * This function checks if it is possible to move the bridge to D3.
2651 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2653 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2655 if (!pci_is_pcie(bridge))
2656 return false;
2658 switch (pci_pcie_type(bridge)) {
2659 case PCI_EXP_TYPE_ROOT_PORT:
2660 case PCI_EXP_TYPE_UPSTREAM:
2661 case PCI_EXP_TYPE_DOWNSTREAM:
2662 if (pci_bridge_d3_disable)
2663 return false;
2666 * Hotplug ports handled by firmware in System Management Mode
2667 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2669 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2670 return false;
2672 if (pci_bridge_d3_force)
2673 return true;
2675 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2676 if (bridge->is_thunderbolt)
2677 return true;
2679 /* Platform might know better if the bridge supports D3 */
2680 if (platform_pci_bridge_d3(bridge))
2681 return true;
2684 * Hotplug ports handled natively by the OS were not validated
2685 * by vendors for runtime D3 at least until 2018 because there
2686 * was no OS support.
2688 if (bridge->is_hotplug_bridge)
2689 return false;
2691 if (dmi_check_system(bridge_d3_blacklist))
2692 return false;
2695 * It should be safe to put PCIe ports from 2015 or newer
2696 * to D3.
2698 if (dmi_get_bios_year() >= 2015)
2699 return true;
2700 break;
2703 return false;
2706 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2708 bool *d3cold_ok = data;
2710 if (/* The device needs to be allowed to go D3cold ... */
2711 dev->no_d3cold || !dev->d3cold_allowed ||
2713 /* ... and if it is wakeup capable to do so from D3cold. */
2714 (device_may_wakeup(&dev->dev) &&
2715 !pci_pme_capable(dev, PCI_D3cold)) ||
2717 /* If it is a bridge it must be allowed to go to D3. */
2718 !pci_power_manageable(dev))
2720 *d3cold_ok = false;
2722 return !*d3cold_ok;
2726 * pci_bridge_d3_update - Update bridge D3 capabilities
2727 * @dev: PCI device which is changed
2729 * Update upstream bridge PM capabilities accordingly depending on if the
2730 * device PM configuration was changed or the device is being removed. The
2731 * change is also propagated upstream.
2733 void pci_bridge_d3_update(struct pci_dev *dev)
2735 bool remove = !device_is_registered(&dev->dev);
2736 struct pci_dev *bridge;
2737 bool d3cold_ok = true;
2739 bridge = pci_upstream_bridge(dev);
2740 if (!bridge || !pci_bridge_d3_possible(bridge))
2741 return;
2744 * If D3 is currently allowed for the bridge, removing one of its
2745 * children won't change that.
2747 if (remove && bridge->bridge_d3)
2748 return;
2751 * If D3 is currently allowed for the bridge and a child is added or
2752 * changed, disallowance of D3 can only be caused by that child, so
2753 * we only need to check that single device, not any of its siblings.
2755 * If D3 is currently not allowed for the bridge, checking the device
2756 * first may allow us to skip checking its siblings.
2758 if (!remove)
2759 pci_dev_check_d3cold(dev, &d3cold_ok);
2762 * If D3 is currently not allowed for the bridge, this may be caused
2763 * either by the device being changed/removed or any of its siblings,
2764 * so we need to go through all children to find out if one of them
2765 * continues to block D3.
2767 if (d3cold_ok && !bridge->bridge_d3)
2768 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2769 &d3cold_ok);
2771 if (bridge->bridge_d3 != d3cold_ok) {
2772 bridge->bridge_d3 = d3cold_ok;
2773 /* Propagate change to upstream bridges */
2774 pci_bridge_d3_update(bridge);
2779 * pci_d3cold_enable - Enable D3cold for device
2780 * @dev: PCI device to handle
2782 * This function can be used in drivers to enable D3cold from the device
2783 * they handle. It also updates upstream PCI bridge PM capabilities
2784 * accordingly.
2786 void pci_d3cold_enable(struct pci_dev *dev)
2788 if (dev->no_d3cold) {
2789 dev->no_d3cold = false;
2790 pci_bridge_d3_update(dev);
2793 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2796 * pci_d3cold_disable - Disable D3cold for device
2797 * @dev: PCI device to handle
2799 * This function can be used in drivers to disable D3cold from the device
2800 * they handle. It also updates upstream PCI bridge PM capabilities
2801 * accordingly.
2803 void pci_d3cold_disable(struct pci_dev *dev)
2805 if (!dev->no_d3cold) {
2806 dev->no_d3cold = true;
2807 pci_bridge_d3_update(dev);
2810 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2813 * pci_pm_init - Initialize PM functions of given PCI device
2814 * @dev: PCI device to handle.
2816 void pci_pm_init(struct pci_dev *dev)
2818 int pm;
2819 u16 status;
2820 u16 pmc;
2822 pm_runtime_forbid(&dev->dev);
2823 pm_runtime_set_active(&dev->dev);
2824 pm_runtime_enable(&dev->dev);
2825 device_enable_async_suspend(&dev->dev);
2826 dev->wakeup_prepared = false;
2828 dev->pm_cap = 0;
2829 dev->pme_support = 0;
2831 /* find PCI PM capability in list */
2832 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2833 if (!pm)
2834 return;
2835 /* Check device's ability to generate PME# */
2836 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2838 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2839 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2840 pmc & PCI_PM_CAP_VER_MASK);
2841 return;
2844 dev->pm_cap = pm;
2845 dev->d3_delay = PCI_PM_D3_WAIT;
2846 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2847 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2848 dev->d3cold_allowed = true;
2850 dev->d1_support = false;
2851 dev->d2_support = false;
2852 if (!pci_no_d1d2(dev)) {
2853 if (pmc & PCI_PM_CAP_D1)
2854 dev->d1_support = true;
2855 if (pmc & PCI_PM_CAP_D2)
2856 dev->d2_support = true;
2858 if (dev->d1_support || dev->d2_support)
2859 pci_info(dev, "supports%s%s\n",
2860 dev->d1_support ? " D1" : "",
2861 dev->d2_support ? " D2" : "");
2864 pmc &= PCI_PM_CAP_PME_MASK;
2865 if (pmc) {
2866 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2867 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2868 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2869 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2870 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2871 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2872 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2873 dev->pme_poll = true;
2875 * Make device's PM flags reflect the wake-up capability, but
2876 * let the user space enable it to wake up the system as needed.
2878 device_set_wakeup_capable(&dev->dev, true);
2879 /* Disable the PME# generation functionality */
2880 pci_pme_active(dev, false);
2883 pci_read_config_word(dev, PCI_STATUS, &status);
2884 if (status & PCI_STATUS_IMM_READY)
2885 dev->imm_ready = 1;
2888 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2890 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2892 switch (prop) {
2893 case PCI_EA_P_MEM:
2894 case PCI_EA_P_VF_MEM:
2895 flags |= IORESOURCE_MEM;
2896 break;
2897 case PCI_EA_P_MEM_PREFETCH:
2898 case PCI_EA_P_VF_MEM_PREFETCH:
2899 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2900 break;
2901 case PCI_EA_P_IO:
2902 flags |= IORESOURCE_IO;
2903 break;
2904 default:
2905 return 0;
2908 return flags;
2911 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2912 u8 prop)
2914 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2915 return &dev->resource[bei];
2916 #ifdef CONFIG_PCI_IOV
2917 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2918 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2919 return &dev->resource[PCI_IOV_RESOURCES +
2920 bei - PCI_EA_BEI_VF_BAR0];
2921 #endif
2922 else if (bei == PCI_EA_BEI_ROM)
2923 return &dev->resource[PCI_ROM_RESOURCE];
2924 else
2925 return NULL;
2928 /* Read an Enhanced Allocation (EA) entry */
2929 static int pci_ea_read(struct pci_dev *dev, int offset)
2931 struct resource *res;
2932 int ent_size, ent_offset = offset;
2933 resource_size_t start, end;
2934 unsigned long flags;
2935 u32 dw0, bei, base, max_offset;
2936 u8 prop;
2937 bool support_64 = (sizeof(resource_size_t) >= 8);
2939 pci_read_config_dword(dev, ent_offset, &dw0);
2940 ent_offset += 4;
2942 /* Entry size field indicates DWORDs after 1st */
2943 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2945 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2946 goto out;
2948 bei = (dw0 & PCI_EA_BEI) >> 4;
2949 prop = (dw0 & PCI_EA_PP) >> 8;
2952 * If the Property is in the reserved range, try the Secondary
2953 * Property instead.
2955 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2956 prop = (dw0 & PCI_EA_SP) >> 16;
2957 if (prop > PCI_EA_P_BRIDGE_IO)
2958 goto out;
2960 res = pci_ea_get_resource(dev, bei, prop);
2961 if (!res) {
2962 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2963 goto out;
2966 flags = pci_ea_flags(dev, prop);
2967 if (!flags) {
2968 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2969 goto out;
2972 /* Read Base */
2973 pci_read_config_dword(dev, ent_offset, &base);
2974 start = (base & PCI_EA_FIELD_MASK);
2975 ent_offset += 4;
2977 /* Read MaxOffset */
2978 pci_read_config_dword(dev, ent_offset, &max_offset);
2979 ent_offset += 4;
2981 /* Read Base MSBs (if 64-bit entry) */
2982 if (base & PCI_EA_IS_64) {
2983 u32 base_upper;
2985 pci_read_config_dword(dev, ent_offset, &base_upper);
2986 ent_offset += 4;
2988 flags |= IORESOURCE_MEM_64;
2990 /* entry starts above 32-bit boundary, can't use */
2991 if (!support_64 && base_upper)
2992 goto out;
2994 if (support_64)
2995 start |= ((u64)base_upper << 32);
2998 end = start + (max_offset | 0x03);
3000 /* Read MaxOffset MSBs (if 64-bit entry) */
3001 if (max_offset & PCI_EA_IS_64) {
3002 u32 max_offset_upper;
3004 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3005 ent_offset += 4;
3007 flags |= IORESOURCE_MEM_64;
3009 /* entry too big, can't use */
3010 if (!support_64 && max_offset_upper)
3011 goto out;
3013 if (support_64)
3014 end += ((u64)max_offset_upper << 32);
3017 if (end < start) {
3018 pci_err(dev, "EA Entry crosses address boundary\n");
3019 goto out;
3022 if (ent_size != ent_offset - offset) {
3023 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3024 ent_size, ent_offset - offset);
3025 goto out;
3028 res->name = pci_name(dev);
3029 res->start = start;
3030 res->end = end;
3031 res->flags = flags;
3033 if (bei <= PCI_EA_BEI_BAR5)
3034 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3035 bei, res, prop);
3036 else if (bei == PCI_EA_BEI_ROM)
3037 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3038 res, prop);
3039 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3040 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3041 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3042 else
3043 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3044 bei, res, prop);
3046 out:
3047 return offset + ent_size;
3050 /* Enhanced Allocation Initialization */
3051 void pci_ea_init(struct pci_dev *dev)
3053 int ea;
3054 u8 num_ent;
3055 int offset;
3056 int i;
3058 /* find PCI EA capability in list */
3059 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3060 if (!ea)
3061 return;
3063 /* determine the number of entries */
3064 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3065 &num_ent);
3066 num_ent &= PCI_EA_NUM_ENT_MASK;
3068 offset = ea + PCI_EA_FIRST_ENT;
3070 /* Skip DWORD 2 for type 1 functions */
3071 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3072 offset += 4;
3074 /* parse each EA entry */
3075 for (i = 0; i < num_ent; ++i)
3076 offset = pci_ea_read(dev, offset);
3079 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3080 struct pci_cap_saved_state *new_cap)
3082 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3086 * _pci_add_cap_save_buffer - allocate buffer for saving given
3087 * capability registers
3088 * @dev: the PCI device
3089 * @cap: the capability to allocate the buffer for
3090 * @extended: Standard or Extended capability ID
3091 * @size: requested size of the buffer
3093 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3094 bool extended, unsigned int size)
3096 int pos;
3097 struct pci_cap_saved_state *save_state;
3099 if (extended)
3100 pos = pci_find_ext_capability(dev, cap);
3101 else
3102 pos = pci_find_capability(dev, cap);
3104 if (!pos)
3105 return 0;
3107 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3108 if (!save_state)
3109 return -ENOMEM;
3111 save_state->cap.cap_nr = cap;
3112 save_state->cap.cap_extended = extended;
3113 save_state->cap.size = size;
3114 pci_add_saved_cap(dev, save_state);
3116 return 0;
3119 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3121 return _pci_add_cap_save_buffer(dev, cap, false, size);
3124 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3126 return _pci_add_cap_save_buffer(dev, cap, true, size);
3130 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3131 * @dev: the PCI device
3133 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3135 int error;
3137 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3138 PCI_EXP_SAVE_REGS * sizeof(u16));
3139 if (error)
3140 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3142 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3143 if (error)
3144 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3146 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3147 2 * sizeof(u16));
3148 if (error)
3149 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3151 pci_allocate_vc_save_buffers(dev);
3154 void pci_free_cap_save_buffers(struct pci_dev *dev)
3156 struct pci_cap_saved_state *tmp;
3157 struct hlist_node *n;
3159 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3160 kfree(tmp);
3164 * pci_configure_ari - enable or disable ARI forwarding
3165 * @dev: the PCI device
3167 * If @dev and its upstream bridge both support ARI, enable ARI in the
3168 * bridge. Otherwise, disable ARI in the bridge.
3170 void pci_configure_ari(struct pci_dev *dev)
3172 u32 cap;
3173 struct pci_dev *bridge;
3175 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3176 return;
3178 bridge = dev->bus->self;
3179 if (!bridge)
3180 return;
3182 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3183 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3184 return;
3186 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3187 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3188 PCI_EXP_DEVCTL2_ARI);
3189 bridge->ari_enabled = 1;
3190 } else {
3191 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3192 PCI_EXP_DEVCTL2_ARI);
3193 bridge->ari_enabled = 0;
3197 static int pci_acs_enable;
3200 * pci_request_acs - ask for ACS to be enabled if supported
3202 void pci_request_acs(void)
3204 pci_acs_enable = 1;
3207 static const char *disable_acs_redir_param;
3210 * pci_disable_acs_redir - disable ACS redirect capabilities
3211 * @dev: the PCI device
3213 * For only devices specified in the disable_acs_redir parameter.
3215 static void pci_disable_acs_redir(struct pci_dev *dev)
3217 int ret = 0;
3218 const char *p;
3219 int pos;
3220 u16 ctrl;
3222 if (!disable_acs_redir_param)
3223 return;
3225 p = disable_acs_redir_param;
3226 while (*p) {
3227 ret = pci_dev_str_match(dev, p, &p);
3228 if (ret < 0) {
3229 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3230 disable_acs_redir_param);
3232 break;
3233 } else if (ret == 1) {
3234 /* Found a match */
3235 break;
3238 if (*p != ';' && *p != ',') {
3239 /* End of param or invalid format */
3240 break;
3242 p++;
3245 if (ret != 1)
3246 return;
3248 if (!pci_dev_specific_disable_acs_redir(dev))
3249 return;
3251 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3252 if (!pos) {
3253 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3254 return;
3257 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3259 /* P2P Request & Completion Redirect */
3260 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3262 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3264 pci_info(dev, "disabled ACS redirect\n");
3268 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3269 * @dev: the PCI device
3271 static void pci_std_enable_acs(struct pci_dev *dev)
3273 int pos;
3274 u16 cap;
3275 u16 ctrl;
3277 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3278 if (!pos)
3279 return;
3281 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3282 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3284 /* Source Validation */
3285 ctrl |= (cap & PCI_ACS_SV);
3287 /* P2P Request Redirect */
3288 ctrl |= (cap & PCI_ACS_RR);
3290 /* P2P Completion Redirect */
3291 ctrl |= (cap & PCI_ACS_CR);
3293 /* Upstream Forwarding */
3294 ctrl |= (cap & PCI_ACS_UF);
3296 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3300 * pci_enable_acs - enable ACS if hardware support it
3301 * @dev: the PCI device
3303 void pci_enable_acs(struct pci_dev *dev)
3305 if (!pci_acs_enable)
3306 goto disable_acs_redir;
3308 if (!pci_dev_specific_enable_acs(dev))
3309 goto disable_acs_redir;
3311 pci_std_enable_acs(dev);
3313 disable_acs_redir:
3315 * Note: pci_disable_acs_redir() must be called even if ACS was not
3316 * enabled by the kernel because it may have been enabled by
3317 * platform firmware. So if we are told to disable it, we should
3318 * always disable it after setting the kernel's default
3319 * preferences.
3321 pci_disable_acs_redir(dev);
3324 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3326 int pos;
3327 u16 cap, ctrl;
3329 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3330 if (!pos)
3331 return false;
3334 * Except for egress control, capabilities are either required
3335 * or only required if controllable. Features missing from the
3336 * capability field can therefore be assumed as hard-wired enabled.
3338 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3339 acs_flags &= (cap | PCI_ACS_EC);
3341 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3342 return (ctrl & acs_flags) == acs_flags;
3346 * pci_acs_enabled - test ACS against required flags for a given device
3347 * @pdev: device to test
3348 * @acs_flags: required PCI ACS flags
3350 * Return true if the device supports the provided flags. Automatically
3351 * filters out flags that are not implemented on multifunction devices.
3353 * Note that this interface checks the effective ACS capabilities of the
3354 * device rather than the actual capabilities. For instance, most single
3355 * function endpoints are not required to support ACS because they have no
3356 * opportunity for peer-to-peer access. We therefore return 'true'
3357 * regardless of whether the device exposes an ACS capability. This makes
3358 * it much easier for callers of this function to ignore the actual type
3359 * or topology of the device when testing ACS support.
3361 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3363 int ret;
3365 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3366 if (ret >= 0)
3367 return ret > 0;
3370 * Conventional PCI and PCI-X devices never support ACS, either
3371 * effectively or actually. The shared bus topology implies that
3372 * any device on the bus can receive or snoop DMA.
3374 if (!pci_is_pcie(pdev))
3375 return false;
3377 switch (pci_pcie_type(pdev)) {
3379 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3380 * but since their primary interface is PCI/X, we conservatively
3381 * handle them as we would a non-PCIe device.
3383 case PCI_EXP_TYPE_PCIE_BRIDGE:
3385 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3386 * applicable... must never implement an ACS Extended Capability...".
3387 * This seems arbitrary, but we take a conservative interpretation
3388 * of this statement.
3390 case PCI_EXP_TYPE_PCI_BRIDGE:
3391 case PCI_EXP_TYPE_RC_EC:
3392 return false;
3394 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3395 * implement ACS in order to indicate their peer-to-peer capabilities,
3396 * regardless of whether they are single- or multi-function devices.
3398 case PCI_EXP_TYPE_DOWNSTREAM:
3399 case PCI_EXP_TYPE_ROOT_PORT:
3400 return pci_acs_flags_enabled(pdev, acs_flags);
3402 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3403 * implemented by the remaining PCIe types to indicate peer-to-peer
3404 * capabilities, but only when they are part of a multifunction
3405 * device. The footnote for section 6.12 indicates the specific
3406 * PCIe types included here.
3408 case PCI_EXP_TYPE_ENDPOINT:
3409 case PCI_EXP_TYPE_UPSTREAM:
3410 case PCI_EXP_TYPE_LEG_END:
3411 case PCI_EXP_TYPE_RC_END:
3412 if (!pdev->multifunction)
3413 break;
3415 return pci_acs_flags_enabled(pdev, acs_flags);
3419 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3420 * to single function devices with the exception of downstream ports.
3422 return true;
3426 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3427 * @start: starting downstream device
3428 * @end: ending upstream device or NULL to search to the root bus
3429 * @acs_flags: required flags
3431 * Walk up a device tree from start to end testing PCI ACS support. If
3432 * any step along the way does not support the required flags, return false.
3434 bool pci_acs_path_enabled(struct pci_dev *start,
3435 struct pci_dev *end, u16 acs_flags)
3437 struct pci_dev *pdev, *parent = start;
3439 do {
3440 pdev = parent;
3442 if (!pci_acs_enabled(pdev, acs_flags))
3443 return false;
3445 if (pci_is_root_bus(pdev->bus))
3446 return (end == NULL);
3448 parent = pdev->bus->self;
3449 } while (pdev != end);
3451 return true;
3455 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3456 * @pdev: PCI device
3457 * @bar: BAR to find
3459 * Helper to find the position of the ctrl register for a BAR.
3460 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3461 * Returns -ENOENT if no ctrl register for the BAR could be found.
3463 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3465 unsigned int pos, nbars, i;
3466 u32 ctrl;
3468 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3469 if (!pos)
3470 return -ENOTSUPP;
3472 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3473 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3474 PCI_REBAR_CTRL_NBAR_SHIFT;
3476 for (i = 0; i < nbars; i++, pos += 8) {
3477 int bar_idx;
3479 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3480 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3481 if (bar_idx == bar)
3482 return pos;
3485 return -ENOENT;
3489 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3490 * @pdev: PCI device
3491 * @bar: BAR to query
3493 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3494 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3496 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3498 int pos;
3499 u32 cap;
3501 pos = pci_rebar_find_pos(pdev, bar);
3502 if (pos < 0)
3503 return 0;
3505 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3506 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3510 * pci_rebar_get_current_size - get the current size of a BAR
3511 * @pdev: PCI device
3512 * @bar: BAR to set size to
3514 * Read the size of a BAR from the resizable BAR config.
3515 * Returns size if found or negative error code.
3517 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3519 int pos;
3520 u32 ctrl;
3522 pos = pci_rebar_find_pos(pdev, bar);
3523 if (pos < 0)
3524 return pos;
3526 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3527 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3531 * pci_rebar_set_size - set a new size for a BAR
3532 * @pdev: PCI device
3533 * @bar: BAR to set size to
3534 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3536 * Set the new size of a BAR as defined in the spec.
3537 * Returns zero if resizing was successful, error code otherwise.
3539 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3541 int pos;
3542 u32 ctrl;
3544 pos = pci_rebar_find_pos(pdev, bar);
3545 if (pos < 0)
3546 return pos;
3548 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3549 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3550 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3551 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3552 return 0;
3556 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3557 * @dev: the PCI device
3558 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3559 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3560 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3561 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3563 * Return 0 if all upstream bridges support AtomicOp routing, egress
3564 * blocking is disabled on all upstream ports, and the root port supports
3565 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3566 * AtomicOp completion), or negative otherwise.
3568 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3570 struct pci_bus *bus = dev->bus;
3571 struct pci_dev *bridge;
3572 u32 cap, ctl2;
3574 if (!pci_is_pcie(dev))
3575 return -EINVAL;
3578 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3579 * AtomicOp requesters. For now, we only support endpoints as
3580 * requesters and root ports as completers. No endpoints as
3581 * completers, and no peer-to-peer.
3584 switch (pci_pcie_type(dev)) {
3585 case PCI_EXP_TYPE_ENDPOINT:
3586 case PCI_EXP_TYPE_LEG_END:
3587 case PCI_EXP_TYPE_RC_END:
3588 break;
3589 default:
3590 return -EINVAL;
3593 while (bus->parent) {
3594 bridge = bus->self;
3596 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3598 switch (pci_pcie_type(bridge)) {
3599 /* Ensure switch ports support AtomicOp routing */
3600 case PCI_EXP_TYPE_UPSTREAM:
3601 case PCI_EXP_TYPE_DOWNSTREAM:
3602 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3603 return -EINVAL;
3604 break;
3606 /* Ensure root port supports all the sizes we care about */
3607 case PCI_EXP_TYPE_ROOT_PORT:
3608 if ((cap & cap_mask) != cap_mask)
3609 return -EINVAL;
3610 break;
3613 /* Ensure upstream ports don't block AtomicOps on egress */
3614 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3615 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3616 &ctl2);
3617 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3618 return -EINVAL;
3621 bus = bus->parent;
3624 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3625 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3626 return 0;
3628 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3631 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3632 * @dev: the PCI device
3633 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3635 * Perform INTx swizzling for a device behind one level of bridge. This is
3636 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3637 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3638 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3639 * the PCI Express Base Specification, Revision 2.1)
3641 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3643 int slot;
3645 if (pci_ari_enabled(dev->bus))
3646 slot = 0;
3647 else
3648 slot = PCI_SLOT(dev->devfn);
3650 return (((pin - 1) + slot) % 4) + 1;
3653 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3655 u8 pin;
3657 pin = dev->pin;
3658 if (!pin)
3659 return -1;
3661 while (!pci_is_root_bus(dev->bus)) {
3662 pin = pci_swizzle_interrupt_pin(dev, pin);
3663 dev = dev->bus->self;
3665 *bridge = dev;
3666 return pin;
3670 * pci_common_swizzle - swizzle INTx all the way to root bridge
3671 * @dev: the PCI device
3672 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3674 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3675 * bridges all the way up to a PCI root bus.
3677 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3679 u8 pin = *pinp;
3681 while (!pci_is_root_bus(dev->bus)) {
3682 pin = pci_swizzle_interrupt_pin(dev, pin);
3683 dev = dev->bus->self;
3685 *pinp = pin;
3686 return PCI_SLOT(dev->devfn);
3688 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3691 * pci_release_region - Release a PCI bar
3692 * @pdev: PCI device whose resources were previously reserved by
3693 * pci_request_region()
3694 * @bar: BAR to release
3696 * Releases the PCI I/O and memory resources previously reserved by a
3697 * successful call to pci_request_region(). Call this function only
3698 * after all use of the PCI regions has ceased.
3700 void pci_release_region(struct pci_dev *pdev, int bar)
3702 struct pci_devres *dr;
3704 if (pci_resource_len(pdev, bar) == 0)
3705 return;
3706 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3707 release_region(pci_resource_start(pdev, bar),
3708 pci_resource_len(pdev, bar));
3709 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3710 release_mem_region(pci_resource_start(pdev, bar),
3711 pci_resource_len(pdev, bar));
3713 dr = find_pci_dr(pdev);
3714 if (dr)
3715 dr->region_mask &= ~(1 << bar);
3717 EXPORT_SYMBOL(pci_release_region);
3720 * __pci_request_region - Reserved PCI I/O and memory resource
3721 * @pdev: PCI device whose resources are to be reserved
3722 * @bar: BAR to be reserved
3723 * @res_name: Name to be associated with resource.
3724 * @exclusive: whether the region access is exclusive or not
3726 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3727 * being reserved by owner @res_name. Do not access any
3728 * address inside the PCI regions unless this call returns
3729 * successfully.
3731 * If @exclusive is set, then the region is marked so that userspace
3732 * is explicitly not allowed to map the resource via /dev/mem or
3733 * sysfs MMIO access.
3735 * Returns 0 on success, or %EBUSY on error. A warning
3736 * message is also printed on failure.
3738 static int __pci_request_region(struct pci_dev *pdev, int bar,
3739 const char *res_name, int exclusive)
3741 struct pci_devres *dr;
3743 if (pci_resource_len(pdev, bar) == 0)
3744 return 0;
3746 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3747 if (!request_region(pci_resource_start(pdev, bar),
3748 pci_resource_len(pdev, bar), res_name))
3749 goto err_out;
3750 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3751 if (!__request_mem_region(pci_resource_start(pdev, bar),
3752 pci_resource_len(pdev, bar), res_name,
3753 exclusive))
3754 goto err_out;
3757 dr = find_pci_dr(pdev);
3758 if (dr)
3759 dr->region_mask |= 1 << bar;
3761 return 0;
3763 err_out:
3764 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3765 &pdev->resource[bar]);
3766 return -EBUSY;
3770 * pci_request_region - Reserve PCI I/O and memory resource
3771 * @pdev: PCI device whose resources are to be reserved
3772 * @bar: BAR to be reserved
3773 * @res_name: Name to be associated with resource
3775 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3776 * being reserved by owner @res_name. Do not access any
3777 * address inside the PCI regions unless this call returns
3778 * successfully.
3780 * Returns 0 on success, or %EBUSY on error. A warning
3781 * message is also printed on failure.
3783 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3785 return __pci_request_region(pdev, bar, res_name, 0);
3787 EXPORT_SYMBOL(pci_request_region);
3790 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3791 * @pdev: PCI device whose resources were previously reserved
3792 * @bars: Bitmask of BARs to be released
3794 * Release selected PCI I/O and memory resources previously reserved.
3795 * Call this function only after all use of the PCI regions has ceased.
3797 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3799 int i;
3801 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3802 if (bars & (1 << i))
3803 pci_release_region(pdev, i);
3805 EXPORT_SYMBOL(pci_release_selected_regions);
3807 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3808 const char *res_name, int excl)
3810 int i;
3812 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3813 if (bars & (1 << i))
3814 if (__pci_request_region(pdev, i, res_name, excl))
3815 goto err_out;
3816 return 0;
3818 err_out:
3819 while (--i >= 0)
3820 if (bars & (1 << i))
3821 pci_release_region(pdev, i);
3823 return -EBUSY;
3828 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3829 * @pdev: PCI device whose resources are to be reserved
3830 * @bars: Bitmask of BARs to be requested
3831 * @res_name: Name to be associated with resource
3833 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3834 const char *res_name)
3836 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3838 EXPORT_SYMBOL(pci_request_selected_regions);
3840 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3841 const char *res_name)
3843 return __pci_request_selected_regions(pdev, bars, res_name,
3844 IORESOURCE_EXCLUSIVE);
3846 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3849 * pci_release_regions - Release reserved PCI I/O and memory resources
3850 * @pdev: PCI device whose resources were previously reserved by
3851 * pci_request_regions()
3853 * Releases all PCI I/O and memory resources previously reserved by a
3854 * successful call to pci_request_regions(). Call this function only
3855 * after all use of the PCI regions has ceased.
3858 void pci_release_regions(struct pci_dev *pdev)
3860 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3862 EXPORT_SYMBOL(pci_release_regions);
3865 * pci_request_regions - Reserve PCI I/O and memory resources
3866 * @pdev: PCI device whose resources are to be reserved
3867 * @res_name: Name to be associated with resource.
3869 * Mark all PCI regions associated with PCI device @pdev as
3870 * being reserved by owner @res_name. Do not access any
3871 * address inside the PCI regions unless this call returns
3872 * successfully.
3874 * Returns 0 on success, or %EBUSY on error. A warning
3875 * message is also printed on failure.
3877 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3879 return pci_request_selected_regions(pdev,
3880 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3882 EXPORT_SYMBOL(pci_request_regions);
3885 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3886 * @pdev: PCI device whose resources are to be reserved
3887 * @res_name: Name to be associated with resource.
3889 * Mark all PCI regions associated with PCI device @pdev as being reserved
3890 * by owner @res_name. Do not access any address inside the PCI regions
3891 * unless this call returns successfully.
3893 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3894 * and the sysfs MMIO access will not be allowed.
3896 * Returns 0 on success, or %EBUSY on error. A warning message is also
3897 * printed on failure.
3899 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3901 return pci_request_selected_regions_exclusive(pdev,
3902 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3904 EXPORT_SYMBOL(pci_request_regions_exclusive);
3907 * Record the PCI IO range (expressed as CPU physical address + size).
3908 * Return a negative value if an error has occurred, zero otherwise
3910 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3911 resource_size_t size)
3913 int ret = 0;
3914 #ifdef PCI_IOBASE
3915 struct logic_pio_hwaddr *range;
3917 if (!size || addr + size < addr)
3918 return -EINVAL;
3920 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3921 if (!range)
3922 return -ENOMEM;
3924 range->fwnode = fwnode;
3925 range->size = size;
3926 range->hw_start = addr;
3927 range->flags = LOGIC_PIO_CPU_MMIO;
3929 ret = logic_pio_register_range(range);
3930 if (ret)
3931 kfree(range);
3932 #endif
3934 return ret;
3937 phys_addr_t pci_pio_to_address(unsigned long pio)
3939 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3941 #ifdef PCI_IOBASE
3942 if (pio >= MMIO_UPPER_LIMIT)
3943 return address;
3945 address = logic_pio_to_hwaddr(pio);
3946 #endif
3948 return address;
3951 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3953 #ifdef PCI_IOBASE
3954 return logic_pio_trans_cpuaddr(address);
3955 #else
3956 if (address > IO_SPACE_LIMIT)
3957 return (unsigned long)-1;
3959 return (unsigned long) address;
3960 #endif
3964 * pci_remap_iospace - Remap the memory mapped I/O space
3965 * @res: Resource describing the I/O space
3966 * @phys_addr: physical address of range to be mapped
3968 * Remap the memory mapped I/O space described by the @res and the CPU
3969 * physical address @phys_addr into virtual address space. Only
3970 * architectures that have memory mapped IO functions defined (and the
3971 * PCI_IOBASE value defined) should call this function.
3973 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3975 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3976 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3978 if (!(res->flags & IORESOURCE_IO))
3979 return -EINVAL;
3981 if (res->end > IO_SPACE_LIMIT)
3982 return -EINVAL;
3984 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3985 pgprot_device(PAGE_KERNEL));
3986 #else
3988 * This architecture does not have memory mapped I/O space,
3989 * so this function should never be called
3991 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3992 return -ENODEV;
3993 #endif
3995 EXPORT_SYMBOL(pci_remap_iospace);
3998 * pci_unmap_iospace - Unmap the memory mapped I/O space
3999 * @res: resource to be unmapped
4001 * Unmap the CPU virtual address @res from virtual address space. Only
4002 * architectures that have memory mapped IO functions defined (and the
4003 * PCI_IOBASE value defined) should call this function.
4005 void pci_unmap_iospace(struct resource *res)
4007 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4008 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4010 unmap_kernel_range(vaddr, resource_size(res));
4011 #endif
4013 EXPORT_SYMBOL(pci_unmap_iospace);
4015 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4017 struct resource **res = ptr;
4019 pci_unmap_iospace(*res);
4023 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4024 * @dev: Generic device to remap IO address for
4025 * @res: Resource describing the I/O space
4026 * @phys_addr: physical address of range to be mapped
4028 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4029 * detach.
4031 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4032 phys_addr_t phys_addr)
4034 const struct resource **ptr;
4035 int error;
4037 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4038 if (!ptr)
4039 return -ENOMEM;
4041 error = pci_remap_iospace(res, phys_addr);
4042 if (error) {
4043 devres_free(ptr);
4044 } else {
4045 *ptr = res;
4046 devres_add(dev, ptr);
4049 return error;
4051 EXPORT_SYMBOL(devm_pci_remap_iospace);
4054 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4055 * @dev: Generic device to remap IO address for
4056 * @offset: Resource address to map
4057 * @size: Size of map
4059 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4060 * detach.
4062 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4063 resource_size_t offset,
4064 resource_size_t size)
4066 void __iomem **ptr, *addr;
4068 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4069 if (!ptr)
4070 return NULL;
4072 addr = pci_remap_cfgspace(offset, size);
4073 if (addr) {
4074 *ptr = addr;
4075 devres_add(dev, ptr);
4076 } else
4077 devres_free(ptr);
4079 return addr;
4081 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4084 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4085 * @dev: generic device to handle the resource for
4086 * @res: configuration space resource to be handled
4088 * Checks that a resource is a valid memory region, requests the memory
4089 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4090 * proper PCI configuration space memory attributes are guaranteed.
4092 * All operations are managed and will be undone on driver detach.
4094 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4095 * on failure. Usage example::
4097 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4098 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4099 * if (IS_ERR(base))
4100 * return PTR_ERR(base);
4102 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4103 struct resource *res)
4105 resource_size_t size;
4106 const char *name;
4107 void __iomem *dest_ptr;
4109 BUG_ON(!dev);
4111 if (!res || resource_type(res) != IORESOURCE_MEM) {
4112 dev_err(dev, "invalid resource\n");
4113 return IOMEM_ERR_PTR(-EINVAL);
4116 size = resource_size(res);
4117 name = res->name ?: dev_name(dev);
4119 if (!devm_request_mem_region(dev, res->start, size, name)) {
4120 dev_err(dev, "can't request region for resource %pR\n", res);
4121 return IOMEM_ERR_PTR(-EBUSY);
4124 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4125 if (!dest_ptr) {
4126 dev_err(dev, "ioremap failed for resource %pR\n", res);
4127 devm_release_mem_region(dev, res->start, size);
4128 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4131 return dest_ptr;
4133 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4135 static void __pci_set_master(struct pci_dev *dev, bool enable)
4137 u16 old_cmd, cmd;
4139 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4140 if (enable)
4141 cmd = old_cmd | PCI_COMMAND_MASTER;
4142 else
4143 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4144 if (cmd != old_cmd) {
4145 pci_dbg(dev, "%s bus mastering\n",
4146 enable ? "enabling" : "disabling");
4147 pci_write_config_word(dev, PCI_COMMAND, cmd);
4149 dev->is_busmaster = enable;
4153 * pcibios_setup - process "pci=" kernel boot arguments
4154 * @str: string used to pass in "pci=" kernel boot arguments
4156 * Process kernel boot arguments. This is the default implementation.
4157 * Architecture specific implementations can override this as necessary.
4159 char * __weak __init pcibios_setup(char *str)
4161 return str;
4165 * pcibios_set_master - enable PCI bus-mastering for device dev
4166 * @dev: the PCI device to enable
4168 * Enables PCI bus-mastering for the device. This is the default
4169 * implementation. Architecture specific implementations can override
4170 * this if necessary.
4172 void __weak pcibios_set_master(struct pci_dev *dev)
4174 u8 lat;
4176 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4177 if (pci_is_pcie(dev))
4178 return;
4180 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4181 if (lat < 16)
4182 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4183 else if (lat > pcibios_max_latency)
4184 lat = pcibios_max_latency;
4185 else
4186 return;
4188 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4192 * pci_set_master - enables bus-mastering for device dev
4193 * @dev: the PCI device to enable
4195 * Enables bus-mastering on the device and calls pcibios_set_master()
4196 * to do the needed arch specific settings.
4198 void pci_set_master(struct pci_dev *dev)
4200 __pci_set_master(dev, true);
4201 pcibios_set_master(dev);
4203 EXPORT_SYMBOL(pci_set_master);
4206 * pci_clear_master - disables bus-mastering for device dev
4207 * @dev: the PCI device to disable
4209 void pci_clear_master(struct pci_dev *dev)
4211 __pci_set_master(dev, false);
4213 EXPORT_SYMBOL(pci_clear_master);
4216 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4217 * @dev: the PCI device for which MWI is to be enabled
4219 * Helper function for pci_set_mwi.
4220 * Originally copied from drivers/net/acenic.c.
4221 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4223 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4225 int pci_set_cacheline_size(struct pci_dev *dev)
4227 u8 cacheline_size;
4229 if (!pci_cache_line_size)
4230 return -EINVAL;
4232 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4233 equal to or multiple of the right value. */
4234 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4235 if (cacheline_size >= pci_cache_line_size &&
4236 (cacheline_size % pci_cache_line_size) == 0)
4237 return 0;
4239 /* Write the correct value. */
4240 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4241 /* Read it back. */
4242 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4243 if (cacheline_size == pci_cache_line_size)
4244 return 0;
4246 pci_info(dev, "cache line size of %d is not supported\n",
4247 pci_cache_line_size << 2);
4249 return -EINVAL;
4251 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4254 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4255 * @dev: the PCI device for which MWI is enabled
4257 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4259 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4261 int pci_set_mwi(struct pci_dev *dev)
4263 #ifdef PCI_DISABLE_MWI
4264 return 0;
4265 #else
4266 int rc;
4267 u16 cmd;
4269 rc = pci_set_cacheline_size(dev);
4270 if (rc)
4271 return rc;
4273 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4274 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4275 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4276 cmd |= PCI_COMMAND_INVALIDATE;
4277 pci_write_config_word(dev, PCI_COMMAND, cmd);
4279 return 0;
4280 #endif
4282 EXPORT_SYMBOL(pci_set_mwi);
4285 * pcim_set_mwi - a device-managed pci_set_mwi()
4286 * @dev: the PCI device for which MWI is enabled
4288 * Managed pci_set_mwi().
4290 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4292 int pcim_set_mwi(struct pci_dev *dev)
4294 struct pci_devres *dr;
4296 dr = find_pci_dr(dev);
4297 if (!dr)
4298 return -ENOMEM;
4300 dr->mwi = 1;
4301 return pci_set_mwi(dev);
4303 EXPORT_SYMBOL(pcim_set_mwi);
4306 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4307 * @dev: the PCI device for which MWI is enabled
4309 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4310 * Callers are not required to check the return value.
4312 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4314 int pci_try_set_mwi(struct pci_dev *dev)
4316 #ifdef PCI_DISABLE_MWI
4317 return 0;
4318 #else
4319 return pci_set_mwi(dev);
4320 #endif
4322 EXPORT_SYMBOL(pci_try_set_mwi);
4325 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4326 * @dev: the PCI device to disable
4328 * Disables PCI Memory-Write-Invalidate transaction on the device
4330 void pci_clear_mwi(struct pci_dev *dev)
4332 #ifndef PCI_DISABLE_MWI
4333 u16 cmd;
4335 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4336 if (cmd & PCI_COMMAND_INVALIDATE) {
4337 cmd &= ~PCI_COMMAND_INVALIDATE;
4338 pci_write_config_word(dev, PCI_COMMAND, cmd);
4340 #endif
4342 EXPORT_SYMBOL(pci_clear_mwi);
4345 * pci_intx - enables/disables PCI INTx for device dev
4346 * @pdev: the PCI device to operate on
4347 * @enable: boolean: whether to enable or disable PCI INTx
4349 * Enables/disables PCI INTx for device @pdev
4351 void pci_intx(struct pci_dev *pdev, int enable)
4353 u16 pci_command, new;
4355 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4357 if (enable)
4358 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4359 else
4360 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4362 if (new != pci_command) {
4363 struct pci_devres *dr;
4365 pci_write_config_word(pdev, PCI_COMMAND, new);
4367 dr = find_pci_dr(pdev);
4368 if (dr && !dr->restore_intx) {
4369 dr->restore_intx = 1;
4370 dr->orig_intx = !enable;
4374 EXPORT_SYMBOL_GPL(pci_intx);
4376 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4378 struct pci_bus *bus = dev->bus;
4379 bool mask_updated = true;
4380 u32 cmd_status_dword;
4381 u16 origcmd, newcmd;
4382 unsigned long flags;
4383 bool irq_pending;
4386 * We do a single dword read to retrieve both command and status.
4387 * Document assumptions that make this possible.
4389 BUILD_BUG_ON(PCI_COMMAND % 4);
4390 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4392 raw_spin_lock_irqsave(&pci_lock, flags);
4394 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4396 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4399 * Check interrupt status register to see whether our device
4400 * triggered the interrupt (when masking) or the next IRQ is
4401 * already pending (when unmasking).
4403 if (mask != irq_pending) {
4404 mask_updated = false;
4405 goto done;
4408 origcmd = cmd_status_dword;
4409 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4410 if (mask)
4411 newcmd |= PCI_COMMAND_INTX_DISABLE;
4412 if (newcmd != origcmd)
4413 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4415 done:
4416 raw_spin_unlock_irqrestore(&pci_lock, flags);
4418 return mask_updated;
4422 * pci_check_and_mask_intx - mask INTx on pending interrupt
4423 * @dev: the PCI device to operate on
4425 * Check if the device dev has its INTx line asserted, mask it and return
4426 * true in that case. False is returned if no interrupt was pending.
4428 bool pci_check_and_mask_intx(struct pci_dev *dev)
4430 return pci_check_and_set_intx_mask(dev, true);
4432 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4435 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4436 * @dev: the PCI device to operate on
4438 * Check if the device dev has its INTx line asserted, unmask it if not and
4439 * return true. False is returned and the mask remains active if there was
4440 * still an interrupt pending.
4442 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4444 return pci_check_and_set_intx_mask(dev, false);
4446 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4449 * pci_wait_for_pending_transaction - wait for pending transaction
4450 * @dev: the PCI device to operate on
4452 * Return 0 if transaction is pending 1 otherwise.
4454 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4456 if (!pci_is_pcie(dev))
4457 return 1;
4459 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4460 PCI_EXP_DEVSTA_TRPND);
4462 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4465 * pcie_has_flr - check if a device supports function level resets
4466 * @dev: device to check
4468 * Returns true if the device advertises support for PCIe function level
4469 * resets.
4471 bool pcie_has_flr(struct pci_dev *dev)
4473 u32 cap;
4475 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4476 return false;
4478 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4479 return cap & PCI_EXP_DEVCAP_FLR;
4481 EXPORT_SYMBOL_GPL(pcie_has_flr);
4484 * pcie_flr - initiate a PCIe function level reset
4485 * @dev: device to reset
4487 * Initiate a function level reset on @dev. The caller should ensure the
4488 * device supports FLR before calling this function, e.g. by using the
4489 * pcie_has_flr() helper.
4491 int pcie_flr(struct pci_dev *dev)
4493 if (!pci_wait_for_pending_transaction(dev))
4494 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4496 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4498 if (dev->imm_ready)
4499 return 0;
4502 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4503 * 100ms, but may silently discard requests while the FLR is in
4504 * progress. Wait 100ms before trying to access the device.
4506 msleep(100);
4508 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4510 EXPORT_SYMBOL_GPL(pcie_flr);
4512 static int pci_af_flr(struct pci_dev *dev, int probe)
4514 int pos;
4515 u8 cap;
4517 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4518 if (!pos)
4519 return -ENOTTY;
4521 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4522 return -ENOTTY;
4524 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4525 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4526 return -ENOTTY;
4528 if (probe)
4529 return 0;
4532 * Wait for Transaction Pending bit to clear. A word-aligned test
4533 * is used, so we use the control offset rather than status and shift
4534 * the test bit to match.
4536 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4537 PCI_AF_STATUS_TP << 8))
4538 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4540 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4542 if (dev->imm_ready)
4543 return 0;
4546 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4547 * updated 27 July 2006; a device must complete an FLR within
4548 * 100ms, but may silently discard requests while the FLR is in
4549 * progress. Wait 100ms before trying to access the device.
4551 msleep(100);
4553 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4557 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4558 * @dev: Device to reset.
4559 * @probe: If set, only check if the device can be reset this way.
4561 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4562 * unset, it will be reinitialized internally when going from PCI_D3hot to
4563 * PCI_D0. If that's the case and the device is not in a low-power state
4564 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4566 * NOTE: This causes the caller to sleep for twice the device power transition
4567 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4568 * by default (i.e. unless the @dev's d3_delay field has a different value).
4569 * Moreover, only devices in D0 can be reset by this function.
4571 static int pci_pm_reset(struct pci_dev *dev, int probe)
4573 u16 csr;
4575 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4576 return -ENOTTY;
4578 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4579 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4580 return -ENOTTY;
4582 if (probe)
4583 return 0;
4585 if (dev->current_state != PCI_D0)
4586 return -EINVAL;
4588 csr &= ~PCI_PM_CTRL_STATE_MASK;
4589 csr |= PCI_D3hot;
4590 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4591 pci_dev_d3_sleep(dev);
4593 csr &= ~PCI_PM_CTRL_STATE_MASK;
4594 csr |= PCI_D0;
4595 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4596 pci_dev_d3_sleep(dev);
4598 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4602 * pcie_wait_for_link_delay - Wait until link is active or inactive
4603 * @pdev: Bridge device
4604 * @active: waiting for active or inactive?
4605 * @delay: Delay to wait after link has become active (in ms)
4607 * Use this to wait till link becomes active or inactive.
4609 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4610 int delay)
4612 int timeout = 1000;
4613 bool ret;
4614 u16 lnk_status;
4617 * Some controllers might not implement link active reporting. In this
4618 * case, we wait for 1000 + 100 ms.
4620 if (!pdev->link_active_reporting) {
4621 msleep(1100);
4622 return true;
4626 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4627 * after which we should expect an link active if the reset was
4628 * successful. If so, software must wait a minimum 100ms before sending
4629 * configuration requests to devices downstream this port.
4631 * If the link fails to activate, either the device was physically
4632 * removed or the link is permanently failed.
4634 if (active)
4635 msleep(20);
4636 for (;;) {
4637 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4638 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4639 if (ret == active)
4640 break;
4641 if (timeout <= 0)
4642 break;
4643 msleep(10);
4644 timeout -= 10;
4646 if (active && ret)
4647 msleep(delay);
4648 else if (ret != active)
4649 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4650 active ? "set" : "cleared");
4651 return ret == active;
4655 * pcie_wait_for_link - Wait until link is active or inactive
4656 * @pdev: Bridge device
4657 * @active: waiting for active or inactive?
4659 * Use this to wait till link becomes active or inactive.
4661 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4663 return pcie_wait_for_link_delay(pdev, active, 100);
4667 * Find maximum D3cold delay required by all the devices on the bus. The
4668 * spec says 100 ms, but firmware can lower it and we allow drivers to
4669 * increase it as well.
4671 * Called with @pci_bus_sem locked for reading.
4673 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4675 const struct pci_dev *pdev;
4676 int min_delay = 100;
4677 int max_delay = 0;
4679 list_for_each_entry(pdev, &bus->devices, bus_list) {
4680 if (pdev->d3cold_delay < min_delay)
4681 min_delay = pdev->d3cold_delay;
4682 if (pdev->d3cold_delay > max_delay)
4683 max_delay = pdev->d3cold_delay;
4686 return max(min_delay, max_delay);
4690 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4691 * @dev: PCI bridge
4693 * Handle necessary delays before access to the devices on the secondary
4694 * side of the bridge are permitted after D3cold to D0 transition.
4696 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4697 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4698 * 4.3.2.
4700 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4702 struct pci_dev *child;
4703 int delay;
4705 if (pci_dev_is_disconnected(dev))
4706 return;
4708 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4709 return;
4711 down_read(&pci_bus_sem);
4714 * We only deal with devices that are present currently on the bus.
4715 * For any hot-added devices the access delay is handled in pciehp
4716 * board_added(). In case of ACPI hotplug the firmware is expected
4717 * to configure the devices before OS is notified.
4719 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4720 up_read(&pci_bus_sem);
4721 return;
4724 /* Take d3cold_delay requirements into account */
4725 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4726 if (!delay) {
4727 up_read(&pci_bus_sem);
4728 return;
4731 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4732 bus_list);
4733 up_read(&pci_bus_sem);
4736 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4737 * accessing the device after reset (that is 1000 ms + 100 ms). In
4738 * practice this should not be needed because we don't do power
4739 * management for them (see pci_bridge_d3_possible()).
4741 if (!pci_is_pcie(dev)) {
4742 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4743 msleep(1000 + delay);
4744 return;
4748 * For PCIe downstream and root ports that do not support speeds
4749 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4750 * speeds (gen3) we need to wait first for the data link layer to
4751 * become active.
4753 * However, 100 ms is the minimum and the PCIe spec says the
4754 * software must allow at least 1s before it can determine that the
4755 * device that did not respond is a broken device. There is
4756 * evidence that 100 ms is not always enough, for example certain
4757 * Titan Ridge xHCI controller does not always respond to
4758 * configuration requests if we only wait for 100 ms (see
4759 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4761 * Therefore we wait for 100 ms and check for the device presence.
4762 * If it is still not present give it an additional 100 ms.
4764 if (!pcie_downstream_port(dev))
4765 return;
4767 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4768 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4769 msleep(delay);
4770 } else {
4771 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4772 delay);
4773 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4774 /* Did not train, no need to wait any further */
4775 return;
4779 if (!pci_device_is_present(child)) {
4780 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4781 msleep(delay);
4785 void pci_reset_secondary_bus(struct pci_dev *dev)
4787 u16 ctrl;
4789 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4790 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4791 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4794 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4795 * this to 2ms to ensure that we meet the minimum requirement.
4797 msleep(2);
4799 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4800 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4803 * Trhfa for conventional PCI is 2^25 clock cycles.
4804 * Assuming a minimum 33MHz clock this results in a 1s
4805 * delay before we can consider subordinate devices to
4806 * be re-initialized. PCIe has some ways to shorten this,
4807 * but we don't make use of them yet.
4809 ssleep(1);
4812 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4814 pci_reset_secondary_bus(dev);
4818 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4819 * @dev: Bridge device
4821 * Use the bridge control register to assert reset on the secondary bus.
4822 * Devices on the secondary bus are left in power-on state.
4824 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4826 pcibios_reset_secondary_bus(dev);
4828 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4830 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4832 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4834 struct pci_dev *pdev;
4836 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4837 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4838 return -ENOTTY;
4840 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4841 if (pdev != dev)
4842 return -ENOTTY;
4844 if (probe)
4845 return 0;
4847 return pci_bridge_secondary_bus_reset(dev->bus->self);
4850 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4852 int rc = -ENOTTY;
4854 if (!hotplug || !try_module_get(hotplug->owner))
4855 return rc;
4857 if (hotplug->ops->reset_slot)
4858 rc = hotplug->ops->reset_slot(hotplug, probe);
4860 module_put(hotplug->owner);
4862 return rc;
4865 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4867 struct pci_dev *pdev;
4869 if (dev->subordinate || !dev->slot ||
4870 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4871 return -ENOTTY;
4873 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4874 if (pdev != dev && pdev->slot == dev->slot)
4875 return -ENOTTY;
4877 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4880 static void pci_dev_lock(struct pci_dev *dev)
4882 pci_cfg_access_lock(dev);
4883 /* block PM suspend, driver probe, etc. */
4884 device_lock(&dev->dev);
4887 /* Return 1 on successful lock, 0 on contention */
4888 static int pci_dev_trylock(struct pci_dev *dev)
4890 if (pci_cfg_access_trylock(dev)) {
4891 if (device_trylock(&dev->dev))
4892 return 1;
4893 pci_cfg_access_unlock(dev);
4896 return 0;
4899 static void pci_dev_unlock(struct pci_dev *dev)
4901 device_unlock(&dev->dev);
4902 pci_cfg_access_unlock(dev);
4905 static void pci_dev_save_and_disable(struct pci_dev *dev)
4907 const struct pci_error_handlers *err_handler =
4908 dev->driver ? dev->driver->err_handler : NULL;
4911 * dev->driver->err_handler->reset_prepare() is protected against
4912 * races with ->remove() by the device lock, which must be held by
4913 * the caller.
4915 if (err_handler && err_handler->reset_prepare)
4916 err_handler->reset_prepare(dev);
4919 * Wake-up device prior to save. PM registers default to D0 after
4920 * reset and a simple register restore doesn't reliably return
4921 * to a non-D0 state anyway.
4923 pci_set_power_state(dev, PCI_D0);
4925 pci_save_state(dev);
4927 * Disable the device by clearing the Command register, except for
4928 * INTx-disable which is set. This not only disables MMIO and I/O port
4929 * BARs, but also prevents the device from being Bus Master, preventing
4930 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4931 * compliant devices, INTx-disable prevents legacy interrupts.
4933 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4936 static void pci_dev_restore(struct pci_dev *dev)
4938 const struct pci_error_handlers *err_handler =
4939 dev->driver ? dev->driver->err_handler : NULL;
4941 pci_restore_state(dev);
4944 * dev->driver->err_handler->reset_done() is protected against
4945 * races with ->remove() by the device lock, which must be held by
4946 * the caller.
4948 if (err_handler && err_handler->reset_done)
4949 err_handler->reset_done(dev);
4953 * __pci_reset_function_locked - reset a PCI device function while holding
4954 * the @dev mutex lock.
4955 * @dev: PCI device to reset
4957 * Some devices allow an individual function to be reset without affecting
4958 * other functions in the same device. The PCI device must be responsive
4959 * to PCI config space in order to use this function.
4961 * The device function is presumed to be unused and the caller is holding
4962 * the device mutex lock when this function is called.
4964 * Resetting the device will make the contents of PCI configuration space
4965 * random, so any caller of this must be prepared to reinitialise the
4966 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4967 * etc.
4969 * Returns 0 if the device function was successfully reset or negative if the
4970 * device doesn't support resetting a single function.
4972 int __pci_reset_function_locked(struct pci_dev *dev)
4974 int rc;
4976 might_sleep();
4979 * A reset method returns -ENOTTY if it doesn't support this device
4980 * and we should try the next method.
4982 * If it returns 0 (success), we're finished. If it returns any
4983 * other error, we're also finished: this indicates that further
4984 * reset mechanisms might be broken on the device.
4986 rc = pci_dev_specific_reset(dev, 0);
4987 if (rc != -ENOTTY)
4988 return rc;
4989 if (pcie_has_flr(dev)) {
4990 rc = pcie_flr(dev);
4991 if (rc != -ENOTTY)
4992 return rc;
4994 rc = pci_af_flr(dev, 0);
4995 if (rc != -ENOTTY)
4996 return rc;
4997 rc = pci_pm_reset(dev, 0);
4998 if (rc != -ENOTTY)
4999 return rc;
5000 rc = pci_dev_reset_slot_function(dev, 0);
5001 if (rc != -ENOTTY)
5002 return rc;
5003 return pci_parent_bus_reset(dev, 0);
5005 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5008 * pci_probe_reset_function - check whether the device can be safely reset
5009 * @dev: PCI device to reset
5011 * Some devices allow an individual function to be reset without affecting
5012 * other functions in the same device. The PCI device must be responsive
5013 * to PCI config space in order to use this function.
5015 * Returns 0 if the device function can be reset or negative if the
5016 * device doesn't support resetting a single function.
5018 int pci_probe_reset_function(struct pci_dev *dev)
5020 int rc;
5022 might_sleep();
5024 rc = pci_dev_specific_reset(dev, 1);
5025 if (rc != -ENOTTY)
5026 return rc;
5027 if (pcie_has_flr(dev))
5028 return 0;
5029 rc = pci_af_flr(dev, 1);
5030 if (rc != -ENOTTY)
5031 return rc;
5032 rc = pci_pm_reset(dev, 1);
5033 if (rc != -ENOTTY)
5034 return rc;
5035 rc = pci_dev_reset_slot_function(dev, 1);
5036 if (rc != -ENOTTY)
5037 return rc;
5039 return pci_parent_bus_reset(dev, 1);
5043 * pci_reset_function - quiesce and reset a PCI device function
5044 * @dev: PCI device to reset
5046 * Some devices allow an individual function to be reset without affecting
5047 * other functions in the same device. The PCI device must be responsive
5048 * to PCI config space in order to use this function.
5050 * This function does not just reset the PCI portion of a device, but
5051 * clears all the state associated with the device. This function differs
5052 * from __pci_reset_function_locked() in that it saves and restores device state
5053 * over the reset and takes the PCI device lock.
5055 * Returns 0 if the device function was successfully reset or negative if the
5056 * device doesn't support resetting a single function.
5058 int pci_reset_function(struct pci_dev *dev)
5060 int rc;
5062 if (!dev->reset_fn)
5063 return -ENOTTY;
5065 pci_dev_lock(dev);
5066 pci_dev_save_and_disable(dev);
5068 rc = __pci_reset_function_locked(dev);
5070 pci_dev_restore(dev);
5071 pci_dev_unlock(dev);
5073 return rc;
5075 EXPORT_SYMBOL_GPL(pci_reset_function);
5078 * pci_reset_function_locked - quiesce and reset a PCI device function
5079 * @dev: PCI device to reset
5081 * Some devices allow an individual function to be reset without affecting
5082 * other functions in the same device. The PCI device must be responsive
5083 * to PCI config space in order to use this function.
5085 * This function does not just reset the PCI portion of a device, but
5086 * clears all the state associated with the device. This function differs
5087 * from __pci_reset_function_locked() in that it saves and restores device state
5088 * over the reset. It also differs from pci_reset_function() in that it
5089 * requires the PCI device lock to be held.
5091 * Returns 0 if the device function was successfully reset or negative if the
5092 * device doesn't support resetting a single function.
5094 int pci_reset_function_locked(struct pci_dev *dev)
5096 int rc;
5098 if (!dev->reset_fn)
5099 return -ENOTTY;
5101 pci_dev_save_and_disable(dev);
5103 rc = __pci_reset_function_locked(dev);
5105 pci_dev_restore(dev);
5107 return rc;
5109 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5112 * pci_try_reset_function - quiesce and reset a PCI device function
5113 * @dev: PCI device to reset
5115 * Same as above, except return -EAGAIN if unable to lock device.
5117 int pci_try_reset_function(struct pci_dev *dev)
5119 int rc;
5121 if (!dev->reset_fn)
5122 return -ENOTTY;
5124 if (!pci_dev_trylock(dev))
5125 return -EAGAIN;
5127 pci_dev_save_and_disable(dev);
5128 rc = __pci_reset_function_locked(dev);
5129 pci_dev_restore(dev);
5130 pci_dev_unlock(dev);
5132 return rc;
5134 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5136 /* Do any devices on or below this bus prevent a bus reset? */
5137 static bool pci_bus_resetable(struct pci_bus *bus)
5139 struct pci_dev *dev;
5142 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5143 return false;
5145 list_for_each_entry(dev, &bus->devices, bus_list) {
5146 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5147 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5148 return false;
5151 return true;
5154 /* Lock devices from the top of the tree down */
5155 static void pci_bus_lock(struct pci_bus *bus)
5157 struct pci_dev *dev;
5159 list_for_each_entry(dev, &bus->devices, bus_list) {
5160 pci_dev_lock(dev);
5161 if (dev->subordinate)
5162 pci_bus_lock(dev->subordinate);
5166 /* Unlock devices from the bottom of the tree up */
5167 static void pci_bus_unlock(struct pci_bus *bus)
5169 struct pci_dev *dev;
5171 list_for_each_entry(dev, &bus->devices, bus_list) {
5172 if (dev->subordinate)
5173 pci_bus_unlock(dev->subordinate);
5174 pci_dev_unlock(dev);
5178 /* Return 1 on successful lock, 0 on contention */
5179 static int pci_bus_trylock(struct pci_bus *bus)
5181 struct pci_dev *dev;
5183 list_for_each_entry(dev, &bus->devices, bus_list) {
5184 if (!pci_dev_trylock(dev))
5185 goto unlock;
5186 if (dev->subordinate) {
5187 if (!pci_bus_trylock(dev->subordinate)) {
5188 pci_dev_unlock(dev);
5189 goto unlock;
5193 return 1;
5195 unlock:
5196 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5197 if (dev->subordinate)
5198 pci_bus_unlock(dev->subordinate);
5199 pci_dev_unlock(dev);
5201 return 0;
5204 /* Do any devices on or below this slot prevent a bus reset? */
5205 static bool pci_slot_resetable(struct pci_slot *slot)
5207 struct pci_dev *dev;
5209 if (slot->bus->self &&
5210 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5211 return false;
5213 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5214 if (!dev->slot || dev->slot != slot)
5215 continue;
5216 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5217 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5218 return false;
5221 return true;
5224 /* Lock devices from the top of the tree down */
5225 static void pci_slot_lock(struct pci_slot *slot)
5227 struct pci_dev *dev;
5229 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5230 if (!dev->slot || dev->slot != slot)
5231 continue;
5232 pci_dev_lock(dev);
5233 if (dev->subordinate)
5234 pci_bus_lock(dev->subordinate);
5238 /* Unlock devices from the bottom of the tree up */
5239 static void pci_slot_unlock(struct pci_slot *slot)
5241 struct pci_dev *dev;
5243 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5244 if (!dev->slot || dev->slot != slot)
5245 continue;
5246 if (dev->subordinate)
5247 pci_bus_unlock(dev->subordinate);
5248 pci_dev_unlock(dev);
5252 /* Return 1 on successful lock, 0 on contention */
5253 static int pci_slot_trylock(struct pci_slot *slot)
5255 struct pci_dev *dev;
5257 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5258 if (!dev->slot || dev->slot != slot)
5259 continue;
5260 if (!pci_dev_trylock(dev))
5261 goto unlock;
5262 if (dev->subordinate) {
5263 if (!pci_bus_trylock(dev->subordinate)) {
5264 pci_dev_unlock(dev);
5265 goto unlock;
5269 return 1;
5271 unlock:
5272 list_for_each_entry_continue_reverse(dev,
5273 &slot->bus->devices, bus_list) {
5274 if (!dev->slot || dev->slot != slot)
5275 continue;
5276 if (dev->subordinate)
5277 pci_bus_unlock(dev->subordinate);
5278 pci_dev_unlock(dev);
5280 return 0;
5284 * Save and disable devices from the top of the tree down while holding
5285 * the @dev mutex lock for the entire tree.
5287 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5289 struct pci_dev *dev;
5291 list_for_each_entry(dev, &bus->devices, bus_list) {
5292 pci_dev_save_and_disable(dev);
5293 if (dev->subordinate)
5294 pci_bus_save_and_disable_locked(dev->subordinate);
5299 * Restore devices from top of the tree down while holding @dev mutex lock
5300 * for the entire tree. Parent bridges need to be restored before we can
5301 * get to subordinate devices.
5303 static void pci_bus_restore_locked(struct pci_bus *bus)
5305 struct pci_dev *dev;
5307 list_for_each_entry(dev, &bus->devices, bus_list) {
5308 pci_dev_restore(dev);
5309 if (dev->subordinate)
5310 pci_bus_restore_locked(dev->subordinate);
5315 * Save and disable devices from the top of the tree down while holding
5316 * the @dev mutex lock for the entire tree.
5318 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5320 struct pci_dev *dev;
5322 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5323 if (!dev->slot || dev->slot != slot)
5324 continue;
5325 pci_dev_save_and_disable(dev);
5326 if (dev->subordinate)
5327 pci_bus_save_and_disable_locked(dev->subordinate);
5332 * Restore devices from top of the tree down while holding @dev mutex lock
5333 * for the entire tree. Parent bridges need to be restored before we can
5334 * get to subordinate devices.
5336 static void pci_slot_restore_locked(struct pci_slot *slot)
5338 struct pci_dev *dev;
5340 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5341 if (!dev->slot || dev->slot != slot)
5342 continue;
5343 pci_dev_restore(dev);
5344 if (dev->subordinate)
5345 pci_bus_restore_locked(dev->subordinate);
5349 static int pci_slot_reset(struct pci_slot *slot, int probe)
5351 int rc;
5353 if (!slot || !pci_slot_resetable(slot))
5354 return -ENOTTY;
5356 if (!probe)
5357 pci_slot_lock(slot);
5359 might_sleep();
5361 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5363 if (!probe)
5364 pci_slot_unlock(slot);
5366 return rc;
5370 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5371 * @slot: PCI slot to probe
5373 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5375 int pci_probe_reset_slot(struct pci_slot *slot)
5377 return pci_slot_reset(slot, 1);
5379 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5382 * __pci_reset_slot - Try to reset a PCI slot
5383 * @slot: PCI slot to reset
5385 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5386 * independent of other slots. For instance, some slots may support slot power
5387 * control. In the case of a 1:1 bus to slot architecture, this function may
5388 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5389 * Generally a slot reset should be attempted before a bus reset. All of the
5390 * function of the slot and any subordinate buses behind the slot are reset
5391 * through this function. PCI config space of all devices in the slot and
5392 * behind the slot is saved before and restored after reset.
5394 * Same as above except return -EAGAIN if the slot cannot be locked
5396 static int __pci_reset_slot(struct pci_slot *slot)
5398 int rc;
5400 rc = pci_slot_reset(slot, 1);
5401 if (rc)
5402 return rc;
5404 if (pci_slot_trylock(slot)) {
5405 pci_slot_save_and_disable_locked(slot);
5406 might_sleep();
5407 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5408 pci_slot_restore_locked(slot);
5409 pci_slot_unlock(slot);
5410 } else
5411 rc = -EAGAIN;
5413 return rc;
5416 static int pci_bus_reset(struct pci_bus *bus, int probe)
5418 int ret;
5420 if (!bus->self || !pci_bus_resetable(bus))
5421 return -ENOTTY;
5423 if (probe)
5424 return 0;
5426 pci_bus_lock(bus);
5428 might_sleep();
5430 ret = pci_bridge_secondary_bus_reset(bus->self);
5432 pci_bus_unlock(bus);
5434 return ret;
5438 * pci_bus_error_reset - reset the bridge's subordinate bus
5439 * @bridge: The parent device that connects to the bus to reset
5441 * This function will first try to reset the slots on this bus if the method is
5442 * available. If slot reset fails or is not available, this will fall back to a
5443 * secondary bus reset.
5445 int pci_bus_error_reset(struct pci_dev *bridge)
5447 struct pci_bus *bus = bridge->subordinate;
5448 struct pci_slot *slot;
5450 if (!bus)
5451 return -ENOTTY;
5453 mutex_lock(&pci_slot_mutex);
5454 if (list_empty(&bus->slots))
5455 goto bus_reset;
5457 list_for_each_entry(slot, &bus->slots, list)
5458 if (pci_probe_reset_slot(slot))
5459 goto bus_reset;
5461 list_for_each_entry(slot, &bus->slots, list)
5462 if (pci_slot_reset(slot, 0))
5463 goto bus_reset;
5465 mutex_unlock(&pci_slot_mutex);
5466 return 0;
5467 bus_reset:
5468 mutex_unlock(&pci_slot_mutex);
5469 return pci_bus_reset(bridge->subordinate, 0);
5473 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5474 * @bus: PCI bus to probe
5476 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5478 int pci_probe_reset_bus(struct pci_bus *bus)
5480 return pci_bus_reset(bus, 1);
5482 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5485 * __pci_reset_bus - Try to reset a PCI bus
5486 * @bus: top level PCI bus to reset
5488 * Same as above except return -EAGAIN if the bus cannot be locked
5490 static int __pci_reset_bus(struct pci_bus *bus)
5492 int rc;
5494 rc = pci_bus_reset(bus, 1);
5495 if (rc)
5496 return rc;
5498 if (pci_bus_trylock(bus)) {
5499 pci_bus_save_and_disable_locked(bus);
5500 might_sleep();
5501 rc = pci_bridge_secondary_bus_reset(bus->self);
5502 pci_bus_restore_locked(bus);
5503 pci_bus_unlock(bus);
5504 } else
5505 rc = -EAGAIN;
5507 return rc;
5511 * pci_reset_bus - Try to reset a PCI bus
5512 * @pdev: top level PCI device to reset via slot/bus
5514 * Same as above except return -EAGAIN if the bus cannot be locked
5516 int pci_reset_bus(struct pci_dev *pdev)
5518 return (!pci_probe_reset_slot(pdev->slot)) ?
5519 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5521 EXPORT_SYMBOL_GPL(pci_reset_bus);
5524 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5525 * @dev: PCI device to query
5527 * Returns mmrbc: maximum designed memory read count in bytes or
5528 * appropriate error value.
5530 int pcix_get_max_mmrbc(struct pci_dev *dev)
5532 int cap;
5533 u32 stat;
5535 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5536 if (!cap)
5537 return -EINVAL;
5539 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5540 return -EINVAL;
5542 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5544 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5547 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5548 * @dev: PCI device to query
5550 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5551 * value.
5553 int pcix_get_mmrbc(struct pci_dev *dev)
5555 int cap;
5556 u16 cmd;
5558 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5559 if (!cap)
5560 return -EINVAL;
5562 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5563 return -EINVAL;
5565 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5567 EXPORT_SYMBOL(pcix_get_mmrbc);
5570 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5571 * @dev: PCI device to query
5572 * @mmrbc: maximum memory read count in bytes
5573 * valid values are 512, 1024, 2048, 4096
5575 * If possible sets maximum memory read byte count, some bridges have errata
5576 * that prevent this.
5578 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5580 int cap;
5581 u32 stat, v, o;
5582 u16 cmd;
5584 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5585 return -EINVAL;
5587 v = ffs(mmrbc) - 10;
5589 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5590 if (!cap)
5591 return -EINVAL;
5593 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5594 return -EINVAL;
5596 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5597 return -E2BIG;
5599 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5600 return -EINVAL;
5602 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5603 if (o != v) {
5604 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5605 return -EIO;
5607 cmd &= ~PCI_X_CMD_MAX_READ;
5608 cmd |= v << 2;
5609 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5610 return -EIO;
5612 return 0;
5614 EXPORT_SYMBOL(pcix_set_mmrbc);
5617 * pcie_get_readrq - get PCI Express read request size
5618 * @dev: PCI device to query
5620 * Returns maximum memory read request in bytes or appropriate error value.
5622 int pcie_get_readrq(struct pci_dev *dev)
5624 u16 ctl;
5626 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5628 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5630 EXPORT_SYMBOL(pcie_get_readrq);
5633 * pcie_set_readrq - set PCI Express maximum memory read request
5634 * @dev: PCI device to query
5635 * @rq: maximum memory read count in bytes
5636 * valid values are 128, 256, 512, 1024, 2048, 4096
5638 * If possible sets maximum memory read request in bytes
5640 int pcie_set_readrq(struct pci_dev *dev, int rq)
5642 u16 v;
5644 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5645 return -EINVAL;
5648 * If using the "performance" PCIe config, we clamp the read rq
5649 * size to the max packet size to keep the host bridge from
5650 * generating requests larger than we can cope with.
5652 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5653 int mps = pcie_get_mps(dev);
5655 if (mps < rq)
5656 rq = mps;
5659 v = (ffs(rq) - 8) << 12;
5661 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5662 PCI_EXP_DEVCTL_READRQ, v);
5664 EXPORT_SYMBOL(pcie_set_readrq);
5667 * pcie_get_mps - get PCI Express maximum payload size
5668 * @dev: PCI device to query
5670 * Returns maximum payload size in bytes
5672 int pcie_get_mps(struct pci_dev *dev)
5674 u16 ctl;
5676 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5678 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5680 EXPORT_SYMBOL(pcie_get_mps);
5683 * pcie_set_mps - set PCI Express maximum payload size
5684 * @dev: PCI device to query
5685 * @mps: maximum payload size in bytes
5686 * valid values are 128, 256, 512, 1024, 2048, 4096
5688 * If possible sets maximum payload size
5690 int pcie_set_mps(struct pci_dev *dev, int mps)
5692 u16 v;
5694 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5695 return -EINVAL;
5697 v = ffs(mps) - 8;
5698 if (v > dev->pcie_mpss)
5699 return -EINVAL;
5700 v <<= 5;
5702 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5703 PCI_EXP_DEVCTL_PAYLOAD, v);
5705 EXPORT_SYMBOL(pcie_set_mps);
5708 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5709 * device and its bandwidth limitation
5710 * @dev: PCI device to query
5711 * @limiting_dev: storage for device causing the bandwidth limitation
5712 * @speed: storage for speed of limiting device
5713 * @width: storage for width of limiting device
5715 * Walk up the PCI device chain and find the point where the minimum
5716 * bandwidth is available. Return the bandwidth available there and (if
5717 * limiting_dev, speed, and width pointers are supplied) information about
5718 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5719 * raw bandwidth.
5721 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5722 enum pci_bus_speed *speed,
5723 enum pcie_link_width *width)
5725 u16 lnksta;
5726 enum pci_bus_speed next_speed;
5727 enum pcie_link_width next_width;
5728 u32 bw, next_bw;
5730 if (speed)
5731 *speed = PCI_SPEED_UNKNOWN;
5732 if (width)
5733 *width = PCIE_LNK_WIDTH_UNKNOWN;
5735 bw = 0;
5737 while (dev) {
5738 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5740 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5741 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5742 PCI_EXP_LNKSTA_NLW_SHIFT;
5744 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5746 /* Check if current device limits the total bandwidth */
5747 if (!bw || next_bw <= bw) {
5748 bw = next_bw;
5750 if (limiting_dev)
5751 *limiting_dev = dev;
5752 if (speed)
5753 *speed = next_speed;
5754 if (width)
5755 *width = next_width;
5758 dev = pci_upstream_bridge(dev);
5761 return bw;
5763 EXPORT_SYMBOL(pcie_bandwidth_available);
5766 * pcie_get_speed_cap - query for the PCI device's link speed capability
5767 * @dev: PCI device to query
5769 * Query the PCI device speed capability. Return the maximum link speed
5770 * supported by the device.
5772 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5774 u32 lnkcap2, lnkcap;
5777 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5778 * implementation note there recommends using the Supported Link
5779 * Speeds Vector in Link Capabilities 2 when supported.
5781 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5782 * should use the Supported Link Speeds field in Link Capabilities,
5783 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5785 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5786 if (lnkcap2) { /* PCIe r3.0-compliant */
5787 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5788 return PCIE_SPEED_32_0GT;
5789 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5790 return PCIE_SPEED_16_0GT;
5791 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5792 return PCIE_SPEED_8_0GT;
5793 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5794 return PCIE_SPEED_5_0GT;
5795 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5796 return PCIE_SPEED_2_5GT;
5797 return PCI_SPEED_UNKNOWN;
5800 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5801 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5802 return PCIE_SPEED_5_0GT;
5803 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5804 return PCIE_SPEED_2_5GT;
5806 return PCI_SPEED_UNKNOWN;
5808 EXPORT_SYMBOL(pcie_get_speed_cap);
5811 * pcie_get_width_cap - query for the PCI device's link width capability
5812 * @dev: PCI device to query
5814 * Query the PCI device width capability. Return the maximum link width
5815 * supported by the device.
5817 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5819 u32 lnkcap;
5821 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5822 if (lnkcap)
5823 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5825 return PCIE_LNK_WIDTH_UNKNOWN;
5827 EXPORT_SYMBOL(pcie_get_width_cap);
5830 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5831 * @dev: PCI device
5832 * @speed: storage for link speed
5833 * @width: storage for link width
5835 * Calculate a PCI device's link bandwidth by querying for its link speed
5836 * and width, multiplying them, and applying encoding overhead. The result
5837 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5839 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5840 enum pcie_link_width *width)
5842 *speed = pcie_get_speed_cap(dev);
5843 *width = pcie_get_width_cap(dev);
5845 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5846 return 0;
5848 return *width * PCIE_SPEED2MBS_ENC(*speed);
5852 * __pcie_print_link_status - Report the PCI device's link speed and width
5853 * @dev: PCI device to query
5854 * @verbose: Print info even when enough bandwidth is available
5856 * If the available bandwidth at the device is less than the device is
5857 * capable of, report the device's maximum possible bandwidth and the
5858 * upstream link that limits its performance. If @verbose, always print
5859 * the available bandwidth, even if the device isn't constrained.
5861 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5863 enum pcie_link_width width, width_cap;
5864 enum pci_bus_speed speed, speed_cap;
5865 struct pci_dev *limiting_dev = NULL;
5866 u32 bw_avail, bw_cap;
5868 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5869 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5871 if (bw_avail >= bw_cap && verbose)
5872 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5873 bw_cap / 1000, bw_cap % 1000,
5874 PCIE_SPEED2STR(speed_cap), width_cap);
5875 else if (bw_avail < bw_cap)
5876 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5877 bw_avail / 1000, bw_avail % 1000,
5878 PCIE_SPEED2STR(speed), width,
5879 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5880 bw_cap / 1000, bw_cap % 1000,
5881 PCIE_SPEED2STR(speed_cap), width_cap);
5885 * pcie_print_link_status - Report the PCI device's link speed and width
5886 * @dev: PCI device to query
5888 * Report the available bandwidth at the device.
5890 void pcie_print_link_status(struct pci_dev *dev)
5892 __pcie_print_link_status(dev, true);
5894 EXPORT_SYMBOL(pcie_print_link_status);
5897 * pci_select_bars - Make BAR mask from the type of resource
5898 * @dev: the PCI device for which BAR mask is made
5899 * @flags: resource type mask to be selected
5901 * This helper routine makes bar mask from the type of resource.
5903 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5905 int i, bars = 0;
5906 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5907 if (pci_resource_flags(dev, i) & flags)
5908 bars |= (1 << i);
5909 return bars;
5911 EXPORT_SYMBOL(pci_select_bars);
5913 /* Some architectures require additional programming to enable VGA */
5914 static arch_set_vga_state_t arch_set_vga_state;
5916 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5918 arch_set_vga_state = func; /* NULL disables */
5921 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5922 unsigned int command_bits, u32 flags)
5924 if (arch_set_vga_state)
5925 return arch_set_vga_state(dev, decode, command_bits,
5926 flags);
5927 return 0;
5931 * pci_set_vga_state - set VGA decode state on device and parents if requested
5932 * @dev: the PCI device
5933 * @decode: true = enable decoding, false = disable decoding
5934 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5935 * @flags: traverse ancestors and change bridges
5936 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5938 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5939 unsigned int command_bits, u32 flags)
5941 struct pci_bus *bus;
5942 struct pci_dev *bridge;
5943 u16 cmd;
5944 int rc;
5946 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5948 /* ARCH specific VGA enables */
5949 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5950 if (rc)
5951 return rc;
5953 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5954 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5955 if (decode == true)
5956 cmd |= command_bits;
5957 else
5958 cmd &= ~command_bits;
5959 pci_write_config_word(dev, PCI_COMMAND, cmd);
5962 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5963 return 0;
5965 bus = dev->bus;
5966 while (bus) {
5967 bridge = bus->self;
5968 if (bridge) {
5969 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5970 &cmd);
5971 if (decode == true)
5972 cmd |= PCI_BRIDGE_CTL_VGA;
5973 else
5974 cmd &= ~PCI_BRIDGE_CTL_VGA;
5975 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5976 cmd);
5978 bus = bus->parent;
5980 return 0;
5983 #ifdef CONFIG_ACPI
5984 bool pci_pr3_present(struct pci_dev *pdev)
5986 struct acpi_device *adev;
5988 if (acpi_disabled)
5989 return false;
5991 adev = ACPI_COMPANION(&pdev->dev);
5992 if (!adev)
5993 return false;
5995 return adev->power.flags.power_resources &&
5996 acpi_has_method(adev->handle, "_PR3");
5998 EXPORT_SYMBOL_GPL(pci_pr3_present);
5999 #endif
6002 * pci_add_dma_alias - Add a DMA devfn alias for a device
6003 * @dev: the PCI device for which alias is added
6004 * @devfn_from: alias slot and function
6005 * @nr_devfns: number of subsequent devfns to alias
6007 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6008 * which is used to program permissible bus-devfn source addresses for DMA
6009 * requests in an IOMMU. These aliases factor into IOMMU group creation
6010 * and are useful for devices generating DMA requests beyond or different
6011 * from their logical bus-devfn. Examples include device quirks where the
6012 * device simply uses the wrong devfn, as well as non-transparent bridges
6013 * where the alias may be a proxy for devices in another domain.
6015 * IOMMU group creation is performed during device discovery or addition,
6016 * prior to any potential DMA mapping and therefore prior to driver probing
6017 * (especially for userspace assigned devices where IOMMU group definition
6018 * cannot be left as a userspace activity). DMA aliases should therefore
6019 * be configured via quirks, such as the PCI fixup header quirk.
6021 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6023 int devfn_to;
6025 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6026 devfn_to = devfn_from + nr_devfns - 1;
6028 if (!dev->dma_alias_mask)
6029 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6030 if (!dev->dma_alias_mask) {
6031 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6032 return;
6035 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6037 if (nr_devfns == 1)
6038 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6039 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6040 else if (nr_devfns > 1)
6041 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6042 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6043 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6046 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6048 return (dev1->dma_alias_mask &&
6049 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6050 (dev2->dma_alias_mask &&
6051 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6052 pci_real_dma_dev(dev1) == dev2 ||
6053 pci_real_dma_dev(dev2) == dev1;
6056 bool pci_device_is_present(struct pci_dev *pdev)
6058 u32 v;
6060 if (pci_dev_is_disconnected(pdev))
6061 return false;
6062 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6064 EXPORT_SYMBOL_GPL(pci_device_is_present);
6066 void pci_ignore_hotplug(struct pci_dev *dev)
6068 struct pci_dev *bridge = dev->bus->self;
6070 dev->ignore_hotplug = 1;
6071 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6072 if (bridge)
6073 bridge->ignore_hotplug = 1;
6075 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6078 * pci_real_dma_dev - Get PCI DMA device for PCI device
6079 * @dev: the PCI device that may have a PCI DMA alias
6081 * Permits the platform to provide architecture-specific functionality to
6082 * devices needing to alias DMA to another PCI device on another PCI bus. If
6083 * the PCI device is on the same bus, it is recommended to use
6084 * pci_add_dma_alias(). This is the default implementation. Architecture
6085 * implementations can override this.
6087 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6089 return dev;
6092 resource_size_t __weak pcibios_default_alignment(void)
6094 return 0;
6098 * Arches that don't want to expose struct resource to userland as-is in
6099 * sysfs and /proc can implement their own pci_resource_to_user().
6101 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6102 const struct resource *rsrc,
6103 resource_size_t *start, resource_size_t *end)
6105 *start = rsrc->start;
6106 *end = rsrc->end;
6109 static char *resource_alignment_param;
6110 static DEFINE_SPINLOCK(resource_alignment_lock);
6113 * pci_specified_resource_alignment - get resource alignment specified by user.
6114 * @dev: the PCI device to get
6115 * @resize: whether or not to change resources' size when reassigning alignment
6117 * RETURNS: Resource alignment if it is specified.
6118 * Zero if it is not specified.
6120 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6121 bool *resize)
6123 int align_order, count;
6124 resource_size_t align = pcibios_default_alignment();
6125 const char *p;
6126 int ret;
6128 spin_lock(&resource_alignment_lock);
6129 p = resource_alignment_param;
6130 if (!p || !*p)
6131 goto out;
6132 if (pci_has_flag(PCI_PROBE_ONLY)) {
6133 align = 0;
6134 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6135 goto out;
6138 while (*p) {
6139 count = 0;
6140 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6141 p[count] == '@') {
6142 p += count + 1;
6143 } else {
6144 align_order = -1;
6147 ret = pci_dev_str_match(dev, p, &p);
6148 if (ret == 1) {
6149 *resize = true;
6150 if (align_order == -1)
6151 align = PAGE_SIZE;
6152 else
6153 align = 1 << align_order;
6154 break;
6155 } else if (ret < 0) {
6156 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6158 break;
6161 if (*p != ';' && *p != ',') {
6162 /* End of param or invalid format */
6163 break;
6165 p++;
6167 out:
6168 spin_unlock(&resource_alignment_lock);
6169 return align;
6172 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6173 resource_size_t align, bool resize)
6175 struct resource *r = &dev->resource[bar];
6176 resource_size_t size;
6178 if (!(r->flags & IORESOURCE_MEM))
6179 return;
6181 if (r->flags & IORESOURCE_PCI_FIXED) {
6182 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6183 bar, r, (unsigned long long)align);
6184 return;
6187 size = resource_size(r);
6188 if (size >= align)
6189 return;
6192 * Increase the alignment of the resource. There are two ways we
6193 * can do this:
6195 * 1) Increase the size of the resource. BARs are aligned on their
6196 * size, so when we reallocate space for this resource, we'll
6197 * allocate it with the larger alignment. This also prevents
6198 * assignment of any other BARs inside the alignment region, so
6199 * if we're requesting page alignment, this means no other BARs
6200 * will share the page.
6202 * The disadvantage is that this makes the resource larger than
6203 * the hardware BAR, which may break drivers that compute things
6204 * based on the resource size, e.g., to find registers at a
6205 * fixed offset before the end of the BAR.
6207 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6208 * set r->start to the desired alignment. By itself this
6209 * doesn't prevent other BARs being put inside the alignment
6210 * region, but if we realign *every* resource of every device in
6211 * the system, none of them will share an alignment region.
6213 * When the user has requested alignment for only some devices via
6214 * the "pci=resource_alignment" argument, "resize" is true and we
6215 * use the first method. Otherwise we assume we're aligning all
6216 * devices and we use the second.
6219 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6220 bar, r, (unsigned long long)align);
6222 if (resize) {
6223 r->start = 0;
6224 r->end = align - 1;
6225 } else {
6226 r->flags &= ~IORESOURCE_SIZEALIGN;
6227 r->flags |= IORESOURCE_STARTALIGN;
6228 r->start = align;
6229 r->end = r->start + size - 1;
6231 r->flags |= IORESOURCE_UNSET;
6235 * This function disables memory decoding and releases memory resources
6236 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6237 * It also rounds up size to specified alignment.
6238 * Later on, the kernel will assign page-aligned memory resource back
6239 * to the device.
6241 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6243 int i;
6244 struct resource *r;
6245 resource_size_t align;
6246 u16 command;
6247 bool resize = false;
6250 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6251 * 3.4.1.11. Their resources are allocated from the space
6252 * described by the VF BARx register in the PF's SR-IOV capability.
6253 * We can't influence their alignment here.
6255 if (dev->is_virtfn)
6256 return;
6258 /* check if specified PCI is target device to reassign */
6259 align = pci_specified_resource_alignment(dev, &resize);
6260 if (!align)
6261 return;
6263 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6264 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6265 pci_warn(dev, "Can't reassign resources to host bridge\n");
6266 return;
6269 pci_read_config_word(dev, PCI_COMMAND, &command);
6270 command &= ~PCI_COMMAND_MEMORY;
6271 pci_write_config_word(dev, PCI_COMMAND, command);
6273 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6274 pci_request_resource_alignment(dev, i, align, resize);
6277 * Need to disable bridge's resource window,
6278 * to enable the kernel to reassign new resource
6279 * window later on.
6281 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6282 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6283 r = &dev->resource[i];
6284 if (!(r->flags & IORESOURCE_MEM))
6285 continue;
6286 r->flags |= IORESOURCE_UNSET;
6287 r->end = resource_size(r) - 1;
6288 r->start = 0;
6290 pci_disable_bridge_window(dev);
6294 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6296 size_t count = 0;
6298 spin_lock(&resource_alignment_lock);
6299 if (resource_alignment_param)
6300 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6301 spin_unlock(&resource_alignment_lock);
6304 * When set by the command line, resource_alignment_param will not
6305 * have a trailing line feed, which is ugly. So conditionally add
6306 * it here.
6308 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6309 buf[count - 1] = '\n';
6310 buf[count++] = 0;
6313 return count;
6316 static ssize_t resource_alignment_store(struct bus_type *bus,
6317 const char *buf, size_t count)
6319 char *param = kstrndup(buf, count, GFP_KERNEL);
6321 if (!param)
6322 return -ENOMEM;
6324 spin_lock(&resource_alignment_lock);
6325 kfree(resource_alignment_param);
6326 resource_alignment_param = param;
6327 spin_unlock(&resource_alignment_lock);
6328 return count;
6331 static BUS_ATTR_RW(resource_alignment);
6333 static int __init pci_resource_alignment_sysfs_init(void)
6335 return bus_create_file(&pci_bus_type,
6336 &bus_attr_resource_alignment);
6338 late_initcall(pci_resource_alignment_sysfs_init);
6340 static void pci_no_domains(void)
6342 #ifdef CONFIG_PCI_DOMAINS
6343 pci_domains_supported = 0;
6344 #endif
6347 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6348 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6350 static int pci_get_new_domain_nr(void)
6352 return atomic_inc_return(&__domain_nr);
6355 static int of_pci_bus_find_domain_nr(struct device *parent)
6357 static int use_dt_domains = -1;
6358 int domain = -1;
6360 if (parent)
6361 domain = of_get_pci_domain_nr(parent->of_node);
6364 * Check DT domain and use_dt_domains values.
6366 * If DT domain property is valid (domain >= 0) and
6367 * use_dt_domains != 0, the DT assignment is valid since this means
6368 * we have not previously allocated a domain number by using
6369 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6370 * 1, to indicate that we have just assigned a domain number from
6371 * DT.
6373 * If DT domain property value is not valid (ie domain < 0), and we
6374 * have not previously assigned a domain number from DT
6375 * (use_dt_domains != 1) we should assign a domain number by
6376 * using the:
6378 * pci_get_new_domain_nr()
6380 * API and update the use_dt_domains value to keep track of method we
6381 * are using to assign domain numbers (use_dt_domains = 0).
6383 * All other combinations imply we have a platform that is trying
6384 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6385 * which is a recipe for domain mishandling and it is prevented by
6386 * invalidating the domain value (domain = -1) and printing a
6387 * corresponding error.
6389 if (domain >= 0 && use_dt_domains) {
6390 use_dt_domains = 1;
6391 } else if (domain < 0 && use_dt_domains != 1) {
6392 use_dt_domains = 0;
6393 domain = pci_get_new_domain_nr();
6394 } else {
6395 if (parent)
6396 pr_err("Node %pOF has ", parent->of_node);
6397 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6398 domain = -1;
6401 return domain;
6404 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6406 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6407 acpi_pci_bus_find_domain_nr(bus);
6409 #endif
6412 * pci_ext_cfg_avail - can we access extended PCI config space?
6414 * Returns 1 if we can access PCI extended config space (offsets
6415 * greater than 0xff). This is the default implementation. Architecture
6416 * implementations can override this.
6418 int __weak pci_ext_cfg_avail(void)
6420 return 1;
6423 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6426 EXPORT_SYMBOL(pci_fixup_cardbus);
6428 static int __init pci_setup(char *str)
6430 while (str) {
6431 char *k = strchr(str, ',');
6432 if (k)
6433 *k++ = 0;
6434 if (*str && (str = pcibios_setup(str)) && *str) {
6435 if (!strcmp(str, "nomsi")) {
6436 pci_no_msi();
6437 } else if (!strncmp(str, "noats", 5)) {
6438 pr_info("PCIe: ATS is disabled\n");
6439 pcie_ats_disabled = true;
6440 } else if (!strcmp(str, "noaer")) {
6441 pci_no_aer();
6442 } else if (!strcmp(str, "earlydump")) {
6443 pci_early_dump = true;
6444 } else if (!strncmp(str, "realloc=", 8)) {
6445 pci_realloc_get_opt(str + 8);
6446 } else if (!strncmp(str, "realloc", 7)) {
6447 pci_realloc_get_opt("on");
6448 } else if (!strcmp(str, "nodomains")) {
6449 pci_no_domains();
6450 } else if (!strncmp(str, "noari", 5)) {
6451 pcie_ari_disabled = true;
6452 } else if (!strncmp(str, "cbiosize=", 9)) {
6453 pci_cardbus_io_size = memparse(str + 9, &str);
6454 } else if (!strncmp(str, "cbmemsize=", 10)) {
6455 pci_cardbus_mem_size = memparse(str + 10, &str);
6456 } else if (!strncmp(str, "resource_alignment=", 19)) {
6457 resource_alignment_param = str + 19;
6458 } else if (!strncmp(str, "ecrc=", 5)) {
6459 pcie_ecrc_get_policy(str + 5);
6460 } else if (!strncmp(str, "hpiosize=", 9)) {
6461 pci_hotplug_io_size = memparse(str + 9, &str);
6462 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6463 pci_hotplug_mmio_size = memparse(str + 11, &str);
6464 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6465 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6466 } else if (!strncmp(str, "hpmemsize=", 10)) {
6467 pci_hotplug_mmio_size = memparse(str + 10, &str);
6468 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6469 } else if (!strncmp(str, "hpbussize=", 10)) {
6470 pci_hotplug_bus_size =
6471 simple_strtoul(str + 10, &str, 0);
6472 if (pci_hotplug_bus_size > 0xff)
6473 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6474 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6475 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6476 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6477 pcie_bus_config = PCIE_BUS_SAFE;
6478 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6479 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6480 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6481 pcie_bus_config = PCIE_BUS_PEER2PEER;
6482 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6483 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6484 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6485 disable_acs_redir_param = str + 18;
6486 } else {
6487 pr_err("PCI: Unknown option `%s'\n", str);
6490 str = k;
6492 return 0;
6494 early_param("pci", pci_setup);
6497 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6498 * in pci_setup(), above, to point to data in the __initdata section which
6499 * will be freed after the init sequence is complete. We can't allocate memory
6500 * in pci_setup() because some architectures do not have any memory allocation
6501 * service available during an early_param() call. So we allocate memory and
6502 * copy the variable here before the init section is freed.
6505 static int __init pci_realloc_setup_params(void)
6507 resource_alignment_param = kstrdup(resource_alignment_param,
6508 GFP_KERNEL);
6509 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6511 return 0;
6513 pure_initcall(pci_realloc_setup_params);