1 // SPDX-License-Identifier: GPL-2.0-only
3 * Perf support for the Statistical Profiling Extension, introduced as
6 * Copyright (C) 2016 ARM Limited
8 * Author: Will Deacon <will.deacon@arm.com>
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
40 #include <asm/sysreg.h>
42 #define ARM_SPE_BUF_PAD_BYTE 0
44 struct arm_spe_pmu_buf
{
52 struct platform_device
*pdev
;
53 cpumask_t supported_cpus
;
54 struct hlist_node hotplug_node
;
61 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
65 #define SPE_PMU_FEAT_LDS (1UL << 4)
66 #define SPE_PMU_FEAT_ERND (1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
72 struct perf_output_handle __percpu
*handle
;
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online
;
83 enum arm_spe_pmu_buf_fault_action
{
84 SPE_PMU_BUF_FAULT_ACT_SPURIOUS
,
85 SPE_PMU_BUF_FAULT_ACT_FATAL
,
86 SPE_PMU_BUF_FAULT_ACT_OK
,
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities
{
91 SPE_PMU_CAP_ARCH_INST
= 0,
94 SPE_PMU_CAP_CNT_SZ
= SPE_PMU_CAP_FEAT_MAX
,
98 static int arm_spe_pmu_feat_caps
[SPE_PMU_CAP_FEAT_MAX
] = {
99 [SPE_PMU_CAP_ARCH_INST
] = SPE_PMU_FEAT_ARCH_INST
,
100 [SPE_PMU_CAP_ERND
] = SPE_PMU_FEAT_ERND
,
103 static u32
arm_spe_pmu_cap_get(struct arm_spe_pmu
*spe_pmu
, int cap
)
105 if (cap
< SPE_PMU_CAP_FEAT_MAX
)
106 return !!(spe_pmu
->features
& arm_spe_pmu_feat_caps
[cap
]);
109 case SPE_PMU_CAP_CNT_SZ
:
110 return spe_pmu
->counter_sz
;
111 case SPE_PMU_CAP_MIN_IVAL
:
112 return spe_pmu
->min_period
;
114 WARN(1, "unknown cap %d\n", cap
);
120 static ssize_t
arm_spe_pmu_cap_show(struct device
*dev
,
121 struct device_attribute
*attr
,
124 struct arm_spe_pmu
*spe_pmu
= dev_get_drvdata(dev
);
125 struct dev_ext_attribute
*ea
=
126 container_of(attr
, struct dev_ext_attribute
, attr
);
127 int cap
= (long)ea
->var
;
129 return snprintf(buf
, PAGE_SIZE
, "%u\n",
130 arm_spe_pmu_cap_get(spe_pmu
, cap
));
133 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
134 &((struct dev_ext_attribute[]) { \
135 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
138 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
139 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
141 static struct attribute
*arm_spe_pmu_cap_attr
[] = {
142 SPE_CAP_EXT_ATTR_ENTRY(arch_inst
, SPE_PMU_CAP_ARCH_INST
),
143 SPE_CAP_EXT_ATTR_ENTRY(ernd
, SPE_PMU_CAP_ERND
),
144 SPE_CAP_EXT_ATTR_ENTRY(count_size
, SPE_PMU_CAP_CNT_SZ
),
145 SPE_CAP_EXT_ATTR_ENTRY(min_interval
, SPE_PMU_CAP_MIN_IVAL
),
149 static struct attribute_group arm_spe_pmu_cap_group
= {
151 .attrs
= arm_spe_pmu_cap_attr
,
155 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
156 #define ATTR_CFG_FLD_ts_enable_LO 0
157 #define ATTR_CFG_FLD_ts_enable_HI 0
158 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
159 #define ATTR_CFG_FLD_pa_enable_LO 1
160 #define ATTR_CFG_FLD_pa_enable_HI 1
161 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
162 #define ATTR_CFG_FLD_pct_enable_LO 2
163 #define ATTR_CFG_FLD_pct_enable_HI 2
164 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
165 #define ATTR_CFG_FLD_jitter_LO 16
166 #define ATTR_CFG_FLD_jitter_HI 16
167 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
168 #define ATTR_CFG_FLD_branch_filter_LO 32
169 #define ATTR_CFG_FLD_branch_filter_HI 32
170 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
171 #define ATTR_CFG_FLD_load_filter_LO 33
172 #define ATTR_CFG_FLD_load_filter_HI 33
173 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
174 #define ATTR_CFG_FLD_store_filter_LO 34
175 #define ATTR_CFG_FLD_store_filter_HI 34
177 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
178 #define ATTR_CFG_FLD_event_filter_LO 0
179 #define ATTR_CFG_FLD_event_filter_HI 63
181 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
182 #define ATTR_CFG_FLD_min_latency_LO 0
183 #define ATTR_CFG_FLD_min_latency_HI 11
185 /* Why does everything I do descend into this? */
186 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
187 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
189 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
190 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
192 #define GEN_PMU_FORMAT_ATTR(name) \
193 PMU_FORMAT_ATTR(name, \
194 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
195 ATTR_CFG_FLD_##name##_LO, \
196 ATTR_CFG_FLD_##name##_HI))
198 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
199 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
201 #define ATTR_CFG_GET_FLD(attr, name) \
202 _ATTR_CFG_GET_FLD(attr, \
203 ATTR_CFG_FLD_##name##_CFG, \
204 ATTR_CFG_FLD_##name##_LO, \
205 ATTR_CFG_FLD_##name##_HI)
207 GEN_PMU_FORMAT_ATTR(ts_enable
);
208 GEN_PMU_FORMAT_ATTR(pa_enable
);
209 GEN_PMU_FORMAT_ATTR(pct_enable
);
210 GEN_PMU_FORMAT_ATTR(jitter
);
211 GEN_PMU_FORMAT_ATTR(branch_filter
);
212 GEN_PMU_FORMAT_ATTR(load_filter
);
213 GEN_PMU_FORMAT_ATTR(store_filter
);
214 GEN_PMU_FORMAT_ATTR(event_filter
);
215 GEN_PMU_FORMAT_ATTR(min_latency
);
217 static struct attribute
*arm_spe_pmu_formats_attr
[] = {
218 &format_attr_ts_enable
.attr
,
219 &format_attr_pa_enable
.attr
,
220 &format_attr_pct_enable
.attr
,
221 &format_attr_jitter
.attr
,
222 &format_attr_branch_filter
.attr
,
223 &format_attr_load_filter
.attr
,
224 &format_attr_store_filter
.attr
,
225 &format_attr_event_filter
.attr
,
226 &format_attr_min_latency
.attr
,
230 static struct attribute_group arm_spe_pmu_format_group
= {
232 .attrs
= arm_spe_pmu_formats_attr
,
235 static ssize_t
arm_spe_pmu_get_attr_cpumask(struct device
*dev
,
236 struct device_attribute
*attr
,
239 struct arm_spe_pmu
*spe_pmu
= dev_get_drvdata(dev
);
241 return cpumap_print_to_pagebuf(true, buf
, &spe_pmu
->supported_cpus
);
243 static DEVICE_ATTR(cpumask
, S_IRUGO
, arm_spe_pmu_get_attr_cpumask
, NULL
);
245 static struct attribute
*arm_spe_pmu_attrs
[] = {
246 &dev_attr_cpumask
.attr
,
250 static struct attribute_group arm_spe_pmu_group
= {
251 .attrs
= arm_spe_pmu_attrs
,
254 static const struct attribute_group
*arm_spe_pmu_attr_groups
[] = {
256 &arm_spe_pmu_cap_group
,
257 &arm_spe_pmu_format_group
,
261 /* Convert between user ABI and register values */
262 static u64
arm_spe_event_to_pmscr(struct perf_event
*event
)
264 struct perf_event_attr
*attr
= &event
->attr
;
267 reg
|= ATTR_CFG_GET_FLD(attr
, ts_enable
) << SYS_PMSCR_EL1_TS_SHIFT
;
268 reg
|= ATTR_CFG_GET_FLD(attr
, pa_enable
) << SYS_PMSCR_EL1_PA_SHIFT
;
269 reg
|= ATTR_CFG_GET_FLD(attr
, pct_enable
) << SYS_PMSCR_EL1_PCT_SHIFT
;
271 if (!attr
->exclude_user
)
272 reg
|= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT
);
274 if (!attr
->exclude_kernel
)
275 reg
|= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT
);
277 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR
) && capable(CAP_SYS_ADMIN
))
278 reg
|= BIT(SYS_PMSCR_EL1_CX_SHIFT
);
283 static void arm_spe_event_sanitise_period(struct perf_event
*event
)
285 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
286 u64 period
= event
->hw
.sample_period
;
287 u64 max_period
= SYS_PMSIRR_EL1_INTERVAL_MASK
288 << SYS_PMSIRR_EL1_INTERVAL_SHIFT
;
290 if (period
< spe_pmu
->min_period
)
291 period
= spe_pmu
->min_period
;
292 else if (period
> max_period
)
295 period
&= max_period
;
297 event
->hw
.sample_period
= period
;
300 static u64
arm_spe_event_to_pmsirr(struct perf_event
*event
)
302 struct perf_event_attr
*attr
= &event
->attr
;
305 arm_spe_event_sanitise_period(event
);
307 reg
|= ATTR_CFG_GET_FLD(attr
, jitter
) << SYS_PMSIRR_EL1_RND_SHIFT
;
308 reg
|= event
->hw
.sample_period
;
313 static u64
arm_spe_event_to_pmsfcr(struct perf_event
*event
)
315 struct perf_event_attr
*attr
= &event
->attr
;
318 reg
|= ATTR_CFG_GET_FLD(attr
, load_filter
) << SYS_PMSFCR_EL1_LD_SHIFT
;
319 reg
|= ATTR_CFG_GET_FLD(attr
, store_filter
) << SYS_PMSFCR_EL1_ST_SHIFT
;
320 reg
|= ATTR_CFG_GET_FLD(attr
, branch_filter
) << SYS_PMSFCR_EL1_B_SHIFT
;
323 reg
|= BIT(SYS_PMSFCR_EL1_FT_SHIFT
);
325 if (ATTR_CFG_GET_FLD(attr
, event_filter
))
326 reg
|= BIT(SYS_PMSFCR_EL1_FE_SHIFT
);
328 if (ATTR_CFG_GET_FLD(attr
, min_latency
))
329 reg
|= BIT(SYS_PMSFCR_EL1_FL_SHIFT
);
334 static u64
arm_spe_event_to_pmsevfr(struct perf_event
*event
)
336 struct perf_event_attr
*attr
= &event
->attr
;
337 return ATTR_CFG_GET_FLD(attr
, event_filter
);
340 static u64
arm_spe_event_to_pmslatfr(struct perf_event
*event
)
342 struct perf_event_attr
*attr
= &event
->attr
;
343 return ATTR_CFG_GET_FLD(attr
, min_latency
)
344 << SYS_PMSLATFR_EL1_MINLAT_SHIFT
;
347 static void arm_spe_pmu_pad_buf(struct perf_output_handle
*handle
, int len
)
349 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
350 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
352 memset(buf
->base
+ head
, ARM_SPE_BUF_PAD_BYTE
, len
);
354 perf_aux_output_skip(handle
, len
);
357 static u64
arm_spe_pmu_next_snapshot_off(struct perf_output_handle
*handle
)
359 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
360 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
361 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
362 u64 limit
= buf
->nr_pages
* PAGE_SIZE
;
365 * The trace format isn't parseable in reverse, so clamp
366 * the limit to half of the buffer size in snapshot mode
367 * so that the worst case is half a buffer of records, as
368 * opposed to a single record.
370 if (head
< limit
>> 1)
374 * If we're within max_record_sz of the limit, we must
375 * pad, move the head index and recompute the limit.
377 if (limit
- head
< spe_pmu
->max_record_sz
) {
378 arm_spe_pmu_pad_buf(handle
, limit
- head
);
379 handle
->head
= PERF_IDX2OFF(limit
, buf
);
380 limit
= ((buf
->nr_pages
* PAGE_SIZE
) >> 1) + handle
->head
;
386 static u64
__arm_spe_pmu_next_off(struct perf_output_handle
*handle
)
388 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
389 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
390 const u64 bufsize
= buf
->nr_pages
* PAGE_SIZE
;
392 u64 head
, tail
, wakeup
;
395 * The head can be misaligned for two reasons:
397 * 1. The hardware left PMBPTR pointing to the first byte after
398 * a record when generating a buffer management event.
400 * 2. We used perf_aux_output_skip to consume handle->size bytes
401 * and CIRC_SPACE was used to compute the size, which always
402 * leaves one entry free.
404 * Deal with this by padding to the next alignment boundary and
405 * moving the head index. If we run out of buffer space, we'll
406 * reduce handle->size to zero and end up reporting truncation.
408 head
= PERF_IDX2OFF(handle
->head
, buf
);
409 if (!IS_ALIGNED(head
, spe_pmu
->align
)) {
410 unsigned long delta
= roundup(head
, spe_pmu
->align
) - head
;
412 delta
= min(delta
, handle
->size
);
413 arm_spe_pmu_pad_buf(handle
, delta
);
414 head
= PERF_IDX2OFF(handle
->head
, buf
);
417 /* If we've run out of free space, then nothing more to do */
421 /* Compute the tail and wakeup indices now that we've aligned head */
422 tail
= PERF_IDX2OFF(handle
->head
+ handle
->size
, buf
);
423 wakeup
= PERF_IDX2OFF(handle
->wakeup
, buf
);
426 * Avoid clobbering unconsumed data. We know we have space, so
427 * if we see head == tail we know that the buffer is empty. If
428 * head > tail, then there's nothing to clobber prior to
432 limit
= round_down(tail
, PAGE_SIZE
);
435 * Wakeup may be arbitrarily far into the future. If it's not in
436 * the current generation, either we'll wrap before hitting it,
437 * or it's in the past and has been handled already.
439 * If there's a wakeup before we wrap, arrange to be woken up by
440 * the page boundary following it. Keep the tail boundary if
443 if (handle
->wakeup
< (handle
->head
+ handle
->size
) && head
<= wakeup
)
444 limit
= min(limit
, round_up(wakeup
, PAGE_SIZE
));
449 arm_spe_pmu_pad_buf(handle
, handle
->size
);
451 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
);
452 perf_aux_output_end(handle
, 0);
456 static u64
arm_spe_pmu_next_off(struct perf_output_handle
*handle
)
458 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
459 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
460 u64 limit
= __arm_spe_pmu_next_off(handle
);
461 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
464 * If the head has come too close to the end of the buffer,
465 * then pad to the end and recompute the limit.
467 if (limit
&& (limit
- head
< spe_pmu
->max_record_sz
)) {
468 arm_spe_pmu_pad_buf(handle
, limit
- head
);
469 limit
= __arm_spe_pmu_next_off(handle
);
475 static void arm_spe_perf_aux_output_begin(struct perf_output_handle
*handle
,
476 struct perf_event
*event
)
479 struct arm_spe_pmu_buf
*buf
;
481 /* Start a new aux session */
482 buf
= perf_aux_output_begin(handle
, event
);
484 event
->hw
.state
|= PERF_HES_STOPPED
;
486 * We still need to clear the limit pointer, since the
487 * profiler might only be disabled by virtue of a fault.
490 goto out_write_limit
;
493 limit
= buf
->snapshot
? arm_spe_pmu_next_snapshot_off(handle
)
494 : arm_spe_pmu_next_off(handle
);
496 limit
|= BIT(SYS_PMBLIMITR_EL1_E_SHIFT
);
498 limit
+= (u64
)buf
->base
;
499 base
= (u64
)buf
->base
+ PERF_IDX2OFF(handle
->head
, buf
);
500 write_sysreg_s(base
, SYS_PMBPTR_EL1
);
503 write_sysreg_s(limit
, SYS_PMBLIMITR_EL1
);
506 static void arm_spe_perf_aux_output_end(struct perf_output_handle
*handle
)
508 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
511 offset
= read_sysreg_s(SYS_PMBPTR_EL1
) - (u64
)buf
->base
;
512 size
= offset
- PERF_IDX2OFF(handle
->head
, buf
);
515 handle
->head
= offset
;
517 perf_aux_output_end(handle
, size
);
520 static void arm_spe_pmu_disable_and_drain_local(void)
522 /* Disable profiling at EL0 and EL1 */
523 write_sysreg_s(0, SYS_PMSCR_EL1
);
526 /* Drain any buffered data */
530 /* Disable the profiling buffer */
531 write_sysreg_s(0, SYS_PMBLIMITR_EL1
);
536 static enum arm_spe_pmu_buf_fault_action
537 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle
*handle
)
541 enum arm_spe_pmu_buf_fault_action ret
;
544 * Ensure new profiling data is visible to the CPU and any external
545 * aborts have been resolved.
550 /* Ensure hardware updates to PMBPTR_EL1 are visible */
553 /* Service required? */
554 pmbsr
= read_sysreg_s(SYS_PMBSR_EL1
);
555 if (!(pmbsr
& BIT(SYS_PMBSR_EL1_S_SHIFT
)))
556 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS
;
559 * If we've lost data, disable profiling and also set the PARTIAL
560 * flag to indicate that the last record is corrupted.
562 if (pmbsr
& BIT(SYS_PMBSR_EL1_DL_SHIFT
))
563 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
|
564 PERF_AUX_FLAG_PARTIAL
);
566 /* Report collisions to userspace so that it can up the period */
567 if (pmbsr
& BIT(SYS_PMBSR_EL1_COLL_SHIFT
))
568 perf_aux_output_flag(handle
, PERF_AUX_FLAG_COLLISION
);
570 /* We only expect buffer management events */
571 switch (pmbsr
& (SYS_PMBSR_EL1_EC_MASK
<< SYS_PMBSR_EL1_EC_SHIFT
)) {
572 case SYS_PMBSR_EL1_EC_BUF
:
575 case SYS_PMBSR_EL1_EC_FAULT_S1
:
576 case SYS_PMBSR_EL1_EC_FAULT_S2
:
577 err_str
= "Unexpected buffer fault";
580 err_str
= "Unknown error code";
584 /* Buffer management event */
586 (SYS_PMBSR_EL1_BUF_BSC_MASK
<< SYS_PMBSR_EL1_BUF_BSC_SHIFT
)) {
587 case SYS_PMBSR_EL1_BUF_BSC_FULL
:
588 ret
= SPE_PMU_BUF_FAULT_ACT_OK
;
591 err_str
= "Unknown buffer status code";
595 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
596 err_str
, smp_processor_id(), pmbsr
,
597 read_sysreg_s(SYS_PMBPTR_EL1
),
598 read_sysreg_s(SYS_PMBLIMITR_EL1
));
599 ret
= SPE_PMU_BUF_FAULT_ACT_FATAL
;
602 arm_spe_perf_aux_output_end(handle
);
606 static irqreturn_t
arm_spe_pmu_irq_handler(int irq
, void *dev
)
608 struct perf_output_handle
*handle
= dev
;
609 struct perf_event
*event
= handle
->event
;
610 enum arm_spe_pmu_buf_fault_action act
;
612 if (!perf_get_aux(handle
))
615 act
= arm_spe_pmu_buf_get_fault_act(handle
);
616 if (act
== SPE_PMU_BUF_FAULT_ACT_SPURIOUS
)
620 * Ensure perf callbacks have completed, which may disable the
621 * profiling buffer in response to a TRUNCATION flag.
626 case SPE_PMU_BUF_FAULT_ACT_FATAL
:
628 * If a fatal exception occurred then leaving the profiling
629 * buffer enabled is a recipe waiting to happen. Since
630 * fatal faults don't always imply truncation, make sure
631 * that the profiling buffer is disabled explicitly before
632 * clearing the syndrome register.
634 arm_spe_pmu_disable_and_drain_local();
636 case SPE_PMU_BUF_FAULT_ACT_OK
:
638 * We handled the fault (the buffer was full), so resume
639 * profiling as long as we didn't detect truncation.
640 * PMBPTR might be misaligned, but we'll burn that bridge
643 if (!(handle
->aux_flags
& PERF_AUX_FLAG_TRUNCATED
)) {
644 arm_spe_perf_aux_output_begin(handle
, event
);
648 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS
:
649 /* We've seen you before, but GCC has the memory of a sieve. */
653 /* The buffer pointers are now sane, so resume profiling. */
654 write_sysreg_s(0, SYS_PMBSR_EL1
);
659 static int arm_spe_pmu_event_init(struct perf_event
*event
)
662 struct perf_event_attr
*attr
= &event
->attr
;
663 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
665 /* This is, of course, deeply driver-specific */
666 if (attr
->type
!= event
->pmu
->type
)
669 if (event
->cpu
>= 0 &&
670 !cpumask_test_cpu(event
->cpu
, &spe_pmu
->supported_cpus
))
673 if (arm_spe_event_to_pmsevfr(event
) & SYS_PMSEVFR_EL1_RES0
)
676 if (attr
->exclude_idle
)
680 * Feedback-directed frequency throttling doesn't work when we
681 * have a buffer of samples. We'd need to manually count the
682 * samples in the buffer when it fills up and adjust the event
683 * count to reflect that. Instead, just force the user to specify
689 reg
= arm_spe_event_to_pmsfcr(event
);
690 if ((reg
& BIT(SYS_PMSFCR_EL1_FE_SHIFT
)) &&
691 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_EVT
))
694 if ((reg
& BIT(SYS_PMSFCR_EL1_FT_SHIFT
)) &&
695 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_TYP
))
698 if ((reg
& BIT(SYS_PMSFCR_EL1_FL_SHIFT
)) &&
699 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_LAT
))
702 reg
= arm_spe_event_to_pmscr(event
);
703 if (!capable(CAP_SYS_ADMIN
) &&
704 (reg
& (BIT(SYS_PMSCR_EL1_PA_SHIFT
) |
705 BIT(SYS_PMSCR_EL1_CX_SHIFT
) |
706 BIT(SYS_PMSCR_EL1_PCT_SHIFT
))))
712 static void arm_spe_pmu_start(struct perf_event
*event
, int flags
)
715 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
716 struct hw_perf_event
*hwc
= &event
->hw
;
717 struct perf_output_handle
*handle
= this_cpu_ptr(spe_pmu
->handle
);
720 arm_spe_perf_aux_output_begin(handle
, event
);
724 reg
= arm_spe_event_to_pmsfcr(event
);
725 write_sysreg_s(reg
, SYS_PMSFCR_EL1
);
727 reg
= arm_spe_event_to_pmsevfr(event
);
728 write_sysreg_s(reg
, SYS_PMSEVFR_EL1
);
730 reg
= arm_spe_event_to_pmslatfr(event
);
731 write_sysreg_s(reg
, SYS_PMSLATFR_EL1
);
733 if (flags
& PERF_EF_RELOAD
) {
734 reg
= arm_spe_event_to_pmsirr(event
);
735 write_sysreg_s(reg
, SYS_PMSIRR_EL1
);
737 reg
= local64_read(&hwc
->period_left
);
738 write_sysreg_s(reg
, SYS_PMSICR_EL1
);
741 reg
= arm_spe_event_to_pmscr(event
);
743 write_sysreg_s(reg
, SYS_PMSCR_EL1
);
746 static void arm_spe_pmu_stop(struct perf_event
*event
, int flags
)
748 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
749 struct hw_perf_event
*hwc
= &event
->hw
;
750 struct perf_output_handle
*handle
= this_cpu_ptr(spe_pmu
->handle
);
752 /* If we're already stopped, then nothing to do */
753 if (hwc
->state
& PERF_HES_STOPPED
)
756 /* Stop all trace generation */
757 arm_spe_pmu_disable_and_drain_local();
759 if (flags
& PERF_EF_UPDATE
) {
761 * If there's a fault pending then ensure we contain it
762 * to this buffer, since we might be on the context-switch
765 if (perf_get_aux(handle
)) {
766 enum arm_spe_pmu_buf_fault_action act
;
768 act
= arm_spe_pmu_buf_get_fault_act(handle
);
769 if (act
== SPE_PMU_BUF_FAULT_ACT_SPURIOUS
)
770 arm_spe_perf_aux_output_end(handle
);
772 write_sysreg_s(0, SYS_PMBSR_EL1
);
776 * This may also contain ECOUNT, but nobody else should
777 * be looking at period_left, since we forbid frequency
780 local64_set(&hwc
->period_left
, read_sysreg_s(SYS_PMSICR_EL1
));
781 hwc
->state
|= PERF_HES_UPTODATE
;
784 hwc
->state
|= PERF_HES_STOPPED
;
787 static int arm_spe_pmu_add(struct perf_event
*event
, int flags
)
790 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
791 struct hw_perf_event
*hwc
= &event
->hw
;
792 int cpu
= event
->cpu
== -1 ? smp_processor_id() : event
->cpu
;
794 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
797 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
799 if (flags
& PERF_EF_START
) {
800 arm_spe_pmu_start(event
, PERF_EF_RELOAD
);
801 if (hwc
->state
& PERF_HES_STOPPED
)
808 static void arm_spe_pmu_del(struct perf_event
*event
, int flags
)
810 arm_spe_pmu_stop(event
, PERF_EF_UPDATE
);
813 static void arm_spe_pmu_read(struct perf_event
*event
)
817 static void *arm_spe_pmu_setup_aux(struct perf_event
*event
, void **pages
,
818 int nr_pages
, bool snapshot
)
820 int i
, cpu
= event
->cpu
;
821 struct page
**pglist
;
822 struct arm_spe_pmu_buf
*buf
;
824 /* We need at least two pages for this to work. */
829 * We require an even number of pages for snapshot mode, so that
830 * we can effectively treat the buffer as consisting of two equal
831 * parts and give userspace a fighting chance of getting some
832 * useful data out of it.
834 if (!nr_pages
|| (snapshot
&& (nr_pages
& 1)))
838 cpu
= raw_smp_processor_id();
840 buf
= kzalloc_node(sizeof(*buf
), GFP_KERNEL
, cpu_to_node(cpu
));
844 pglist
= kcalloc(nr_pages
, sizeof(*pglist
), GFP_KERNEL
);
848 for (i
= 0; i
< nr_pages
; ++i
)
849 pglist
[i
] = virt_to_page(pages
[i
]);
851 buf
->base
= vmap(pglist
, nr_pages
, VM_MAP
, PAGE_KERNEL
);
853 goto out_free_pglist
;
855 buf
->nr_pages
= nr_pages
;
856 buf
->snapshot
= snapshot
;
868 static void arm_spe_pmu_free_aux(void *aux
)
870 struct arm_spe_pmu_buf
*buf
= aux
;
876 /* Initialisation and teardown functions */
877 static int arm_spe_pmu_perf_init(struct arm_spe_pmu
*spe_pmu
)
879 static atomic_t pmu_idx
= ATOMIC_INIT(-1);
883 struct device
*dev
= &spe_pmu
->pdev
->dev
;
885 spe_pmu
->pmu
= (struct pmu
) {
886 .module
= THIS_MODULE
,
887 .capabilities
= PERF_PMU_CAP_EXCLUSIVE
| PERF_PMU_CAP_ITRACE
,
888 .attr_groups
= arm_spe_pmu_attr_groups
,
890 * We hitch a ride on the software context here, so that
891 * we can support per-task profiling (which is not possible
892 * with the invalid context as it doesn't get sched callbacks).
893 * This requires that userspace either uses a dummy event for
894 * perf_event_open, since the aux buffer is not setup until
895 * a subsequent mmap, or creates the profiling event in a
896 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
897 * once the buffer has been created.
899 .task_ctx_nr
= perf_sw_context
,
900 .event_init
= arm_spe_pmu_event_init
,
901 .add
= arm_spe_pmu_add
,
902 .del
= arm_spe_pmu_del
,
903 .start
= arm_spe_pmu_start
,
904 .stop
= arm_spe_pmu_stop
,
905 .read
= arm_spe_pmu_read
,
906 .setup_aux
= arm_spe_pmu_setup_aux
,
907 .free_aux
= arm_spe_pmu_free_aux
,
910 idx
= atomic_inc_return(&pmu_idx
);
911 name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_%d", PMUNAME
, idx
);
913 dev_err(dev
, "failed to allocate name for pmu %d\n", idx
);
917 return perf_pmu_register(&spe_pmu
->pmu
, name
, -1);
920 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu
*spe_pmu
)
922 perf_pmu_unregister(&spe_pmu
->pmu
);
925 static void __arm_spe_pmu_dev_probe(void *info
)
929 struct arm_spe_pmu
*spe_pmu
= info
;
930 struct device
*dev
= &spe_pmu
->pdev
->dev
;
932 fld
= cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1
),
933 ID_AA64DFR0_PMSVER_SHIFT
);
936 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
937 fld
, smp_processor_id());
941 /* Read PMBIDR first to determine whether or not we have access */
942 reg
= read_sysreg_s(SYS_PMBIDR_EL1
);
943 if (reg
& BIT(SYS_PMBIDR_EL1_P_SHIFT
)) {
945 "profiling buffer owned by higher exception level\n");
949 /* Minimum alignment. If it's out-of-range, then fail the probe */
950 fld
= reg
>> SYS_PMBIDR_EL1_ALIGN_SHIFT
& SYS_PMBIDR_EL1_ALIGN_MASK
;
951 spe_pmu
->align
= 1 << fld
;
952 if (spe_pmu
->align
> SZ_2K
) {
953 dev_err(dev
, "unsupported PMBIDR.Align [%d] on CPU %d\n",
954 fld
, smp_processor_id());
958 /* It's now safe to read PMSIDR and figure out what we've got */
959 reg
= read_sysreg_s(SYS_PMSIDR_EL1
);
960 if (reg
& BIT(SYS_PMSIDR_EL1_FE_SHIFT
))
961 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_EVT
;
963 if (reg
& BIT(SYS_PMSIDR_EL1_FT_SHIFT
))
964 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_TYP
;
966 if (reg
& BIT(SYS_PMSIDR_EL1_FL_SHIFT
))
967 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_LAT
;
969 if (reg
& BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT
))
970 spe_pmu
->features
|= SPE_PMU_FEAT_ARCH_INST
;
972 if (reg
& BIT(SYS_PMSIDR_EL1_LDS_SHIFT
))
973 spe_pmu
->features
|= SPE_PMU_FEAT_LDS
;
975 if (reg
& BIT(SYS_PMSIDR_EL1_ERND_SHIFT
))
976 spe_pmu
->features
|= SPE_PMU_FEAT_ERND
;
978 /* This field has a spaced out encoding, so just use a look-up */
979 fld
= reg
>> SYS_PMSIDR_EL1_INTERVAL_SHIFT
& SYS_PMSIDR_EL1_INTERVAL_MASK
;
982 spe_pmu
->min_period
= 256;
985 spe_pmu
->min_period
= 512;
988 spe_pmu
->min_period
= 768;
991 spe_pmu
->min_period
= 1024;
994 spe_pmu
->min_period
= 1536;
997 spe_pmu
->min_period
= 2048;
1000 spe_pmu
->min_period
= 3072;
1003 dev_warn(dev
, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1007 spe_pmu
->min_period
= 4096;
1010 /* Maximum record size. If it's out-of-range, then fail the probe */
1011 fld
= reg
>> SYS_PMSIDR_EL1_MAXSIZE_SHIFT
& SYS_PMSIDR_EL1_MAXSIZE_MASK
;
1012 spe_pmu
->max_record_sz
= 1 << fld
;
1013 if (spe_pmu
->max_record_sz
> SZ_2K
|| spe_pmu
->max_record_sz
< 16) {
1014 dev_err(dev
, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1015 fld
, smp_processor_id());
1019 fld
= reg
>> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT
& SYS_PMSIDR_EL1_COUNTSIZE_MASK
;
1022 dev_warn(dev
, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1026 spe_pmu
->counter_sz
= 12;
1030 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1031 cpumask_pr_args(&spe_pmu
->supported_cpus
),
1032 spe_pmu
->max_record_sz
, spe_pmu
->align
, spe_pmu
->features
);
1034 spe_pmu
->features
|= SPE_PMU_FEAT_DEV_PROBED
;
1038 static void __arm_spe_pmu_reset_local(void)
1041 * This is probably overkill, as we have no idea where we're
1042 * draining any buffered data to...
1044 arm_spe_pmu_disable_and_drain_local();
1046 /* Reset the buffer base pointer */
1047 write_sysreg_s(0, SYS_PMBPTR_EL1
);
1050 /* Clear any pending management interrupts */
1051 write_sysreg_s(0, SYS_PMBSR_EL1
);
1055 static void __arm_spe_pmu_setup_one(void *info
)
1057 struct arm_spe_pmu
*spe_pmu
= info
;
1059 __arm_spe_pmu_reset_local();
1060 enable_percpu_irq(spe_pmu
->irq
, IRQ_TYPE_NONE
);
1063 static void __arm_spe_pmu_stop_one(void *info
)
1065 struct arm_spe_pmu
*spe_pmu
= info
;
1067 disable_percpu_irq(spe_pmu
->irq
);
1068 __arm_spe_pmu_reset_local();
1071 static int arm_spe_pmu_cpu_startup(unsigned int cpu
, struct hlist_node
*node
)
1073 struct arm_spe_pmu
*spe_pmu
;
1075 spe_pmu
= hlist_entry_safe(node
, struct arm_spe_pmu
, hotplug_node
);
1076 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
1079 __arm_spe_pmu_setup_one(spe_pmu
);
1083 static int arm_spe_pmu_cpu_teardown(unsigned int cpu
, struct hlist_node
*node
)
1085 struct arm_spe_pmu
*spe_pmu
;
1087 spe_pmu
= hlist_entry_safe(node
, struct arm_spe_pmu
, hotplug_node
);
1088 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
1091 __arm_spe_pmu_stop_one(spe_pmu
);
1095 static int arm_spe_pmu_dev_init(struct arm_spe_pmu
*spe_pmu
)
1098 cpumask_t
*mask
= &spe_pmu
->supported_cpus
;
1100 /* Make sure we probe the hardware on a relevant CPU */
1101 ret
= smp_call_function_any(mask
, __arm_spe_pmu_dev_probe
, spe_pmu
, 1);
1102 if (ret
|| !(spe_pmu
->features
& SPE_PMU_FEAT_DEV_PROBED
))
1105 /* Request our PPIs (note that the IRQ is still disabled) */
1106 ret
= request_percpu_irq(spe_pmu
->irq
, arm_spe_pmu_irq_handler
, DRVNAME
,
1112 * Register our hotplug notifier now so we don't miss any events.
1113 * This will enable the IRQ for any supported CPUs that are already
1116 ret
= cpuhp_state_add_instance(arm_spe_pmu_online
,
1117 &spe_pmu
->hotplug_node
);
1119 free_percpu_irq(spe_pmu
->irq
, spe_pmu
->handle
);
1124 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu
*spe_pmu
)
1126 cpuhp_state_remove_instance(arm_spe_pmu_online
, &spe_pmu
->hotplug_node
);
1127 free_percpu_irq(spe_pmu
->irq
, spe_pmu
->handle
);
1130 /* Driver and device probing */
1131 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu
*spe_pmu
)
1133 struct platform_device
*pdev
= spe_pmu
->pdev
;
1134 int irq
= platform_get_irq(pdev
, 0);
1137 dev_err(&pdev
->dev
, "failed to get IRQ (%d)\n", irq
);
1141 if (!irq_is_percpu(irq
)) {
1142 dev_err(&pdev
->dev
, "expected PPI but got SPI (%d)\n", irq
);
1146 if (irq_get_percpu_devid_partition(irq
, &spe_pmu
->supported_cpus
)) {
1147 dev_err(&pdev
->dev
, "failed to get PPI partition (%d)\n", irq
);
1155 static const struct of_device_id arm_spe_pmu_of_match
[] = {
1156 { .compatible
= "arm,statistical-profiling-extension-v1", .data
= (void *)1 },
1159 MODULE_DEVICE_TABLE(of
, arm_spe_pmu_of_match
);
1161 static const struct platform_device_id arm_spe_match
[] = {
1162 { ARMV8_SPE_PDEV_NAME
, 0},
1165 MODULE_DEVICE_TABLE(platform
, arm_spe_match
);
1167 static int arm_spe_pmu_device_probe(struct platform_device
*pdev
)
1170 struct arm_spe_pmu
*spe_pmu
;
1171 struct device
*dev
= &pdev
->dev
;
1174 * If kernelspace is unmapped when running at EL0, then the SPE
1175 * buffer will fault and prematurely terminate the AUX session.
1177 if (arm64_kernel_unmapped_at_el0()) {
1178 dev_warn_once(dev
, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1182 spe_pmu
= devm_kzalloc(dev
, sizeof(*spe_pmu
), GFP_KERNEL
);
1184 dev_err(dev
, "failed to allocate spe_pmu\n");
1188 spe_pmu
->handle
= alloc_percpu(typeof(*spe_pmu
->handle
));
1189 if (!spe_pmu
->handle
)
1192 spe_pmu
->pdev
= pdev
;
1193 platform_set_drvdata(pdev
, spe_pmu
);
1195 ret
= arm_spe_pmu_irq_probe(spe_pmu
);
1197 goto out_free_handle
;
1199 ret
= arm_spe_pmu_dev_init(spe_pmu
);
1201 goto out_free_handle
;
1203 ret
= arm_spe_pmu_perf_init(spe_pmu
);
1205 goto out_teardown_dev
;
1210 arm_spe_pmu_dev_teardown(spe_pmu
);
1212 free_percpu(spe_pmu
->handle
);
1216 static int arm_spe_pmu_device_remove(struct platform_device
*pdev
)
1218 struct arm_spe_pmu
*spe_pmu
= platform_get_drvdata(pdev
);
1220 arm_spe_pmu_perf_destroy(spe_pmu
);
1221 arm_spe_pmu_dev_teardown(spe_pmu
);
1222 free_percpu(spe_pmu
->handle
);
1226 static struct platform_driver arm_spe_pmu_driver
= {
1227 .id_table
= arm_spe_match
,
1230 .of_match_table
= of_match_ptr(arm_spe_pmu_of_match
),
1232 .probe
= arm_spe_pmu_device_probe
,
1233 .remove
= arm_spe_pmu_device_remove
,
1236 static int __init
arm_spe_pmu_init(void)
1240 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, DRVNAME
,
1241 arm_spe_pmu_cpu_startup
,
1242 arm_spe_pmu_cpu_teardown
);
1245 arm_spe_pmu_online
= ret
;
1247 ret
= platform_driver_register(&arm_spe_pmu_driver
);
1249 cpuhp_remove_multi_state(arm_spe_pmu_online
);
1254 static void __exit
arm_spe_pmu_exit(void)
1256 platform_driver_unregister(&arm_spe_pmu_driver
);
1257 cpuhp_remove_multi_state(arm_spe_pmu_online
);
1260 module_init(arm_spe_pmu_init
);
1261 module_exit(arm_spe_pmu_exit
);
1263 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1264 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1265 MODULE_LICENSE("GPL v2");