1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
4 #include <linux/gpio/consumer.h>
5 #include <linux/iio/consumer.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/nvmem-consumer.h>
11 #include <linux/platform_device.h>
12 #include <linux/power_supply.h>
13 #include <linux/regmap.h>
14 #include <linux/slab.h>
16 /* PMIC global control registers definition */
17 #define SC27XX_MODULE_EN0 0xc08
18 #define SC27XX_CLK_EN0 0xc18
19 #define SC27XX_FGU_EN BIT(7)
20 #define SC27XX_FGU_RTC_EN BIT(6)
22 /* FGU registers definition */
23 #define SC27XX_FGU_START 0x0
24 #define SC27XX_FGU_CONFIG 0x4
25 #define SC27XX_FGU_ADC_CONFIG 0x8
26 #define SC27XX_FGU_STATUS 0xc
27 #define SC27XX_FGU_INT_EN 0x10
28 #define SC27XX_FGU_INT_CLR 0x14
29 #define SC27XX_FGU_INT_STS 0x1c
30 #define SC27XX_FGU_VOLTAGE 0x20
31 #define SC27XX_FGU_OCV 0x24
32 #define SC27XX_FGU_POCV 0x28
33 #define SC27XX_FGU_CURRENT 0x2c
34 #define SC27XX_FGU_LOW_OVERLOAD 0x34
35 #define SC27XX_FGU_CLBCNT_SETH 0x50
36 #define SC27XX_FGU_CLBCNT_SETL 0x54
37 #define SC27XX_FGU_CLBCNT_DELTH 0x58
38 #define SC27XX_FGU_CLBCNT_DELTL 0x5c
39 #define SC27XX_FGU_CLBCNT_VALH 0x68
40 #define SC27XX_FGU_CLBCNT_VALL 0x6c
41 #define SC27XX_FGU_CLBCNT_QMAXL 0x74
42 #define SC27XX_FGU_USER_AREA_SET 0xa0
43 #define SC27XX_FGU_USER_AREA_CLEAR 0xa4
44 #define SC27XX_FGU_USER_AREA_STATUS 0xa8
46 #define SC27XX_WRITE_SELCLB_EN BIT(0)
47 #define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0)
48 #define SC27XX_FGU_CLBCNT_SHIFT 16
49 #define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0)
51 #define SC27XX_FGU_INT_MASK GENMASK(9, 0)
52 #define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0)
53 #define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2)
55 #define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12)
56 #define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0)
57 #define SC27XX_FGU_MODE_AREA_SHIFT 12
59 #define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0)
60 #define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0)
61 #define SC27XX_FGU_NORMAIL_POWERTON 0x5
63 #define SC27XX_FGU_CUR_BASIC_ADC 8192
64 #define SC27XX_FGU_SAMPLE_HZ 2
66 #define SC27XX_FGU_IDEAL_RESISTANCE 20000
69 * struct sc27xx_fgu_data: describe the FGU device
70 * @regmap: regmap for register access
71 * @dev: platform device
72 * @battery: battery power supply
73 * @base: the base offset for the controller
74 * @lock: protect the structure
75 * @gpiod: GPIO for battery detection
76 * @channel: IIO channel to get battery temperature
77 * @charge_chan: IIO channel to get charge voltage
78 * @internal_resist: the battery internal resistance in mOhm
79 * @total_cap: the total capacity of the battery in mAh
80 * @init_cap: the initial capacity of the battery in mAh
81 * @alarm_cap: the alarm capacity
82 * @init_clbcnt: the initial coulomb counter
83 * @max_volt: the maximum constant input voltage in millivolt
84 * @min_volt: the minimum drained battery voltage in microvolt
85 * @table_len: the capacity table length
86 * @resist_table_len: the resistance table length
87 * @cur_1000ma_adc: ADC value corresponding to 1000 mA
88 * @vol_1000mv_adc: ADC value corresponding to 1000 mV
89 * @calib_resist: the real resistance of coulomb counter chip in uOhm
90 * @cap_table: capacity table with corresponding ocv
91 * @resist_table: resistance percent table with corresponding temperature
93 struct sc27xx_fgu_data
{
94 struct regmap
*regmap
;
96 struct power_supply
*battery
;
99 struct gpio_desc
*gpiod
;
100 struct iio_channel
*channel
;
101 struct iio_channel
*charge_chan
;
111 int resist_table_len
;
115 struct power_supply_battery_ocv_table
*cap_table
;
116 struct power_supply_resistance_temp_table
*resist_table
;
119 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data
*data
, int capacity
);
120 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data
*data
,
121 int cap
, bool int_mode
);
122 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data
*data
, int cap
);
123 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data
*data
, int *temp
);
125 static const char * const sc27xx_charger_supply_name
[] = {
132 static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data
*data
, int adc
)
134 return DIV_ROUND_CLOSEST(adc
* 1000, data
->cur_1000ma_adc
);
137 static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data
*data
, int adc
)
139 return DIV_ROUND_CLOSEST(adc
* 1000, data
->vol_1000mv_adc
);
142 static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data
*data
, int vol
)
144 return DIV_ROUND_CLOSEST(vol
* data
->vol_1000mv_adc
, 1000);
147 static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data
*data
)
149 int ret
, status
, cap
, mode
;
151 ret
= regmap_read(data
->regmap
,
152 data
->base
+ SC27XX_FGU_USER_AREA_STATUS
, &status
);
157 * We use low 4 bits to save the last battery capacity and high 12 bits
158 * to save the system boot mode.
160 mode
= (status
& SC27XX_FGU_MODE_AREA_MASK
) >> SC27XX_FGU_MODE_AREA_SHIFT
;
161 cap
= status
& SC27XX_FGU_CAP_AREA_MASK
;
164 * When FGU has been powered down, the user area registers became
165 * default value (0xffff), which can be used to valid if the system is
166 * first power on or not.
168 if (mode
== SC27XX_FGU_FIRST_POWERTON
|| cap
== SC27XX_FGU_DEFAULT_CAP
)
174 static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data
*data
,
179 ret
= regmap_update_bits(data
->regmap
,
180 data
->base
+ SC27XX_FGU_USER_AREA_CLEAR
,
181 SC27XX_FGU_MODE_AREA_MASK
,
182 SC27XX_FGU_MODE_AREA_MASK
);
187 * Since the user area registers are put on power always-on region,
188 * then these registers changing time will be a little long. Thus
189 * here we should delay 200us to wait until values are updated
190 * successfully according to the datasheet.
194 ret
= regmap_update_bits(data
->regmap
,
195 data
->base
+ SC27XX_FGU_USER_AREA_SET
,
196 SC27XX_FGU_MODE_AREA_MASK
,
197 boot_mode
<< SC27XX_FGU_MODE_AREA_SHIFT
);
202 * Since the user area registers are put on power always-on region,
203 * then these registers changing time will be a little long. Thus
204 * here we should delay 200us to wait until values are updated
205 * successfully according to the datasheet.
210 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
211 * make the user area data available, otherwise we can not save the user
214 return regmap_update_bits(data
->regmap
,
215 data
->base
+ SC27XX_FGU_USER_AREA_CLEAR
,
216 SC27XX_FGU_MODE_AREA_MASK
, 0);
219 static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data
*data
, int cap
)
223 ret
= regmap_update_bits(data
->regmap
,
224 data
->base
+ SC27XX_FGU_USER_AREA_CLEAR
,
225 SC27XX_FGU_CAP_AREA_MASK
,
226 SC27XX_FGU_CAP_AREA_MASK
);
231 * Since the user area registers are put on power always-on region,
232 * then these registers changing time will be a little long. Thus
233 * here we should delay 200us to wait until values are updated
234 * successfully according to the datasheet.
238 ret
= regmap_update_bits(data
->regmap
,
239 data
->base
+ SC27XX_FGU_USER_AREA_SET
,
240 SC27XX_FGU_CAP_AREA_MASK
, cap
);
245 * Since the user area registers are put on power always-on region,
246 * then these registers changing time will be a little long. Thus
247 * here we should delay 200us to wait until values are updated
248 * successfully according to the datasheet.
253 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
254 * make the user area data available, otherwise we can not save the user
257 return regmap_update_bits(data
->regmap
,
258 data
->base
+ SC27XX_FGU_USER_AREA_CLEAR
,
259 SC27XX_FGU_CAP_AREA_MASK
, 0);
262 static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data
*data
, int *cap
)
266 ret
= regmap_read(data
->regmap
,
267 data
->base
+ SC27XX_FGU_USER_AREA_STATUS
, &value
);
271 *cap
= value
& SC27XX_FGU_CAP_AREA_MASK
;
276 * When system boots on, we can not read battery capacity from coulomb
277 * registers, since now the coulomb registers are invalid. So we should
278 * calculate the battery open circuit voltage, and get current battery
279 * capacity according to the capacity table.
281 static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data
*data
, int *cap
)
283 int volt
, cur
, oci
, ocv
, ret
;
284 bool is_first_poweron
= sc27xx_fgu_is_first_poweron(data
);
287 * If system is not the first power on, we should use the last saved
288 * battery capacity as the initial battery capacity. Otherwise we should
289 * re-calculate the initial battery capacity.
291 if (!is_first_poweron
) {
292 ret
= sc27xx_fgu_read_last_cap(data
, cap
);
296 return sc27xx_fgu_save_boot_mode(data
, SC27XX_FGU_NORMAIL_POWERTON
);
300 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
301 * the first sampled open circuit current.
303 ret
= regmap_read(data
->regmap
, data
->base
+ SC27XX_FGU_CLBCNT_QMAXL
,
309 oci
= sc27xx_fgu_adc_to_current(data
, cur
- SC27XX_FGU_CUR_BASIC_ADC
);
312 * Should get the OCV from SC27XX_FGU_POCV register at the system
313 * beginning. It is ADC values reading from registers which need to
314 * convert the corresponding voltage.
316 ret
= regmap_read(data
->regmap
, data
->base
+ SC27XX_FGU_POCV
, &volt
);
320 volt
= sc27xx_fgu_adc_to_voltage(data
, volt
);
321 ocv
= volt
* 1000 - oci
* data
->internal_resist
;
324 * Parse the capacity table to look up the correct capacity percent
325 * according to current battery's corresponding OCV values.
327 *cap
= power_supply_ocv2cap_simple(data
->cap_table
, data
->table_len
,
330 ret
= sc27xx_fgu_save_last_cap(data
, *cap
);
334 return sc27xx_fgu_save_boot_mode(data
, SC27XX_FGU_NORMAIL_POWERTON
);
337 static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data
*data
, int clbcnt
)
341 ret
= regmap_update_bits(data
->regmap
,
342 data
->base
+ SC27XX_FGU_CLBCNT_SETL
,
343 SC27XX_FGU_CLBCNT_MASK
, clbcnt
);
347 ret
= regmap_update_bits(data
->regmap
,
348 data
->base
+ SC27XX_FGU_CLBCNT_SETH
,
349 SC27XX_FGU_CLBCNT_MASK
,
350 clbcnt
>> SC27XX_FGU_CLBCNT_SHIFT
);
354 return regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_START
,
355 SC27XX_WRITE_SELCLB_EN
,
356 SC27XX_WRITE_SELCLB_EN
);
359 static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data
*data
, int *clb_cnt
)
363 ret
= regmap_read(data
->regmap
, data
->base
+ SC27XX_FGU_CLBCNT_VALL
,
368 ret
= regmap_read(data
->regmap
, data
->base
+ SC27XX_FGU_CLBCNT_VALH
,
373 *clb_cnt
= ccl
& SC27XX_FGU_CLBCNT_MASK
;
374 *clb_cnt
|= (cch
& SC27XX_FGU_CLBCNT_MASK
) << SC27XX_FGU_CLBCNT_SHIFT
;
379 static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data
*data
, int *cap
)
381 int ret
, cur_clbcnt
, delta_clbcnt
, delta_cap
, temp
;
383 /* Get current coulomb counters firstly */
384 ret
= sc27xx_fgu_get_clbcnt(data
, &cur_clbcnt
);
388 delta_clbcnt
= cur_clbcnt
- data
->init_clbcnt
;
391 * Convert coulomb counter to delta capacity (mAh), and set multiplier
392 * as 10 to improve the precision.
394 temp
= DIV_ROUND_CLOSEST(delta_clbcnt
* 10, 36 * SC27XX_FGU_SAMPLE_HZ
);
395 temp
= sc27xx_fgu_adc_to_current(data
, temp
/ 1000);
398 * Convert to capacity percent of the battery total capacity,
399 * and multiplier is 100 too.
401 delta_cap
= DIV_ROUND_CLOSEST(temp
* 100, data
->total_cap
);
402 *cap
= delta_cap
+ data
->init_cap
;
404 /* Calibrate the battery capacity in a normal range. */
405 sc27xx_fgu_capacity_calibration(data
, *cap
, false);
410 static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data
*data
, int *val
)
414 ret
= regmap_read(data
->regmap
, data
->base
+ SC27XX_FGU_VOLTAGE
, &vol
);
419 * It is ADC values reading from registers which need to convert to
420 * corresponding voltage values.
422 *val
= sc27xx_fgu_adc_to_voltage(data
, vol
);
427 static int sc27xx_fgu_get_current(struct sc27xx_fgu_data
*data
, int *val
)
431 ret
= regmap_read(data
->regmap
, data
->base
+ SC27XX_FGU_CURRENT
, &cur
);
436 * It is ADC values reading from registers which need to convert to
437 * corresponding current values.
439 *val
= sc27xx_fgu_adc_to_current(data
, cur
- SC27XX_FGU_CUR_BASIC_ADC
);
444 static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data
*data
, int *val
)
446 int vol
, cur
, ret
, temp
, resistance
;
448 ret
= sc27xx_fgu_get_vbat_vol(data
, &vol
);
452 ret
= sc27xx_fgu_get_current(data
, &cur
);
456 resistance
= data
->internal_resist
;
457 if (data
->resist_table_len
> 0) {
458 ret
= sc27xx_fgu_get_temp(data
, &temp
);
462 resistance
= power_supply_temp2resist_simple(data
->resist_table
,
463 data
->resist_table_len
, temp
);
464 resistance
= data
->internal_resist
* resistance
/ 100;
467 /* Return the battery OCV in micro volts. */
468 *val
= vol
* 1000 - cur
* resistance
;
473 static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data
*data
, int *val
)
477 ret
= iio_read_channel_processed(data
->charge_chan
, &vol
);
485 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data
*data
, int *temp
)
487 return iio_read_channel_processed(data
->channel
, temp
);
490 static int sc27xx_fgu_get_health(struct sc27xx_fgu_data
*data
, int *health
)
494 ret
= sc27xx_fgu_get_vbat_vol(data
, &vol
);
498 if (vol
> data
->max_volt
)
499 *health
= POWER_SUPPLY_HEALTH_OVERVOLTAGE
;
501 *health
= POWER_SUPPLY_HEALTH_GOOD
;
506 static int sc27xx_fgu_get_status(struct sc27xx_fgu_data
*data
, int *status
)
508 union power_supply_propval val
;
509 struct power_supply
*psy
;
510 int i
, ret
= -EINVAL
;
512 for (i
= 0; i
< ARRAY_SIZE(sc27xx_charger_supply_name
); i
++) {
513 psy
= power_supply_get_by_name(sc27xx_charger_supply_name
[i
]);
517 ret
= power_supply_get_property(psy
, POWER_SUPPLY_PROP_STATUS
,
519 power_supply_put(psy
);
523 *status
= val
.intval
;
529 static int sc27xx_fgu_get_property(struct power_supply
*psy
,
530 enum power_supply_property psp
,
531 union power_supply_propval
*val
)
533 struct sc27xx_fgu_data
*data
= power_supply_get_drvdata(psy
);
537 mutex_lock(&data
->lock
);
540 case POWER_SUPPLY_PROP_STATUS
:
541 ret
= sc27xx_fgu_get_status(data
, &value
);
548 case POWER_SUPPLY_PROP_HEALTH
:
549 ret
= sc27xx_fgu_get_health(data
, &value
);
556 case POWER_SUPPLY_PROP_PRESENT
:
557 val
->intval
= data
->bat_present
;
560 case POWER_SUPPLY_PROP_TEMP
:
561 ret
= sc27xx_fgu_get_temp(data
, &value
);
568 case POWER_SUPPLY_PROP_TECHNOLOGY
:
569 val
->intval
= POWER_SUPPLY_TECHNOLOGY_LION
;
572 case POWER_SUPPLY_PROP_CAPACITY
:
573 ret
= sc27xx_fgu_get_capacity(data
, &value
);
580 case POWER_SUPPLY_PROP_VOLTAGE_NOW
:
581 ret
= sc27xx_fgu_get_vbat_vol(data
, &value
);
585 val
->intval
= value
* 1000;
588 case POWER_SUPPLY_PROP_VOLTAGE_OCV
:
589 ret
= sc27xx_fgu_get_vbat_ocv(data
, &value
);
596 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE
:
597 ret
= sc27xx_fgu_get_charge_vol(data
, &value
);
604 case POWER_SUPPLY_PROP_CURRENT_NOW
:
605 case POWER_SUPPLY_PROP_CURRENT_AVG
:
606 ret
= sc27xx_fgu_get_current(data
, &value
);
610 val
->intval
= value
* 1000;
613 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
:
614 val
->intval
= data
->total_cap
* 1000;
623 mutex_unlock(&data
->lock
);
627 static int sc27xx_fgu_set_property(struct power_supply
*psy
,
628 enum power_supply_property psp
,
629 const union power_supply_propval
*val
)
631 struct sc27xx_fgu_data
*data
= power_supply_get_drvdata(psy
);
634 mutex_lock(&data
->lock
);
637 case POWER_SUPPLY_PROP_CAPACITY
:
638 ret
= sc27xx_fgu_save_last_cap(data
, val
->intval
);
640 dev_err(data
->dev
, "failed to save battery capacity\n");
643 case POWER_SUPPLY_PROP_CALIBRATE
:
644 sc27xx_fgu_adjust_cap(data
, val
->intval
);
652 mutex_unlock(&data
->lock
);
657 static void sc27xx_fgu_external_power_changed(struct power_supply
*psy
)
659 struct sc27xx_fgu_data
*data
= power_supply_get_drvdata(psy
);
661 power_supply_changed(data
->battery
);
664 static int sc27xx_fgu_property_is_writeable(struct power_supply
*psy
,
665 enum power_supply_property psp
)
667 return psp
== POWER_SUPPLY_PROP_CAPACITY
||
668 psp
== POWER_SUPPLY_PROP_CALIBRATE
;
671 static enum power_supply_property sc27xx_fgu_props
[] = {
672 POWER_SUPPLY_PROP_STATUS
,
673 POWER_SUPPLY_PROP_HEALTH
,
674 POWER_SUPPLY_PROP_PRESENT
,
675 POWER_SUPPLY_PROP_TEMP
,
676 POWER_SUPPLY_PROP_TECHNOLOGY
,
677 POWER_SUPPLY_PROP_CAPACITY
,
678 POWER_SUPPLY_PROP_VOLTAGE_NOW
,
679 POWER_SUPPLY_PROP_VOLTAGE_OCV
,
680 POWER_SUPPLY_PROP_CURRENT_NOW
,
681 POWER_SUPPLY_PROP_CURRENT_AVG
,
682 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE
,
683 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
,
684 POWER_SUPPLY_PROP_CALIBRATE
,
687 static const struct power_supply_desc sc27xx_fgu_desc
= {
688 .name
= "sc27xx-fgu",
689 .type
= POWER_SUPPLY_TYPE_BATTERY
,
690 .properties
= sc27xx_fgu_props
,
691 .num_properties
= ARRAY_SIZE(sc27xx_fgu_props
),
692 .get_property
= sc27xx_fgu_get_property
,
693 .set_property
= sc27xx_fgu_set_property
,
694 .external_power_changed
= sc27xx_fgu_external_power_changed
,
695 .property_is_writeable
= sc27xx_fgu_property_is_writeable
,
698 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data
*data
, int cap
)
702 data
->init_cap
= cap
;
703 ret
= sc27xx_fgu_get_clbcnt(data
, &data
->init_clbcnt
);
705 dev_err(data
->dev
, "failed to get init coulomb counter\n");
708 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data
*data
,
709 int cap
, bool int_mode
)
711 int ret
, ocv
, chg_sts
, adc
;
713 ret
= sc27xx_fgu_get_vbat_ocv(data
, &ocv
);
715 dev_err(data
->dev
, "get battery ocv error.\n");
719 ret
= sc27xx_fgu_get_status(data
, &chg_sts
);
721 dev_err(data
->dev
, "get charger status error.\n");
726 * If we are in charging mode, then we do not need to calibrate the
729 if (chg_sts
== POWER_SUPPLY_STATUS_CHARGING
)
732 if ((ocv
> data
->cap_table
[0].ocv
&& cap
< 100) || cap
> 100) {
734 * If current OCV value is larger than the max OCV value in
735 * OCV table, or the current capacity is larger than 100,
736 * we should force the inititial capacity to 100.
738 sc27xx_fgu_adjust_cap(data
, 100);
739 } else if (ocv
<= data
->cap_table
[data
->table_len
- 1].ocv
) {
741 * If current OCV value is leass than the minimum OCV value in
742 * OCV table, we should force the inititial capacity to 0.
744 sc27xx_fgu_adjust_cap(data
, 0);
745 } else if ((ocv
> data
->cap_table
[data
->table_len
- 1].ocv
&& cap
<= 0) ||
746 (ocv
> data
->min_volt
&& cap
<= data
->alarm_cap
)) {
748 * If current OCV value is not matchable with current capacity,
749 * we should re-calculate current capacity by looking up the
752 int cur_cap
= power_supply_ocv2cap_simple(data
->cap_table
,
753 data
->table_len
, ocv
);
755 sc27xx_fgu_adjust_cap(data
, cur_cap
);
756 } else if (ocv
<= data
->min_volt
) {
758 * If current OCV value is less than the low alarm voltage, but
759 * current capacity is larger than the alarm capacity, we should
760 * adjust the inititial capacity to alarm capacity.
762 if (cap
> data
->alarm_cap
) {
763 sc27xx_fgu_adjust_cap(data
, data
->alarm_cap
);
768 * If current capacity is equal with 0 or less than 0
769 * (some error occurs), we should adjust inititial
770 * capacity to the capacity corresponding to current OCV
773 cur_cap
= power_supply_ocv2cap_simple(data
->cap_table
,
776 sc27xx_fgu_adjust_cap(data
, cur_cap
);
783 * After adjusting the battery capacity, we should set the
784 * lowest alarm voltage instead.
786 data
->min_volt
= data
->cap_table
[data
->table_len
- 1].ocv
;
787 data
->alarm_cap
= power_supply_ocv2cap_simple(data
->cap_table
,
791 adc
= sc27xx_fgu_voltage_to_adc(data
, data
->min_volt
/ 1000);
792 regmap_update_bits(data
->regmap
,
793 data
->base
+ SC27XX_FGU_LOW_OVERLOAD
,
794 SC27XX_FGU_LOW_OVERLOAD_MASK
, adc
);
798 static irqreturn_t
sc27xx_fgu_interrupt(int irq
, void *dev_id
)
800 struct sc27xx_fgu_data
*data
= dev_id
;
804 mutex_lock(&data
->lock
);
806 ret
= regmap_read(data
->regmap
, data
->base
+ SC27XX_FGU_INT_STS
,
811 ret
= regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_INT_CLR
,
817 * When low overload voltage interrupt happens, we should calibrate the
818 * battery capacity in lower voltage stage.
820 if (!(status
& SC27XX_FGU_LOW_OVERLOAD_INT
))
823 ret
= sc27xx_fgu_get_capacity(data
, &cap
);
827 sc27xx_fgu_capacity_calibration(data
, cap
, true);
830 mutex_unlock(&data
->lock
);
832 power_supply_changed(data
->battery
);
836 static irqreturn_t
sc27xx_fgu_bat_detection(int irq
, void *dev_id
)
838 struct sc27xx_fgu_data
*data
= dev_id
;
841 mutex_lock(&data
->lock
);
843 state
= gpiod_get_value_cansleep(data
->gpiod
);
845 dev_err(data
->dev
, "failed to get gpio state\n");
846 mutex_unlock(&data
->lock
);
847 return IRQ_RETVAL(state
);
850 data
->bat_present
= !!state
;
852 mutex_unlock(&data
->lock
);
854 power_supply_changed(data
->battery
);
858 static void sc27xx_fgu_disable(void *_data
)
860 struct sc27xx_fgu_data
*data
= _data
;
862 regmap_update_bits(data
->regmap
, SC27XX_CLK_EN0
, SC27XX_FGU_RTC_EN
, 0);
863 regmap_update_bits(data
->regmap
, SC27XX_MODULE_EN0
, SC27XX_FGU_EN
, 0);
866 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data
*data
, int capacity
)
869 * Get current capacity (mAh) = battery total capacity (mAh) *
870 * current capacity percent (capacity / 100).
872 int cur_cap
= DIV_ROUND_CLOSEST(data
->total_cap
* capacity
, 100);
875 * Convert current capacity (mAh) to coulomb counter according to the
876 * formula: 1 mAh =3.6 coulomb.
878 return DIV_ROUND_CLOSEST(cur_cap
* 36 * data
->cur_1000ma_adc
* SC27XX_FGU_SAMPLE_HZ
, 10);
881 static int sc27xx_fgu_calibration(struct sc27xx_fgu_data
*data
)
883 struct nvmem_cell
*cell
;
884 int calib_data
, cal_4200mv
;
888 cell
= nvmem_cell_get(data
->dev
, "fgu_calib");
890 return PTR_ERR(cell
);
892 buf
= nvmem_cell_read(cell
, &len
);
893 nvmem_cell_put(cell
);
898 memcpy(&calib_data
, buf
, min(len
, sizeof(u32
)));
901 * Get the ADC value corresponding to 4200 mV from eFuse controller
902 * according to below formula. Then convert to ADC values corresponding
903 * to 1000 mV and 1000 mA.
905 cal_4200mv
= (calib_data
& 0x1ff) + 6963 - 4096 - 256;
906 data
->vol_1000mv_adc
= DIV_ROUND_CLOSEST(cal_4200mv
* 10, 42);
907 data
->cur_1000ma_adc
=
908 DIV_ROUND_CLOSEST(data
->vol_1000mv_adc
* 4 * data
->calib_resist
,
909 SC27XX_FGU_IDEAL_RESISTANCE
);
915 static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data
*data
)
917 struct power_supply_battery_info info
= { };
918 struct power_supply_battery_ocv_table
*table
;
919 int ret
, delta_clbcnt
, alarm_adc
;
921 ret
= power_supply_get_battery_info(data
->battery
, &info
);
923 dev_err(data
->dev
, "failed to get battery information\n");
927 data
->total_cap
= info
.charge_full_design_uah
/ 1000;
928 data
->max_volt
= info
.constant_charge_voltage_max_uv
/ 1000;
929 data
->internal_resist
= info
.factory_internal_resistance_uohm
/ 1000;
930 data
->min_volt
= info
.voltage_min_design_uv
;
933 * For SC27XX fuel gauge device, we only use one ocv-capacity
934 * table in normal temperature 20 Celsius.
936 table
= power_supply_find_ocv2cap_table(&info
, 20, &data
->table_len
);
940 data
->cap_table
= devm_kmemdup(data
->dev
, table
,
941 data
->table_len
* sizeof(*table
),
943 if (!data
->cap_table
) {
944 power_supply_put_battery_info(data
->battery
, &info
);
948 data
->alarm_cap
= power_supply_ocv2cap_simple(data
->cap_table
,
951 if (!data
->alarm_cap
)
952 data
->alarm_cap
+= 1;
954 data
->resist_table_len
= info
.resist_table_size
;
955 if (data
->resist_table_len
> 0) {
956 data
->resist_table
= devm_kmemdup(data
->dev
, info
.resist_table
,
957 data
->resist_table_len
*
958 sizeof(struct power_supply_resistance_temp_table
),
960 if (!data
->resist_table
) {
961 power_supply_put_battery_info(data
->battery
, &info
);
966 power_supply_put_battery_info(data
->battery
, &info
);
968 ret
= sc27xx_fgu_calibration(data
);
972 /* Enable the FGU module */
973 ret
= regmap_update_bits(data
->regmap
, SC27XX_MODULE_EN0
,
974 SC27XX_FGU_EN
, SC27XX_FGU_EN
);
976 dev_err(data
->dev
, "failed to enable fgu\n");
980 /* Enable the FGU RTC clock to make it work */
981 ret
= regmap_update_bits(data
->regmap
, SC27XX_CLK_EN0
,
982 SC27XX_FGU_RTC_EN
, SC27XX_FGU_RTC_EN
);
984 dev_err(data
->dev
, "failed to enable fgu RTC clock\n");
988 ret
= regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_INT_CLR
,
989 SC27XX_FGU_INT_MASK
, SC27XX_FGU_INT_MASK
);
991 dev_err(data
->dev
, "failed to clear interrupt status\n");
996 * Set the voltage low overload threshold, which means when the battery
997 * voltage is lower than this threshold, the controller will generate
998 * one interrupt to notify.
1000 alarm_adc
= sc27xx_fgu_voltage_to_adc(data
, data
->min_volt
/ 1000);
1001 ret
= regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_LOW_OVERLOAD
,
1002 SC27XX_FGU_LOW_OVERLOAD_MASK
, alarm_adc
);
1004 dev_err(data
->dev
, "failed to set fgu low overload\n");
1009 * Set the coulomb counter delta threshold, that means when the coulomb
1010 * counter change is multiples of the delta threshold, the controller
1011 * will generate one interrupt to notify the users to update the battery
1012 * capacity. Now we set the delta threshold as a counter value of 1%
1015 delta_clbcnt
= sc27xx_fgu_cap_to_clbcnt(data
, 1);
1017 ret
= regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_CLBCNT_DELTL
,
1018 SC27XX_FGU_CLBCNT_MASK
, delta_clbcnt
);
1020 dev_err(data
->dev
, "failed to set low delta coulomb counter\n");
1024 ret
= regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_CLBCNT_DELTH
,
1025 SC27XX_FGU_CLBCNT_MASK
,
1026 delta_clbcnt
>> SC27XX_FGU_CLBCNT_SHIFT
);
1028 dev_err(data
->dev
, "failed to set high delta coulomb counter\n");
1033 * Get the boot battery capacity when system powers on, which is used to
1034 * initialize the coulomb counter. After that, we can read the coulomb
1035 * counter to measure the battery capacity.
1037 ret
= sc27xx_fgu_get_boot_capacity(data
, &data
->init_cap
);
1039 dev_err(data
->dev
, "failed to get boot capacity\n");
1044 * Convert battery capacity to the corresponding initial coulomb counter
1045 * and set into coulomb counter registers.
1047 data
->init_clbcnt
= sc27xx_fgu_cap_to_clbcnt(data
, data
->init_cap
);
1048 ret
= sc27xx_fgu_set_clbcnt(data
, data
->init_clbcnt
);
1050 dev_err(data
->dev
, "failed to initialize coulomb counter\n");
1057 regmap_update_bits(data
->regmap
, SC27XX_CLK_EN0
, SC27XX_FGU_RTC_EN
, 0);
1059 regmap_update_bits(data
->regmap
, SC27XX_MODULE_EN0
, SC27XX_FGU_EN
, 0);
1064 static int sc27xx_fgu_probe(struct platform_device
*pdev
)
1066 struct device
*dev
= &pdev
->dev
;
1067 struct device_node
*np
= dev
->of_node
;
1068 struct power_supply_config fgu_cfg
= { };
1069 struct sc27xx_fgu_data
*data
;
1072 data
= devm_kzalloc(dev
, sizeof(*data
), GFP_KERNEL
);
1076 data
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
1077 if (!data
->regmap
) {
1078 dev_err(dev
, "failed to get regmap\n");
1082 ret
= device_property_read_u32(dev
, "reg", &data
->base
);
1084 dev_err(dev
, "failed to get fgu address\n");
1088 ret
= device_property_read_u32(&pdev
->dev
,
1089 "sprd,calib-resistance-micro-ohms",
1090 &data
->calib_resist
);
1093 "failed to get fgu calibration resistance\n");
1097 data
->channel
= devm_iio_channel_get(dev
, "bat-temp");
1098 if (IS_ERR(data
->channel
)) {
1099 dev_err(dev
, "failed to get IIO channel\n");
1100 return PTR_ERR(data
->channel
);
1103 data
->charge_chan
= devm_iio_channel_get(dev
, "charge-vol");
1104 if (IS_ERR(data
->charge_chan
)) {
1105 dev_err(dev
, "failed to get charge IIO channel\n");
1106 return PTR_ERR(data
->charge_chan
);
1109 data
->gpiod
= devm_gpiod_get(dev
, "bat-detect", GPIOD_IN
);
1110 if (IS_ERR(data
->gpiod
)) {
1111 dev_err(dev
, "failed to get battery detection GPIO\n");
1112 return PTR_ERR(data
->gpiod
);
1115 ret
= gpiod_get_value_cansleep(data
->gpiod
);
1117 dev_err(dev
, "failed to get gpio state\n");
1121 data
->bat_present
= !!ret
;
1122 mutex_init(&data
->lock
);
1124 platform_set_drvdata(pdev
, data
);
1126 fgu_cfg
.drv_data
= data
;
1127 fgu_cfg
.of_node
= np
;
1128 data
->battery
= devm_power_supply_register(dev
, &sc27xx_fgu_desc
,
1130 if (IS_ERR(data
->battery
)) {
1131 dev_err(dev
, "failed to register power supply\n");
1132 return PTR_ERR(data
->battery
);
1135 ret
= sc27xx_fgu_hw_init(data
);
1137 dev_err(dev
, "failed to initialize fgu hardware\n");
1141 ret
= devm_add_action_or_reset(dev
, sc27xx_fgu_disable
, data
);
1143 dev_err(dev
, "failed to add fgu disable action\n");
1147 irq
= platform_get_irq(pdev
, 0);
1149 dev_err(dev
, "no irq resource specified\n");
1153 ret
= devm_request_threaded_irq(data
->dev
, irq
, NULL
,
1154 sc27xx_fgu_interrupt
,
1155 IRQF_NO_SUSPEND
| IRQF_ONESHOT
,
1158 dev_err(data
->dev
, "failed to request fgu IRQ\n");
1162 irq
= gpiod_to_irq(data
->gpiod
);
1164 dev_err(dev
, "failed to translate GPIO to IRQ\n");
1168 ret
= devm_request_threaded_irq(dev
, irq
, NULL
,
1169 sc27xx_fgu_bat_detection
,
1170 IRQF_ONESHOT
| IRQF_TRIGGER_RISING
|
1171 IRQF_TRIGGER_FALLING
,
1174 dev_err(dev
, "failed to request IRQ\n");
1181 #ifdef CONFIG_PM_SLEEP
1182 static int sc27xx_fgu_resume(struct device
*dev
)
1184 struct sc27xx_fgu_data
*data
= dev_get_drvdata(dev
);
1187 ret
= regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_INT_EN
,
1188 SC27XX_FGU_LOW_OVERLOAD_INT
|
1189 SC27XX_FGU_CLBCNT_DELTA_INT
, 0);
1191 dev_err(data
->dev
, "failed to disable fgu interrupts\n");
1198 static int sc27xx_fgu_suspend(struct device
*dev
)
1200 struct sc27xx_fgu_data
*data
= dev_get_drvdata(dev
);
1201 int ret
, status
, ocv
;
1203 ret
= sc27xx_fgu_get_status(data
, &status
);
1208 * If we are charging, then no need to enable the FGU interrupts to
1209 * adjust the battery capacity.
1211 if (status
!= POWER_SUPPLY_STATUS_NOT_CHARGING
&&
1212 status
!= POWER_SUPPLY_STATUS_DISCHARGING
)
1215 ret
= regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_INT_EN
,
1216 SC27XX_FGU_LOW_OVERLOAD_INT
,
1217 SC27XX_FGU_LOW_OVERLOAD_INT
);
1219 dev_err(data
->dev
, "failed to enable low voltage interrupt\n");
1223 ret
= sc27xx_fgu_get_vbat_ocv(data
, &ocv
);
1228 * If current OCV is less than the minimum voltage, we should enable the
1229 * coulomb counter threshold interrupt to notify events to adjust the
1232 if (ocv
< data
->min_volt
) {
1233 ret
= regmap_update_bits(data
->regmap
,
1234 data
->base
+ SC27XX_FGU_INT_EN
,
1235 SC27XX_FGU_CLBCNT_DELTA_INT
,
1236 SC27XX_FGU_CLBCNT_DELTA_INT
);
1239 "failed to enable coulomb threshold int\n");
1247 regmap_update_bits(data
->regmap
, data
->base
+ SC27XX_FGU_INT_EN
,
1248 SC27XX_FGU_LOW_OVERLOAD_INT
, 0);
1253 static const struct dev_pm_ops sc27xx_fgu_pm_ops
= {
1254 SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend
, sc27xx_fgu_resume
)
1257 static const struct of_device_id sc27xx_fgu_of_match
[] = {
1258 { .compatible
= "sprd,sc2731-fgu", },
1262 static struct platform_driver sc27xx_fgu_driver
= {
1263 .probe
= sc27xx_fgu_probe
,
1265 .name
= "sc27xx-fgu",
1266 .of_match_table
= sc27xx_fgu_of_match
,
1267 .pm
= &sc27xx_fgu_pm_ops
,
1271 module_platform_driver(sc27xx_fgu_driver
);
1273 MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1274 MODULE_LICENSE("GPL v2");