treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / phy / phy-xgene.c
blob7a33ec12f71bb146452d768b3c5e14bdb8548c1c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * AppliedMicro X-Gene Multi-purpose PHY driver
5 * Copyright (c) 2014, Applied Micro Circuits Corporation
6 * Author: Loc Ho <lho@apm.com>
7 * Tuan Phan <tphan@apm.com>
8 * Suman Tripathi <stripathi@apm.com>
10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
11 * The first PLL clock macro is used for internal reference clock. The second
12 * PLL clock macro is used to generate the clock for the PHY. This driver
13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
14 * operate according to the mode of operation. The first PLL CMU is only
15 * required if internal clock is enabled.
17 * Logical Layer Out Of HW module units:
19 * -----------------
20 * | Internal | |------|
21 * | Ref PLL CMU |----| | ------------- ---------
22 * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
23 * | | | | ---------
24 * External Clock ------| | -------------
25 * |------|
27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
28 * indirectly from the SDS offset at 0x2000. It is only required for
29 * internal reference clock.
30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
35 * it is located outside the PHY IP. This is the case for the PHY located
36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
39 * Currently, this driver only supports Gen3 SATA mode with external clock.
41 #include <linux/module.h>
42 #include <linux/platform_device.h>
43 #include <linux/io.h>
44 #include <linux/delay.h>
45 #include <linux/phy/phy.h>
46 #include <linux/clk.h>
48 /* Max 2 lanes per a PHY unit */
49 #define MAX_LANE 2
51 /* Register offset inside the PHY */
52 #define SERDES_PLL_INDIRECT_OFFSET 0x0000
53 #define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
54 #define SERDES_INDIRECT_OFFSET 0x0400
55 #define SERDES_LANE_STRIDE 0x0200
57 /* Some default Serdes parameters */
58 #define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
59 #define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
60 #define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
61 #define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
62 #define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
63 #define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
64 #define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
65 #define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
67 #define SATA_SPD_SEL_GEN3 0x7
68 #define SATA_SPD_SEL_GEN2 0x3
69 #define SATA_SPD_SEL_GEN1 0x1
71 #define SSC_DISABLE 0
72 #define SSC_ENABLE 1
74 #define FBDIV_VAL_50M 0x77
75 #define REFDIV_VAL_50M 0x1
76 #define FBDIV_VAL_100M 0x3B
77 #define REFDIV_VAL_100M 0x0
79 /* SATA Clock/Reset CSR */
80 #define SATACLKENREG 0x00000000
81 #define SATA0_CORE_CLKEN 0x00000002
82 #define SATA1_CORE_CLKEN 0x00000004
83 #define SATASRESETREG 0x00000004
84 #define SATA_MEM_RESET_MASK 0x00000020
85 #define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
86 #define SATA_SDS_RESET_MASK 0x00000004
87 #define SATA_CSR_RESET_MASK 0x00000001
88 #define SATA_CORE_RESET_MASK 0x00000002
89 #define SATA_PMCLK_RESET_MASK 0x00000010
90 #define SATA_PCLK_RESET_MASK 0x00000008
92 /* SDS CSR used for PHY Indirect access */
93 #define SATA_ENET_SDS_PCS_CTL0 0x00000000
94 #define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
95 (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
96 #define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
97 (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
98 #define SATA_ENET_SDS_CTL0 0x0000000c
99 #define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
100 (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
101 #define SATA_ENET_SDS_CTL1 0x00000010
102 #define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
103 (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
104 #define SATA_ENET_SDS_RST_CTL 0x00000024
105 #define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
106 #define CFG_IND_WR_CMD_MASK 0x00000001
107 #define CFG_IND_RD_CMD_MASK 0x00000002
108 #define CFG_IND_CMD_DONE_MASK 0x00000004
109 #define CFG_IND_ADDR_SET(dst, src) \
110 (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
111 #define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
112 #define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
113 #define SATA_ENET_CLK_MACRO_REG 0x0000004c
114 #define I_RESET_B_SET(dst, src) \
115 (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
116 #define I_PLL_FBDIV_SET(dst, src) \
117 (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
118 #define I_CUSTOMEROV_SET(dst, src) \
119 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
120 #define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
121 #define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
123 /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
124 #define CMU_REG0 0x00000
125 #define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
126 #define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
127 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
128 #define CMU_REG0_PDOWN_MASK 0x00004000
129 #define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
130 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
131 #define CMU_REG1 0x00002
132 #define CMU_REG1_PLL_CP_SET(dst, src) \
133 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
134 #define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
135 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
136 #define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
137 (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
138 #define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
139 #define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
140 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
141 #define CMU_REG2 0x00004
142 #define CMU_REG2_PLL_REFDIV_SET(dst, src) \
143 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
144 #define CMU_REG2_PLL_LFRES_SET(dst, src) \
145 (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
146 #define CMU_REG2_PLL_FBDIV_SET(dst, src) \
147 (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
148 #define CMU_REG3 0x00006
149 #define CMU_REG3_VCOVARSEL_SET(dst, src) \
150 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
151 #define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
152 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
153 #define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
154 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
155 #define CMU_REG4 0x00008
156 #define CMU_REG5 0x0000a
157 #define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
158 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
159 #define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
160 (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
161 #define CMU_REG5_PLL_LFCAP_SET(dst, src) \
162 (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
163 #define CMU_REG5_PLL_RESETB_MASK 0x00000001
164 #define CMU_REG6 0x0000c
165 #define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
166 (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
167 #define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
168 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
169 #define CMU_REG7 0x0000e
170 #define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
171 #define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
172 #define CMU_REG8 0x00010
173 #define CMU_REG9 0x00012
174 #define CMU_REG9_WORD_LEN_8BIT 0x000
175 #define CMU_REG9_WORD_LEN_10BIT 0x001
176 #define CMU_REG9_WORD_LEN_16BIT 0x002
177 #define CMU_REG9_WORD_LEN_20BIT 0x003
178 #define CMU_REG9_WORD_LEN_32BIT 0x004
179 #define CMU_REG9_WORD_LEN_40BIT 0x005
180 #define CMU_REG9_WORD_LEN_64BIT 0x006
181 #define CMU_REG9_WORD_LEN_66BIT 0x007
182 #define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
183 (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
184 #define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
185 (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
186 #define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
187 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
188 #define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
189 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
190 #define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
191 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
192 #define CMU_REG10 0x00014
193 #define CMU_REG10_VREG_REFSEL_SET(dst, src) \
194 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
195 #define CMU_REG11 0x00016
196 #define CMU_REG12 0x00018
197 #define CMU_REG12_STATE_DELAY9_SET(dst, src) \
198 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
199 #define CMU_REG13 0x0001a
200 #define CMU_REG14 0x0001c
201 #define CMU_REG15 0x0001e
202 #define CMU_REG16 0x00020
203 #define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
204 #define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
205 #define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
206 (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
207 #define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
208 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
209 #define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
210 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
211 #define CMU_REG17 0x00022
212 #define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
213 (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
214 #define CMU_REG17_RESERVED_7_SET(dst, src) \
215 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
216 #define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
217 #define CMU_REG18 0x00024
218 #define CMU_REG19 0x00026
219 #define CMU_REG20 0x00028
220 #define CMU_REG21 0x0002a
221 #define CMU_REG22 0x0002c
222 #define CMU_REG23 0x0002e
223 #define CMU_REG24 0x00030
224 #define CMU_REG25 0x00032
225 #define CMU_REG26 0x00034
226 #define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
227 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
228 #define CMU_REG27 0x00036
229 #define CMU_REG28 0x00038
230 #define CMU_REG29 0x0003a
231 #define CMU_REG30 0x0003c
232 #define CMU_REG30_LOCK_COUNT_SET(dst, src) \
233 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
234 #define CMU_REG30_PCIE_MODE_SET(dst, src) \
235 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
236 #define CMU_REG31 0x0003e
237 #define CMU_REG32 0x00040
238 #define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
239 #define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
240 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
241 #define CMU_REG32_IREF_ADJ_SET(dst, src) \
242 (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
243 #define CMU_REG33 0x00042
244 #define CMU_REG34 0x00044
245 #define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
246 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
247 #define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
248 (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
249 #define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
250 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
251 #define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
252 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
253 #define CMU_REG35 0x00046
254 #define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
255 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
256 #define CMU_REG36 0x00048
257 #define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
258 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
259 #define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
260 (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
261 #define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
262 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
263 #define CMU_REG37 0x0004a
264 #define CMU_REG38 0x0004c
265 #define CMU_REG39 0x0004e
267 /* PHY lane CSR accessing from SDS indirectly */
268 #define RXTX_REG0 0x000
269 #define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
270 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
271 #define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
272 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
273 #define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
274 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
275 #define RXTX_REG1 0x002
276 #define RXTX_REG1_RXACVCM_SET(dst, src) \
277 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
278 #define RXTX_REG1_CTLE_EQ_SET(dst, src) \
279 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
280 #define RXTX_REG1_RXVREG1_SET(dst, src) \
281 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
282 #define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
283 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
284 #define RXTX_REG2 0x004
285 #define RXTX_REG2_VTT_ENA_SET(dst, src) \
286 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
287 #define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
288 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
289 #define RXTX_REG2_VTT_SEL_SET(dst, src) \
290 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
291 #define RXTX_REG4 0x008
292 #define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
293 #define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
294 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
295 #define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
296 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
297 #define RXTX_REG5 0x00a
298 #define RXTX_REG5_TX_CN1_SET(dst, src) \
299 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
300 #define RXTX_REG5_TX_CP1_SET(dst, src) \
301 (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
302 #define RXTX_REG5_TX_CN2_SET(dst, src) \
303 (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
304 #define RXTX_REG6 0x00c
305 #define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
306 (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
307 #define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
308 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
309 #define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
310 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
311 #define RXTX_REG6_TX_IDLE_SET(dst, src) \
312 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
313 #define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
314 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
315 #define RXTX_REG7 0x00e
316 #define RXTX_REG7_RESETB_RXD_MASK 0x00000100
317 #define RXTX_REG7_RESETB_RXA_MASK 0x00000080
318 #define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
319 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
320 #define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
321 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
322 #define RXTX_REG8 0x010
323 #define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
324 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
325 #define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
326 (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
327 #define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
328 (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
329 #define RXTX_REG8_SD_VREF_SET(dst, src) \
330 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
331 #define RXTX_REG8_SD_DISABLE_SET(dst, src) \
332 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
333 #define RXTX_REG7 0x00e
334 #define RXTX_REG7_RESETB_RXD_SET(dst, src) \
335 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
336 #define RXTX_REG7_RESETB_RXA_SET(dst, src) \
337 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
338 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
339 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
340 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
341 #define RXTX_REG11 0x016
342 #define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
343 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
344 #define RXTX_REG12 0x018
345 #define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
346 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
347 #define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
348 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
349 #define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
350 #define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
351 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
352 #define RXTX_REG13 0x01a
353 #define RXTX_REG14 0x01c
354 #define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
355 (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
356 #define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
357 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
358 #define RXTX_REG26 0x034
359 #define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
360 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
361 #define RXTX_REG26_BLWC_ENA_SET(dst, src) \
362 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
363 #define RXTX_REG21 0x02a
364 #define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
365 #define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
366 #define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
367 #define RXTX_REG22 0x02c
368 #define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
369 #define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
370 #define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
371 #define RXTX_REG23 0x02e
372 #define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
373 #define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
374 #define RXTX_REG24 0x030
375 #define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
376 #define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
377 #define RXTX_REG27 0x036
378 #define RXTX_REG28 0x038
379 #define RXTX_REG31 0x03e
380 #define RXTX_REG38 0x04c
381 #define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
382 (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
383 #define RXTX_REG39 0x04e
384 #define RXTX_REG40 0x050
385 #define RXTX_REG41 0x052
386 #define RXTX_REG42 0x054
387 #define RXTX_REG43 0x056
388 #define RXTX_REG44 0x058
389 #define RXTX_REG45 0x05a
390 #define RXTX_REG46 0x05c
391 #define RXTX_REG47 0x05e
392 #define RXTX_REG48 0x060
393 #define RXTX_REG49 0x062
394 #define RXTX_REG50 0x064
395 #define RXTX_REG51 0x066
396 #define RXTX_REG52 0x068
397 #define RXTX_REG53 0x06a
398 #define RXTX_REG54 0x06c
399 #define RXTX_REG55 0x06e
400 #define RXTX_REG61 0x07a
401 #define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
402 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
403 #define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
404 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
405 #define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
406 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
407 #define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
408 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
409 #define RXTX_REG62 0x07c
410 #define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
411 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
412 #define RXTX_REG81 0x0a2
413 #define RXTX_REG89_MU_TH7_SET(dst, src) \
414 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
415 #define RXTX_REG89_MU_TH8_SET(dst, src) \
416 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
417 #define RXTX_REG89_MU_TH9_SET(dst, src) \
418 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
419 #define RXTX_REG96 0x0c0
420 #define RXTX_REG96_MU_FREQ1_SET(dst, src) \
421 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
422 #define RXTX_REG96_MU_FREQ2_SET(dst, src) \
423 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
424 #define RXTX_REG96_MU_FREQ3_SET(dst, src) \
425 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
426 #define RXTX_REG99 0x0c6
427 #define RXTX_REG99_MU_PHASE1_SET(dst, src) \
428 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
429 #define RXTX_REG99_MU_PHASE2_SET(dst, src) \
430 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
431 #define RXTX_REG99_MU_PHASE3_SET(dst, src) \
432 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
433 #define RXTX_REG102 0x0cc
434 #define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
435 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
436 #define RXTX_REG114 0x0e4
437 #define RXTX_REG121 0x0f2
438 #define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
439 #define RXTX_REG125 0x0fa
440 #define RXTX_REG125_PQ_REG_SET(dst, src) \
441 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
442 #define RXTX_REG125_SIGN_PQ_SET(dst, src) \
443 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
444 #define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
445 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
446 #define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
447 (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
448 #define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
449 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
450 #define RXTX_REG127 0x0fe
451 #define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
452 #define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
453 #define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
454 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
455 #define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
456 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
457 #define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
458 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
459 #define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
460 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
461 #define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
462 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
463 #define RXTX_REG128 0x100
464 #define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
465 (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
466 #define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
467 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
468 #define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
469 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
470 #define RXTX_REG129 0x102
471 #define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
472 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
473 #define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
474 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
475 #define RXTX_REG130 0x104
476 #define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
477 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
478 #define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
479 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
480 #define RXTX_REG145 0x122
481 #define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
482 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
483 #define RXTX_REG145_RXES_ENA_SET(dst, src) \
484 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
485 #define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
486 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
487 #define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
488 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
489 #define RXTX_REG147 0x126
490 #define RXTX_REG148 0x128
492 /* Clock macro type */
493 enum cmu_type_t {
494 REF_CMU = 0, /* Clock macro is the internal reference clock */
495 PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */
498 enum mux_type_t {
499 MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */
500 MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */
503 enum clk_type_t {
504 CLK_EXT_DIFF = 0, /* External differential */
505 CLK_INT_DIFF = 1, /* Internal differential */
506 CLK_INT_SING = 2, /* Internal single ended */
509 enum xgene_phy_mode {
510 MODE_SATA = 0, /* List them for simple reference */
511 MODE_SGMII = 1,
512 MODE_PCIE = 2,
513 MODE_USB = 3,
514 MODE_XFI = 4,
515 MODE_MAX
518 struct xgene_sata_override_param {
519 u32 speed[MAX_LANE]; /* Index for override parameter per lane */
520 u32 txspeed[3]; /* Tx speed */
521 u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */
522 u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */
523 u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
524 u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */
525 u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
526 u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
527 u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
530 struct xgene_phy_ctx {
531 struct device *dev;
532 struct phy *phy;
533 enum xgene_phy_mode mode; /* Mode of operation */
534 enum clk_type_t clk_type; /* Input clock selection */
535 void __iomem *sds_base; /* PHY CSR base addr */
536 struct clk *clk; /* Optional clock */
538 /* Override Serdes parameters */
539 struct xgene_sata_override_param sata_param;
543 * For chip earlier than A3 version, enable this flag.
544 * To enable, pass boot argument phy_xgene.preA3Chip=1
546 static int preA3Chip;
547 MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
548 module_param_named(preA3Chip, preA3Chip, int, 0444);
550 static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
551 u32 indirect_data_reg, u32 addr, u32 data)
553 unsigned long deadline = jiffies + HZ;
554 u32 val;
555 u32 cmd;
557 cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
558 cmd = CFG_IND_ADDR_SET(cmd, addr);
559 writel(data, csr_base + indirect_data_reg);
560 readl(csr_base + indirect_data_reg); /* Force a barrier */
561 writel(cmd, csr_base + indirect_cmd_reg);
562 readl(csr_base + indirect_cmd_reg); /* Force a barrier */
563 do {
564 val = readl(csr_base + indirect_cmd_reg);
565 } while (!(val & CFG_IND_CMD_DONE_MASK) &&
566 time_before(jiffies, deadline));
567 if (!(val & CFG_IND_CMD_DONE_MASK))
568 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
569 csr_base + indirect_cmd_reg, addr, data);
572 static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
573 u32 indirect_data_reg, u32 addr, u32 *data)
575 unsigned long deadline = jiffies + HZ;
576 u32 val;
577 u32 cmd;
579 cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
580 cmd = CFG_IND_ADDR_SET(cmd, addr);
581 writel(cmd, csr_base + indirect_cmd_reg);
582 readl(csr_base + indirect_cmd_reg); /* Force a barrier */
583 do {
584 val = readl(csr_base + indirect_cmd_reg);
585 } while (!(val & CFG_IND_CMD_DONE_MASK) &&
586 time_before(jiffies, deadline));
587 *data = readl(csr_base + indirect_data_reg);
588 if (!(val & CFG_IND_CMD_DONE_MASK))
589 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
590 csr_base + indirect_cmd_reg, addr, *data);
593 static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
594 u32 reg, u32 data)
596 void __iomem *sds_base = ctx->sds_base;
597 u32 val;
599 if (cmu_type == REF_CMU)
600 reg += SERDES_PLL_REF_INDIRECT_OFFSET;
601 else
602 reg += SERDES_PLL_INDIRECT_OFFSET;
603 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
604 SATA_ENET_SDS_IND_WDATA_REG, reg, data);
605 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
606 SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
607 pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
610 static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
611 u32 reg, u32 *data)
613 void __iomem *sds_base = ctx->sds_base;
615 if (cmu_type == REF_CMU)
616 reg += SERDES_PLL_REF_INDIRECT_OFFSET;
617 else
618 reg += SERDES_PLL_INDIRECT_OFFSET;
619 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
620 SATA_ENET_SDS_IND_RDATA_REG, reg, data);
621 pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
624 static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
625 u32 reg, u32 bits)
627 u32 val;
629 cmu_rd(ctx, cmu_type, reg, &val);
630 val |= bits;
631 cmu_wr(ctx, cmu_type, reg, val);
632 cmu_rd(ctx, cmu_type, reg, &val);
633 val &= ~bits;
634 cmu_wr(ctx, cmu_type, reg, val);
637 static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
638 u32 reg, u32 bits)
640 u32 val;
642 cmu_rd(ctx, cmu_type, reg, &val);
643 val &= ~bits;
644 cmu_wr(ctx, cmu_type, reg, val);
647 static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
648 u32 reg, u32 bits)
650 u32 val;
652 cmu_rd(ctx, cmu_type, reg, &val);
653 val |= bits;
654 cmu_wr(ctx, cmu_type, reg, val);
657 static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
659 void __iomem *sds_base = ctx->sds_base;
660 u32 val;
662 reg += SERDES_INDIRECT_OFFSET;
663 reg += lane * SERDES_LANE_STRIDE;
664 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
665 SATA_ENET_SDS_IND_WDATA_REG, reg, data);
666 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
667 SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
668 pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
669 val);
672 static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
674 void __iomem *sds_base = ctx->sds_base;
676 reg += SERDES_INDIRECT_OFFSET;
677 reg += lane * SERDES_LANE_STRIDE;
678 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
679 SATA_ENET_SDS_IND_RDATA_REG, reg, data);
680 pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
683 static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
684 u32 bits)
686 u32 val;
688 serdes_rd(ctx, lane, reg, &val);
689 val &= ~bits;
690 serdes_wr(ctx, lane, reg, val);
693 static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
694 u32 bits)
696 u32 val;
698 serdes_rd(ctx, lane, reg, &val);
699 val |= bits;
700 serdes_wr(ctx, lane, reg, val);
703 static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
704 enum cmu_type_t cmu_type,
705 enum clk_type_t clk_type)
707 u32 val;
709 /* Set the reset sequence delay for TX ready assertion */
710 cmu_rd(ctx, cmu_type, CMU_REG12, &val);
711 val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
712 cmu_wr(ctx, cmu_type, CMU_REG12, val);
713 /* Set the programmable stage delays between various enable stages */
714 cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
715 cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
717 /* Configure clock type */
718 if (clk_type == CLK_EXT_DIFF) {
719 /* Select external clock mux */
720 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
721 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
722 cmu_wr(ctx, cmu_type, CMU_REG0, val);
723 /* Select CMOS as reference clock */
724 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
725 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
726 cmu_wr(ctx, cmu_type, CMU_REG1, val);
727 dev_dbg(ctx->dev, "Set external reference clock\n");
728 } else if (clk_type == CLK_INT_DIFF) {
729 /* Select internal clock mux */
730 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
731 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
732 cmu_wr(ctx, cmu_type, CMU_REG0, val);
733 /* Select CMOS as reference clock */
734 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
735 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
736 cmu_wr(ctx, cmu_type, CMU_REG1, val);
737 dev_dbg(ctx->dev, "Set internal reference clock\n");
738 } else if (clk_type == CLK_INT_SING) {
740 * NOTE: This clock type is NOT support for controller
741 * whose internal clock shared in the PCIe controller
743 * Select internal clock mux
745 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
746 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
747 cmu_wr(ctx, cmu_type, CMU_REG1, val);
748 /* Select CML as reference clock */
749 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
750 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
751 cmu_wr(ctx, cmu_type, CMU_REG1, val);
752 dev_dbg(ctx->dev,
753 "Set internal single ended reference clock\n");
757 static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
758 enum cmu_type_t cmu_type,
759 enum clk_type_t clk_type)
761 u32 val;
762 int ref_100MHz;
764 if (cmu_type == REF_CMU) {
765 /* Set VCO calibration voltage threshold */
766 cmu_rd(ctx, cmu_type, CMU_REG34, &val);
767 val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
768 val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
769 val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
770 val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
771 cmu_wr(ctx, cmu_type, CMU_REG34, val);
774 /* Set the VCO calibration counter */
775 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
776 if (cmu_type == REF_CMU || preA3Chip)
777 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
778 else
779 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
780 cmu_wr(ctx, cmu_type, CMU_REG0, val);
782 /* Configure PLL for calibration */
783 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
784 val = CMU_REG1_PLL_CP_SET(val, 0x1);
785 if (cmu_type == REF_CMU || preA3Chip)
786 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
787 else
788 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
789 if (cmu_type == REF_CMU)
790 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
791 else
792 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
793 cmu_wr(ctx, cmu_type, CMU_REG1, val);
795 if (cmu_type != REF_CMU)
796 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
798 /* Configure the PLL for either 100MHz or 50MHz */
799 cmu_rd(ctx, cmu_type, CMU_REG2, &val);
800 if (cmu_type == REF_CMU) {
801 val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
802 ref_100MHz = 1;
803 } else {
804 val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
805 if (clk_type == CLK_EXT_DIFF)
806 ref_100MHz = 0;
807 else
808 ref_100MHz = 1;
810 if (ref_100MHz) {
811 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
812 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
813 } else {
814 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
815 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
817 cmu_wr(ctx, cmu_type, CMU_REG2, val);
819 /* Configure the VCO */
820 cmu_rd(ctx, cmu_type, CMU_REG3, &val);
821 if (cmu_type == REF_CMU) {
822 val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
823 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
824 } else {
825 val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
826 if (preA3Chip)
827 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
828 else
829 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
830 val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
832 cmu_wr(ctx, cmu_type, CMU_REG3, val);
834 /* Disable force PLL lock */
835 cmu_rd(ctx, cmu_type, CMU_REG26, &val);
836 val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
837 cmu_wr(ctx, cmu_type, CMU_REG26, val);
839 /* Setup PLL loop filter */
840 cmu_rd(ctx, cmu_type, CMU_REG5, &val);
841 val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
842 val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
843 if (cmu_type == REF_CMU || !preA3Chip)
844 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
845 else
846 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
847 cmu_wr(ctx, cmu_type, CMU_REG5, val);
849 /* Enable or disable manual calibration */
850 cmu_rd(ctx, cmu_type, CMU_REG6, &val);
851 val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
852 val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
853 cmu_wr(ctx, cmu_type, CMU_REG6, val);
855 /* Configure lane for 20-bits */
856 if (cmu_type == PHY_CMU) {
857 cmu_rd(ctx, cmu_type, CMU_REG9, &val);
858 val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
859 CMU_REG9_WORD_LEN_20BIT);
860 val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
861 CMU_REG9_WORD_LEN_20BIT);
862 val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
863 if (!preA3Chip) {
864 val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
865 val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
867 cmu_wr(ctx, cmu_type, CMU_REG9, val);
869 if (!preA3Chip) {
870 cmu_rd(ctx, cmu_type, CMU_REG10, &val);
871 val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
872 cmu_wr(ctx, cmu_type, CMU_REG10, val);
876 cmu_rd(ctx, cmu_type, CMU_REG16, &val);
877 val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
878 val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
879 if (cmu_type == REF_CMU || preA3Chip)
880 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
881 else
882 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
883 cmu_wr(ctx, cmu_type, CMU_REG16, val);
885 /* Configure for SATA */
886 cmu_rd(ctx, cmu_type, CMU_REG30, &val);
887 val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
888 val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
889 cmu_wr(ctx, cmu_type, CMU_REG30, val);
891 /* Disable state machine bypass */
892 cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
894 cmu_rd(ctx, cmu_type, CMU_REG32, &val);
895 val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
896 if (cmu_type == REF_CMU || preA3Chip)
897 val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
898 else
899 val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
900 cmu_wr(ctx, cmu_type, CMU_REG32, val);
902 /* Set VCO calibration threshold */
903 if (cmu_type != REF_CMU && preA3Chip)
904 cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
905 else
906 cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
908 /* Set CTLE Override and override waiting from state machine */
909 cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
912 static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
913 enum cmu_type_t cmu_type)
915 u32 val;
917 /* Set SSC modulation value */
918 cmu_rd(ctx, cmu_type, CMU_REG35, &val);
919 val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
920 cmu_wr(ctx, cmu_type, CMU_REG35, val);
922 /* Enable SSC, set vertical step and DSM value */
923 cmu_rd(ctx, cmu_type, CMU_REG36, &val);
924 val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
925 val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
926 val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
927 cmu_wr(ctx, cmu_type, CMU_REG36, val);
929 /* Reset the PLL */
930 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
931 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
933 /* Force VCO calibration to restart */
934 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
935 CMU_REG32_FORCE_VCOCAL_START_MASK);
938 static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
940 u32 val;
941 u32 reg;
942 int i;
943 int lane;
945 for (lane = 0; lane < MAX_LANE; lane++) {
946 serdes_wr(ctx, lane, RXTX_REG147, 0x6);
948 /* Set boost control for quarter, half, and full rate */
949 serdes_rd(ctx, lane, RXTX_REG0, &val);
950 val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
951 val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
952 val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
953 serdes_wr(ctx, lane, RXTX_REG0, val);
955 /* Set boost control value */
956 serdes_rd(ctx, lane, RXTX_REG1, &val);
957 val = RXTX_REG1_RXACVCM_SET(val, 0x7);
958 val = RXTX_REG1_CTLE_EQ_SET(val,
959 ctx->sata_param.txboostgain[lane * 3 +
960 ctx->sata_param.speed[lane]]);
961 serdes_wr(ctx, lane, RXTX_REG1, val);
963 /* Latch VTT value based on the termination to ground and
964 enable TX FIFO */
965 serdes_rd(ctx, lane, RXTX_REG2, &val);
966 val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
967 val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
968 val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
969 serdes_wr(ctx, lane, RXTX_REG2, val);
971 /* Configure Tx for 20-bits */
972 serdes_rd(ctx, lane, RXTX_REG4, &val);
973 val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
974 serdes_wr(ctx, lane, RXTX_REG4, val);
976 if (!preA3Chip) {
977 serdes_rd(ctx, lane, RXTX_REG1, &val);
978 val = RXTX_REG1_RXVREG1_SET(val, 0x2);
979 val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
980 serdes_wr(ctx, lane, RXTX_REG1, val);
983 /* Set pre-emphasis first 1 and 2, and post-emphasis values */
984 serdes_rd(ctx, lane, RXTX_REG5, &val);
985 val = RXTX_REG5_TX_CN1_SET(val,
986 ctx->sata_param.txprecursor_cn1[lane * 3 +
987 ctx->sata_param.speed[lane]]);
988 val = RXTX_REG5_TX_CP1_SET(val,
989 ctx->sata_param.txpostcursor_cp1[lane * 3 +
990 ctx->sata_param.speed[lane]]);
991 val = RXTX_REG5_TX_CN2_SET(val,
992 ctx->sata_param.txprecursor_cn2[lane * 3 +
993 ctx->sata_param.speed[lane]]);
994 serdes_wr(ctx, lane, RXTX_REG5, val);
996 /* Set TX amplitude value */
997 serdes_rd(ctx, lane, RXTX_REG6, &val);
998 val = RXTX_REG6_TXAMP_CNTL_SET(val,
999 ctx->sata_param.txamplitude[lane * 3 +
1000 ctx->sata_param.speed[lane]]);
1001 val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1002 val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1003 val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1004 val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1005 serdes_wr(ctx, lane, RXTX_REG6, val);
1007 /* Configure Rx for 20-bits */
1008 serdes_rd(ctx, lane, RXTX_REG7, &val);
1009 val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1010 val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1011 serdes_wr(ctx, lane, RXTX_REG7, val);
1013 /* Set CDR and LOS values and enable Rx SSC */
1014 serdes_rd(ctx, lane, RXTX_REG8, &val);
1015 val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1016 val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1017 val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1018 val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1019 val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1020 serdes_wr(ctx, lane, RXTX_REG8, val);
1022 /* Set phase adjust upper/lower limits */
1023 serdes_rd(ctx, lane, RXTX_REG11, &val);
1024 val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1025 serdes_wr(ctx, lane, RXTX_REG11, val);
1027 /* Enable Latch Off; disable SUMOS and Tx termination */
1028 serdes_rd(ctx, lane, RXTX_REG12, &val);
1029 val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1030 val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1031 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1032 serdes_wr(ctx, lane, RXTX_REG12, val);
1034 /* Set period error latch to 512T and enable BWL */
1035 serdes_rd(ctx, lane, RXTX_REG26, &val);
1036 val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1037 val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1038 serdes_wr(ctx, lane, RXTX_REG26, val);
1040 serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1042 /* Set DFE loop preset value */
1043 serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1045 /* Set Eye Monitor counter width to 12-bit */
1046 serdes_rd(ctx, lane, RXTX_REG61, &val);
1047 val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1048 val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1049 val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1050 serdes_wr(ctx, lane, RXTX_REG61, val);
1052 serdes_rd(ctx, lane, RXTX_REG62, &val);
1053 val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1054 serdes_wr(ctx, lane, RXTX_REG62, val);
1056 /* Set BW select tap X for DFE loop */
1057 for (i = 0; i < 9; i++) {
1058 reg = RXTX_REG81 + i * 2;
1059 serdes_rd(ctx, lane, reg, &val);
1060 val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1061 val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1062 val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1063 serdes_wr(ctx, lane, reg, val);
1066 /* Set BW select tap X for frequency adjust loop */
1067 for (i = 0; i < 3; i++) {
1068 reg = RXTX_REG96 + i * 2;
1069 serdes_rd(ctx, lane, reg, &val);
1070 val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1071 val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1072 val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1073 serdes_wr(ctx, lane, reg, val);
1076 /* Set BW select tap X for phase adjust loop */
1077 for (i = 0; i < 3; i++) {
1078 reg = RXTX_REG99 + i * 2;
1079 serdes_rd(ctx, lane, reg, &val);
1080 val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1081 val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1082 val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1083 serdes_wr(ctx, lane, reg, val);
1086 serdes_rd(ctx, lane, RXTX_REG102, &val);
1087 val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1088 serdes_wr(ctx, lane, RXTX_REG102, val);
1090 serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1092 serdes_rd(ctx, lane, RXTX_REG125, &val);
1093 val = RXTX_REG125_SIGN_PQ_SET(val,
1094 ctx->sata_param.txeyedirection[lane * 3 +
1095 ctx->sata_param.speed[lane]]);
1096 val = RXTX_REG125_PQ_REG_SET(val,
1097 ctx->sata_param.txeyetuning[lane * 3 +
1098 ctx->sata_param.speed[lane]]);
1099 val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1100 serdes_wr(ctx, lane, RXTX_REG125, val);
1102 serdes_rd(ctx, lane, RXTX_REG127, &val);
1103 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1104 serdes_wr(ctx, lane, RXTX_REG127, val);
1106 serdes_rd(ctx, lane, RXTX_REG128, &val);
1107 val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1108 serdes_wr(ctx, lane, RXTX_REG128, val);
1110 serdes_rd(ctx, lane, RXTX_REG145, &val);
1111 val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1112 val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1113 if (preA3Chip) {
1114 val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1115 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1116 } else {
1117 val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1118 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1120 serdes_wr(ctx, lane, RXTX_REG145, val);
1123 * Set Rx LOS filter clock rate, sample rate, and threshold
1124 * windows
1126 for (i = 0; i < 4; i++) {
1127 reg = RXTX_REG148 + i * 2;
1128 serdes_wr(ctx, lane, reg, 0xFFFF);
1133 static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1134 enum cmu_type_t cmu_type,
1135 enum clk_type_t clk_type)
1137 void __iomem *csr_serdes = ctx->sds_base;
1138 int loop;
1139 u32 val;
1141 /* Release PHY main reset */
1142 writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1143 readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1145 if (cmu_type != REF_CMU) {
1146 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1148 * As per PHY design spec, the PLL reset requires a minimum
1149 * of 800us.
1151 usleep_range(800, 1000);
1153 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1154 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1155 cmu_wr(ctx, cmu_type, CMU_REG1, val);
1157 * As per PHY design spec, the PLL auto calibration requires
1158 * a minimum of 800us.
1160 usleep_range(800, 1000);
1162 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1163 CMU_REG32_FORCE_VCOCAL_START_MASK);
1165 * As per PHY design spec, the PLL requires a minimum of
1166 * 800us to settle.
1168 usleep_range(800, 1000);
1171 if (!preA3Chip)
1172 goto skip_manual_cal;
1175 * Configure the termination resister calibration
1176 * The serial receive pins, RXP/RXN, have TERMination resistor
1177 * that is required to be calibrated.
1179 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1180 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1181 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1182 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1183 cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1184 CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1186 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1187 * resistors that are required to the calibrated.
1188 * Configure the pull DOWN calibration
1190 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1191 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1192 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1193 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1194 cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1195 CMU_REG16_PVT_DN_MAN_ENA_MASK);
1196 /* Configure the pull UP calibration */
1197 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1198 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1199 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1200 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1201 cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1202 CMU_REG16_PVT_UP_MAN_ENA_MASK);
1204 skip_manual_cal:
1205 /* Poll the PLL calibration completion status for at least 1 ms */
1206 loop = 100;
1207 do {
1208 cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1209 if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1210 break;
1212 * As per PHY design spec, PLL calibration status requires
1213 * a minimum of 10us to be updated.
1215 usleep_range(10, 100);
1216 } while (--loop > 0);
1218 cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1219 dev_dbg(ctx->dev, "PLL calibration %s\n",
1220 CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1221 if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1222 dev_err(ctx->dev,
1223 "PLL calibration failed due to VCO failure\n");
1224 return -1;
1226 dev_dbg(ctx->dev, "PLL calibration successful\n");
1228 cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1229 dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1230 return 0;
1233 static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1234 enum cmu_type_t cmu_type,
1235 enum clk_type_t clk_type)
1237 u32 val;
1239 dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1240 if (cmu_type == PHY_CMU) {
1241 cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1242 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1243 cmu_wr(ctx, cmu_type, CMU_REG16, val);
1246 cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1247 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1248 CMU_REG32_FORCE_VCOCAL_START_MASK);
1251 static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1252 enum clk_type_t clk_type, int ssc_enable)
1254 void __iomem *sds_base = ctx->sds_base;
1255 u32 val;
1256 int i;
1258 /* Configure the PHY for operation */
1259 dev_dbg(ctx->dev, "Reset PHY\n");
1260 /* Place PHY into reset */
1261 writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1262 val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1263 /* Release PHY lane from reset (active high) */
1264 writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1265 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1266 /* Release all PHY module out of reset except PHY main reset */
1267 writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1268 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1270 /* Set the operation speed */
1271 val = readl(sds_base + SATA_ENET_SDS_CTL1);
1272 val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1273 ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1274 writel(val, sds_base + SATA_ENET_SDS_CTL1);
1276 dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1277 val = readl(sds_base + SATA_ENET_SDS_CTL0);
1278 val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1279 writel(val, sds_base + SATA_ENET_SDS_CTL0);
1281 /* Configure the clock macro unit (CMU) clock type */
1282 xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1284 /* Configure the clock macro */
1285 xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1287 /* Enable SSC if enabled */
1288 if (ssc_enable)
1289 xgene_phy_ssc_enable(ctx, PHY_CMU);
1291 /* Configure PHY lanes */
1292 xgene_phy_sata_cfg_lanes(ctx);
1294 /* Set Rx/Tx 20-bit */
1295 val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1296 val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1297 val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1298 writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1300 /* Start PLL calibration and try for three times */
1301 i = 10;
1302 do {
1303 if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1304 break;
1305 /* If failed, toggle the VCO power signal and start again */
1306 xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1307 } while (--i > 0);
1308 /* Even on failure, allow to continue any way */
1309 if (i <= 0)
1310 dev_err(ctx->dev, "PLL calibration failed\n");
1312 return 0;
1315 static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1316 enum clk_type_t clk_type,
1317 int ssc_enable)
1319 int rc;
1321 dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1323 if (ctx->mode == MODE_SATA) {
1324 rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1325 if (rc)
1326 return rc;
1327 } else {
1328 dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1329 ctx->mode);
1330 return -ENODEV;
1333 return 0;
1337 * Receiver Offset Calibration:
1339 * Calibrate the receiver signal path offset in two steps - summar and
1340 * latch calibrations
1342 static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1344 int i;
1345 static const struct {
1346 u32 reg;
1347 u32 val;
1348 } serdes_reg[] = {
1349 {RXTX_REG38, 0x0},
1350 {RXTX_REG39, 0xff00},
1351 {RXTX_REG40, 0xffff},
1352 {RXTX_REG41, 0xffff},
1353 {RXTX_REG42, 0xffff},
1354 {RXTX_REG43, 0xffff},
1355 {RXTX_REG44, 0xffff},
1356 {RXTX_REG45, 0xffff},
1357 {RXTX_REG46, 0xffff},
1358 {RXTX_REG47, 0xfffc},
1359 {RXTX_REG48, 0x0},
1360 {RXTX_REG49, 0x0},
1361 {RXTX_REG50, 0x0},
1362 {RXTX_REG51, 0x0},
1363 {RXTX_REG52, 0x0},
1364 {RXTX_REG53, 0x0},
1365 {RXTX_REG54, 0x0},
1366 {RXTX_REG55, 0x0},
1369 /* Start SUMMER calibration */
1370 serdes_setbits(ctx, lane, RXTX_REG127,
1371 RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1373 * As per PHY design spec, the Summer calibration requires a minimum
1374 * of 100us to complete.
1376 usleep_range(100, 500);
1377 serdes_clrbits(ctx, lane, RXTX_REG127,
1378 RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1380 * As per PHY design spec, the auto calibration requires a minimum
1381 * of 100us to complete.
1383 usleep_range(100, 500);
1385 /* Start latch calibration */
1386 serdes_setbits(ctx, lane, RXTX_REG127,
1387 RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1389 * As per PHY design spec, the latch calibration requires a minimum
1390 * of 100us to complete.
1392 usleep_range(100, 500);
1393 serdes_clrbits(ctx, lane, RXTX_REG127,
1394 RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1396 /* Configure the PHY lane for calibration */
1397 serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1398 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1399 serdes_clrbits(ctx, lane, RXTX_REG4,
1400 RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1401 serdes_clrbits(ctx, lane, RXTX_REG7,
1402 RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1403 for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1404 serdes_wr(ctx, lane, serdes_reg[i].reg,
1405 serdes_reg[i].val);
1408 static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1410 /* Reset digital Rx */
1411 serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1412 /* As per PHY design spec, the reset requires a minimum of 100us. */
1413 usleep_range(100, 150);
1414 serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1417 static int xgene_phy_get_avg(int accum, int samples)
1419 return (accum + (samples / 2)) / samples;
1422 static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1424 int max_loop = 10;
1425 int avg_loop = 0;
1426 int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1427 int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1428 int sum_cal = 0;
1429 int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1430 int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1431 int sum_cal_itr;
1432 int fail_even;
1433 int fail_odd;
1434 u32 val;
1436 dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1437 lane);
1439 /* Enable RX Hi-Z termination */
1440 serdes_setbits(ctx, lane, RXTX_REG12,
1441 RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1442 /* Turn off DFE */
1443 serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1444 /* DFE Presets to zero */
1445 serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1448 * Receiver Offset Calibration:
1449 * Calibrate the receiver signal path offset in two steps - summar
1450 * and latch calibration.
1451 * Runs the "Receiver Offset Calibration multiple times to determine
1452 * the average value to use.
1454 while (avg_loop < max_loop) {
1455 /* Start the calibration */
1456 xgene_phy_force_lat_summer_cal(ctx, lane);
1458 serdes_rd(ctx, lane, RXTX_REG21, &val);
1459 lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1460 lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1461 fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1463 serdes_rd(ctx, lane, RXTX_REG22, &val);
1464 lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1465 lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1466 fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1468 serdes_rd(ctx, lane, RXTX_REG23, &val);
1469 lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1470 lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1472 serdes_rd(ctx, lane, RXTX_REG24, &val);
1473 lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1474 lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1476 serdes_rd(ctx, lane, RXTX_REG121, &val);
1477 sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1479 /* Check for failure. If passed, sum them for averaging */
1480 if ((fail_even == 0 || fail_even == 1) &&
1481 (fail_odd == 0 || fail_odd == 1)) {
1482 lat_do += lat_do_itr;
1483 lat_xo += lat_xo_itr;
1484 lat_eo += lat_eo_itr;
1485 lat_so += lat_so_itr;
1486 lat_de += lat_de_itr;
1487 lat_xe += lat_xe_itr;
1488 lat_ee += lat_ee_itr;
1489 lat_se += lat_se_itr;
1490 sum_cal += sum_cal_itr;
1492 dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1493 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1494 lat_do_itr, lat_xo_itr, lat_eo_itr,
1495 lat_so_itr);
1496 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1497 lat_de_itr, lat_xe_itr, lat_ee_itr,
1498 lat_se_itr);
1499 dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1500 ++avg_loop;
1501 } else {
1502 dev_err(ctx->dev,
1503 "Receiver calibration failed at %d loop\n",
1504 avg_loop);
1506 xgene_phy_reset_rxd(ctx, lane);
1509 /* Update latch manual calibration with average value */
1510 serdes_rd(ctx, lane, RXTX_REG127, &val);
1511 val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1512 xgene_phy_get_avg(lat_do, max_loop));
1513 val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1514 xgene_phy_get_avg(lat_xo, max_loop));
1515 serdes_wr(ctx, lane, RXTX_REG127, val);
1517 serdes_rd(ctx, lane, RXTX_REG128, &val);
1518 val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1519 xgene_phy_get_avg(lat_eo, max_loop));
1520 val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1521 xgene_phy_get_avg(lat_so, max_loop));
1522 serdes_wr(ctx, lane, RXTX_REG128, val);
1524 serdes_rd(ctx, lane, RXTX_REG129, &val);
1525 val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1526 xgene_phy_get_avg(lat_de, max_loop));
1527 val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1528 xgene_phy_get_avg(lat_xe, max_loop));
1529 serdes_wr(ctx, lane, RXTX_REG129, val);
1531 serdes_rd(ctx, lane, RXTX_REG130, &val);
1532 val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1533 xgene_phy_get_avg(lat_ee, max_loop));
1534 val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1535 xgene_phy_get_avg(lat_se, max_loop));
1536 serdes_wr(ctx, lane, RXTX_REG130, val);
1538 /* Update SUMMER calibration with average value */
1539 serdes_rd(ctx, lane, RXTX_REG14, &val);
1540 val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1541 xgene_phy_get_avg(sum_cal, max_loop));
1542 serdes_wr(ctx, lane, RXTX_REG14, val);
1544 dev_dbg(ctx->dev, "Average Value:\n");
1545 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1546 xgene_phy_get_avg(lat_do, max_loop),
1547 xgene_phy_get_avg(lat_xo, max_loop),
1548 xgene_phy_get_avg(lat_eo, max_loop),
1549 xgene_phy_get_avg(lat_so, max_loop));
1550 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1551 xgene_phy_get_avg(lat_de, max_loop),
1552 xgene_phy_get_avg(lat_xe, max_loop),
1553 xgene_phy_get_avg(lat_ee, max_loop),
1554 xgene_phy_get_avg(lat_se, max_loop));
1555 dev_dbg(ctx->dev, "SUM 0x%x\n",
1556 xgene_phy_get_avg(sum_cal, max_loop));
1558 serdes_rd(ctx, lane, RXTX_REG14, &val);
1559 val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1560 serdes_wr(ctx, lane, RXTX_REG14, val);
1561 dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1563 serdes_rd(ctx, lane, RXTX_REG127, &val);
1564 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1565 dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1566 serdes_wr(ctx, lane, RXTX_REG127, val);
1568 /* Disable RX Hi-Z termination */
1569 serdes_rd(ctx, lane, RXTX_REG12, &val);
1570 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1571 serdes_wr(ctx, lane, RXTX_REG12, val);
1572 /* Turn on DFE */
1573 serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1574 /* Set DFE preset */
1575 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1578 static int xgene_phy_hw_init(struct phy *phy)
1580 struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1581 int rc;
1582 int i;
1584 rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1585 if (rc) {
1586 dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1587 return rc;
1590 /* Setup clock properly after PHY configuration */
1591 if (!IS_ERR(ctx->clk)) {
1592 /* HW requires an toggle of the clock */
1593 clk_prepare_enable(ctx->clk);
1594 clk_disable_unprepare(ctx->clk);
1595 clk_prepare_enable(ctx->clk);
1598 /* Compute average value */
1599 for (i = 0; i < MAX_LANE; i++)
1600 xgene_phy_gen_avg_val(ctx, i);
1602 dev_dbg(ctx->dev, "PHY initialized\n");
1603 return 0;
1606 static const struct phy_ops xgene_phy_ops = {
1607 .init = xgene_phy_hw_init,
1608 .owner = THIS_MODULE,
1611 static struct phy *xgene_phy_xlate(struct device *dev,
1612 struct of_phandle_args *args)
1614 struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1616 if (args->args_count <= 0)
1617 return ERR_PTR(-EINVAL);
1618 if (args->args[0] < MODE_SATA || args->args[0] >= MODE_MAX)
1619 return ERR_PTR(-EINVAL);
1621 ctx->mode = args->args[0];
1622 return ctx->phy;
1625 static void xgene_phy_get_param(struct platform_device *pdev,
1626 const char *name, u32 *buffer,
1627 int count, u32 *default_val,
1628 u32 conv_factor)
1630 int i;
1632 if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1633 count)) {
1634 for (i = 0; i < count; i++)
1635 buffer[i] /= conv_factor;
1636 return;
1638 /* Does not exist, load default */
1639 for (i = 0; i < count; i++)
1640 buffer[i] = default_val[i % 3];
1643 static int xgene_phy_probe(struct platform_device *pdev)
1645 struct phy_provider *phy_provider;
1646 struct xgene_phy_ctx *ctx;
1647 struct resource *res;
1648 u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1649 u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1650 u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1651 u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1652 u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1653 u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1654 u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1655 u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1656 int i;
1658 ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1659 if (!ctx)
1660 return -ENOMEM;
1662 ctx->dev = &pdev->dev;
1664 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1665 ctx->sds_base = devm_ioremap_resource(&pdev->dev, res);
1666 if (IS_ERR(ctx->sds_base))
1667 return PTR_ERR(ctx->sds_base);
1669 /* Retrieve optional clock */
1670 ctx->clk = clk_get(&pdev->dev, NULL);
1672 /* Load override paramaters */
1673 xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1674 ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1675 xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1676 ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1677 xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1678 ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1679 xgene_phy_get_param(pdev, "apm,tx-amplitude",
1680 ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1681 xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1682 ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1683 xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1684 ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1685 xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1686 ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1687 xgene_phy_get_param(pdev, "apm,tx-speed",
1688 ctx->sata_param.txspeed, 3, default_spd, 1);
1689 for (i = 0; i < MAX_LANE; i++)
1690 ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1692 platform_set_drvdata(pdev, ctx);
1694 ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1695 if (IS_ERR(ctx->phy)) {
1696 dev_dbg(&pdev->dev, "Failed to create PHY\n");
1697 return PTR_ERR(ctx->phy);
1699 phy_set_drvdata(ctx->phy, ctx);
1701 phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1702 return PTR_ERR_OR_ZERO(phy_provider);
1705 static const struct of_device_id xgene_phy_of_match[] = {
1706 {.compatible = "apm,xgene-phy",},
1709 MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1711 static struct platform_driver xgene_phy_driver = {
1712 .probe = xgene_phy_probe,
1713 .driver = {
1714 .name = "xgene-phy",
1715 .of_match_table = xgene_phy_of_match,
1718 module_platform_driver(xgene_phy_driver);
1720 MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1721 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1722 MODULE_LICENSE("GPL v2");
1723 MODULE_VERSION("0.1");