treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / regulator / core.c
blobd015d99cb59d95ab1f5799b6da90930cf1f4cd2a
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
33 #include "dummy.h"
34 #include "internal.h"
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
56 static struct dentry *debugfs_root;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
71 * struct regulator_enable_gpio
73 * Management for shared enable GPIO pin
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
83 * struct regulator_supply_alias
85 * Used to map lookups for a supply onto an alternative device.
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
110 const char *rdev_get_name(struct regulator_dev *rdev)
112 if (rdev->constraints && rdev->constraints->name)
113 return rdev->constraints->name;
114 else if (rdev->desc->name)
115 return rdev->desc->name;
116 else
117 return "";
120 static bool have_full_constraints(void)
122 return has_full_constraints || of_have_populated_dt();
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 if (!rdev->constraints) {
128 rdev_err(rdev, "no constraints\n");
129 return false;
132 if (rdev->constraints->valid_ops_mask & ops)
133 return true;
135 return false;
139 * regulator_lock_nested - lock a single regulator
140 * @rdev: regulator source
141 * @ww_ctx: w/w mutex acquire context
143 * This function can be called many times by one task on
144 * a single regulator and its mutex will be locked only
145 * once. If a task, which is calling this function is other
146 * than the one, which initially locked the mutex, it will
147 * wait on mutex.
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150 struct ww_acquire_ctx *ww_ctx)
152 bool lock = false;
153 int ret = 0;
155 mutex_lock(&regulator_nesting_mutex);
157 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158 if (rdev->mutex_owner == current)
159 rdev->ref_cnt++;
160 else
161 lock = true;
163 if (lock) {
164 mutex_unlock(&regulator_nesting_mutex);
165 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166 mutex_lock(&regulator_nesting_mutex);
168 } else {
169 lock = true;
172 if (lock && ret != -EDEADLK) {
173 rdev->ref_cnt++;
174 rdev->mutex_owner = current;
177 mutex_unlock(&regulator_nesting_mutex);
179 return ret;
183 * regulator_lock - lock a single regulator
184 * @rdev: regulator source
186 * This function can be called many times by one task on
187 * a single regulator and its mutex will be locked only
188 * once. If a task, which is calling this function is other
189 * than the one, which initially locked the mutex, it will
190 * wait on mutex.
192 void regulator_lock(struct regulator_dev *rdev)
194 regulator_lock_nested(rdev, NULL);
196 EXPORT_SYMBOL_GPL(regulator_lock);
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
205 void regulator_unlock(struct regulator_dev *rdev)
207 mutex_lock(&regulator_nesting_mutex);
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
216 mutex_unlock(&regulator_nesting_mutex);
218 EXPORT_SYMBOL_GPL(regulator_unlock);
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222 struct regulator_dev *c_rdev;
223 int i;
225 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228 if (rdev->supply->rdev == c_rdev)
229 return true;
232 return false;
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236 unsigned int n_coupled)
238 struct regulator_dev *c_rdev;
239 int i;
241 for (i = n_coupled; i > 0; i--) {
242 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244 if (!c_rdev)
245 continue;
247 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 regulator_unlock_recursive(
249 c_rdev->supply->rdev,
250 c_rdev->coupling_desc.n_coupled);
252 regulator_unlock(c_rdev);
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257 struct regulator_dev **new_contended_rdev,
258 struct regulator_dev **old_contended_rdev,
259 struct ww_acquire_ctx *ww_ctx)
261 struct regulator_dev *c_rdev;
262 int i, err;
264 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
267 if (!c_rdev)
268 continue;
270 if (c_rdev != *old_contended_rdev) {
271 err = regulator_lock_nested(c_rdev, ww_ctx);
272 if (err) {
273 if (err == -EDEADLK) {
274 *new_contended_rdev = c_rdev;
275 goto err_unlock;
278 /* shouldn't happen */
279 WARN_ON_ONCE(err != -EALREADY);
281 } else {
282 *old_contended_rdev = NULL;
285 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 err = regulator_lock_recursive(c_rdev->supply->rdev,
287 new_contended_rdev,
288 old_contended_rdev,
289 ww_ctx);
290 if (err) {
291 regulator_unlock(c_rdev);
292 goto err_unlock;
297 return 0;
299 err_unlock:
300 regulator_unlock_recursive(rdev, i);
302 return err;
306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307 * regulators
308 * @rdev: regulator source
309 * @ww_ctx: w/w mutex acquire context
311 * Unlock all regulators related with rdev by coupling or supplying.
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314 struct ww_acquire_ctx *ww_ctx)
316 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317 ww_acquire_fini(ww_ctx);
321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322 * @rdev: regulator source
323 * @ww_ctx: w/w mutex acquire context
325 * This function as a wrapper on regulator_lock_recursive(), which locks
326 * all regulators related with rdev by coupling or supplying.
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329 struct ww_acquire_ctx *ww_ctx)
331 struct regulator_dev *new_contended_rdev = NULL;
332 struct regulator_dev *old_contended_rdev = NULL;
333 int err;
335 mutex_lock(&regulator_list_mutex);
337 ww_acquire_init(ww_ctx, &regulator_ww_class);
339 do {
340 if (new_contended_rdev) {
341 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342 old_contended_rdev = new_contended_rdev;
343 old_contended_rdev->ref_cnt++;
346 err = regulator_lock_recursive(rdev,
347 &new_contended_rdev,
348 &old_contended_rdev,
349 ww_ctx);
351 if (old_contended_rdev)
352 regulator_unlock(old_contended_rdev);
354 } while (err == -EDEADLK);
356 ww_acquire_done(ww_ctx);
358 mutex_unlock(&regulator_list_mutex);
362 * of_get_child_regulator - get a child regulator device node
363 * based on supply name
364 * @parent: Parent device node
365 * @prop_name: Combination regulator supply name and "-supply"
367 * Traverse all child nodes.
368 * Extract the child regulator device node corresponding to the supply name.
369 * returns the device node corresponding to the regulator if found, else
370 * returns NULL.
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373 const char *prop_name)
375 struct device_node *regnode = NULL;
376 struct device_node *child = NULL;
378 for_each_child_of_node(parent, child) {
379 regnode = of_parse_phandle(child, prop_name, 0);
381 if (!regnode) {
382 regnode = of_get_child_regulator(child, prop_name);
383 if (regnode)
384 goto err_node_put;
385 } else {
386 goto err_node_put;
389 return NULL;
391 err_node_put:
392 of_node_put(child);
393 return regnode;
397 * of_get_regulator - get a regulator device node based on supply name
398 * @dev: Device pointer for the consumer (of regulator) device
399 * @supply: regulator supply name
401 * Extract the regulator device node corresponding to the supply name.
402 * returns the device node corresponding to the regulator if found, else
403 * returns NULL.
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
407 struct device_node *regnode = NULL;
408 char prop_name[32]; /* 32 is max size of property name */
410 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
412 snprintf(prop_name, 32, "%s-supply", supply);
413 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
415 if (!regnode) {
416 regnode = of_get_child_regulator(dev->of_node, prop_name);
417 if (regnode)
418 return regnode;
420 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421 prop_name, dev->of_node);
422 return NULL;
424 return regnode;
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429 int *min_uV, int *max_uV)
431 BUG_ON(*min_uV > *max_uV);
433 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434 rdev_err(rdev, "voltage operation not allowed\n");
435 return -EPERM;
438 if (*max_uV > rdev->constraints->max_uV)
439 *max_uV = rdev->constraints->max_uV;
440 if (*min_uV < rdev->constraints->min_uV)
441 *min_uV = rdev->constraints->min_uV;
443 if (*min_uV > *max_uV) {
444 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445 *min_uV, *max_uV);
446 return -EINVAL;
449 return 0;
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
455 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 /* Make sure we select a voltage that suits the needs of all
459 * regulator consumers
461 int regulator_check_consumers(struct regulator_dev *rdev,
462 int *min_uV, int *max_uV,
463 suspend_state_t state)
465 struct regulator *regulator;
466 struct regulator_voltage *voltage;
468 list_for_each_entry(regulator, &rdev->consumer_list, list) {
469 voltage = &regulator->voltage[state];
471 * Assume consumers that didn't say anything are OK
472 * with anything in the constraint range.
474 if (!voltage->min_uV && !voltage->max_uV)
475 continue;
477 if (*max_uV > voltage->max_uV)
478 *max_uV = voltage->max_uV;
479 if (*min_uV < voltage->min_uV)
480 *min_uV = voltage->min_uV;
483 if (*min_uV > *max_uV) {
484 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485 *min_uV, *max_uV);
486 return -EINVAL;
489 return 0;
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494 int *min_uA, int *max_uA)
496 BUG_ON(*min_uA > *max_uA);
498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499 rdev_err(rdev, "current operation not allowed\n");
500 return -EPERM;
503 if (*max_uA > rdev->constraints->max_uA)
504 *max_uA = rdev->constraints->max_uA;
505 if (*min_uA < rdev->constraints->min_uA)
506 *min_uA = rdev->constraints->min_uA;
508 if (*min_uA > *max_uA) {
509 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510 *min_uA, *max_uA);
511 return -EINVAL;
514 return 0;
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
519 unsigned int *mode)
521 switch (*mode) {
522 case REGULATOR_MODE_FAST:
523 case REGULATOR_MODE_NORMAL:
524 case REGULATOR_MODE_IDLE:
525 case REGULATOR_MODE_STANDBY:
526 break;
527 default:
528 rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 return -EINVAL;
532 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533 rdev_err(rdev, "mode operation not allowed\n");
534 return -EPERM;
537 /* The modes are bitmasks, the most power hungry modes having
538 * the lowest values. If the requested mode isn't supported
539 * try higher modes. */
540 while (*mode) {
541 if (rdev->constraints->valid_modes_mask & *mode)
542 return 0;
543 *mode /= 2;
546 return -EINVAL;
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
552 if (rdev->constraints == NULL)
553 return NULL;
555 switch (state) {
556 case PM_SUSPEND_STANDBY:
557 return &rdev->constraints->state_standby;
558 case PM_SUSPEND_MEM:
559 return &rdev->constraints->state_mem;
560 case PM_SUSPEND_MAX:
561 return &rdev->constraints->state_disk;
562 default:
563 return NULL;
567 static ssize_t regulator_uV_show(struct device *dev,
568 struct device_attribute *attr, char *buf)
570 struct regulator_dev *rdev = dev_get_drvdata(dev);
571 int uV;
573 regulator_lock(rdev);
574 uV = regulator_get_voltage_rdev(rdev);
575 regulator_unlock(rdev);
577 if (uV < 0)
578 return uV;
579 return sprintf(buf, "%d\n", uV);
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
583 static ssize_t regulator_uA_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
588 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593 char *buf)
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 return sprintf(buf, "%s\n", rdev_get_name(rdev));
599 static DEVICE_ATTR_RO(name);
601 static const char *regulator_opmode_to_str(int mode)
603 switch (mode) {
604 case REGULATOR_MODE_FAST:
605 return "fast";
606 case REGULATOR_MODE_NORMAL:
607 return "normal";
608 case REGULATOR_MODE_IDLE:
609 return "idle";
610 case REGULATOR_MODE_STANDBY:
611 return "standby";
613 return "unknown";
616 static ssize_t regulator_print_opmode(char *buf, int mode)
618 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
621 static ssize_t regulator_opmode_show(struct device *dev,
622 struct device_attribute *attr, char *buf)
624 struct regulator_dev *rdev = dev_get_drvdata(dev);
626 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
630 static ssize_t regulator_print_state(char *buf, int state)
632 if (state > 0)
633 return sprintf(buf, "enabled\n");
634 else if (state == 0)
635 return sprintf(buf, "disabled\n");
636 else
637 return sprintf(buf, "unknown\n");
640 static ssize_t regulator_state_show(struct device *dev,
641 struct device_attribute *attr, char *buf)
643 struct regulator_dev *rdev = dev_get_drvdata(dev);
644 ssize_t ret;
646 regulator_lock(rdev);
647 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648 regulator_unlock(rdev);
650 return ret;
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
654 static ssize_t regulator_status_show(struct device *dev,
655 struct device_attribute *attr, char *buf)
657 struct regulator_dev *rdev = dev_get_drvdata(dev);
658 int status;
659 char *label;
661 status = rdev->desc->ops->get_status(rdev);
662 if (status < 0)
663 return status;
665 switch (status) {
666 case REGULATOR_STATUS_OFF:
667 label = "off";
668 break;
669 case REGULATOR_STATUS_ON:
670 label = "on";
671 break;
672 case REGULATOR_STATUS_ERROR:
673 label = "error";
674 break;
675 case REGULATOR_STATUS_FAST:
676 label = "fast";
677 break;
678 case REGULATOR_STATUS_NORMAL:
679 label = "normal";
680 break;
681 case REGULATOR_STATUS_IDLE:
682 label = "idle";
683 break;
684 case REGULATOR_STATUS_STANDBY:
685 label = "standby";
686 break;
687 case REGULATOR_STATUS_BYPASS:
688 label = "bypass";
689 break;
690 case REGULATOR_STATUS_UNDEFINED:
691 label = "undefined";
692 break;
693 default:
694 return -ERANGE;
697 return sprintf(buf, "%s\n", label);
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
701 static ssize_t regulator_min_uA_show(struct device *dev,
702 struct device_attribute *attr, char *buf)
704 struct regulator_dev *rdev = dev_get_drvdata(dev);
706 if (!rdev->constraints)
707 return sprintf(buf, "constraint not defined\n");
709 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
713 static ssize_t regulator_max_uA_show(struct device *dev,
714 struct device_attribute *attr, char *buf)
716 struct regulator_dev *rdev = dev_get_drvdata(dev);
718 if (!rdev->constraints)
719 return sprintf(buf, "constraint not defined\n");
721 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
725 static ssize_t regulator_min_uV_show(struct device *dev,
726 struct device_attribute *attr, char *buf)
728 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 if (!rdev->constraints)
731 return sprintf(buf, "constraint not defined\n");
733 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
737 static ssize_t regulator_max_uV_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
740 struct regulator_dev *rdev = dev_get_drvdata(dev);
742 if (!rdev->constraints)
743 return sprintf(buf, "constraint not defined\n");
745 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
749 static ssize_t regulator_total_uA_show(struct device *dev,
750 struct device_attribute *attr, char *buf)
752 struct regulator_dev *rdev = dev_get_drvdata(dev);
753 struct regulator *regulator;
754 int uA = 0;
756 regulator_lock(rdev);
757 list_for_each_entry(regulator, &rdev->consumer_list, list) {
758 if (regulator->enable_count)
759 uA += regulator->uA_load;
761 regulator_unlock(rdev);
762 return sprintf(buf, "%d\n", uA);
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767 char *buf)
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 return sprintf(buf, "%d\n", rdev->use_count);
772 static DEVICE_ATTR_RO(num_users);
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775 char *buf)
777 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 switch (rdev->desc->type) {
780 case REGULATOR_VOLTAGE:
781 return sprintf(buf, "voltage\n");
782 case REGULATOR_CURRENT:
783 return sprintf(buf, "current\n");
785 return sprintf(buf, "unknown\n");
787 static DEVICE_ATTR_RO(type);
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790 struct device_attribute *attr, char *buf)
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
794 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797 regulator_suspend_mem_uV_show, NULL);
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
804 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807 regulator_suspend_disk_uV_show, NULL);
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
814 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817 regulator_suspend_standby_uV_show, NULL);
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820 struct device_attribute *attr, char *buf)
822 struct regulator_dev *rdev = dev_get_drvdata(dev);
824 return regulator_print_opmode(buf,
825 rdev->constraints->state_mem.mode);
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828 regulator_suspend_mem_mode_show, NULL);
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
835 return regulator_print_opmode(buf,
836 rdev->constraints->state_disk.mode);
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839 regulator_suspend_disk_mode_show, NULL);
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842 struct device_attribute *attr, char *buf)
844 struct regulator_dev *rdev = dev_get_drvdata(dev);
846 return regulator_print_opmode(buf,
847 rdev->constraints->state_standby.mode);
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850 regulator_suspend_standby_mode_show, NULL);
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
857 return regulator_print_state(buf,
858 rdev->constraints->state_mem.enabled);
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861 regulator_suspend_mem_state_show, NULL);
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
868 return regulator_print_state(buf,
869 rdev->constraints->state_disk.enabled);
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872 regulator_suspend_disk_state_show, NULL);
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
879 return regulator_print_state(buf,
880 rdev->constraints->state_standby.enabled);
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883 regulator_suspend_standby_state_show, NULL);
885 static ssize_t regulator_bypass_show(struct device *dev,
886 struct device_attribute *attr, char *buf)
888 struct regulator_dev *rdev = dev_get_drvdata(dev);
889 const char *report;
890 bool bypass;
891 int ret;
893 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
895 if (ret != 0)
896 report = "unknown";
897 else if (bypass)
898 report = "enabled";
899 else
900 report = "disabled";
902 return sprintf(buf, "%s\n", report);
904 static DEVICE_ATTR(bypass, 0444,
905 regulator_bypass_show, NULL);
907 /* Calculate the new optimum regulator operating mode based on the new total
908 * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
911 struct regulator *sibling;
912 int current_uA = 0, output_uV, input_uV, err;
913 unsigned int mode;
916 * first check to see if we can set modes at all, otherwise just
917 * tell the consumer everything is OK.
919 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920 rdev_dbg(rdev, "DRMS operation not allowed\n");
921 return 0;
924 if (!rdev->desc->ops->get_optimum_mode &&
925 !rdev->desc->ops->set_load)
926 return 0;
928 if (!rdev->desc->ops->set_mode &&
929 !rdev->desc->ops->set_load)
930 return -EINVAL;
932 /* calc total requested load */
933 list_for_each_entry(sibling, &rdev->consumer_list, list) {
934 if (sibling->enable_count)
935 current_uA += sibling->uA_load;
938 current_uA += rdev->constraints->system_load;
940 if (rdev->desc->ops->set_load) {
941 /* set the optimum mode for our new total regulator load */
942 err = rdev->desc->ops->set_load(rdev, current_uA);
943 if (err < 0)
944 rdev_err(rdev, "failed to set load %d\n", current_uA);
945 } else {
946 /* get output voltage */
947 output_uV = regulator_get_voltage_rdev(rdev);
948 if (output_uV <= 0) {
949 rdev_err(rdev, "invalid output voltage found\n");
950 return -EINVAL;
953 /* get input voltage */
954 input_uV = 0;
955 if (rdev->supply)
956 input_uV = regulator_get_voltage(rdev->supply);
957 if (input_uV <= 0)
958 input_uV = rdev->constraints->input_uV;
959 if (input_uV <= 0) {
960 rdev_err(rdev, "invalid input voltage found\n");
961 return -EINVAL;
964 /* now get the optimum mode for our new total regulator load */
965 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966 output_uV, current_uA);
968 /* check the new mode is allowed */
969 err = regulator_mode_constrain(rdev, &mode);
970 if (err < 0) {
971 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 current_uA, input_uV, output_uV);
973 return err;
976 err = rdev->desc->ops->set_mode(rdev, mode);
977 if (err < 0)
978 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
981 return err;
984 static int suspend_set_state(struct regulator_dev *rdev,
985 suspend_state_t state)
987 int ret = 0;
988 struct regulator_state *rstate;
990 rstate = regulator_get_suspend_state(rdev, state);
991 if (rstate == NULL)
992 return 0;
994 /* If we have no suspend mode configuration don't set anything;
995 * only warn if the driver implements set_suspend_voltage or
996 * set_suspend_mode callback.
998 if (rstate->enabled != ENABLE_IN_SUSPEND &&
999 rstate->enabled != DISABLE_IN_SUSPEND) {
1000 if (rdev->desc->ops->set_suspend_voltage ||
1001 rdev->desc->ops->set_suspend_mode)
1002 rdev_warn(rdev, "No configuration\n");
1003 return 0;
1006 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007 rdev->desc->ops->set_suspend_enable)
1008 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010 rdev->desc->ops->set_suspend_disable)
1011 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013 ret = 0;
1015 if (ret < 0) {
1016 rdev_err(rdev, "failed to enabled/disable\n");
1017 return ret;
1020 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022 if (ret < 0) {
1023 rdev_err(rdev, "failed to set voltage\n");
1024 return ret;
1028 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030 if (ret < 0) {
1031 rdev_err(rdev, "failed to set mode\n");
1032 return ret;
1036 return ret;
1039 static void print_constraints(struct regulator_dev *rdev)
1041 struct regulation_constraints *constraints = rdev->constraints;
1042 char buf[160] = "";
1043 size_t len = sizeof(buf) - 1;
1044 int count = 0;
1045 int ret;
1047 if (constraints->min_uV && constraints->max_uV) {
1048 if (constraints->min_uV == constraints->max_uV)
1049 count += scnprintf(buf + count, len - count, "%d mV ",
1050 constraints->min_uV / 1000);
1051 else
1052 count += scnprintf(buf + count, len - count,
1053 "%d <--> %d mV ",
1054 constraints->min_uV / 1000,
1055 constraints->max_uV / 1000);
1058 if (!constraints->min_uV ||
1059 constraints->min_uV != constraints->max_uV) {
1060 ret = regulator_get_voltage_rdev(rdev);
1061 if (ret > 0)
1062 count += scnprintf(buf + count, len - count,
1063 "at %d mV ", ret / 1000);
1066 if (constraints->uV_offset)
1067 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068 constraints->uV_offset / 1000);
1070 if (constraints->min_uA && constraints->max_uA) {
1071 if (constraints->min_uA == constraints->max_uA)
1072 count += scnprintf(buf + count, len - count, "%d mA ",
1073 constraints->min_uA / 1000);
1074 else
1075 count += scnprintf(buf + count, len - count,
1076 "%d <--> %d mA ",
1077 constraints->min_uA / 1000,
1078 constraints->max_uA / 1000);
1081 if (!constraints->min_uA ||
1082 constraints->min_uA != constraints->max_uA) {
1083 ret = _regulator_get_current_limit(rdev);
1084 if (ret > 0)
1085 count += scnprintf(buf + count, len - count,
1086 "at %d mA ", ret / 1000);
1089 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090 count += scnprintf(buf + count, len - count, "fast ");
1091 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092 count += scnprintf(buf + count, len - count, "normal ");
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094 count += scnprintf(buf + count, len - count, "idle ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096 count += scnprintf(buf + count, len - count, "standby");
1098 if (!count)
1099 scnprintf(buf, len, "no parameters");
1101 rdev_dbg(rdev, "%s\n", buf);
1103 if ((constraints->min_uV != constraints->max_uV) &&
1104 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 rdev_warn(rdev,
1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110 struct regulation_constraints *constraints)
1112 const struct regulator_ops *ops = rdev->desc->ops;
1113 int ret;
1115 /* do we need to apply the constraint voltage */
1116 if (rdev->constraints->apply_uV &&
1117 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118 int target_min, target_max;
1119 int current_uV = regulator_get_voltage_rdev(rdev);
1121 if (current_uV == -ENOTRECOVERABLE) {
1122 /* This regulator can't be read and must be initialized */
1123 rdev_info(rdev, "Setting %d-%duV\n",
1124 rdev->constraints->min_uV,
1125 rdev->constraints->max_uV);
1126 _regulator_do_set_voltage(rdev,
1127 rdev->constraints->min_uV,
1128 rdev->constraints->max_uV);
1129 current_uV = regulator_get_voltage_rdev(rdev);
1132 if (current_uV < 0) {
1133 rdev_err(rdev,
1134 "failed to get the current voltage(%d)\n",
1135 current_uV);
1136 return current_uV;
1140 * If we're below the minimum voltage move up to the
1141 * minimum voltage, if we're above the maximum voltage
1142 * then move down to the maximum.
1144 target_min = current_uV;
1145 target_max = current_uV;
1147 if (current_uV < rdev->constraints->min_uV) {
1148 target_min = rdev->constraints->min_uV;
1149 target_max = rdev->constraints->min_uV;
1152 if (current_uV > rdev->constraints->max_uV) {
1153 target_min = rdev->constraints->max_uV;
1154 target_max = rdev->constraints->max_uV;
1157 if (target_min != current_uV || target_max != current_uV) {
1158 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159 current_uV, target_min, target_max);
1160 ret = _regulator_do_set_voltage(
1161 rdev, target_min, target_max);
1162 if (ret < 0) {
1163 rdev_err(rdev,
1164 "failed to apply %d-%duV constraint(%d)\n",
1165 target_min, target_max, ret);
1166 return ret;
1171 /* constrain machine-level voltage specs to fit
1172 * the actual range supported by this regulator.
1174 if (ops->list_voltage && rdev->desc->n_voltages) {
1175 int count = rdev->desc->n_voltages;
1176 int i;
1177 int min_uV = INT_MAX;
1178 int max_uV = INT_MIN;
1179 int cmin = constraints->min_uV;
1180 int cmax = constraints->max_uV;
1182 /* it's safe to autoconfigure fixed-voltage supplies
1183 and the constraints are used by list_voltage. */
1184 if (count == 1 && !cmin) {
1185 cmin = 1;
1186 cmax = INT_MAX;
1187 constraints->min_uV = cmin;
1188 constraints->max_uV = cmax;
1191 /* voltage constraints are optional */
1192 if ((cmin == 0) && (cmax == 0))
1193 return 0;
1195 /* else require explicit machine-level constraints */
1196 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197 rdev_err(rdev, "invalid voltage constraints\n");
1198 return -EINVAL;
1201 /* no need to loop voltages if range is continuous */
1202 if (rdev->desc->continuous_voltage_range)
1203 return 0;
1205 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1206 for (i = 0; i < count; i++) {
1207 int value;
1209 value = ops->list_voltage(rdev, i);
1210 if (value <= 0)
1211 continue;
1213 /* maybe adjust [min_uV..max_uV] */
1214 if (value >= cmin && value < min_uV)
1215 min_uV = value;
1216 if (value <= cmax && value > max_uV)
1217 max_uV = value;
1220 /* final: [min_uV..max_uV] valid iff constraints valid */
1221 if (max_uV < min_uV) {
1222 rdev_err(rdev,
1223 "unsupportable voltage constraints %u-%uuV\n",
1224 min_uV, max_uV);
1225 return -EINVAL;
1228 /* use regulator's subset of machine constraints */
1229 if (constraints->min_uV < min_uV) {
1230 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1231 constraints->min_uV, min_uV);
1232 constraints->min_uV = min_uV;
1234 if (constraints->max_uV > max_uV) {
1235 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1236 constraints->max_uV, max_uV);
1237 constraints->max_uV = max_uV;
1241 return 0;
1244 static int machine_constraints_current(struct regulator_dev *rdev,
1245 struct regulation_constraints *constraints)
1247 const struct regulator_ops *ops = rdev->desc->ops;
1248 int ret;
1250 if (!constraints->min_uA && !constraints->max_uA)
1251 return 0;
1253 if (constraints->min_uA > constraints->max_uA) {
1254 rdev_err(rdev, "Invalid current constraints\n");
1255 return -EINVAL;
1258 if (!ops->set_current_limit || !ops->get_current_limit) {
1259 rdev_warn(rdev, "Operation of current configuration missing\n");
1260 return 0;
1263 /* Set regulator current in constraints range */
1264 ret = ops->set_current_limit(rdev, constraints->min_uA,
1265 constraints->max_uA);
1266 if (ret < 0) {
1267 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1268 return ret;
1271 return 0;
1274 static int _regulator_do_enable(struct regulator_dev *rdev);
1277 * set_machine_constraints - sets regulator constraints
1278 * @rdev: regulator source
1279 * @constraints: constraints to apply
1281 * Allows platform initialisation code to define and constrain
1282 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1283 * Constraints *must* be set by platform code in order for some
1284 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1285 * set_mode.
1287 static int set_machine_constraints(struct regulator_dev *rdev,
1288 const struct regulation_constraints *constraints)
1290 int ret = 0;
1291 const struct regulator_ops *ops = rdev->desc->ops;
1293 if (constraints)
1294 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1295 GFP_KERNEL);
1296 else
1297 rdev->constraints = kzalloc(sizeof(*constraints),
1298 GFP_KERNEL);
1299 if (!rdev->constraints)
1300 return -ENOMEM;
1302 ret = machine_constraints_voltage(rdev, rdev->constraints);
1303 if (ret != 0)
1304 return ret;
1306 ret = machine_constraints_current(rdev, rdev->constraints);
1307 if (ret != 0)
1308 return ret;
1310 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1311 ret = ops->set_input_current_limit(rdev,
1312 rdev->constraints->ilim_uA);
1313 if (ret < 0) {
1314 rdev_err(rdev, "failed to set input limit\n");
1315 return ret;
1319 /* do we need to setup our suspend state */
1320 if (rdev->constraints->initial_state) {
1321 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1322 if (ret < 0) {
1323 rdev_err(rdev, "failed to set suspend state\n");
1324 return ret;
1328 if (rdev->constraints->initial_mode) {
1329 if (!ops->set_mode) {
1330 rdev_err(rdev, "no set_mode operation\n");
1331 return -EINVAL;
1334 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1335 if (ret < 0) {
1336 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1337 return ret;
1339 } else if (rdev->constraints->system_load) {
1341 * We'll only apply the initial system load if an
1342 * initial mode wasn't specified.
1344 drms_uA_update(rdev);
1347 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1348 && ops->set_ramp_delay) {
1349 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1350 if (ret < 0) {
1351 rdev_err(rdev, "failed to set ramp_delay\n");
1352 return ret;
1356 if (rdev->constraints->pull_down && ops->set_pull_down) {
1357 ret = ops->set_pull_down(rdev);
1358 if (ret < 0) {
1359 rdev_err(rdev, "failed to set pull down\n");
1360 return ret;
1364 if (rdev->constraints->soft_start && ops->set_soft_start) {
1365 ret = ops->set_soft_start(rdev);
1366 if (ret < 0) {
1367 rdev_err(rdev, "failed to set soft start\n");
1368 return ret;
1372 if (rdev->constraints->over_current_protection
1373 && ops->set_over_current_protection) {
1374 ret = ops->set_over_current_protection(rdev);
1375 if (ret < 0) {
1376 rdev_err(rdev, "failed to set over current protection\n");
1377 return ret;
1381 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1382 bool ad_state = (rdev->constraints->active_discharge ==
1383 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1385 ret = ops->set_active_discharge(rdev, ad_state);
1386 if (ret < 0) {
1387 rdev_err(rdev, "failed to set active discharge\n");
1388 return ret;
1392 /* If the constraints say the regulator should be on at this point
1393 * and we have control then make sure it is enabled.
1395 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396 if (rdev->supply) {
1397 ret = regulator_enable(rdev->supply);
1398 if (ret < 0) {
1399 _regulator_put(rdev->supply);
1400 rdev->supply = NULL;
1401 return ret;
1405 ret = _regulator_do_enable(rdev);
1406 if (ret < 0 && ret != -EINVAL) {
1407 rdev_err(rdev, "failed to enable\n");
1408 return ret;
1411 if (rdev->constraints->always_on)
1412 rdev->use_count++;
1415 print_constraints(rdev);
1416 return 0;
1420 * set_supply - set regulator supply regulator
1421 * @rdev: regulator name
1422 * @supply_rdev: supply regulator name
1424 * Called by platform initialisation code to set the supply regulator for this
1425 * regulator. This ensures that a regulators supply will also be enabled by the
1426 * core if it's child is enabled.
1428 static int set_supply(struct regulator_dev *rdev,
1429 struct regulator_dev *supply_rdev)
1431 int err;
1433 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1435 if (!try_module_get(supply_rdev->owner))
1436 return -ENODEV;
1438 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1439 if (rdev->supply == NULL) {
1440 err = -ENOMEM;
1441 return err;
1443 supply_rdev->open_count++;
1445 return 0;
1449 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1450 * @rdev: regulator source
1451 * @consumer_dev_name: dev_name() string for device supply applies to
1452 * @supply: symbolic name for supply
1454 * Allows platform initialisation code to map physical regulator
1455 * sources to symbolic names for supplies for use by devices. Devices
1456 * should use these symbolic names to request regulators, avoiding the
1457 * need to provide board-specific regulator names as platform data.
1459 static int set_consumer_device_supply(struct regulator_dev *rdev,
1460 const char *consumer_dev_name,
1461 const char *supply)
1463 struct regulator_map *node;
1464 int has_dev;
1466 if (supply == NULL)
1467 return -EINVAL;
1469 if (consumer_dev_name != NULL)
1470 has_dev = 1;
1471 else
1472 has_dev = 0;
1474 list_for_each_entry(node, &regulator_map_list, list) {
1475 if (node->dev_name && consumer_dev_name) {
1476 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1477 continue;
1478 } else if (node->dev_name || consumer_dev_name) {
1479 continue;
1482 if (strcmp(node->supply, supply) != 0)
1483 continue;
1485 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1486 consumer_dev_name,
1487 dev_name(&node->regulator->dev),
1488 node->regulator->desc->name,
1489 supply,
1490 dev_name(&rdev->dev), rdev_get_name(rdev));
1491 return -EBUSY;
1494 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1495 if (node == NULL)
1496 return -ENOMEM;
1498 node->regulator = rdev;
1499 node->supply = supply;
1501 if (has_dev) {
1502 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1503 if (node->dev_name == NULL) {
1504 kfree(node);
1505 return -ENOMEM;
1509 list_add(&node->list, &regulator_map_list);
1510 return 0;
1513 static void unset_regulator_supplies(struct regulator_dev *rdev)
1515 struct regulator_map *node, *n;
1517 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1518 if (rdev == node->regulator) {
1519 list_del(&node->list);
1520 kfree(node->dev_name);
1521 kfree(node);
1526 #ifdef CONFIG_DEBUG_FS
1527 static ssize_t constraint_flags_read_file(struct file *file,
1528 char __user *user_buf,
1529 size_t count, loff_t *ppos)
1531 const struct regulator *regulator = file->private_data;
1532 const struct regulation_constraints *c = regulator->rdev->constraints;
1533 char *buf;
1534 ssize_t ret;
1536 if (!c)
1537 return 0;
1539 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1540 if (!buf)
1541 return -ENOMEM;
1543 ret = snprintf(buf, PAGE_SIZE,
1544 "always_on: %u\n"
1545 "boot_on: %u\n"
1546 "apply_uV: %u\n"
1547 "ramp_disable: %u\n"
1548 "soft_start: %u\n"
1549 "pull_down: %u\n"
1550 "over_current_protection: %u\n",
1551 c->always_on,
1552 c->boot_on,
1553 c->apply_uV,
1554 c->ramp_disable,
1555 c->soft_start,
1556 c->pull_down,
1557 c->over_current_protection);
1559 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1560 kfree(buf);
1562 return ret;
1565 #endif
1567 static const struct file_operations constraint_flags_fops = {
1568 #ifdef CONFIG_DEBUG_FS
1569 .open = simple_open,
1570 .read = constraint_flags_read_file,
1571 .llseek = default_llseek,
1572 #endif
1575 #define REG_STR_SIZE 64
1577 static struct regulator *create_regulator(struct regulator_dev *rdev,
1578 struct device *dev,
1579 const char *supply_name)
1581 struct regulator *regulator;
1582 char buf[REG_STR_SIZE];
1583 int err, size;
1585 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1586 if (regulator == NULL)
1587 return NULL;
1589 regulator_lock(rdev);
1590 regulator->rdev = rdev;
1591 list_add(&regulator->list, &rdev->consumer_list);
1593 if (dev) {
1594 regulator->dev = dev;
1596 /* Add a link to the device sysfs entry */
1597 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1598 dev->kobj.name, supply_name);
1599 if (size >= REG_STR_SIZE)
1600 goto overflow_err;
1602 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1603 if (regulator->supply_name == NULL)
1604 goto overflow_err;
1606 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1607 buf);
1608 if (err) {
1609 rdev_dbg(rdev, "could not add device link %s err %d\n",
1610 dev->kobj.name, err);
1611 /* non-fatal */
1613 } else {
1614 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1615 if (regulator->supply_name == NULL)
1616 goto overflow_err;
1619 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1620 rdev->debugfs);
1621 if (!regulator->debugfs) {
1622 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1623 } else {
1624 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1625 &regulator->uA_load);
1626 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1627 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1628 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1629 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1630 debugfs_create_file("constraint_flags", 0444,
1631 regulator->debugfs, regulator,
1632 &constraint_flags_fops);
1636 * Check now if the regulator is an always on regulator - if
1637 * it is then we don't need to do nearly so much work for
1638 * enable/disable calls.
1640 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1641 _regulator_is_enabled(rdev))
1642 regulator->always_on = true;
1644 regulator_unlock(rdev);
1645 return regulator;
1646 overflow_err:
1647 list_del(&regulator->list);
1648 kfree(regulator);
1649 regulator_unlock(rdev);
1650 return NULL;
1653 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1655 if (rdev->constraints && rdev->constraints->enable_time)
1656 return rdev->constraints->enable_time;
1657 if (rdev->desc->ops->enable_time)
1658 return rdev->desc->ops->enable_time(rdev);
1659 return rdev->desc->enable_time;
1662 static struct regulator_supply_alias *regulator_find_supply_alias(
1663 struct device *dev, const char *supply)
1665 struct regulator_supply_alias *map;
1667 list_for_each_entry(map, &regulator_supply_alias_list, list)
1668 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1669 return map;
1671 return NULL;
1674 static void regulator_supply_alias(struct device **dev, const char **supply)
1676 struct regulator_supply_alias *map;
1678 map = regulator_find_supply_alias(*dev, *supply);
1679 if (map) {
1680 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1681 *supply, map->alias_supply,
1682 dev_name(map->alias_dev));
1683 *dev = map->alias_dev;
1684 *supply = map->alias_supply;
1688 static int regulator_match(struct device *dev, const void *data)
1690 struct regulator_dev *r = dev_to_rdev(dev);
1692 return strcmp(rdev_get_name(r), data) == 0;
1695 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1697 struct device *dev;
1699 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1701 return dev ? dev_to_rdev(dev) : NULL;
1705 * regulator_dev_lookup - lookup a regulator device.
1706 * @dev: device for regulator "consumer".
1707 * @supply: Supply name or regulator ID.
1709 * If successful, returns a struct regulator_dev that corresponds to the name
1710 * @supply and with the embedded struct device refcount incremented by one.
1711 * The refcount must be dropped by calling put_device().
1712 * On failure one of the following ERR-PTR-encoded values is returned:
1713 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1714 * in the future.
1716 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1717 const char *supply)
1719 struct regulator_dev *r = NULL;
1720 struct device_node *node;
1721 struct regulator_map *map;
1722 const char *devname = NULL;
1724 regulator_supply_alias(&dev, &supply);
1726 /* first do a dt based lookup */
1727 if (dev && dev->of_node) {
1728 node = of_get_regulator(dev, supply);
1729 if (node) {
1730 r = of_find_regulator_by_node(node);
1731 if (r)
1732 return r;
1735 * We have a node, but there is no device.
1736 * assume it has not registered yet.
1738 return ERR_PTR(-EPROBE_DEFER);
1742 /* if not found, try doing it non-dt way */
1743 if (dev)
1744 devname = dev_name(dev);
1746 mutex_lock(&regulator_list_mutex);
1747 list_for_each_entry(map, &regulator_map_list, list) {
1748 /* If the mapping has a device set up it must match */
1749 if (map->dev_name &&
1750 (!devname || strcmp(map->dev_name, devname)))
1751 continue;
1753 if (strcmp(map->supply, supply) == 0 &&
1754 get_device(&map->regulator->dev)) {
1755 r = map->regulator;
1756 break;
1759 mutex_unlock(&regulator_list_mutex);
1761 if (r)
1762 return r;
1764 r = regulator_lookup_by_name(supply);
1765 if (r)
1766 return r;
1768 return ERR_PTR(-ENODEV);
1771 static int regulator_resolve_supply(struct regulator_dev *rdev)
1773 struct regulator_dev *r;
1774 struct device *dev = rdev->dev.parent;
1775 int ret;
1777 /* No supply to resolve? */
1778 if (!rdev->supply_name)
1779 return 0;
1781 /* Supply already resolved? */
1782 if (rdev->supply)
1783 return 0;
1785 r = regulator_dev_lookup(dev, rdev->supply_name);
1786 if (IS_ERR(r)) {
1787 ret = PTR_ERR(r);
1789 /* Did the lookup explicitly defer for us? */
1790 if (ret == -EPROBE_DEFER)
1791 return ret;
1793 if (have_full_constraints()) {
1794 r = dummy_regulator_rdev;
1795 get_device(&r->dev);
1796 } else {
1797 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1798 rdev->supply_name, rdev->desc->name);
1799 return -EPROBE_DEFER;
1804 * If the supply's parent device is not the same as the
1805 * regulator's parent device, then ensure the parent device
1806 * is bound before we resolve the supply, in case the parent
1807 * device get probe deferred and unregisters the supply.
1809 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1810 if (!device_is_bound(r->dev.parent)) {
1811 put_device(&r->dev);
1812 return -EPROBE_DEFER;
1816 /* Recursively resolve the supply of the supply */
1817 ret = regulator_resolve_supply(r);
1818 if (ret < 0) {
1819 put_device(&r->dev);
1820 return ret;
1823 ret = set_supply(rdev, r);
1824 if (ret < 0) {
1825 put_device(&r->dev);
1826 return ret;
1830 * In set_machine_constraints() we may have turned this regulator on
1831 * but we couldn't propagate to the supply if it hadn't been resolved
1832 * yet. Do it now.
1834 if (rdev->use_count) {
1835 ret = regulator_enable(rdev->supply);
1836 if (ret < 0) {
1837 _regulator_put(rdev->supply);
1838 rdev->supply = NULL;
1839 return ret;
1843 return 0;
1846 /* Internal regulator request function */
1847 struct regulator *_regulator_get(struct device *dev, const char *id,
1848 enum regulator_get_type get_type)
1850 struct regulator_dev *rdev;
1851 struct regulator *regulator;
1852 const char *devname = dev ? dev_name(dev) : "deviceless";
1853 struct device_link *link;
1854 int ret;
1856 if (get_type >= MAX_GET_TYPE) {
1857 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1858 return ERR_PTR(-EINVAL);
1861 if (id == NULL) {
1862 pr_err("get() with no identifier\n");
1863 return ERR_PTR(-EINVAL);
1866 rdev = regulator_dev_lookup(dev, id);
1867 if (IS_ERR(rdev)) {
1868 ret = PTR_ERR(rdev);
1871 * If regulator_dev_lookup() fails with error other
1872 * than -ENODEV our job here is done, we simply return it.
1874 if (ret != -ENODEV)
1875 return ERR_PTR(ret);
1877 if (!have_full_constraints()) {
1878 dev_warn(dev,
1879 "incomplete constraints, dummy supplies not allowed\n");
1880 return ERR_PTR(-ENODEV);
1883 switch (get_type) {
1884 case NORMAL_GET:
1886 * Assume that a regulator is physically present and
1887 * enabled, even if it isn't hooked up, and just
1888 * provide a dummy.
1890 dev_warn(dev,
1891 "%s supply %s not found, using dummy regulator\n",
1892 devname, id);
1893 rdev = dummy_regulator_rdev;
1894 get_device(&rdev->dev);
1895 break;
1897 case EXCLUSIVE_GET:
1898 dev_warn(dev,
1899 "dummy supplies not allowed for exclusive requests\n");
1900 /* fall through */
1902 default:
1903 return ERR_PTR(-ENODEV);
1907 if (rdev->exclusive) {
1908 regulator = ERR_PTR(-EPERM);
1909 put_device(&rdev->dev);
1910 return regulator;
1913 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1914 regulator = ERR_PTR(-EBUSY);
1915 put_device(&rdev->dev);
1916 return regulator;
1919 mutex_lock(&regulator_list_mutex);
1920 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1921 mutex_unlock(&regulator_list_mutex);
1923 if (ret != 0) {
1924 regulator = ERR_PTR(-EPROBE_DEFER);
1925 put_device(&rdev->dev);
1926 return regulator;
1929 ret = regulator_resolve_supply(rdev);
1930 if (ret < 0) {
1931 regulator = ERR_PTR(ret);
1932 put_device(&rdev->dev);
1933 return regulator;
1936 if (!try_module_get(rdev->owner)) {
1937 regulator = ERR_PTR(-EPROBE_DEFER);
1938 put_device(&rdev->dev);
1939 return regulator;
1942 regulator = create_regulator(rdev, dev, id);
1943 if (regulator == NULL) {
1944 regulator = ERR_PTR(-ENOMEM);
1945 module_put(rdev->owner);
1946 put_device(&rdev->dev);
1947 return regulator;
1950 rdev->open_count++;
1951 if (get_type == EXCLUSIVE_GET) {
1952 rdev->exclusive = 1;
1954 ret = _regulator_is_enabled(rdev);
1955 if (ret > 0)
1956 rdev->use_count = 1;
1957 else
1958 rdev->use_count = 0;
1961 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1962 if (!IS_ERR_OR_NULL(link))
1963 regulator->device_link = true;
1965 return regulator;
1969 * regulator_get - lookup and obtain a reference to a regulator.
1970 * @dev: device for regulator "consumer"
1971 * @id: Supply name or regulator ID.
1973 * Returns a struct regulator corresponding to the regulator producer,
1974 * or IS_ERR() condition containing errno.
1976 * Use of supply names configured via regulator_set_device_supply() is
1977 * strongly encouraged. It is recommended that the supply name used
1978 * should match the name used for the supply and/or the relevant
1979 * device pins in the datasheet.
1981 struct regulator *regulator_get(struct device *dev, const char *id)
1983 return _regulator_get(dev, id, NORMAL_GET);
1985 EXPORT_SYMBOL_GPL(regulator_get);
1988 * regulator_get_exclusive - obtain exclusive access to a regulator.
1989 * @dev: device for regulator "consumer"
1990 * @id: Supply name or regulator ID.
1992 * Returns a struct regulator corresponding to the regulator producer,
1993 * or IS_ERR() condition containing errno. Other consumers will be
1994 * unable to obtain this regulator while this reference is held and the
1995 * use count for the regulator will be initialised to reflect the current
1996 * state of the regulator.
1998 * This is intended for use by consumers which cannot tolerate shared
1999 * use of the regulator such as those which need to force the
2000 * regulator off for correct operation of the hardware they are
2001 * controlling.
2003 * Use of supply names configured via regulator_set_device_supply() is
2004 * strongly encouraged. It is recommended that the supply name used
2005 * should match the name used for the supply and/or the relevant
2006 * device pins in the datasheet.
2008 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2010 return _regulator_get(dev, id, EXCLUSIVE_GET);
2012 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2015 * regulator_get_optional - obtain optional access to a regulator.
2016 * @dev: device for regulator "consumer"
2017 * @id: Supply name or regulator ID.
2019 * Returns a struct regulator corresponding to the regulator producer,
2020 * or IS_ERR() condition containing errno.
2022 * This is intended for use by consumers for devices which can have
2023 * some supplies unconnected in normal use, such as some MMC devices.
2024 * It can allow the regulator core to provide stub supplies for other
2025 * supplies requested using normal regulator_get() calls without
2026 * disrupting the operation of drivers that can handle absent
2027 * supplies.
2029 * Use of supply names configured via regulator_set_device_supply() is
2030 * strongly encouraged. It is recommended that the supply name used
2031 * should match the name used for the supply and/or the relevant
2032 * device pins in the datasheet.
2034 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2036 return _regulator_get(dev, id, OPTIONAL_GET);
2038 EXPORT_SYMBOL_GPL(regulator_get_optional);
2040 /* regulator_list_mutex lock held by regulator_put() */
2041 static void _regulator_put(struct regulator *regulator)
2043 struct regulator_dev *rdev;
2045 if (IS_ERR_OR_NULL(regulator))
2046 return;
2048 lockdep_assert_held_once(&regulator_list_mutex);
2050 /* Docs say you must disable before calling regulator_put() */
2051 WARN_ON(regulator->enable_count);
2053 rdev = regulator->rdev;
2055 debugfs_remove_recursive(regulator->debugfs);
2057 if (regulator->dev) {
2058 if (regulator->device_link)
2059 device_link_remove(regulator->dev, &rdev->dev);
2061 /* remove any sysfs entries */
2062 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065 regulator_lock(rdev);
2066 list_del(&regulator->list);
2068 rdev->open_count--;
2069 rdev->exclusive = 0;
2070 regulator_unlock(rdev);
2072 kfree_const(regulator->supply_name);
2073 kfree(regulator);
2075 module_put(rdev->owner);
2076 put_device(&rdev->dev);
2080 * regulator_put - "free" the regulator source
2081 * @regulator: regulator source
2083 * Note: drivers must ensure that all regulator_enable calls made on this
2084 * regulator source are balanced by regulator_disable calls prior to calling
2085 * this function.
2087 void regulator_put(struct regulator *regulator)
2089 mutex_lock(&regulator_list_mutex);
2090 _regulator_put(regulator);
2091 mutex_unlock(&regulator_list_mutex);
2093 EXPORT_SYMBOL_GPL(regulator_put);
2096 * regulator_register_supply_alias - Provide device alias for supply lookup
2098 * @dev: device that will be given as the regulator "consumer"
2099 * @id: Supply name or regulator ID
2100 * @alias_dev: device that should be used to lookup the supply
2101 * @alias_id: Supply name or regulator ID that should be used to lookup the
2102 * supply
2104 * All lookups for id on dev will instead be conducted for alias_id on
2105 * alias_dev.
2107 int regulator_register_supply_alias(struct device *dev, const char *id,
2108 struct device *alias_dev,
2109 const char *alias_id)
2111 struct regulator_supply_alias *map;
2113 map = regulator_find_supply_alias(dev, id);
2114 if (map)
2115 return -EEXIST;
2117 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2118 if (!map)
2119 return -ENOMEM;
2121 map->src_dev = dev;
2122 map->src_supply = id;
2123 map->alias_dev = alias_dev;
2124 map->alias_supply = alias_id;
2126 list_add(&map->list, &regulator_supply_alias_list);
2128 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2129 id, dev_name(dev), alias_id, dev_name(alias_dev));
2131 return 0;
2133 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2136 * regulator_unregister_supply_alias - Remove device alias
2138 * @dev: device that will be given as the regulator "consumer"
2139 * @id: Supply name or regulator ID
2141 * Remove a lookup alias if one exists for id on dev.
2143 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2145 struct regulator_supply_alias *map;
2147 map = regulator_find_supply_alias(dev, id);
2148 if (map) {
2149 list_del(&map->list);
2150 kfree(map);
2153 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2156 * regulator_bulk_register_supply_alias - register multiple aliases
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: List of supply names or regulator IDs
2160 * @alias_dev: device that should be used to lookup the supply
2161 * @alias_id: List of supply names or regulator IDs that should be used to
2162 * lookup the supply
2163 * @num_id: Number of aliases to register
2165 * @return 0 on success, an errno on failure.
2167 * This helper function allows drivers to register several supply
2168 * aliases in one operation. If any of the aliases cannot be
2169 * registered any aliases that were registered will be removed
2170 * before returning to the caller.
2172 int regulator_bulk_register_supply_alias(struct device *dev,
2173 const char *const *id,
2174 struct device *alias_dev,
2175 const char *const *alias_id,
2176 int num_id)
2178 int i;
2179 int ret;
2181 for (i = 0; i < num_id; ++i) {
2182 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2183 alias_id[i]);
2184 if (ret < 0)
2185 goto err;
2188 return 0;
2190 err:
2191 dev_err(dev,
2192 "Failed to create supply alias %s,%s -> %s,%s\n",
2193 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2195 while (--i >= 0)
2196 regulator_unregister_supply_alias(dev, id[i]);
2198 return ret;
2200 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2203 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2205 * @dev: device that will be given as the regulator "consumer"
2206 * @id: List of supply names or regulator IDs
2207 * @num_id: Number of aliases to unregister
2209 * This helper function allows drivers to unregister several supply
2210 * aliases in one operation.
2212 void regulator_bulk_unregister_supply_alias(struct device *dev,
2213 const char *const *id,
2214 int num_id)
2216 int i;
2218 for (i = 0; i < num_id; ++i)
2219 regulator_unregister_supply_alias(dev, id[i]);
2221 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2224 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2225 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2226 const struct regulator_config *config)
2228 struct regulator_enable_gpio *pin;
2229 struct gpio_desc *gpiod;
2231 gpiod = config->ena_gpiod;
2233 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2234 if (pin->gpiod == gpiod) {
2235 rdev_dbg(rdev, "GPIO is already used\n");
2236 goto update_ena_gpio_to_rdev;
2240 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2241 if (pin == NULL)
2242 return -ENOMEM;
2244 pin->gpiod = gpiod;
2245 list_add(&pin->list, &regulator_ena_gpio_list);
2247 update_ena_gpio_to_rdev:
2248 pin->request_count++;
2249 rdev->ena_pin = pin;
2250 return 0;
2253 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2255 struct regulator_enable_gpio *pin, *n;
2257 if (!rdev->ena_pin)
2258 return;
2260 /* Free the GPIO only in case of no use */
2261 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2262 if (pin->gpiod == rdev->ena_pin->gpiod) {
2263 if (pin->request_count <= 1) {
2264 pin->request_count = 0;
2265 gpiod_put(pin->gpiod);
2266 list_del(&pin->list);
2267 kfree(pin);
2268 rdev->ena_pin = NULL;
2269 return;
2270 } else {
2271 pin->request_count--;
2278 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2279 * @rdev: regulator_dev structure
2280 * @enable: enable GPIO at initial use?
2282 * GPIO is enabled in case of initial use. (enable_count is 0)
2283 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2285 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2287 struct regulator_enable_gpio *pin = rdev->ena_pin;
2289 if (!pin)
2290 return -EINVAL;
2292 if (enable) {
2293 /* Enable GPIO at initial use */
2294 if (pin->enable_count == 0)
2295 gpiod_set_value_cansleep(pin->gpiod, 1);
2297 pin->enable_count++;
2298 } else {
2299 if (pin->enable_count > 1) {
2300 pin->enable_count--;
2301 return 0;
2304 /* Disable GPIO if not used */
2305 if (pin->enable_count <= 1) {
2306 gpiod_set_value_cansleep(pin->gpiod, 0);
2307 pin->enable_count = 0;
2311 return 0;
2315 * _regulator_enable_delay - a delay helper function
2316 * @delay: time to delay in microseconds
2318 * Delay for the requested amount of time as per the guidelines in:
2320 * Documentation/timers/timers-howto.rst
2322 * The assumption here is that regulators will never be enabled in
2323 * atomic context and therefore sleeping functions can be used.
2325 static void _regulator_enable_delay(unsigned int delay)
2327 unsigned int ms = delay / 1000;
2328 unsigned int us = delay % 1000;
2330 if (ms > 0) {
2332 * For small enough values, handle super-millisecond
2333 * delays in the usleep_range() call below.
2335 if (ms < 20)
2336 us += ms * 1000;
2337 else
2338 msleep(ms);
2342 * Give the scheduler some room to coalesce with any other
2343 * wakeup sources. For delays shorter than 10 us, don't even
2344 * bother setting up high-resolution timers and just busy-
2345 * loop.
2347 if (us >= 10)
2348 usleep_range(us, us + 100);
2349 else
2350 udelay(us);
2353 static int _regulator_do_enable(struct regulator_dev *rdev)
2355 int ret, delay;
2357 /* Query before enabling in case configuration dependent. */
2358 ret = _regulator_get_enable_time(rdev);
2359 if (ret >= 0) {
2360 delay = ret;
2361 } else {
2362 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2363 delay = 0;
2366 trace_regulator_enable(rdev_get_name(rdev));
2368 if (rdev->desc->off_on_delay) {
2369 /* if needed, keep a distance of off_on_delay from last time
2370 * this regulator was disabled.
2372 unsigned long start_jiffy = jiffies;
2373 unsigned long intended, max_delay, remaining;
2375 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2376 intended = rdev->last_off_jiffy + max_delay;
2378 if (time_before(start_jiffy, intended)) {
2379 /* calc remaining jiffies to deal with one-time
2380 * timer wrapping.
2381 * in case of multiple timer wrapping, either it can be
2382 * detected by out-of-range remaining, or it cannot be
2383 * detected and we get a penalty of
2384 * _regulator_enable_delay().
2386 remaining = intended - start_jiffy;
2387 if (remaining <= max_delay)
2388 _regulator_enable_delay(
2389 jiffies_to_usecs(remaining));
2393 if (rdev->ena_pin) {
2394 if (!rdev->ena_gpio_state) {
2395 ret = regulator_ena_gpio_ctrl(rdev, true);
2396 if (ret < 0)
2397 return ret;
2398 rdev->ena_gpio_state = 1;
2400 } else if (rdev->desc->ops->enable) {
2401 ret = rdev->desc->ops->enable(rdev);
2402 if (ret < 0)
2403 return ret;
2404 } else {
2405 return -EINVAL;
2408 /* Allow the regulator to ramp; it would be useful to extend
2409 * this for bulk operations so that the regulators can ramp
2410 * together. */
2411 trace_regulator_enable_delay(rdev_get_name(rdev));
2413 _regulator_enable_delay(delay);
2415 trace_regulator_enable_complete(rdev_get_name(rdev));
2417 return 0;
2421 * _regulator_handle_consumer_enable - handle that a consumer enabled
2422 * @regulator: regulator source
2424 * Some things on a regulator consumer (like the contribution towards total
2425 * load on the regulator) only have an effect when the consumer wants the
2426 * regulator enabled. Explained in example with two consumers of the same
2427 * regulator:
2428 * consumer A: set_load(100); => total load = 0
2429 * consumer A: regulator_enable(); => total load = 100
2430 * consumer B: set_load(1000); => total load = 100
2431 * consumer B: regulator_enable(); => total load = 1100
2432 * consumer A: regulator_disable(); => total_load = 1000
2434 * This function (together with _regulator_handle_consumer_disable) is
2435 * responsible for keeping track of the refcount for a given regulator consumer
2436 * and applying / unapplying these things.
2438 * Returns 0 upon no error; -error upon error.
2440 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2442 struct regulator_dev *rdev = regulator->rdev;
2444 lockdep_assert_held_once(&rdev->mutex.base);
2446 regulator->enable_count++;
2447 if (regulator->uA_load && regulator->enable_count == 1)
2448 return drms_uA_update(rdev);
2450 return 0;
2454 * _regulator_handle_consumer_disable - handle that a consumer disabled
2455 * @regulator: regulator source
2457 * The opposite of _regulator_handle_consumer_enable().
2459 * Returns 0 upon no error; -error upon error.
2461 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2463 struct regulator_dev *rdev = regulator->rdev;
2465 lockdep_assert_held_once(&rdev->mutex.base);
2467 if (!regulator->enable_count) {
2468 rdev_err(rdev, "Underflow of regulator enable count\n");
2469 return -EINVAL;
2472 regulator->enable_count--;
2473 if (regulator->uA_load && regulator->enable_count == 0)
2474 return drms_uA_update(rdev);
2476 return 0;
2479 /* locks held by regulator_enable() */
2480 static int _regulator_enable(struct regulator *regulator)
2482 struct regulator_dev *rdev = regulator->rdev;
2483 int ret;
2485 lockdep_assert_held_once(&rdev->mutex.base);
2487 if (rdev->use_count == 0 && rdev->supply) {
2488 ret = _regulator_enable(rdev->supply);
2489 if (ret < 0)
2490 return ret;
2493 /* balance only if there are regulators coupled */
2494 if (rdev->coupling_desc.n_coupled > 1) {
2495 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2496 if (ret < 0)
2497 goto err_disable_supply;
2500 ret = _regulator_handle_consumer_enable(regulator);
2501 if (ret < 0)
2502 goto err_disable_supply;
2504 if (rdev->use_count == 0) {
2505 /* The regulator may on if it's not switchable or left on */
2506 ret = _regulator_is_enabled(rdev);
2507 if (ret == -EINVAL || ret == 0) {
2508 if (!regulator_ops_is_valid(rdev,
2509 REGULATOR_CHANGE_STATUS)) {
2510 ret = -EPERM;
2511 goto err_consumer_disable;
2514 ret = _regulator_do_enable(rdev);
2515 if (ret < 0)
2516 goto err_consumer_disable;
2518 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2519 NULL);
2520 } else if (ret < 0) {
2521 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2522 goto err_consumer_disable;
2524 /* Fallthrough on positive return values - already enabled */
2527 rdev->use_count++;
2529 return 0;
2531 err_consumer_disable:
2532 _regulator_handle_consumer_disable(regulator);
2534 err_disable_supply:
2535 if (rdev->use_count == 0 && rdev->supply)
2536 _regulator_disable(rdev->supply);
2538 return ret;
2542 * regulator_enable - enable regulator output
2543 * @regulator: regulator source
2545 * Request that the regulator be enabled with the regulator output at
2546 * the predefined voltage or current value. Calls to regulator_enable()
2547 * must be balanced with calls to regulator_disable().
2549 * NOTE: the output value can be set by other drivers, boot loader or may be
2550 * hardwired in the regulator.
2552 int regulator_enable(struct regulator *regulator)
2554 struct regulator_dev *rdev = regulator->rdev;
2555 struct ww_acquire_ctx ww_ctx;
2556 int ret;
2558 regulator_lock_dependent(rdev, &ww_ctx);
2559 ret = _regulator_enable(regulator);
2560 regulator_unlock_dependent(rdev, &ww_ctx);
2562 return ret;
2564 EXPORT_SYMBOL_GPL(regulator_enable);
2566 static int _regulator_do_disable(struct regulator_dev *rdev)
2568 int ret;
2570 trace_regulator_disable(rdev_get_name(rdev));
2572 if (rdev->ena_pin) {
2573 if (rdev->ena_gpio_state) {
2574 ret = regulator_ena_gpio_ctrl(rdev, false);
2575 if (ret < 0)
2576 return ret;
2577 rdev->ena_gpio_state = 0;
2580 } else if (rdev->desc->ops->disable) {
2581 ret = rdev->desc->ops->disable(rdev);
2582 if (ret != 0)
2583 return ret;
2586 /* cares about last_off_jiffy only if off_on_delay is required by
2587 * device.
2589 if (rdev->desc->off_on_delay)
2590 rdev->last_off_jiffy = jiffies;
2592 trace_regulator_disable_complete(rdev_get_name(rdev));
2594 return 0;
2597 /* locks held by regulator_disable() */
2598 static int _regulator_disable(struct regulator *regulator)
2600 struct regulator_dev *rdev = regulator->rdev;
2601 int ret = 0;
2603 lockdep_assert_held_once(&rdev->mutex.base);
2605 if (WARN(rdev->use_count <= 0,
2606 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2607 return -EIO;
2609 /* are we the last user and permitted to disable ? */
2610 if (rdev->use_count == 1 &&
2611 (rdev->constraints && !rdev->constraints->always_on)) {
2613 /* we are last user */
2614 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2615 ret = _notifier_call_chain(rdev,
2616 REGULATOR_EVENT_PRE_DISABLE,
2617 NULL);
2618 if (ret & NOTIFY_STOP_MASK)
2619 return -EINVAL;
2621 ret = _regulator_do_disable(rdev);
2622 if (ret < 0) {
2623 rdev_err(rdev, "failed to disable\n");
2624 _notifier_call_chain(rdev,
2625 REGULATOR_EVENT_ABORT_DISABLE,
2626 NULL);
2627 return ret;
2629 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2630 NULL);
2633 rdev->use_count = 0;
2634 } else if (rdev->use_count > 1) {
2635 rdev->use_count--;
2638 if (ret == 0)
2639 ret = _regulator_handle_consumer_disable(regulator);
2641 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2642 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2644 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2645 ret = _regulator_disable(rdev->supply);
2647 return ret;
2651 * regulator_disable - disable regulator output
2652 * @regulator: regulator source
2654 * Disable the regulator output voltage or current. Calls to
2655 * regulator_enable() must be balanced with calls to
2656 * regulator_disable().
2658 * NOTE: this will only disable the regulator output if no other consumer
2659 * devices have it enabled, the regulator device supports disabling and
2660 * machine constraints permit this operation.
2662 int regulator_disable(struct regulator *regulator)
2664 struct regulator_dev *rdev = regulator->rdev;
2665 struct ww_acquire_ctx ww_ctx;
2666 int ret;
2668 regulator_lock_dependent(rdev, &ww_ctx);
2669 ret = _regulator_disable(regulator);
2670 regulator_unlock_dependent(rdev, &ww_ctx);
2672 return ret;
2674 EXPORT_SYMBOL_GPL(regulator_disable);
2676 /* locks held by regulator_force_disable() */
2677 static int _regulator_force_disable(struct regulator_dev *rdev)
2679 int ret = 0;
2681 lockdep_assert_held_once(&rdev->mutex.base);
2683 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2684 REGULATOR_EVENT_PRE_DISABLE, NULL);
2685 if (ret & NOTIFY_STOP_MASK)
2686 return -EINVAL;
2688 ret = _regulator_do_disable(rdev);
2689 if (ret < 0) {
2690 rdev_err(rdev, "failed to force disable\n");
2691 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2692 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2693 return ret;
2696 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2697 REGULATOR_EVENT_DISABLE, NULL);
2699 return 0;
2703 * regulator_force_disable - force disable regulator output
2704 * @regulator: regulator source
2706 * Forcibly disable the regulator output voltage or current.
2707 * NOTE: this *will* disable the regulator output even if other consumer
2708 * devices have it enabled. This should be used for situations when device
2709 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2711 int regulator_force_disable(struct regulator *regulator)
2713 struct regulator_dev *rdev = regulator->rdev;
2714 struct ww_acquire_ctx ww_ctx;
2715 int ret;
2717 regulator_lock_dependent(rdev, &ww_ctx);
2719 ret = _regulator_force_disable(regulator->rdev);
2721 if (rdev->coupling_desc.n_coupled > 1)
2722 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2724 if (regulator->uA_load) {
2725 regulator->uA_load = 0;
2726 ret = drms_uA_update(rdev);
2729 if (rdev->use_count != 0 && rdev->supply)
2730 _regulator_disable(rdev->supply);
2732 regulator_unlock_dependent(rdev, &ww_ctx);
2734 return ret;
2736 EXPORT_SYMBOL_GPL(regulator_force_disable);
2738 static void regulator_disable_work(struct work_struct *work)
2740 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2741 disable_work.work);
2742 struct ww_acquire_ctx ww_ctx;
2743 int count, i, ret;
2744 struct regulator *regulator;
2745 int total_count = 0;
2747 regulator_lock_dependent(rdev, &ww_ctx);
2750 * Workqueue functions queue the new work instance while the previous
2751 * work instance is being processed. Cancel the queued work instance
2752 * as the work instance under processing does the job of the queued
2753 * work instance.
2755 cancel_delayed_work(&rdev->disable_work);
2757 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2758 count = regulator->deferred_disables;
2760 if (!count)
2761 continue;
2763 total_count += count;
2764 regulator->deferred_disables = 0;
2766 for (i = 0; i < count; i++) {
2767 ret = _regulator_disable(regulator);
2768 if (ret != 0)
2769 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2772 WARN_ON(!total_count);
2774 if (rdev->coupling_desc.n_coupled > 1)
2775 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2777 regulator_unlock_dependent(rdev, &ww_ctx);
2781 * regulator_disable_deferred - disable regulator output with delay
2782 * @regulator: regulator source
2783 * @ms: milliseconds until the regulator is disabled
2785 * Execute regulator_disable() on the regulator after a delay. This
2786 * is intended for use with devices that require some time to quiesce.
2788 * NOTE: this will only disable the regulator output if no other consumer
2789 * devices have it enabled, the regulator device supports disabling and
2790 * machine constraints permit this operation.
2792 int regulator_disable_deferred(struct regulator *regulator, int ms)
2794 struct regulator_dev *rdev = regulator->rdev;
2796 if (!ms)
2797 return regulator_disable(regulator);
2799 regulator_lock(rdev);
2800 regulator->deferred_disables++;
2801 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2802 msecs_to_jiffies(ms));
2803 regulator_unlock(rdev);
2805 return 0;
2807 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2809 static int _regulator_is_enabled(struct regulator_dev *rdev)
2811 /* A GPIO control always takes precedence */
2812 if (rdev->ena_pin)
2813 return rdev->ena_gpio_state;
2815 /* If we don't know then assume that the regulator is always on */
2816 if (!rdev->desc->ops->is_enabled)
2817 return 1;
2819 return rdev->desc->ops->is_enabled(rdev);
2822 static int _regulator_list_voltage(struct regulator_dev *rdev,
2823 unsigned selector, int lock)
2825 const struct regulator_ops *ops = rdev->desc->ops;
2826 int ret;
2828 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2829 return rdev->desc->fixed_uV;
2831 if (ops->list_voltage) {
2832 if (selector >= rdev->desc->n_voltages)
2833 return -EINVAL;
2834 if (lock)
2835 regulator_lock(rdev);
2836 ret = ops->list_voltage(rdev, selector);
2837 if (lock)
2838 regulator_unlock(rdev);
2839 } else if (rdev->is_switch && rdev->supply) {
2840 ret = _regulator_list_voltage(rdev->supply->rdev,
2841 selector, lock);
2842 } else {
2843 return -EINVAL;
2846 if (ret > 0) {
2847 if (ret < rdev->constraints->min_uV)
2848 ret = 0;
2849 else if (ret > rdev->constraints->max_uV)
2850 ret = 0;
2853 return ret;
2857 * regulator_is_enabled - is the regulator output enabled
2858 * @regulator: regulator source
2860 * Returns positive if the regulator driver backing the source/client
2861 * has requested that the device be enabled, zero if it hasn't, else a
2862 * negative errno code.
2864 * Note that the device backing this regulator handle can have multiple
2865 * users, so it might be enabled even if regulator_enable() was never
2866 * called for this particular source.
2868 int regulator_is_enabled(struct regulator *regulator)
2870 int ret;
2872 if (regulator->always_on)
2873 return 1;
2875 regulator_lock(regulator->rdev);
2876 ret = _regulator_is_enabled(regulator->rdev);
2877 regulator_unlock(regulator->rdev);
2879 return ret;
2881 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2884 * regulator_count_voltages - count regulator_list_voltage() selectors
2885 * @regulator: regulator source
2887 * Returns number of selectors, or negative errno. Selectors are
2888 * numbered starting at zero, and typically correspond to bitfields
2889 * in hardware registers.
2891 int regulator_count_voltages(struct regulator *regulator)
2893 struct regulator_dev *rdev = regulator->rdev;
2895 if (rdev->desc->n_voltages)
2896 return rdev->desc->n_voltages;
2898 if (!rdev->is_switch || !rdev->supply)
2899 return -EINVAL;
2901 return regulator_count_voltages(rdev->supply);
2903 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2906 * regulator_list_voltage - enumerate supported voltages
2907 * @regulator: regulator source
2908 * @selector: identify voltage to list
2909 * Context: can sleep
2911 * Returns a voltage that can be passed to @regulator_set_voltage(),
2912 * zero if this selector code can't be used on this system, or a
2913 * negative errno.
2915 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2917 return _regulator_list_voltage(regulator->rdev, selector, 1);
2919 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2922 * regulator_get_regmap - get the regulator's register map
2923 * @regulator: regulator source
2925 * Returns the register map for the given regulator, or an ERR_PTR value
2926 * if the regulator doesn't use regmap.
2928 struct regmap *regulator_get_regmap(struct regulator *regulator)
2930 struct regmap *map = regulator->rdev->regmap;
2932 return map ? map : ERR_PTR(-EOPNOTSUPP);
2936 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2937 * @regulator: regulator source
2938 * @vsel_reg: voltage selector register, output parameter
2939 * @vsel_mask: mask for voltage selector bitfield, output parameter
2941 * Returns the hardware register offset and bitmask used for setting the
2942 * regulator voltage. This might be useful when configuring voltage-scaling
2943 * hardware or firmware that can make I2C requests behind the kernel's back,
2944 * for example.
2946 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2947 * and 0 is returned, otherwise a negative errno is returned.
2949 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2950 unsigned *vsel_reg,
2951 unsigned *vsel_mask)
2953 struct regulator_dev *rdev = regulator->rdev;
2954 const struct regulator_ops *ops = rdev->desc->ops;
2956 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2957 return -EOPNOTSUPP;
2959 *vsel_reg = rdev->desc->vsel_reg;
2960 *vsel_mask = rdev->desc->vsel_mask;
2962 return 0;
2964 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2967 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2968 * @regulator: regulator source
2969 * @selector: identify voltage to list
2971 * Converts the selector to a hardware-specific voltage selector that can be
2972 * directly written to the regulator registers. The address of the voltage
2973 * register can be determined by calling @regulator_get_hardware_vsel_register.
2975 * On error a negative errno is returned.
2977 int regulator_list_hardware_vsel(struct regulator *regulator,
2978 unsigned selector)
2980 struct regulator_dev *rdev = regulator->rdev;
2981 const struct regulator_ops *ops = rdev->desc->ops;
2983 if (selector >= rdev->desc->n_voltages)
2984 return -EINVAL;
2985 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2986 return -EOPNOTSUPP;
2988 return selector;
2990 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2993 * regulator_get_linear_step - return the voltage step size between VSEL values
2994 * @regulator: regulator source
2996 * Returns the voltage step size between VSEL values for linear
2997 * regulators, or return 0 if the regulator isn't a linear regulator.
2999 unsigned int regulator_get_linear_step(struct regulator *regulator)
3001 struct regulator_dev *rdev = regulator->rdev;
3003 return rdev->desc->uV_step;
3005 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3008 * regulator_is_supported_voltage - check if a voltage range can be supported
3010 * @regulator: Regulator to check.
3011 * @min_uV: Minimum required voltage in uV.
3012 * @max_uV: Maximum required voltage in uV.
3014 * Returns a boolean.
3016 int regulator_is_supported_voltage(struct regulator *regulator,
3017 int min_uV, int max_uV)
3019 struct regulator_dev *rdev = regulator->rdev;
3020 int i, voltages, ret;
3022 /* If we can't change voltage check the current voltage */
3023 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3024 ret = regulator_get_voltage(regulator);
3025 if (ret >= 0)
3026 return min_uV <= ret && ret <= max_uV;
3027 else
3028 return ret;
3031 /* Any voltage within constrains range is fine? */
3032 if (rdev->desc->continuous_voltage_range)
3033 return min_uV >= rdev->constraints->min_uV &&
3034 max_uV <= rdev->constraints->max_uV;
3036 ret = regulator_count_voltages(regulator);
3037 if (ret < 0)
3038 return 0;
3039 voltages = ret;
3041 for (i = 0; i < voltages; i++) {
3042 ret = regulator_list_voltage(regulator, i);
3044 if (ret >= min_uV && ret <= max_uV)
3045 return 1;
3048 return 0;
3050 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3052 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3053 int max_uV)
3055 const struct regulator_desc *desc = rdev->desc;
3057 if (desc->ops->map_voltage)
3058 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3060 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3061 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3063 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3064 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3066 if (desc->ops->list_voltage ==
3067 regulator_list_voltage_pickable_linear_range)
3068 return regulator_map_voltage_pickable_linear_range(rdev,
3069 min_uV, max_uV);
3071 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3074 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3075 int min_uV, int max_uV,
3076 unsigned *selector)
3078 struct pre_voltage_change_data data;
3079 int ret;
3081 data.old_uV = regulator_get_voltage_rdev(rdev);
3082 data.min_uV = min_uV;
3083 data.max_uV = max_uV;
3084 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3085 &data);
3086 if (ret & NOTIFY_STOP_MASK)
3087 return -EINVAL;
3089 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3090 if (ret >= 0)
3091 return ret;
3093 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3094 (void *)data.old_uV);
3096 return ret;
3099 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3100 int uV, unsigned selector)
3102 struct pre_voltage_change_data data;
3103 int ret;
3105 data.old_uV = regulator_get_voltage_rdev(rdev);
3106 data.min_uV = uV;
3107 data.max_uV = uV;
3108 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3109 &data);
3110 if (ret & NOTIFY_STOP_MASK)
3111 return -EINVAL;
3113 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3114 if (ret >= 0)
3115 return ret;
3117 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3118 (void *)data.old_uV);
3120 return ret;
3123 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3124 int uV, int new_selector)
3126 const struct regulator_ops *ops = rdev->desc->ops;
3127 int diff, old_sel, curr_sel, ret;
3129 /* Stepping is only needed if the regulator is enabled. */
3130 if (!_regulator_is_enabled(rdev))
3131 goto final_set;
3133 if (!ops->get_voltage_sel)
3134 return -EINVAL;
3136 old_sel = ops->get_voltage_sel(rdev);
3137 if (old_sel < 0)
3138 return old_sel;
3140 diff = new_selector - old_sel;
3141 if (diff == 0)
3142 return 0; /* No change needed. */
3144 if (diff > 0) {
3145 /* Stepping up. */
3146 for (curr_sel = old_sel + rdev->desc->vsel_step;
3147 curr_sel < new_selector;
3148 curr_sel += rdev->desc->vsel_step) {
3150 * Call the callback directly instead of using
3151 * _regulator_call_set_voltage_sel() as we don't
3152 * want to notify anyone yet. Same in the branch
3153 * below.
3155 ret = ops->set_voltage_sel(rdev, curr_sel);
3156 if (ret)
3157 goto try_revert;
3159 } else {
3160 /* Stepping down. */
3161 for (curr_sel = old_sel - rdev->desc->vsel_step;
3162 curr_sel > new_selector;
3163 curr_sel -= rdev->desc->vsel_step) {
3164 ret = ops->set_voltage_sel(rdev, curr_sel);
3165 if (ret)
3166 goto try_revert;
3170 final_set:
3171 /* The final selector will trigger the notifiers. */
3172 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3174 try_revert:
3176 * At least try to return to the previous voltage if setting a new
3177 * one failed.
3179 (void)ops->set_voltage_sel(rdev, old_sel);
3180 return ret;
3183 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3184 int old_uV, int new_uV)
3186 unsigned int ramp_delay = 0;
3188 if (rdev->constraints->ramp_delay)
3189 ramp_delay = rdev->constraints->ramp_delay;
3190 else if (rdev->desc->ramp_delay)
3191 ramp_delay = rdev->desc->ramp_delay;
3192 else if (rdev->constraints->settling_time)
3193 return rdev->constraints->settling_time;
3194 else if (rdev->constraints->settling_time_up &&
3195 (new_uV > old_uV))
3196 return rdev->constraints->settling_time_up;
3197 else if (rdev->constraints->settling_time_down &&
3198 (new_uV < old_uV))
3199 return rdev->constraints->settling_time_down;
3201 if (ramp_delay == 0) {
3202 rdev_dbg(rdev, "ramp_delay not set\n");
3203 return 0;
3206 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3209 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3210 int min_uV, int max_uV)
3212 int ret;
3213 int delay = 0;
3214 int best_val = 0;
3215 unsigned int selector;
3216 int old_selector = -1;
3217 const struct regulator_ops *ops = rdev->desc->ops;
3218 int old_uV = regulator_get_voltage_rdev(rdev);
3220 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3222 min_uV += rdev->constraints->uV_offset;
3223 max_uV += rdev->constraints->uV_offset;
3226 * If we can't obtain the old selector there is not enough
3227 * info to call set_voltage_time_sel().
3229 if (_regulator_is_enabled(rdev) &&
3230 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3231 old_selector = ops->get_voltage_sel(rdev);
3232 if (old_selector < 0)
3233 return old_selector;
3236 if (ops->set_voltage) {
3237 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3238 &selector);
3240 if (ret >= 0) {
3241 if (ops->list_voltage)
3242 best_val = ops->list_voltage(rdev,
3243 selector);
3244 else
3245 best_val = regulator_get_voltage_rdev(rdev);
3248 } else if (ops->set_voltage_sel) {
3249 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3250 if (ret >= 0) {
3251 best_val = ops->list_voltage(rdev, ret);
3252 if (min_uV <= best_val && max_uV >= best_val) {
3253 selector = ret;
3254 if (old_selector == selector)
3255 ret = 0;
3256 else if (rdev->desc->vsel_step)
3257 ret = _regulator_set_voltage_sel_step(
3258 rdev, best_val, selector);
3259 else
3260 ret = _regulator_call_set_voltage_sel(
3261 rdev, best_val, selector);
3262 } else {
3263 ret = -EINVAL;
3266 } else {
3267 ret = -EINVAL;
3270 if (ret)
3271 goto out;
3273 if (ops->set_voltage_time_sel) {
3275 * Call set_voltage_time_sel if successfully obtained
3276 * old_selector
3278 if (old_selector >= 0 && old_selector != selector)
3279 delay = ops->set_voltage_time_sel(rdev, old_selector,
3280 selector);
3281 } else {
3282 if (old_uV != best_val) {
3283 if (ops->set_voltage_time)
3284 delay = ops->set_voltage_time(rdev, old_uV,
3285 best_val);
3286 else
3287 delay = _regulator_set_voltage_time(rdev,
3288 old_uV,
3289 best_val);
3293 if (delay < 0) {
3294 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3295 delay = 0;
3298 /* Insert any necessary delays */
3299 if (delay >= 1000) {
3300 mdelay(delay / 1000);
3301 udelay(delay % 1000);
3302 } else if (delay) {
3303 udelay(delay);
3306 if (best_val >= 0) {
3307 unsigned long data = best_val;
3309 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3310 (void *)data);
3313 out:
3314 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3316 return ret;
3319 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3320 int min_uV, int max_uV, suspend_state_t state)
3322 struct regulator_state *rstate;
3323 int uV, sel;
3325 rstate = regulator_get_suspend_state(rdev, state);
3326 if (rstate == NULL)
3327 return -EINVAL;
3329 if (min_uV < rstate->min_uV)
3330 min_uV = rstate->min_uV;
3331 if (max_uV > rstate->max_uV)
3332 max_uV = rstate->max_uV;
3334 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3335 if (sel < 0)
3336 return sel;
3338 uV = rdev->desc->ops->list_voltage(rdev, sel);
3339 if (uV >= min_uV && uV <= max_uV)
3340 rstate->uV = uV;
3342 return 0;
3345 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3346 int min_uV, int max_uV,
3347 suspend_state_t state)
3349 struct regulator_dev *rdev = regulator->rdev;
3350 struct regulator_voltage *voltage = &regulator->voltage[state];
3351 int ret = 0;
3352 int old_min_uV, old_max_uV;
3353 int current_uV;
3355 /* If we're setting the same range as last time the change
3356 * should be a noop (some cpufreq implementations use the same
3357 * voltage for multiple frequencies, for example).
3359 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3360 goto out;
3362 /* If we're trying to set a range that overlaps the current voltage,
3363 * return successfully even though the regulator does not support
3364 * changing the voltage.
3366 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3367 current_uV = regulator_get_voltage_rdev(rdev);
3368 if (min_uV <= current_uV && current_uV <= max_uV) {
3369 voltage->min_uV = min_uV;
3370 voltage->max_uV = max_uV;
3371 goto out;
3375 /* sanity check */
3376 if (!rdev->desc->ops->set_voltage &&
3377 !rdev->desc->ops->set_voltage_sel) {
3378 ret = -EINVAL;
3379 goto out;
3382 /* constraints check */
3383 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3384 if (ret < 0)
3385 goto out;
3387 /* restore original values in case of error */
3388 old_min_uV = voltage->min_uV;
3389 old_max_uV = voltage->max_uV;
3390 voltage->min_uV = min_uV;
3391 voltage->max_uV = max_uV;
3393 /* for not coupled regulators this will just set the voltage */
3394 ret = regulator_balance_voltage(rdev, state);
3395 if (ret < 0) {
3396 voltage->min_uV = old_min_uV;
3397 voltage->max_uV = old_max_uV;
3400 out:
3401 return ret;
3404 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3405 int max_uV, suspend_state_t state)
3407 int best_supply_uV = 0;
3408 int supply_change_uV = 0;
3409 int ret;
3411 if (rdev->supply &&
3412 regulator_ops_is_valid(rdev->supply->rdev,
3413 REGULATOR_CHANGE_VOLTAGE) &&
3414 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3415 rdev->desc->ops->get_voltage_sel))) {
3416 int current_supply_uV;
3417 int selector;
3419 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3420 if (selector < 0) {
3421 ret = selector;
3422 goto out;
3425 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3426 if (best_supply_uV < 0) {
3427 ret = best_supply_uV;
3428 goto out;
3431 best_supply_uV += rdev->desc->min_dropout_uV;
3433 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3434 if (current_supply_uV < 0) {
3435 ret = current_supply_uV;
3436 goto out;
3439 supply_change_uV = best_supply_uV - current_supply_uV;
3442 if (supply_change_uV > 0) {
3443 ret = regulator_set_voltage_unlocked(rdev->supply,
3444 best_supply_uV, INT_MAX, state);
3445 if (ret) {
3446 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3447 ret);
3448 goto out;
3452 if (state == PM_SUSPEND_ON)
3453 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3454 else
3455 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3456 max_uV, state);
3457 if (ret < 0)
3458 goto out;
3460 if (supply_change_uV < 0) {
3461 ret = regulator_set_voltage_unlocked(rdev->supply,
3462 best_supply_uV, INT_MAX, state);
3463 if (ret)
3464 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3465 ret);
3466 /* No need to fail here */
3467 ret = 0;
3470 out:
3471 return ret;
3473 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3475 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3476 int *current_uV, int *min_uV)
3478 struct regulation_constraints *constraints = rdev->constraints;
3480 /* Limit voltage change only if necessary */
3481 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3482 return 1;
3484 if (*current_uV < 0) {
3485 *current_uV = regulator_get_voltage_rdev(rdev);
3487 if (*current_uV < 0)
3488 return *current_uV;
3491 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3492 return 1;
3494 /* Clamp target voltage within the given step */
3495 if (*current_uV < *min_uV)
3496 *min_uV = min(*current_uV + constraints->max_uV_step,
3497 *min_uV);
3498 else
3499 *min_uV = max(*current_uV - constraints->max_uV_step,
3500 *min_uV);
3502 return 0;
3505 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3506 int *current_uV,
3507 int *min_uV, int *max_uV,
3508 suspend_state_t state,
3509 int n_coupled)
3511 struct coupling_desc *c_desc = &rdev->coupling_desc;
3512 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3513 struct regulation_constraints *constraints = rdev->constraints;
3514 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3515 int max_current_uV = 0, min_current_uV = INT_MAX;
3516 int highest_min_uV = 0, target_uV, possible_uV;
3517 int i, ret, max_spread;
3518 bool done;
3520 *current_uV = -1;
3523 * If there are no coupled regulators, simply set the voltage
3524 * demanded by consumers.
3526 if (n_coupled == 1) {
3528 * If consumers don't provide any demands, set voltage
3529 * to min_uV
3531 desired_min_uV = constraints->min_uV;
3532 desired_max_uV = constraints->max_uV;
3534 ret = regulator_check_consumers(rdev,
3535 &desired_min_uV,
3536 &desired_max_uV, state);
3537 if (ret < 0)
3538 return ret;
3540 possible_uV = desired_min_uV;
3541 done = true;
3543 goto finish;
3546 /* Find highest min desired voltage */
3547 for (i = 0; i < n_coupled; i++) {
3548 int tmp_min = 0;
3549 int tmp_max = INT_MAX;
3551 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3553 ret = regulator_check_consumers(c_rdevs[i],
3554 &tmp_min,
3555 &tmp_max, state);
3556 if (ret < 0)
3557 return ret;
3559 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3560 if (ret < 0)
3561 return ret;
3563 highest_min_uV = max(highest_min_uV, tmp_min);
3565 if (i == 0) {
3566 desired_min_uV = tmp_min;
3567 desired_max_uV = tmp_max;
3571 max_spread = constraints->max_spread[0];
3574 * Let target_uV be equal to the desired one if possible.
3575 * If not, set it to minimum voltage, allowed by other coupled
3576 * regulators.
3578 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3581 * Find min and max voltages, which currently aren't violating
3582 * max_spread.
3584 for (i = 1; i < n_coupled; i++) {
3585 int tmp_act;
3587 if (!_regulator_is_enabled(c_rdevs[i]))
3588 continue;
3590 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3591 if (tmp_act < 0)
3592 return tmp_act;
3594 min_current_uV = min(tmp_act, min_current_uV);
3595 max_current_uV = max(tmp_act, max_current_uV);
3598 /* There aren't any other regulators enabled */
3599 if (max_current_uV == 0) {
3600 possible_uV = target_uV;
3601 } else {
3603 * Correct target voltage, so as it currently isn't
3604 * violating max_spread
3606 possible_uV = max(target_uV, max_current_uV - max_spread);
3607 possible_uV = min(possible_uV, min_current_uV + max_spread);
3610 if (possible_uV > desired_max_uV)
3611 return -EINVAL;
3613 done = (possible_uV == target_uV);
3614 desired_min_uV = possible_uV;
3616 finish:
3617 /* Apply max_uV_step constraint if necessary */
3618 if (state == PM_SUSPEND_ON) {
3619 ret = regulator_limit_voltage_step(rdev, current_uV,
3620 &desired_min_uV);
3621 if (ret < 0)
3622 return ret;
3624 if (ret == 0)
3625 done = false;
3628 /* Set current_uV if wasn't done earlier in the code and if necessary */
3629 if (n_coupled > 1 && *current_uV == -1) {
3631 if (_regulator_is_enabled(rdev)) {
3632 ret = regulator_get_voltage_rdev(rdev);
3633 if (ret < 0)
3634 return ret;
3636 *current_uV = ret;
3637 } else {
3638 *current_uV = desired_min_uV;
3642 *min_uV = desired_min_uV;
3643 *max_uV = desired_max_uV;
3645 return done;
3648 static int regulator_balance_voltage(struct regulator_dev *rdev,
3649 suspend_state_t state)
3651 struct regulator_dev **c_rdevs;
3652 struct regulator_dev *best_rdev;
3653 struct coupling_desc *c_desc = &rdev->coupling_desc;
3654 struct regulator_coupler *coupler = c_desc->coupler;
3655 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3656 unsigned int delta, best_delta;
3657 unsigned long c_rdev_done = 0;
3658 bool best_c_rdev_done;
3660 c_rdevs = c_desc->coupled_rdevs;
3661 n_coupled = c_desc->n_coupled;
3664 * If system is in a state other than PM_SUSPEND_ON, don't check
3665 * other coupled regulators.
3667 if (state != PM_SUSPEND_ON)
3668 n_coupled = 1;
3670 if (c_desc->n_resolved < n_coupled) {
3671 rdev_err(rdev, "Not all coupled regulators registered\n");
3672 return -EPERM;
3675 /* Invoke custom balancer for customized couplers */
3676 if (coupler && coupler->balance_voltage)
3677 return coupler->balance_voltage(coupler, rdev, state);
3680 * Find the best possible voltage change on each loop. Leave the loop
3681 * if there isn't any possible change.
3683 do {
3684 best_c_rdev_done = false;
3685 best_delta = 0;
3686 best_min_uV = 0;
3687 best_max_uV = 0;
3688 best_c_rdev = 0;
3689 best_rdev = NULL;
3692 * Find highest difference between optimal voltage
3693 * and current voltage.
3695 for (i = 0; i < n_coupled; i++) {
3697 * optimal_uV is the best voltage that can be set for
3698 * i-th regulator at the moment without violating
3699 * max_spread constraint in order to balance
3700 * the coupled voltages.
3702 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3704 if (test_bit(i, &c_rdev_done))
3705 continue;
3707 ret = regulator_get_optimal_voltage(c_rdevs[i],
3708 &current_uV,
3709 &optimal_uV,
3710 &optimal_max_uV,
3711 state, n_coupled);
3712 if (ret < 0)
3713 goto out;
3715 delta = abs(optimal_uV - current_uV);
3717 if (delta && best_delta <= delta) {
3718 best_c_rdev_done = ret;
3719 best_delta = delta;
3720 best_rdev = c_rdevs[i];
3721 best_min_uV = optimal_uV;
3722 best_max_uV = optimal_max_uV;
3723 best_c_rdev = i;
3727 /* Nothing to change, return successfully */
3728 if (!best_rdev) {
3729 ret = 0;
3730 goto out;
3733 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3734 best_max_uV, state);
3736 if (ret < 0)
3737 goto out;
3739 if (best_c_rdev_done)
3740 set_bit(best_c_rdev, &c_rdev_done);
3742 } while (n_coupled > 1);
3744 out:
3745 return ret;
3749 * regulator_set_voltage - set regulator output voltage
3750 * @regulator: regulator source
3751 * @min_uV: Minimum required voltage in uV
3752 * @max_uV: Maximum acceptable voltage in uV
3754 * Sets a voltage regulator to the desired output voltage. This can be set
3755 * during any regulator state. IOW, regulator can be disabled or enabled.
3757 * If the regulator is enabled then the voltage will change to the new value
3758 * immediately otherwise if the regulator is disabled the regulator will
3759 * output at the new voltage when enabled.
3761 * NOTE: If the regulator is shared between several devices then the lowest
3762 * request voltage that meets the system constraints will be used.
3763 * Regulator system constraints must be set for this regulator before
3764 * calling this function otherwise this call will fail.
3766 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3768 struct ww_acquire_ctx ww_ctx;
3769 int ret;
3771 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3773 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3774 PM_SUSPEND_ON);
3776 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3778 return ret;
3780 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3782 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3783 suspend_state_t state, bool en)
3785 struct regulator_state *rstate;
3787 rstate = regulator_get_suspend_state(rdev, state);
3788 if (rstate == NULL)
3789 return -EINVAL;
3791 if (!rstate->changeable)
3792 return -EPERM;
3794 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3796 return 0;
3799 int regulator_suspend_enable(struct regulator_dev *rdev,
3800 suspend_state_t state)
3802 return regulator_suspend_toggle(rdev, state, true);
3804 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3806 int regulator_suspend_disable(struct regulator_dev *rdev,
3807 suspend_state_t state)
3809 struct regulator *regulator;
3810 struct regulator_voltage *voltage;
3813 * if any consumer wants this regulator device keeping on in
3814 * suspend states, don't set it as disabled.
3816 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3817 voltage = &regulator->voltage[state];
3818 if (voltage->min_uV || voltage->max_uV)
3819 return 0;
3822 return regulator_suspend_toggle(rdev, state, false);
3824 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3826 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3827 int min_uV, int max_uV,
3828 suspend_state_t state)
3830 struct regulator_dev *rdev = regulator->rdev;
3831 struct regulator_state *rstate;
3833 rstate = regulator_get_suspend_state(rdev, state);
3834 if (rstate == NULL)
3835 return -EINVAL;
3837 if (rstate->min_uV == rstate->max_uV) {
3838 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3839 return -EPERM;
3842 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3845 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3846 int max_uV, suspend_state_t state)
3848 struct ww_acquire_ctx ww_ctx;
3849 int ret;
3851 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3852 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3853 return -EINVAL;
3855 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3857 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3858 max_uV, state);
3860 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3862 return ret;
3864 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3867 * regulator_set_voltage_time - get raise/fall time
3868 * @regulator: regulator source
3869 * @old_uV: starting voltage in microvolts
3870 * @new_uV: target voltage in microvolts
3872 * Provided with the starting and ending voltage, this function attempts to
3873 * calculate the time in microseconds required to rise or fall to this new
3874 * voltage.
3876 int regulator_set_voltage_time(struct regulator *regulator,
3877 int old_uV, int new_uV)
3879 struct regulator_dev *rdev = regulator->rdev;
3880 const struct regulator_ops *ops = rdev->desc->ops;
3881 int old_sel = -1;
3882 int new_sel = -1;
3883 int voltage;
3884 int i;
3886 if (ops->set_voltage_time)
3887 return ops->set_voltage_time(rdev, old_uV, new_uV);
3888 else if (!ops->set_voltage_time_sel)
3889 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3891 /* Currently requires operations to do this */
3892 if (!ops->list_voltage || !rdev->desc->n_voltages)
3893 return -EINVAL;
3895 for (i = 0; i < rdev->desc->n_voltages; i++) {
3896 /* We only look for exact voltage matches here */
3897 voltage = regulator_list_voltage(regulator, i);
3898 if (voltage < 0)
3899 return -EINVAL;
3900 if (voltage == 0)
3901 continue;
3902 if (voltage == old_uV)
3903 old_sel = i;
3904 if (voltage == new_uV)
3905 new_sel = i;
3908 if (old_sel < 0 || new_sel < 0)
3909 return -EINVAL;
3911 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3913 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3916 * regulator_set_voltage_time_sel - get raise/fall time
3917 * @rdev: regulator source device
3918 * @old_selector: selector for starting voltage
3919 * @new_selector: selector for target voltage
3921 * Provided with the starting and target voltage selectors, this function
3922 * returns time in microseconds required to rise or fall to this new voltage
3924 * Drivers providing ramp_delay in regulation_constraints can use this as their
3925 * set_voltage_time_sel() operation.
3927 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3928 unsigned int old_selector,
3929 unsigned int new_selector)
3931 int old_volt, new_volt;
3933 /* sanity check */
3934 if (!rdev->desc->ops->list_voltage)
3935 return -EINVAL;
3937 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3938 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3940 if (rdev->desc->ops->set_voltage_time)
3941 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3942 new_volt);
3943 else
3944 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3946 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3949 * regulator_sync_voltage - re-apply last regulator output voltage
3950 * @regulator: regulator source
3952 * Re-apply the last configured voltage. This is intended to be used
3953 * where some external control source the consumer is cooperating with
3954 * has caused the configured voltage to change.
3956 int regulator_sync_voltage(struct regulator *regulator)
3958 struct regulator_dev *rdev = regulator->rdev;
3959 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3960 int ret, min_uV, max_uV;
3962 regulator_lock(rdev);
3964 if (!rdev->desc->ops->set_voltage &&
3965 !rdev->desc->ops->set_voltage_sel) {
3966 ret = -EINVAL;
3967 goto out;
3970 /* This is only going to work if we've had a voltage configured. */
3971 if (!voltage->min_uV && !voltage->max_uV) {
3972 ret = -EINVAL;
3973 goto out;
3976 min_uV = voltage->min_uV;
3977 max_uV = voltage->max_uV;
3979 /* This should be a paranoia check... */
3980 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3981 if (ret < 0)
3982 goto out;
3984 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3985 if (ret < 0)
3986 goto out;
3988 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3990 out:
3991 regulator_unlock(rdev);
3992 return ret;
3994 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3996 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3998 int sel, ret;
3999 bool bypassed;
4001 if (rdev->desc->ops->get_bypass) {
4002 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4003 if (ret < 0)
4004 return ret;
4005 if (bypassed) {
4006 /* if bypassed the regulator must have a supply */
4007 if (!rdev->supply) {
4008 rdev_err(rdev,
4009 "bypassed regulator has no supply!\n");
4010 return -EPROBE_DEFER;
4013 return regulator_get_voltage_rdev(rdev->supply->rdev);
4017 if (rdev->desc->ops->get_voltage_sel) {
4018 sel = rdev->desc->ops->get_voltage_sel(rdev);
4019 if (sel < 0)
4020 return sel;
4021 ret = rdev->desc->ops->list_voltage(rdev, sel);
4022 } else if (rdev->desc->ops->get_voltage) {
4023 ret = rdev->desc->ops->get_voltage(rdev);
4024 } else if (rdev->desc->ops->list_voltage) {
4025 ret = rdev->desc->ops->list_voltage(rdev, 0);
4026 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4027 ret = rdev->desc->fixed_uV;
4028 } else if (rdev->supply) {
4029 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4030 } else {
4031 return -EINVAL;
4034 if (ret < 0)
4035 return ret;
4036 return ret - rdev->constraints->uV_offset;
4038 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4041 * regulator_get_voltage - get regulator output voltage
4042 * @regulator: regulator source
4044 * This returns the current regulator voltage in uV.
4046 * NOTE: If the regulator is disabled it will return the voltage value. This
4047 * function should not be used to determine regulator state.
4049 int regulator_get_voltage(struct regulator *regulator)
4051 struct ww_acquire_ctx ww_ctx;
4052 int ret;
4054 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4055 ret = regulator_get_voltage_rdev(regulator->rdev);
4056 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4058 return ret;
4060 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4063 * regulator_set_current_limit - set regulator output current limit
4064 * @regulator: regulator source
4065 * @min_uA: Minimum supported current in uA
4066 * @max_uA: Maximum supported current in uA
4068 * Sets current sink to the desired output current. This can be set during
4069 * any regulator state. IOW, regulator can be disabled or enabled.
4071 * If the regulator is enabled then the current will change to the new value
4072 * immediately otherwise if the regulator is disabled the regulator will
4073 * output at the new current when enabled.
4075 * NOTE: Regulator system constraints must be set for this regulator before
4076 * calling this function otherwise this call will fail.
4078 int regulator_set_current_limit(struct regulator *regulator,
4079 int min_uA, int max_uA)
4081 struct regulator_dev *rdev = regulator->rdev;
4082 int ret;
4084 regulator_lock(rdev);
4086 /* sanity check */
4087 if (!rdev->desc->ops->set_current_limit) {
4088 ret = -EINVAL;
4089 goto out;
4092 /* constraints check */
4093 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4094 if (ret < 0)
4095 goto out;
4097 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4098 out:
4099 regulator_unlock(rdev);
4100 return ret;
4102 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4104 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4106 /* sanity check */
4107 if (!rdev->desc->ops->get_current_limit)
4108 return -EINVAL;
4110 return rdev->desc->ops->get_current_limit(rdev);
4113 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4115 int ret;
4117 regulator_lock(rdev);
4118 ret = _regulator_get_current_limit_unlocked(rdev);
4119 regulator_unlock(rdev);
4121 return ret;
4125 * regulator_get_current_limit - get regulator output current
4126 * @regulator: regulator source
4128 * This returns the current supplied by the specified current sink in uA.
4130 * NOTE: If the regulator is disabled it will return the current value. This
4131 * function should not be used to determine regulator state.
4133 int regulator_get_current_limit(struct regulator *regulator)
4135 return _regulator_get_current_limit(regulator->rdev);
4137 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4140 * regulator_set_mode - set regulator operating mode
4141 * @regulator: regulator source
4142 * @mode: operating mode - one of the REGULATOR_MODE constants
4144 * Set regulator operating mode to increase regulator efficiency or improve
4145 * regulation performance.
4147 * NOTE: Regulator system constraints must be set for this regulator before
4148 * calling this function otherwise this call will fail.
4150 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4152 struct regulator_dev *rdev = regulator->rdev;
4153 int ret;
4154 int regulator_curr_mode;
4156 regulator_lock(rdev);
4158 /* sanity check */
4159 if (!rdev->desc->ops->set_mode) {
4160 ret = -EINVAL;
4161 goto out;
4164 /* return if the same mode is requested */
4165 if (rdev->desc->ops->get_mode) {
4166 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4167 if (regulator_curr_mode == mode) {
4168 ret = 0;
4169 goto out;
4173 /* constraints check */
4174 ret = regulator_mode_constrain(rdev, &mode);
4175 if (ret < 0)
4176 goto out;
4178 ret = rdev->desc->ops->set_mode(rdev, mode);
4179 out:
4180 regulator_unlock(rdev);
4181 return ret;
4183 EXPORT_SYMBOL_GPL(regulator_set_mode);
4185 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4187 /* sanity check */
4188 if (!rdev->desc->ops->get_mode)
4189 return -EINVAL;
4191 return rdev->desc->ops->get_mode(rdev);
4194 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4196 int ret;
4198 regulator_lock(rdev);
4199 ret = _regulator_get_mode_unlocked(rdev);
4200 regulator_unlock(rdev);
4202 return ret;
4206 * regulator_get_mode - get regulator operating mode
4207 * @regulator: regulator source
4209 * Get the current regulator operating mode.
4211 unsigned int regulator_get_mode(struct regulator *regulator)
4213 return _regulator_get_mode(regulator->rdev);
4215 EXPORT_SYMBOL_GPL(regulator_get_mode);
4217 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4218 unsigned int *flags)
4220 int ret;
4222 regulator_lock(rdev);
4224 /* sanity check */
4225 if (!rdev->desc->ops->get_error_flags) {
4226 ret = -EINVAL;
4227 goto out;
4230 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4231 out:
4232 regulator_unlock(rdev);
4233 return ret;
4237 * regulator_get_error_flags - get regulator error information
4238 * @regulator: regulator source
4239 * @flags: pointer to store error flags
4241 * Get the current regulator error information.
4243 int regulator_get_error_flags(struct regulator *regulator,
4244 unsigned int *flags)
4246 return _regulator_get_error_flags(regulator->rdev, flags);
4248 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4251 * regulator_set_load - set regulator load
4252 * @regulator: regulator source
4253 * @uA_load: load current
4255 * Notifies the regulator core of a new device load. This is then used by
4256 * DRMS (if enabled by constraints) to set the most efficient regulator
4257 * operating mode for the new regulator loading.
4259 * Consumer devices notify their supply regulator of the maximum power
4260 * they will require (can be taken from device datasheet in the power
4261 * consumption tables) when they change operational status and hence power
4262 * state. Examples of operational state changes that can affect power
4263 * consumption are :-
4265 * o Device is opened / closed.
4266 * o Device I/O is about to begin or has just finished.
4267 * o Device is idling in between work.
4269 * This information is also exported via sysfs to userspace.
4271 * DRMS will sum the total requested load on the regulator and change
4272 * to the most efficient operating mode if platform constraints allow.
4274 * NOTE: when a regulator consumer requests to have a regulator
4275 * disabled then any load that consumer requested no longer counts
4276 * toward the total requested load. If the regulator is re-enabled
4277 * then the previously requested load will start counting again.
4279 * If a regulator is an always-on regulator then an individual consumer's
4280 * load will still be removed if that consumer is fully disabled.
4282 * On error a negative errno is returned.
4284 int regulator_set_load(struct regulator *regulator, int uA_load)
4286 struct regulator_dev *rdev = regulator->rdev;
4287 int old_uA_load;
4288 int ret = 0;
4290 regulator_lock(rdev);
4291 old_uA_load = regulator->uA_load;
4292 regulator->uA_load = uA_load;
4293 if (regulator->enable_count && old_uA_load != uA_load) {
4294 ret = drms_uA_update(rdev);
4295 if (ret < 0)
4296 regulator->uA_load = old_uA_load;
4298 regulator_unlock(rdev);
4300 return ret;
4302 EXPORT_SYMBOL_GPL(regulator_set_load);
4305 * regulator_allow_bypass - allow the regulator to go into bypass mode
4307 * @regulator: Regulator to configure
4308 * @enable: enable or disable bypass mode
4310 * Allow the regulator to go into bypass mode if all other consumers
4311 * for the regulator also enable bypass mode and the machine
4312 * constraints allow this. Bypass mode means that the regulator is
4313 * simply passing the input directly to the output with no regulation.
4315 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4317 struct regulator_dev *rdev = regulator->rdev;
4318 int ret = 0;
4320 if (!rdev->desc->ops->set_bypass)
4321 return 0;
4323 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4324 return 0;
4326 regulator_lock(rdev);
4328 if (enable && !regulator->bypass) {
4329 rdev->bypass_count++;
4331 if (rdev->bypass_count == rdev->open_count) {
4332 ret = rdev->desc->ops->set_bypass(rdev, enable);
4333 if (ret != 0)
4334 rdev->bypass_count--;
4337 } else if (!enable && regulator->bypass) {
4338 rdev->bypass_count--;
4340 if (rdev->bypass_count != rdev->open_count) {
4341 ret = rdev->desc->ops->set_bypass(rdev, enable);
4342 if (ret != 0)
4343 rdev->bypass_count++;
4347 if (ret == 0)
4348 regulator->bypass = enable;
4350 regulator_unlock(rdev);
4352 return ret;
4354 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4357 * regulator_register_notifier - register regulator event notifier
4358 * @regulator: regulator source
4359 * @nb: notifier block
4361 * Register notifier block to receive regulator events.
4363 int regulator_register_notifier(struct regulator *regulator,
4364 struct notifier_block *nb)
4366 return blocking_notifier_chain_register(&regulator->rdev->notifier,
4367 nb);
4369 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4372 * regulator_unregister_notifier - unregister regulator event notifier
4373 * @regulator: regulator source
4374 * @nb: notifier block
4376 * Unregister regulator event notifier block.
4378 int regulator_unregister_notifier(struct regulator *regulator,
4379 struct notifier_block *nb)
4381 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4382 nb);
4384 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4386 /* notify regulator consumers and downstream regulator consumers.
4387 * Note mutex must be held by caller.
4389 static int _notifier_call_chain(struct regulator_dev *rdev,
4390 unsigned long event, void *data)
4392 /* call rdev chain first */
4393 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4397 * regulator_bulk_get - get multiple regulator consumers
4399 * @dev: Device to supply
4400 * @num_consumers: Number of consumers to register
4401 * @consumers: Configuration of consumers; clients are stored here.
4403 * @return 0 on success, an errno on failure.
4405 * This helper function allows drivers to get several regulator
4406 * consumers in one operation. If any of the regulators cannot be
4407 * acquired then any regulators that were allocated will be freed
4408 * before returning to the caller.
4410 int regulator_bulk_get(struct device *dev, int num_consumers,
4411 struct regulator_bulk_data *consumers)
4413 int i;
4414 int ret;
4416 for (i = 0; i < num_consumers; i++)
4417 consumers[i].consumer = NULL;
4419 for (i = 0; i < num_consumers; i++) {
4420 consumers[i].consumer = regulator_get(dev,
4421 consumers[i].supply);
4422 if (IS_ERR(consumers[i].consumer)) {
4423 ret = PTR_ERR(consumers[i].consumer);
4424 consumers[i].consumer = NULL;
4425 goto err;
4429 return 0;
4431 err:
4432 if (ret != -EPROBE_DEFER)
4433 dev_err(dev, "Failed to get supply '%s': %d\n",
4434 consumers[i].supply, ret);
4435 else
4436 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4437 consumers[i].supply);
4439 while (--i >= 0)
4440 regulator_put(consumers[i].consumer);
4442 return ret;
4444 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4446 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4448 struct regulator_bulk_data *bulk = data;
4450 bulk->ret = regulator_enable(bulk->consumer);
4454 * regulator_bulk_enable - enable multiple regulator consumers
4456 * @num_consumers: Number of consumers
4457 * @consumers: Consumer data; clients are stored here.
4458 * @return 0 on success, an errno on failure
4460 * This convenience API allows consumers to enable multiple regulator
4461 * clients in a single API call. If any consumers cannot be enabled
4462 * then any others that were enabled will be disabled again prior to
4463 * return.
4465 int regulator_bulk_enable(int num_consumers,
4466 struct regulator_bulk_data *consumers)
4468 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4469 int i;
4470 int ret = 0;
4472 for (i = 0; i < num_consumers; i++) {
4473 async_schedule_domain(regulator_bulk_enable_async,
4474 &consumers[i], &async_domain);
4477 async_synchronize_full_domain(&async_domain);
4479 /* If any consumer failed we need to unwind any that succeeded */
4480 for (i = 0; i < num_consumers; i++) {
4481 if (consumers[i].ret != 0) {
4482 ret = consumers[i].ret;
4483 goto err;
4487 return 0;
4489 err:
4490 for (i = 0; i < num_consumers; i++) {
4491 if (consumers[i].ret < 0)
4492 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4493 consumers[i].ret);
4494 else
4495 regulator_disable(consumers[i].consumer);
4498 return ret;
4500 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4503 * regulator_bulk_disable - disable multiple regulator consumers
4505 * @num_consumers: Number of consumers
4506 * @consumers: Consumer data; clients are stored here.
4507 * @return 0 on success, an errno on failure
4509 * This convenience API allows consumers to disable multiple regulator
4510 * clients in a single API call. If any consumers cannot be disabled
4511 * then any others that were disabled will be enabled again prior to
4512 * return.
4514 int regulator_bulk_disable(int num_consumers,
4515 struct regulator_bulk_data *consumers)
4517 int i;
4518 int ret, r;
4520 for (i = num_consumers - 1; i >= 0; --i) {
4521 ret = regulator_disable(consumers[i].consumer);
4522 if (ret != 0)
4523 goto err;
4526 return 0;
4528 err:
4529 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4530 for (++i; i < num_consumers; ++i) {
4531 r = regulator_enable(consumers[i].consumer);
4532 if (r != 0)
4533 pr_err("Failed to re-enable %s: %d\n",
4534 consumers[i].supply, r);
4537 return ret;
4539 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4542 * regulator_bulk_force_disable - force disable multiple regulator consumers
4544 * @num_consumers: Number of consumers
4545 * @consumers: Consumer data; clients are stored here.
4546 * @return 0 on success, an errno on failure
4548 * This convenience API allows consumers to forcibly disable multiple regulator
4549 * clients in a single API call.
4550 * NOTE: This should be used for situations when device damage will
4551 * likely occur if the regulators are not disabled (e.g. over temp).
4552 * Although regulator_force_disable function call for some consumers can
4553 * return error numbers, the function is called for all consumers.
4555 int regulator_bulk_force_disable(int num_consumers,
4556 struct regulator_bulk_data *consumers)
4558 int i;
4559 int ret = 0;
4561 for (i = 0; i < num_consumers; i++) {
4562 consumers[i].ret =
4563 regulator_force_disable(consumers[i].consumer);
4565 /* Store first error for reporting */
4566 if (consumers[i].ret && !ret)
4567 ret = consumers[i].ret;
4570 return ret;
4572 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4575 * regulator_bulk_free - free multiple regulator consumers
4577 * @num_consumers: Number of consumers
4578 * @consumers: Consumer data; clients are stored here.
4580 * This convenience API allows consumers to free multiple regulator
4581 * clients in a single API call.
4583 void regulator_bulk_free(int num_consumers,
4584 struct regulator_bulk_data *consumers)
4586 int i;
4588 for (i = 0; i < num_consumers; i++) {
4589 regulator_put(consumers[i].consumer);
4590 consumers[i].consumer = NULL;
4593 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4596 * regulator_notifier_call_chain - call regulator event notifier
4597 * @rdev: regulator source
4598 * @event: notifier block
4599 * @data: callback-specific data.
4601 * Called by regulator drivers to notify clients a regulator event has
4602 * occurred. We also notify regulator clients downstream.
4603 * Note lock must be held by caller.
4605 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4606 unsigned long event, void *data)
4608 lockdep_assert_held_once(&rdev->mutex.base);
4610 _notifier_call_chain(rdev, event, data);
4611 return NOTIFY_DONE;
4614 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4617 * regulator_mode_to_status - convert a regulator mode into a status
4619 * @mode: Mode to convert
4621 * Convert a regulator mode into a status.
4623 int regulator_mode_to_status(unsigned int mode)
4625 switch (mode) {
4626 case REGULATOR_MODE_FAST:
4627 return REGULATOR_STATUS_FAST;
4628 case REGULATOR_MODE_NORMAL:
4629 return REGULATOR_STATUS_NORMAL;
4630 case REGULATOR_MODE_IDLE:
4631 return REGULATOR_STATUS_IDLE;
4632 case REGULATOR_MODE_STANDBY:
4633 return REGULATOR_STATUS_STANDBY;
4634 default:
4635 return REGULATOR_STATUS_UNDEFINED;
4638 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4640 static struct attribute *regulator_dev_attrs[] = {
4641 &dev_attr_name.attr,
4642 &dev_attr_num_users.attr,
4643 &dev_attr_type.attr,
4644 &dev_attr_microvolts.attr,
4645 &dev_attr_microamps.attr,
4646 &dev_attr_opmode.attr,
4647 &dev_attr_state.attr,
4648 &dev_attr_status.attr,
4649 &dev_attr_bypass.attr,
4650 &dev_attr_requested_microamps.attr,
4651 &dev_attr_min_microvolts.attr,
4652 &dev_attr_max_microvolts.attr,
4653 &dev_attr_min_microamps.attr,
4654 &dev_attr_max_microamps.attr,
4655 &dev_attr_suspend_standby_state.attr,
4656 &dev_attr_suspend_mem_state.attr,
4657 &dev_attr_suspend_disk_state.attr,
4658 &dev_attr_suspend_standby_microvolts.attr,
4659 &dev_attr_suspend_mem_microvolts.attr,
4660 &dev_attr_suspend_disk_microvolts.attr,
4661 &dev_attr_suspend_standby_mode.attr,
4662 &dev_attr_suspend_mem_mode.attr,
4663 &dev_attr_suspend_disk_mode.attr,
4664 NULL
4668 * To avoid cluttering sysfs (and memory) with useless state, only
4669 * create attributes that can be meaningfully displayed.
4671 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4672 struct attribute *attr, int idx)
4674 struct device *dev = kobj_to_dev(kobj);
4675 struct regulator_dev *rdev = dev_to_rdev(dev);
4676 const struct regulator_ops *ops = rdev->desc->ops;
4677 umode_t mode = attr->mode;
4679 /* these three are always present */
4680 if (attr == &dev_attr_name.attr ||
4681 attr == &dev_attr_num_users.attr ||
4682 attr == &dev_attr_type.attr)
4683 return mode;
4685 /* some attributes need specific methods to be displayed */
4686 if (attr == &dev_attr_microvolts.attr) {
4687 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4688 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4689 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4690 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4691 return mode;
4692 return 0;
4695 if (attr == &dev_attr_microamps.attr)
4696 return ops->get_current_limit ? mode : 0;
4698 if (attr == &dev_attr_opmode.attr)
4699 return ops->get_mode ? mode : 0;
4701 if (attr == &dev_attr_state.attr)
4702 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4704 if (attr == &dev_attr_status.attr)
4705 return ops->get_status ? mode : 0;
4707 if (attr == &dev_attr_bypass.attr)
4708 return ops->get_bypass ? mode : 0;
4710 /* constraints need specific supporting methods */
4711 if (attr == &dev_attr_min_microvolts.attr ||
4712 attr == &dev_attr_max_microvolts.attr)
4713 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4715 if (attr == &dev_attr_min_microamps.attr ||
4716 attr == &dev_attr_max_microamps.attr)
4717 return ops->set_current_limit ? mode : 0;
4719 if (attr == &dev_attr_suspend_standby_state.attr ||
4720 attr == &dev_attr_suspend_mem_state.attr ||
4721 attr == &dev_attr_suspend_disk_state.attr)
4722 return mode;
4724 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4725 attr == &dev_attr_suspend_mem_microvolts.attr ||
4726 attr == &dev_attr_suspend_disk_microvolts.attr)
4727 return ops->set_suspend_voltage ? mode : 0;
4729 if (attr == &dev_attr_suspend_standby_mode.attr ||
4730 attr == &dev_attr_suspend_mem_mode.attr ||
4731 attr == &dev_attr_suspend_disk_mode.attr)
4732 return ops->set_suspend_mode ? mode : 0;
4734 return mode;
4737 static const struct attribute_group regulator_dev_group = {
4738 .attrs = regulator_dev_attrs,
4739 .is_visible = regulator_attr_is_visible,
4742 static const struct attribute_group *regulator_dev_groups[] = {
4743 &regulator_dev_group,
4744 NULL
4747 static void regulator_dev_release(struct device *dev)
4749 struct regulator_dev *rdev = dev_get_drvdata(dev);
4751 kfree(rdev->constraints);
4752 of_node_put(rdev->dev.of_node);
4753 kfree(rdev);
4756 static void rdev_init_debugfs(struct regulator_dev *rdev)
4758 struct device *parent = rdev->dev.parent;
4759 const char *rname = rdev_get_name(rdev);
4760 char name[NAME_MAX];
4762 /* Avoid duplicate debugfs directory names */
4763 if (parent && rname == rdev->desc->name) {
4764 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4765 rname);
4766 rname = name;
4769 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4770 if (!rdev->debugfs) {
4771 rdev_warn(rdev, "Failed to create debugfs directory\n");
4772 return;
4775 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4776 &rdev->use_count);
4777 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4778 &rdev->open_count);
4779 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4780 &rdev->bypass_count);
4783 static int regulator_register_resolve_supply(struct device *dev, void *data)
4785 struct regulator_dev *rdev = dev_to_rdev(dev);
4787 if (regulator_resolve_supply(rdev))
4788 rdev_dbg(rdev, "unable to resolve supply\n");
4790 return 0;
4793 int regulator_coupler_register(struct regulator_coupler *coupler)
4795 mutex_lock(&regulator_list_mutex);
4796 list_add_tail(&coupler->list, &regulator_coupler_list);
4797 mutex_unlock(&regulator_list_mutex);
4799 return 0;
4802 static struct regulator_coupler *
4803 regulator_find_coupler(struct regulator_dev *rdev)
4805 struct regulator_coupler *coupler;
4806 int err;
4809 * Note that regulators are appended to the list and the generic
4810 * coupler is registered first, hence it will be attached at last
4811 * if nobody cared.
4813 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4814 err = coupler->attach_regulator(coupler, rdev);
4815 if (!err) {
4816 if (!coupler->balance_voltage &&
4817 rdev->coupling_desc.n_coupled > 2)
4818 goto err_unsupported;
4820 return coupler;
4823 if (err < 0)
4824 return ERR_PTR(err);
4826 if (err == 1)
4827 continue;
4829 break;
4832 return ERR_PTR(-EINVAL);
4834 err_unsupported:
4835 if (coupler->detach_regulator)
4836 coupler->detach_regulator(coupler, rdev);
4838 rdev_err(rdev,
4839 "Voltage balancing for multiple regulator couples is unimplemented\n");
4841 return ERR_PTR(-EPERM);
4844 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4846 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4847 struct coupling_desc *c_desc = &rdev->coupling_desc;
4848 int n_coupled = c_desc->n_coupled;
4849 struct regulator_dev *c_rdev;
4850 int i;
4852 for (i = 1; i < n_coupled; i++) {
4853 /* already resolved */
4854 if (c_desc->coupled_rdevs[i])
4855 continue;
4857 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4859 if (!c_rdev)
4860 continue;
4862 if (c_rdev->coupling_desc.coupler != coupler) {
4863 rdev_err(rdev, "coupler mismatch with %s\n",
4864 rdev_get_name(c_rdev));
4865 return;
4868 regulator_lock(c_rdev);
4870 c_desc->coupled_rdevs[i] = c_rdev;
4871 c_desc->n_resolved++;
4873 regulator_unlock(c_rdev);
4875 regulator_resolve_coupling(c_rdev);
4879 static void regulator_remove_coupling(struct regulator_dev *rdev)
4881 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4882 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4883 struct regulator_dev *__c_rdev, *c_rdev;
4884 unsigned int __n_coupled, n_coupled;
4885 int i, k;
4886 int err;
4888 n_coupled = c_desc->n_coupled;
4890 for (i = 1; i < n_coupled; i++) {
4891 c_rdev = c_desc->coupled_rdevs[i];
4893 if (!c_rdev)
4894 continue;
4896 regulator_lock(c_rdev);
4898 __c_desc = &c_rdev->coupling_desc;
4899 __n_coupled = __c_desc->n_coupled;
4901 for (k = 1; k < __n_coupled; k++) {
4902 __c_rdev = __c_desc->coupled_rdevs[k];
4904 if (__c_rdev == rdev) {
4905 __c_desc->coupled_rdevs[k] = NULL;
4906 __c_desc->n_resolved--;
4907 break;
4911 regulator_unlock(c_rdev);
4913 c_desc->coupled_rdevs[i] = NULL;
4914 c_desc->n_resolved--;
4917 if (coupler && coupler->detach_regulator) {
4918 err = coupler->detach_regulator(coupler, rdev);
4919 if (err)
4920 rdev_err(rdev, "failed to detach from coupler: %d\n",
4921 err);
4924 kfree(rdev->coupling_desc.coupled_rdevs);
4925 rdev->coupling_desc.coupled_rdevs = NULL;
4928 static int regulator_init_coupling(struct regulator_dev *rdev)
4930 int err, n_phandles;
4931 size_t alloc_size;
4933 if (!IS_ENABLED(CONFIG_OF))
4934 n_phandles = 0;
4935 else
4936 n_phandles = of_get_n_coupled(rdev);
4938 alloc_size = sizeof(*rdev) * (n_phandles + 1);
4940 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4941 if (!rdev->coupling_desc.coupled_rdevs)
4942 return -ENOMEM;
4945 * Every regulator should always have coupling descriptor filled with
4946 * at least pointer to itself.
4948 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4949 rdev->coupling_desc.n_coupled = n_phandles + 1;
4950 rdev->coupling_desc.n_resolved++;
4952 /* regulator isn't coupled */
4953 if (n_phandles == 0)
4954 return 0;
4956 if (!of_check_coupling_data(rdev))
4957 return -EPERM;
4959 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4960 if (IS_ERR(rdev->coupling_desc.coupler)) {
4961 err = PTR_ERR(rdev->coupling_desc.coupler);
4962 rdev_err(rdev, "failed to get coupler: %d\n", err);
4963 return err;
4966 return 0;
4969 static int generic_coupler_attach(struct regulator_coupler *coupler,
4970 struct regulator_dev *rdev)
4972 if (rdev->coupling_desc.n_coupled > 2) {
4973 rdev_err(rdev,
4974 "Voltage balancing for multiple regulator couples is unimplemented\n");
4975 return -EPERM;
4978 if (!rdev->constraints->always_on) {
4979 rdev_err(rdev,
4980 "Coupling of a non always-on regulator is unimplemented\n");
4981 return -ENOTSUPP;
4984 return 0;
4987 static struct regulator_coupler generic_regulator_coupler = {
4988 .attach_regulator = generic_coupler_attach,
4992 * regulator_register - register regulator
4993 * @regulator_desc: regulator to register
4994 * @cfg: runtime configuration for regulator
4996 * Called by regulator drivers to register a regulator.
4997 * Returns a valid pointer to struct regulator_dev on success
4998 * or an ERR_PTR() on error.
5000 struct regulator_dev *
5001 regulator_register(const struct regulator_desc *regulator_desc,
5002 const struct regulator_config *cfg)
5004 const struct regulation_constraints *constraints = NULL;
5005 const struct regulator_init_data *init_data;
5006 struct regulator_config *config = NULL;
5007 static atomic_t regulator_no = ATOMIC_INIT(-1);
5008 struct regulator_dev *rdev;
5009 bool dangling_cfg_gpiod = false;
5010 bool dangling_of_gpiod = false;
5011 bool reg_device_fail = false;
5012 struct device *dev;
5013 int ret, i;
5015 if (cfg == NULL)
5016 return ERR_PTR(-EINVAL);
5017 if (cfg->ena_gpiod)
5018 dangling_cfg_gpiod = true;
5019 if (regulator_desc == NULL) {
5020 ret = -EINVAL;
5021 goto rinse;
5024 dev = cfg->dev;
5025 WARN_ON(!dev);
5027 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5028 ret = -EINVAL;
5029 goto rinse;
5032 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5033 regulator_desc->type != REGULATOR_CURRENT) {
5034 ret = -EINVAL;
5035 goto rinse;
5038 /* Only one of each should be implemented */
5039 WARN_ON(regulator_desc->ops->get_voltage &&
5040 regulator_desc->ops->get_voltage_sel);
5041 WARN_ON(regulator_desc->ops->set_voltage &&
5042 regulator_desc->ops->set_voltage_sel);
5044 /* If we're using selectors we must implement list_voltage. */
5045 if (regulator_desc->ops->get_voltage_sel &&
5046 !regulator_desc->ops->list_voltage) {
5047 ret = -EINVAL;
5048 goto rinse;
5050 if (regulator_desc->ops->set_voltage_sel &&
5051 !regulator_desc->ops->list_voltage) {
5052 ret = -EINVAL;
5053 goto rinse;
5056 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5057 if (rdev == NULL) {
5058 ret = -ENOMEM;
5059 goto rinse;
5063 * Duplicate the config so the driver could override it after
5064 * parsing init data.
5066 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5067 if (config == NULL) {
5068 kfree(rdev);
5069 ret = -ENOMEM;
5070 goto rinse;
5073 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5074 &rdev->dev.of_node);
5077 * Sometimes not all resources are probed already so we need to take
5078 * that into account. This happens most the time if the ena_gpiod comes
5079 * from a gpio extender or something else.
5081 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5082 kfree(config);
5083 kfree(rdev);
5084 ret = -EPROBE_DEFER;
5085 goto rinse;
5089 * We need to keep track of any GPIO descriptor coming from the
5090 * device tree until we have handled it over to the core. If the
5091 * config that was passed in to this function DOES NOT contain
5092 * a descriptor, and the config after this call DOES contain
5093 * a descriptor, we definitely got one from parsing the device
5094 * tree.
5096 if (!cfg->ena_gpiod && config->ena_gpiod)
5097 dangling_of_gpiod = true;
5098 if (!init_data) {
5099 init_data = config->init_data;
5100 rdev->dev.of_node = of_node_get(config->of_node);
5103 ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5104 rdev->reg_data = config->driver_data;
5105 rdev->owner = regulator_desc->owner;
5106 rdev->desc = regulator_desc;
5107 if (config->regmap)
5108 rdev->regmap = config->regmap;
5109 else if (dev_get_regmap(dev, NULL))
5110 rdev->regmap = dev_get_regmap(dev, NULL);
5111 else if (dev->parent)
5112 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5113 INIT_LIST_HEAD(&rdev->consumer_list);
5114 INIT_LIST_HEAD(&rdev->list);
5115 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5116 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5118 /* preform any regulator specific init */
5119 if (init_data && init_data->regulator_init) {
5120 ret = init_data->regulator_init(rdev->reg_data);
5121 if (ret < 0)
5122 goto clean;
5125 if (config->ena_gpiod) {
5126 mutex_lock(&regulator_list_mutex);
5127 ret = regulator_ena_gpio_request(rdev, config);
5128 mutex_unlock(&regulator_list_mutex);
5129 if (ret != 0) {
5130 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5131 ret);
5132 goto clean;
5134 /* The regulator core took over the GPIO descriptor */
5135 dangling_cfg_gpiod = false;
5136 dangling_of_gpiod = false;
5139 /* register with sysfs */
5140 rdev->dev.class = &regulator_class;
5141 rdev->dev.parent = dev;
5142 dev_set_name(&rdev->dev, "regulator.%lu",
5143 (unsigned long) atomic_inc_return(&regulator_no));
5145 /* set regulator constraints */
5146 if (init_data)
5147 constraints = &init_data->constraints;
5149 if (init_data && init_data->supply_regulator)
5150 rdev->supply_name = init_data->supply_regulator;
5151 else if (regulator_desc->supply_name)
5152 rdev->supply_name = regulator_desc->supply_name;
5155 * Attempt to resolve the regulator supply, if specified,
5156 * but don't return an error if we fail because we will try
5157 * to resolve it again later as more regulators are added.
5159 if (regulator_resolve_supply(rdev))
5160 rdev_dbg(rdev, "unable to resolve supply\n");
5162 ret = set_machine_constraints(rdev, constraints);
5163 if (ret < 0)
5164 goto wash;
5166 mutex_lock(&regulator_list_mutex);
5167 ret = regulator_init_coupling(rdev);
5168 mutex_unlock(&regulator_list_mutex);
5169 if (ret < 0)
5170 goto wash;
5172 /* add consumers devices */
5173 if (init_data) {
5174 mutex_lock(&regulator_list_mutex);
5175 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5176 ret = set_consumer_device_supply(rdev,
5177 init_data->consumer_supplies[i].dev_name,
5178 init_data->consumer_supplies[i].supply);
5179 if (ret < 0) {
5180 mutex_unlock(&regulator_list_mutex);
5181 dev_err(dev, "Failed to set supply %s\n",
5182 init_data->consumer_supplies[i].supply);
5183 goto unset_supplies;
5186 mutex_unlock(&regulator_list_mutex);
5189 if (!rdev->desc->ops->get_voltage &&
5190 !rdev->desc->ops->list_voltage &&
5191 !rdev->desc->fixed_uV)
5192 rdev->is_switch = true;
5194 dev_set_drvdata(&rdev->dev, rdev);
5195 ret = device_register(&rdev->dev);
5196 if (ret != 0) {
5197 reg_device_fail = true;
5198 goto unset_supplies;
5201 rdev_init_debugfs(rdev);
5203 /* try to resolve regulators coupling since a new one was registered */
5204 mutex_lock(&regulator_list_mutex);
5205 regulator_resolve_coupling(rdev);
5206 mutex_unlock(&regulator_list_mutex);
5208 /* try to resolve regulators supply since a new one was registered */
5209 class_for_each_device(&regulator_class, NULL, NULL,
5210 regulator_register_resolve_supply);
5211 kfree(config);
5212 return rdev;
5214 unset_supplies:
5215 mutex_lock(&regulator_list_mutex);
5216 unset_regulator_supplies(rdev);
5217 regulator_remove_coupling(rdev);
5218 mutex_unlock(&regulator_list_mutex);
5219 wash:
5220 kfree(rdev->coupling_desc.coupled_rdevs);
5221 kfree(rdev->constraints);
5222 mutex_lock(&regulator_list_mutex);
5223 regulator_ena_gpio_free(rdev);
5224 mutex_unlock(&regulator_list_mutex);
5225 clean:
5226 if (dangling_of_gpiod)
5227 gpiod_put(config->ena_gpiod);
5228 if (reg_device_fail)
5229 put_device(&rdev->dev);
5230 else
5231 kfree(rdev);
5232 kfree(config);
5233 rinse:
5234 if (dangling_cfg_gpiod)
5235 gpiod_put(cfg->ena_gpiod);
5236 return ERR_PTR(ret);
5238 EXPORT_SYMBOL_GPL(regulator_register);
5241 * regulator_unregister - unregister regulator
5242 * @rdev: regulator to unregister
5244 * Called by regulator drivers to unregister a regulator.
5246 void regulator_unregister(struct regulator_dev *rdev)
5248 if (rdev == NULL)
5249 return;
5251 if (rdev->supply) {
5252 while (rdev->use_count--)
5253 regulator_disable(rdev->supply);
5254 regulator_put(rdev->supply);
5257 flush_work(&rdev->disable_work.work);
5259 mutex_lock(&regulator_list_mutex);
5261 debugfs_remove_recursive(rdev->debugfs);
5262 WARN_ON(rdev->open_count);
5263 regulator_remove_coupling(rdev);
5264 unset_regulator_supplies(rdev);
5265 list_del(&rdev->list);
5266 regulator_ena_gpio_free(rdev);
5267 device_unregister(&rdev->dev);
5269 mutex_unlock(&regulator_list_mutex);
5271 EXPORT_SYMBOL_GPL(regulator_unregister);
5273 #ifdef CONFIG_SUSPEND
5275 * regulator_suspend - prepare regulators for system wide suspend
5276 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5278 * Configure each regulator with it's suspend operating parameters for state.
5280 static int regulator_suspend(struct device *dev)
5282 struct regulator_dev *rdev = dev_to_rdev(dev);
5283 suspend_state_t state = pm_suspend_target_state;
5284 int ret;
5286 regulator_lock(rdev);
5287 ret = suspend_set_state(rdev, state);
5288 regulator_unlock(rdev);
5290 return ret;
5293 static int regulator_resume(struct device *dev)
5295 suspend_state_t state = pm_suspend_target_state;
5296 struct regulator_dev *rdev = dev_to_rdev(dev);
5297 struct regulator_state *rstate;
5298 int ret = 0;
5300 rstate = regulator_get_suspend_state(rdev, state);
5301 if (rstate == NULL)
5302 return 0;
5304 regulator_lock(rdev);
5306 if (rdev->desc->ops->resume &&
5307 (rstate->enabled == ENABLE_IN_SUSPEND ||
5308 rstate->enabled == DISABLE_IN_SUSPEND))
5309 ret = rdev->desc->ops->resume(rdev);
5311 regulator_unlock(rdev);
5313 return ret;
5315 #else /* !CONFIG_SUSPEND */
5317 #define regulator_suspend NULL
5318 #define regulator_resume NULL
5320 #endif /* !CONFIG_SUSPEND */
5322 #ifdef CONFIG_PM
5323 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5324 .suspend = regulator_suspend,
5325 .resume = regulator_resume,
5327 #endif
5329 struct class regulator_class = {
5330 .name = "regulator",
5331 .dev_release = regulator_dev_release,
5332 .dev_groups = regulator_dev_groups,
5333 #ifdef CONFIG_PM
5334 .pm = &regulator_pm_ops,
5335 #endif
5338 * regulator_has_full_constraints - the system has fully specified constraints
5340 * Calling this function will cause the regulator API to disable all
5341 * regulators which have a zero use count and don't have an always_on
5342 * constraint in a late_initcall.
5344 * The intention is that this will become the default behaviour in a
5345 * future kernel release so users are encouraged to use this facility
5346 * now.
5348 void regulator_has_full_constraints(void)
5350 has_full_constraints = 1;
5352 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5355 * rdev_get_drvdata - get rdev regulator driver data
5356 * @rdev: regulator
5358 * Get rdev regulator driver private data. This call can be used in the
5359 * regulator driver context.
5361 void *rdev_get_drvdata(struct regulator_dev *rdev)
5363 return rdev->reg_data;
5365 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5368 * regulator_get_drvdata - get regulator driver data
5369 * @regulator: regulator
5371 * Get regulator driver private data. This call can be used in the consumer
5372 * driver context when non API regulator specific functions need to be called.
5374 void *regulator_get_drvdata(struct regulator *regulator)
5376 return regulator->rdev->reg_data;
5378 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5381 * regulator_set_drvdata - set regulator driver data
5382 * @regulator: regulator
5383 * @data: data
5385 void regulator_set_drvdata(struct regulator *regulator, void *data)
5387 regulator->rdev->reg_data = data;
5389 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5392 * regulator_get_id - get regulator ID
5393 * @rdev: regulator
5395 int rdev_get_id(struct regulator_dev *rdev)
5397 return rdev->desc->id;
5399 EXPORT_SYMBOL_GPL(rdev_get_id);
5401 struct device *rdev_get_dev(struct regulator_dev *rdev)
5403 return &rdev->dev;
5405 EXPORT_SYMBOL_GPL(rdev_get_dev);
5407 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5409 return rdev->regmap;
5411 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5413 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5415 return reg_init_data->driver_data;
5417 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5419 #ifdef CONFIG_DEBUG_FS
5420 static int supply_map_show(struct seq_file *sf, void *data)
5422 struct regulator_map *map;
5424 list_for_each_entry(map, &regulator_map_list, list) {
5425 seq_printf(sf, "%s -> %s.%s\n",
5426 rdev_get_name(map->regulator), map->dev_name,
5427 map->supply);
5430 return 0;
5432 DEFINE_SHOW_ATTRIBUTE(supply_map);
5434 struct summary_data {
5435 struct seq_file *s;
5436 struct regulator_dev *parent;
5437 int level;
5440 static void regulator_summary_show_subtree(struct seq_file *s,
5441 struct regulator_dev *rdev,
5442 int level);
5444 static int regulator_summary_show_children(struct device *dev, void *data)
5446 struct regulator_dev *rdev = dev_to_rdev(dev);
5447 struct summary_data *summary_data = data;
5449 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5450 regulator_summary_show_subtree(summary_data->s, rdev,
5451 summary_data->level + 1);
5453 return 0;
5456 static void regulator_summary_show_subtree(struct seq_file *s,
5457 struct regulator_dev *rdev,
5458 int level)
5460 struct regulation_constraints *c;
5461 struct regulator *consumer;
5462 struct summary_data summary_data;
5463 unsigned int opmode;
5465 if (!rdev)
5466 return;
5468 opmode = _regulator_get_mode_unlocked(rdev);
5469 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5470 level * 3 + 1, "",
5471 30 - level * 3, rdev_get_name(rdev),
5472 rdev->use_count, rdev->open_count, rdev->bypass_count,
5473 regulator_opmode_to_str(opmode));
5475 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5476 seq_printf(s, "%5dmA ",
5477 _regulator_get_current_limit_unlocked(rdev) / 1000);
5479 c = rdev->constraints;
5480 if (c) {
5481 switch (rdev->desc->type) {
5482 case REGULATOR_VOLTAGE:
5483 seq_printf(s, "%5dmV %5dmV ",
5484 c->min_uV / 1000, c->max_uV / 1000);
5485 break;
5486 case REGULATOR_CURRENT:
5487 seq_printf(s, "%5dmA %5dmA ",
5488 c->min_uA / 1000, c->max_uA / 1000);
5489 break;
5493 seq_puts(s, "\n");
5495 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5496 if (consumer->dev && consumer->dev->class == &regulator_class)
5497 continue;
5499 seq_printf(s, "%*s%-*s ",
5500 (level + 1) * 3 + 1, "",
5501 30 - (level + 1) * 3,
5502 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5504 switch (rdev->desc->type) {
5505 case REGULATOR_VOLTAGE:
5506 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5507 consumer->enable_count,
5508 consumer->uA_load / 1000,
5509 consumer->uA_load && !consumer->enable_count ?
5510 '*' : ' ',
5511 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5512 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5513 break;
5514 case REGULATOR_CURRENT:
5515 break;
5518 seq_puts(s, "\n");
5521 summary_data.s = s;
5522 summary_data.level = level;
5523 summary_data.parent = rdev;
5525 class_for_each_device(&regulator_class, NULL, &summary_data,
5526 regulator_summary_show_children);
5529 struct summary_lock_data {
5530 struct ww_acquire_ctx *ww_ctx;
5531 struct regulator_dev **new_contended_rdev;
5532 struct regulator_dev **old_contended_rdev;
5535 static int regulator_summary_lock_one(struct device *dev, void *data)
5537 struct regulator_dev *rdev = dev_to_rdev(dev);
5538 struct summary_lock_data *lock_data = data;
5539 int ret = 0;
5541 if (rdev != *lock_data->old_contended_rdev) {
5542 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5544 if (ret == -EDEADLK)
5545 *lock_data->new_contended_rdev = rdev;
5546 else
5547 WARN_ON_ONCE(ret);
5548 } else {
5549 *lock_data->old_contended_rdev = NULL;
5552 return ret;
5555 static int regulator_summary_unlock_one(struct device *dev, void *data)
5557 struct regulator_dev *rdev = dev_to_rdev(dev);
5558 struct summary_lock_data *lock_data = data;
5560 if (lock_data) {
5561 if (rdev == *lock_data->new_contended_rdev)
5562 return -EDEADLK;
5565 regulator_unlock(rdev);
5567 return 0;
5570 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5571 struct regulator_dev **new_contended_rdev,
5572 struct regulator_dev **old_contended_rdev)
5574 struct summary_lock_data lock_data;
5575 int ret;
5577 lock_data.ww_ctx = ww_ctx;
5578 lock_data.new_contended_rdev = new_contended_rdev;
5579 lock_data.old_contended_rdev = old_contended_rdev;
5581 ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5582 regulator_summary_lock_one);
5583 if (ret)
5584 class_for_each_device(&regulator_class, NULL, &lock_data,
5585 regulator_summary_unlock_one);
5587 return ret;
5590 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5592 struct regulator_dev *new_contended_rdev = NULL;
5593 struct regulator_dev *old_contended_rdev = NULL;
5594 int err;
5596 mutex_lock(&regulator_list_mutex);
5598 ww_acquire_init(ww_ctx, &regulator_ww_class);
5600 do {
5601 if (new_contended_rdev) {
5602 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5603 old_contended_rdev = new_contended_rdev;
5604 old_contended_rdev->ref_cnt++;
5607 err = regulator_summary_lock_all(ww_ctx,
5608 &new_contended_rdev,
5609 &old_contended_rdev);
5611 if (old_contended_rdev)
5612 regulator_unlock(old_contended_rdev);
5614 } while (err == -EDEADLK);
5616 ww_acquire_done(ww_ctx);
5619 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5621 class_for_each_device(&regulator_class, NULL, NULL,
5622 regulator_summary_unlock_one);
5623 ww_acquire_fini(ww_ctx);
5625 mutex_unlock(&regulator_list_mutex);
5628 static int regulator_summary_show_roots(struct device *dev, void *data)
5630 struct regulator_dev *rdev = dev_to_rdev(dev);
5631 struct seq_file *s = data;
5633 if (!rdev->supply)
5634 regulator_summary_show_subtree(s, rdev, 0);
5636 return 0;
5639 static int regulator_summary_show(struct seq_file *s, void *data)
5641 struct ww_acquire_ctx ww_ctx;
5643 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5644 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5646 regulator_summary_lock(&ww_ctx);
5648 class_for_each_device(&regulator_class, NULL, s,
5649 regulator_summary_show_roots);
5651 regulator_summary_unlock(&ww_ctx);
5653 return 0;
5655 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5656 #endif /* CONFIG_DEBUG_FS */
5658 static int __init regulator_init(void)
5660 int ret;
5662 ret = class_register(&regulator_class);
5664 debugfs_root = debugfs_create_dir("regulator", NULL);
5665 if (!debugfs_root)
5666 pr_warn("regulator: Failed to create debugfs directory\n");
5668 #ifdef CONFIG_DEBUG_FS
5669 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5670 &supply_map_fops);
5672 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5673 NULL, &regulator_summary_fops);
5674 #endif
5675 regulator_dummy_init();
5677 regulator_coupler_register(&generic_regulator_coupler);
5679 return ret;
5682 /* init early to allow our consumers to complete system booting */
5683 core_initcall(regulator_init);
5685 static int regulator_late_cleanup(struct device *dev, void *data)
5687 struct regulator_dev *rdev = dev_to_rdev(dev);
5688 const struct regulator_ops *ops = rdev->desc->ops;
5689 struct regulation_constraints *c = rdev->constraints;
5690 int enabled, ret;
5692 if (c && c->always_on)
5693 return 0;
5695 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5696 return 0;
5698 regulator_lock(rdev);
5700 if (rdev->use_count)
5701 goto unlock;
5703 /* If we can't read the status assume it's on. */
5704 if (ops->is_enabled)
5705 enabled = ops->is_enabled(rdev);
5706 else
5707 enabled = 1;
5709 if (!enabled)
5710 goto unlock;
5712 if (have_full_constraints()) {
5713 /* We log since this may kill the system if it goes
5714 * wrong. */
5715 rdev_info(rdev, "disabling\n");
5716 ret = _regulator_do_disable(rdev);
5717 if (ret != 0)
5718 rdev_err(rdev, "couldn't disable: %d\n", ret);
5719 } else {
5720 /* The intention is that in future we will
5721 * assume that full constraints are provided
5722 * so warn even if we aren't going to do
5723 * anything here.
5725 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5728 unlock:
5729 regulator_unlock(rdev);
5731 return 0;
5734 static void regulator_init_complete_work_function(struct work_struct *work)
5737 * Regulators may had failed to resolve their input supplies
5738 * when were registered, either because the input supply was
5739 * not registered yet or because its parent device was not
5740 * bound yet. So attempt to resolve the input supplies for
5741 * pending regulators before trying to disable unused ones.
5743 class_for_each_device(&regulator_class, NULL, NULL,
5744 regulator_register_resolve_supply);
5746 /* If we have a full configuration then disable any regulators
5747 * we have permission to change the status for and which are
5748 * not in use or always_on. This is effectively the default
5749 * for DT and ACPI as they have full constraints.
5751 class_for_each_device(&regulator_class, NULL, NULL,
5752 regulator_late_cleanup);
5755 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5756 regulator_init_complete_work_function);
5758 static int __init regulator_init_complete(void)
5761 * Since DT doesn't provide an idiomatic mechanism for
5762 * enabling full constraints and since it's much more natural
5763 * with DT to provide them just assume that a DT enabled
5764 * system has full constraints.
5766 if (of_have_populated_dt())
5767 has_full_constraints = true;
5770 * We punt completion for an arbitrary amount of time since
5771 * systems like distros will load many drivers from userspace
5772 * so consumers might not always be ready yet, this is
5773 * particularly an issue with laptops where this might bounce
5774 * the display off then on. Ideally we'd get a notification
5775 * from userspace when this happens but we don't so just wait
5776 * a bit and hope we waited long enough. It'd be better if
5777 * we'd only do this on systems that need it, and a kernel
5778 * command line option might be useful.
5780 schedule_delayed_work(&regulator_init_complete_work,
5781 msecs_to_jiffies(30000));
5783 return 0;
5785 late_initcall_sync(regulator_init_complete);