1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // core.c -- Voltage/Current Regulator framework.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 static DEFINE_WW_CLASS(regulator_ww_class
);
48 static DEFINE_MUTEX(regulator_nesting_mutex
);
49 static DEFINE_MUTEX(regulator_list_mutex
);
50 static LIST_HEAD(regulator_map_list
);
51 static LIST_HEAD(regulator_ena_gpio_list
);
52 static LIST_HEAD(regulator_supply_alias_list
);
53 static LIST_HEAD(regulator_coupler_list
);
54 static bool has_full_constraints
;
56 static struct dentry
*debugfs_root
;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map
{
64 struct list_head list
;
65 const char *dev_name
; /* The dev_name() for the consumer */
67 struct regulator_dev
*regulator
;
71 * struct regulator_enable_gpio
73 * Management for shared enable GPIO pin
75 struct regulator_enable_gpio
{
76 struct list_head list
;
77 struct gpio_desc
*gpiod
;
78 u32 enable_count
; /* a number of enabled shared GPIO */
79 u32 request_count
; /* a number of requested shared GPIO */
83 * struct regulator_supply_alias
85 * Used to map lookups for a supply onto an alternative device.
87 struct regulator_supply_alias
{
88 struct list_head list
;
89 struct device
*src_dev
;
90 const char *src_supply
;
91 struct device
*alias_dev
;
92 const char *alias_supply
;
95 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
96 static int _regulator_disable(struct regulator
*regulator
);
97 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
98 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
99 static int _notifier_call_chain(struct regulator_dev
*rdev
,
100 unsigned long event
, void *data
);
101 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
102 int min_uV
, int max_uV
);
103 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
104 suspend_state_t state
);
105 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
107 const char *supply_name
);
108 static void _regulator_put(struct regulator
*regulator
);
110 const char *rdev_get_name(struct regulator_dev
*rdev
)
112 if (rdev
->constraints
&& rdev
->constraints
->name
)
113 return rdev
->constraints
->name
;
114 else if (rdev
->desc
->name
)
115 return rdev
->desc
->name
;
120 static bool have_full_constraints(void)
122 return has_full_constraints
|| of_have_populated_dt();
125 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
127 if (!rdev
->constraints
) {
128 rdev_err(rdev
, "no constraints\n");
132 if (rdev
->constraints
->valid_ops_mask
& ops
)
139 * regulator_lock_nested - lock a single regulator
140 * @rdev: regulator source
141 * @ww_ctx: w/w mutex acquire context
143 * This function can be called many times by one task on
144 * a single regulator and its mutex will be locked only
145 * once. If a task, which is calling this function is other
146 * than the one, which initially locked the mutex, it will
149 static inline int regulator_lock_nested(struct regulator_dev
*rdev
,
150 struct ww_acquire_ctx
*ww_ctx
)
155 mutex_lock(®ulator_nesting_mutex
);
157 if (ww_ctx
|| !ww_mutex_trylock(&rdev
->mutex
)) {
158 if (rdev
->mutex_owner
== current
)
164 mutex_unlock(®ulator_nesting_mutex
);
165 ret
= ww_mutex_lock(&rdev
->mutex
, ww_ctx
);
166 mutex_lock(®ulator_nesting_mutex
);
172 if (lock
&& ret
!= -EDEADLK
) {
174 rdev
->mutex_owner
= current
;
177 mutex_unlock(®ulator_nesting_mutex
);
183 * regulator_lock - lock a single regulator
184 * @rdev: regulator source
186 * This function can be called many times by one task on
187 * a single regulator and its mutex will be locked only
188 * once. If a task, which is calling this function is other
189 * than the one, which initially locked the mutex, it will
192 void regulator_lock(struct regulator_dev
*rdev
)
194 regulator_lock_nested(rdev
, NULL
);
196 EXPORT_SYMBOL_GPL(regulator_lock
);
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
205 void regulator_unlock(struct regulator_dev
*rdev
)
207 mutex_lock(®ulator_nesting_mutex
);
209 if (--rdev
->ref_cnt
== 0) {
210 rdev
->mutex_owner
= NULL
;
211 ww_mutex_unlock(&rdev
->mutex
);
214 WARN_ON_ONCE(rdev
->ref_cnt
< 0);
216 mutex_unlock(®ulator_nesting_mutex
);
218 EXPORT_SYMBOL_GPL(regulator_unlock
);
220 static bool regulator_supply_is_couple(struct regulator_dev
*rdev
)
222 struct regulator_dev
*c_rdev
;
225 for (i
= 1; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
226 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
228 if (rdev
->supply
->rdev
== c_rdev
)
235 static void regulator_unlock_recursive(struct regulator_dev
*rdev
,
236 unsigned int n_coupled
)
238 struct regulator_dev
*c_rdev
;
241 for (i
= n_coupled
; i
> 0; i
--) {
242 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
- 1];
247 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
))
248 regulator_unlock_recursive(
249 c_rdev
->supply
->rdev
,
250 c_rdev
->coupling_desc
.n_coupled
);
252 regulator_unlock(c_rdev
);
256 static int regulator_lock_recursive(struct regulator_dev
*rdev
,
257 struct regulator_dev
**new_contended_rdev
,
258 struct regulator_dev
**old_contended_rdev
,
259 struct ww_acquire_ctx
*ww_ctx
)
261 struct regulator_dev
*c_rdev
;
264 for (i
= 0; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
265 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
270 if (c_rdev
!= *old_contended_rdev
) {
271 err
= regulator_lock_nested(c_rdev
, ww_ctx
);
273 if (err
== -EDEADLK
) {
274 *new_contended_rdev
= c_rdev
;
278 /* shouldn't happen */
279 WARN_ON_ONCE(err
!= -EALREADY
);
282 *old_contended_rdev
= NULL
;
285 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
)) {
286 err
= regulator_lock_recursive(c_rdev
->supply
->rdev
,
291 regulator_unlock(c_rdev
);
300 regulator_unlock_recursive(rdev
, i
);
306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
308 * @rdev: regulator source
309 * @ww_ctx: w/w mutex acquire context
311 * Unlock all regulators related with rdev by coupling or supplying.
313 static void regulator_unlock_dependent(struct regulator_dev
*rdev
,
314 struct ww_acquire_ctx
*ww_ctx
)
316 regulator_unlock_recursive(rdev
, rdev
->coupling_desc
.n_coupled
);
317 ww_acquire_fini(ww_ctx
);
321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322 * @rdev: regulator source
323 * @ww_ctx: w/w mutex acquire context
325 * This function as a wrapper on regulator_lock_recursive(), which locks
326 * all regulators related with rdev by coupling or supplying.
328 static void regulator_lock_dependent(struct regulator_dev
*rdev
,
329 struct ww_acquire_ctx
*ww_ctx
)
331 struct regulator_dev
*new_contended_rdev
= NULL
;
332 struct regulator_dev
*old_contended_rdev
= NULL
;
335 mutex_lock(®ulator_list_mutex
);
337 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
340 if (new_contended_rdev
) {
341 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
342 old_contended_rdev
= new_contended_rdev
;
343 old_contended_rdev
->ref_cnt
++;
346 err
= regulator_lock_recursive(rdev
,
351 if (old_contended_rdev
)
352 regulator_unlock(old_contended_rdev
);
354 } while (err
== -EDEADLK
);
356 ww_acquire_done(ww_ctx
);
358 mutex_unlock(®ulator_list_mutex
);
362 * of_get_child_regulator - get a child regulator device node
363 * based on supply name
364 * @parent: Parent device node
365 * @prop_name: Combination regulator supply name and "-supply"
367 * Traverse all child nodes.
368 * Extract the child regulator device node corresponding to the supply name.
369 * returns the device node corresponding to the regulator if found, else
372 static struct device_node
*of_get_child_regulator(struct device_node
*parent
,
373 const char *prop_name
)
375 struct device_node
*regnode
= NULL
;
376 struct device_node
*child
= NULL
;
378 for_each_child_of_node(parent
, child
) {
379 regnode
= of_parse_phandle(child
, prop_name
, 0);
382 regnode
= of_get_child_regulator(child
, prop_name
);
397 * of_get_regulator - get a regulator device node based on supply name
398 * @dev: Device pointer for the consumer (of regulator) device
399 * @supply: regulator supply name
401 * Extract the regulator device node corresponding to the supply name.
402 * returns the device node corresponding to the regulator if found, else
405 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
407 struct device_node
*regnode
= NULL
;
408 char prop_name
[32]; /* 32 is max size of property name */
410 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
412 snprintf(prop_name
, 32, "%s-supply", supply
);
413 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
416 regnode
= of_get_child_regulator(dev
->of_node
, prop_name
);
420 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
421 prop_name
, dev
->of_node
);
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev
*rdev
,
429 int *min_uV
, int *max_uV
)
431 BUG_ON(*min_uV
> *max_uV
);
433 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
434 rdev_err(rdev
, "voltage operation not allowed\n");
438 if (*max_uV
> rdev
->constraints
->max_uV
)
439 *max_uV
= rdev
->constraints
->max_uV
;
440 if (*min_uV
< rdev
->constraints
->min_uV
)
441 *min_uV
= rdev
->constraints
->min_uV
;
443 if (*min_uV
> *max_uV
) {
444 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state
)
455 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
458 /* Make sure we select a voltage that suits the needs of all
459 * regulator consumers
461 int regulator_check_consumers(struct regulator_dev
*rdev
,
462 int *min_uV
, int *max_uV
,
463 suspend_state_t state
)
465 struct regulator
*regulator
;
466 struct regulator_voltage
*voltage
;
468 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
469 voltage
= ®ulator
->voltage
[state
];
471 * Assume consumers that didn't say anything are OK
472 * with anything in the constraint range.
474 if (!voltage
->min_uV
&& !voltage
->max_uV
)
477 if (*max_uV
> voltage
->max_uV
)
478 *max_uV
= voltage
->max_uV
;
479 if (*min_uV
< voltage
->min_uV
)
480 *min_uV
= voltage
->min_uV
;
483 if (*min_uV
> *max_uV
) {
484 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
494 int *min_uA
, int *max_uA
)
496 BUG_ON(*min_uA
> *max_uA
);
498 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
499 rdev_err(rdev
, "current operation not allowed\n");
503 if (*max_uA
> rdev
->constraints
->max_uA
)
504 *max_uA
= rdev
->constraints
->max_uA
;
505 if (*min_uA
< rdev
->constraints
->min_uA
)
506 *min_uA
= rdev
->constraints
->min_uA
;
508 if (*min_uA
> *max_uA
) {
509 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
522 case REGULATOR_MODE_FAST
:
523 case REGULATOR_MODE_NORMAL
:
524 case REGULATOR_MODE_IDLE
:
525 case REGULATOR_MODE_STANDBY
:
528 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
532 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
533 rdev_err(rdev
, "mode operation not allowed\n");
537 /* The modes are bitmasks, the most power hungry modes having
538 * the lowest values. If the requested mode isn't supported
539 * try higher modes. */
541 if (rdev
->constraints
->valid_modes_mask
& *mode
)
549 static inline struct regulator_state
*
550 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
552 if (rdev
->constraints
== NULL
)
556 case PM_SUSPEND_STANDBY
:
557 return &rdev
->constraints
->state_standby
;
559 return &rdev
->constraints
->state_mem
;
561 return &rdev
->constraints
->state_disk
;
567 static ssize_t
regulator_uV_show(struct device
*dev
,
568 struct device_attribute
*attr
, char *buf
)
570 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
573 regulator_lock(rdev
);
574 uV
= regulator_get_voltage_rdev(rdev
);
575 regulator_unlock(rdev
);
579 return sprintf(buf
, "%d\n", uV
);
581 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
583 static ssize_t
regulator_uA_show(struct device
*dev
,
584 struct device_attribute
*attr
, char *buf
)
586 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
588 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
590 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
592 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
595 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
597 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
599 static DEVICE_ATTR_RO(name
);
601 static const char *regulator_opmode_to_str(int mode
)
604 case REGULATOR_MODE_FAST
:
606 case REGULATOR_MODE_NORMAL
:
608 case REGULATOR_MODE_IDLE
:
610 case REGULATOR_MODE_STANDBY
:
616 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
618 return sprintf(buf
, "%s\n", regulator_opmode_to_str(mode
));
621 static ssize_t
regulator_opmode_show(struct device
*dev
,
622 struct device_attribute
*attr
, char *buf
)
624 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
626 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
628 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
630 static ssize_t
regulator_print_state(char *buf
, int state
)
633 return sprintf(buf
, "enabled\n");
635 return sprintf(buf
, "disabled\n");
637 return sprintf(buf
, "unknown\n");
640 static ssize_t
regulator_state_show(struct device
*dev
,
641 struct device_attribute
*attr
, char *buf
)
643 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
646 regulator_lock(rdev
);
647 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
648 regulator_unlock(rdev
);
652 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
654 static ssize_t
regulator_status_show(struct device
*dev
,
655 struct device_attribute
*attr
, char *buf
)
657 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
661 status
= rdev
->desc
->ops
->get_status(rdev
);
666 case REGULATOR_STATUS_OFF
:
669 case REGULATOR_STATUS_ON
:
672 case REGULATOR_STATUS_ERROR
:
675 case REGULATOR_STATUS_FAST
:
678 case REGULATOR_STATUS_NORMAL
:
681 case REGULATOR_STATUS_IDLE
:
684 case REGULATOR_STATUS_STANDBY
:
687 case REGULATOR_STATUS_BYPASS
:
690 case REGULATOR_STATUS_UNDEFINED
:
697 return sprintf(buf
, "%s\n", label
);
699 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
701 static ssize_t
regulator_min_uA_show(struct device
*dev
,
702 struct device_attribute
*attr
, char *buf
)
704 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
706 if (!rdev
->constraints
)
707 return sprintf(buf
, "constraint not defined\n");
709 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
711 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
713 static ssize_t
regulator_max_uA_show(struct device
*dev
,
714 struct device_attribute
*attr
, char *buf
)
716 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
718 if (!rdev
->constraints
)
719 return sprintf(buf
, "constraint not defined\n");
721 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
723 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
725 static ssize_t
regulator_min_uV_show(struct device
*dev
,
726 struct device_attribute
*attr
, char *buf
)
728 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
730 if (!rdev
->constraints
)
731 return sprintf(buf
, "constraint not defined\n");
733 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
735 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
737 static ssize_t
regulator_max_uV_show(struct device
*dev
,
738 struct device_attribute
*attr
, char *buf
)
740 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
742 if (!rdev
->constraints
)
743 return sprintf(buf
, "constraint not defined\n");
745 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
747 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
749 static ssize_t
regulator_total_uA_show(struct device
*dev
,
750 struct device_attribute
*attr
, char *buf
)
752 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
753 struct regulator
*regulator
;
756 regulator_lock(rdev
);
757 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
758 if (regulator
->enable_count
)
759 uA
+= regulator
->uA_load
;
761 regulator_unlock(rdev
);
762 return sprintf(buf
, "%d\n", uA
);
764 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
766 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
769 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
770 return sprintf(buf
, "%d\n", rdev
->use_count
);
772 static DEVICE_ATTR_RO(num_users
);
774 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
777 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
779 switch (rdev
->desc
->type
) {
780 case REGULATOR_VOLTAGE
:
781 return sprintf(buf
, "voltage\n");
782 case REGULATOR_CURRENT
:
783 return sprintf(buf
, "current\n");
785 return sprintf(buf
, "unknown\n");
787 static DEVICE_ATTR_RO(type
);
789 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
790 struct device_attribute
*attr
, char *buf
)
792 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
794 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
796 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
797 regulator_suspend_mem_uV_show
, NULL
);
799 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
800 struct device_attribute
*attr
, char *buf
)
802 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
804 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
806 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
807 regulator_suspend_disk_uV_show
, NULL
);
809 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
810 struct device_attribute
*attr
, char *buf
)
812 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
814 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
816 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
817 regulator_suspend_standby_uV_show
, NULL
);
819 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
820 struct device_attribute
*attr
, char *buf
)
822 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
824 return regulator_print_opmode(buf
,
825 rdev
->constraints
->state_mem
.mode
);
827 static DEVICE_ATTR(suspend_mem_mode
, 0444,
828 regulator_suspend_mem_mode_show
, NULL
);
830 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
831 struct device_attribute
*attr
, char *buf
)
833 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
835 return regulator_print_opmode(buf
,
836 rdev
->constraints
->state_disk
.mode
);
838 static DEVICE_ATTR(suspend_disk_mode
, 0444,
839 regulator_suspend_disk_mode_show
, NULL
);
841 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
842 struct device_attribute
*attr
, char *buf
)
844 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
846 return regulator_print_opmode(buf
,
847 rdev
->constraints
->state_standby
.mode
);
849 static DEVICE_ATTR(suspend_standby_mode
, 0444,
850 regulator_suspend_standby_mode_show
, NULL
);
852 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
853 struct device_attribute
*attr
, char *buf
)
855 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
857 return regulator_print_state(buf
,
858 rdev
->constraints
->state_mem
.enabled
);
860 static DEVICE_ATTR(suspend_mem_state
, 0444,
861 regulator_suspend_mem_state_show
, NULL
);
863 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
864 struct device_attribute
*attr
, char *buf
)
866 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
868 return regulator_print_state(buf
,
869 rdev
->constraints
->state_disk
.enabled
);
871 static DEVICE_ATTR(suspend_disk_state
, 0444,
872 regulator_suspend_disk_state_show
, NULL
);
874 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
875 struct device_attribute
*attr
, char *buf
)
877 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
879 return regulator_print_state(buf
,
880 rdev
->constraints
->state_standby
.enabled
);
882 static DEVICE_ATTR(suspend_standby_state
, 0444,
883 regulator_suspend_standby_state_show
, NULL
);
885 static ssize_t
regulator_bypass_show(struct device
*dev
,
886 struct device_attribute
*attr
, char *buf
)
888 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
893 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
902 return sprintf(buf
, "%s\n", report
);
904 static DEVICE_ATTR(bypass
, 0444,
905 regulator_bypass_show
, NULL
);
907 /* Calculate the new optimum regulator operating mode based on the new total
908 * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev
*rdev
)
911 struct regulator
*sibling
;
912 int current_uA
= 0, output_uV
, input_uV
, err
;
916 * first check to see if we can set modes at all, otherwise just
917 * tell the consumer everything is OK.
919 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
)) {
920 rdev_dbg(rdev
, "DRMS operation not allowed\n");
924 if (!rdev
->desc
->ops
->get_optimum_mode
&&
925 !rdev
->desc
->ops
->set_load
)
928 if (!rdev
->desc
->ops
->set_mode
&&
929 !rdev
->desc
->ops
->set_load
)
932 /* calc total requested load */
933 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
) {
934 if (sibling
->enable_count
)
935 current_uA
+= sibling
->uA_load
;
938 current_uA
+= rdev
->constraints
->system_load
;
940 if (rdev
->desc
->ops
->set_load
) {
941 /* set the optimum mode for our new total regulator load */
942 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
944 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
946 /* get output voltage */
947 output_uV
= regulator_get_voltage_rdev(rdev
);
948 if (output_uV
<= 0) {
949 rdev_err(rdev
, "invalid output voltage found\n");
953 /* get input voltage */
956 input_uV
= regulator_get_voltage(rdev
->supply
);
958 input_uV
= rdev
->constraints
->input_uV
;
960 rdev_err(rdev
, "invalid input voltage found\n");
964 /* now get the optimum mode for our new total regulator load */
965 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
966 output_uV
, current_uA
);
968 /* check the new mode is allowed */
969 err
= regulator_mode_constrain(rdev
, &mode
);
971 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 current_uA
, input_uV
, output_uV
);
976 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
978 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
984 static int suspend_set_state(struct regulator_dev
*rdev
,
985 suspend_state_t state
)
988 struct regulator_state
*rstate
;
990 rstate
= regulator_get_suspend_state(rdev
, state
);
994 /* If we have no suspend mode configuration don't set anything;
995 * only warn if the driver implements set_suspend_voltage or
996 * set_suspend_mode callback.
998 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
999 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
1000 if (rdev
->desc
->ops
->set_suspend_voltage
||
1001 rdev
->desc
->ops
->set_suspend_mode
)
1002 rdev_warn(rdev
, "No configuration\n");
1006 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
1007 rdev
->desc
->ops
->set_suspend_enable
)
1008 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
1009 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
1010 rdev
->desc
->ops
->set_suspend_disable
)
1011 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1016 rdev_err(rdev
, "failed to enabled/disable\n");
1020 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
1021 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
1023 rdev_err(rdev
, "failed to set voltage\n");
1028 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
1029 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
1031 rdev_err(rdev
, "failed to set mode\n");
1039 static void print_constraints(struct regulator_dev
*rdev
)
1041 struct regulation_constraints
*constraints
= rdev
->constraints
;
1043 size_t len
= sizeof(buf
) - 1;
1047 if (constraints
->min_uV
&& constraints
->max_uV
) {
1048 if (constraints
->min_uV
== constraints
->max_uV
)
1049 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
1050 constraints
->min_uV
/ 1000);
1052 count
+= scnprintf(buf
+ count
, len
- count
,
1054 constraints
->min_uV
/ 1000,
1055 constraints
->max_uV
/ 1000);
1058 if (!constraints
->min_uV
||
1059 constraints
->min_uV
!= constraints
->max_uV
) {
1060 ret
= regulator_get_voltage_rdev(rdev
);
1062 count
+= scnprintf(buf
+ count
, len
- count
,
1063 "at %d mV ", ret
/ 1000);
1066 if (constraints
->uV_offset
)
1067 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
1068 constraints
->uV_offset
/ 1000);
1070 if (constraints
->min_uA
&& constraints
->max_uA
) {
1071 if (constraints
->min_uA
== constraints
->max_uA
)
1072 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
1073 constraints
->min_uA
/ 1000);
1075 count
+= scnprintf(buf
+ count
, len
- count
,
1077 constraints
->min_uA
/ 1000,
1078 constraints
->max_uA
/ 1000);
1081 if (!constraints
->min_uA
||
1082 constraints
->min_uA
!= constraints
->max_uA
) {
1083 ret
= _regulator_get_current_limit(rdev
);
1085 count
+= scnprintf(buf
+ count
, len
- count
,
1086 "at %d mA ", ret
/ 1000);
1089 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
1090 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
1091 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
1092 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
1093 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
1094 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
1095 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
1096 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
1099 scnprintf(buf
, len
, "no parameters");
1101 rdev_dbg(rdev
, "%s\n", buf
);
1103 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
1104 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
1110 struct regulation_constraints
*constraints
)
1112 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1115 /* do we need to apply the constraint voltage */
1116 if (rdev
->constraints
->apply_uV
&&
1117 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
1118 int target_min
, target_max
;
1119 int current_uV
= regulator_get_voltage_rdev(rdev
);
1121 if (current_uV
== -ENOTRECOVERABLE
) {
1122 /* This regulator can't be read and must be initialized */
1123 rdev_info(rdev
, "Setting %d-%duV\n",
1124 rdev
->constraints
->min_uV
,
1125 rdev
->constraints
->max_uV
);
1126 _regulator_do_set_voltage(rdev
,
1127 rdev
->constraints
->min_uV
,
1128 rdev
->constraints
->max_uV
);
1129 current_uV
= regulator_get_voltage_rdev(rdev
);
1132 if (current_uV
< 0) {
1134 "failed to get the current voltage(%d)\n",
1140 * If we're below the minimum voltage move up to the
1141 * minimum voltage, if we're above the maximum voltage
1142 * then move down to the maximum.
1144 target_min
= current_uV
;
1145 target_max
= current_uV
;
1147 if (current_uV
< rdev
->constraints
->min_uV
) {
1148 target_min
= rdev
->constraints
->min_uV
;
1149 target_max
= rdev
->constraints
->min_uV
;
1152 if (current_uV
> rdev
->constraints
->max_uV
) {
1153 target_min
= rdev
->constraints
->max_uV
;
1154 target_max
= rdev
->constraints
->max_uV
;
1157 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
1158 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
1159 current_uV
, target_min
, target_max
);
1160 ret
= _regulator_do_set_voltage(
1161 rdev
, target_min
, target_max
);
1164 "failed to apply %d-%duV constraint(%d)\n",
1165 target_min
, target_max
, ret
);
1171 /* constrain machine-level voltage specs to fit
1172 * the actual range supported by this regulator.
1174 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
1175 int count
= rdev
->desc
->n_voltages
;
1177 int min_uV
= INT_MAX
;
1178 int max_uV
= INT_MIN
;
1179 int cmin
= constraints
->min_uV
;
1180 int cmax
= constraints
->max_uV
;
1182 /* it's safe to autoconfigure fixed-voltage supplies
1183 and the constraints are used by list_voltage. */
1184 if (count
== 1 && !cmin
) {
1187 constraints
->min_uV
= cmin
;
1188 constraints
->max_uV
= cmax
;
1191 /* voltage constraints are optional */
1192 if ((cmin
== 0) && (cmax
== 0))
1195 /* else require explicit machine-level constraints */
1196 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
1197 rdev_err(rdev
, "invalid voltage constraints\n");
1201 /* no need to loop voltages if range is continuous */
1202 if (rdev
->desc
->continuous_voltage_range
)
1205 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1206 for (i
= 0; i
< count
; i
++) {
1209 value
= ops
->list_voltage(rdev
, i
);
1213 /* maybe adjust [min_uV..max_uV] */
1214 if (value
>= cmin
&& value
< min_uV
)
1216 if (value
<= cmax
&& value
> max_uV
)
1220 /* final: [min_uV..max_uV] valid iff constraints valid */
1221 if (max_uV
< min_uV
) {
1223 "unsupportable voltage constraints %u-%uuV\n",
1228 /* use regulator's subset of machine constraints */
1229 if (constraints
->min_uV
< min_uV
) {
1230 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
1231 constraints
->min_uV
, min_uV
);
1232 constraints
->min_uV
= min_uV
;
1234 if (constraints
->max_uV
> max_uV
) {
1235 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
1236 constraints
->max_uV
, max_uV
);
1237 constraints
->max_uV
= max_uV
;
1244 static int machine_constraints_current(struct regulator_dev
*rdev
,
1245 struct regulation_constraints
*constraints
)
1247 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1250 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1253 if (constraints
->min_uA
> constraints
->max_uA
) {
1254 rdev_err(rdev
, "Invalid current constraints\n");
1258 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1259 rdev_warn(rdev
, "Operation of current configuration missing\n");
1263 /* Set regulator current in constraints range */
1264 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1265 constraints
->max_uA
);
1267 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1274 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1277 * set_machine_constraints - sets regulator constraints
1278 * @rdev: regulator source
1279 * @constraints: constraints to apply
1281 * Allows platform initialisation code to define and constrain
1282 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1283 * Constraints *must* be set by platform code in order for some
1284 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1287 static int set_machine_constraints(struct regulator_dev
*rdev
,
1288 const struct regulation_constraints
*constraints
)
1291 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1294 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1297 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1299 if (!rdev
->constraints
)
1302 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1306 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1310 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1311 ret
= ops
->set_input_current_limit(rdev
,
1312 rdev
->constraints
->ilim_uA
);
1314 rdev_err(rdev
, "failed to set input limit\n");
1319 /* do we need to setup our suspend state */
1320 if (rdev
->constraints
->initial_state
) {
1321 ret
= suspend_set_state(rdev
, rdev
->constraints
->initial_state
);
1323 rdev_err(rdev
, "failed to set suspend state\n");
1328 if (rdev
->constraints
->initial_mode
) {
1329 if (!ops
->set_mode
) {
1330 rdev_err(rdev
, "no set_mode operation\n");
1334 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1336 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1339 } else if (rdev
->constraints
->system_load
) {
1341 * We'll only apply the initial system load if an
1342 * initial mode wasn't specified.
1344 drms_uA_update(rdev
);
1347 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1348 && ops
->set_ramp_delay
) {
1349 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1351 rdev_err(rdev
, "failed to set ramp_delay\n");
1356 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1357 ret
= ops
->set_pull_down(rdev
);
1359 rdev_err(rdev
, "failed to set pull down\n");
1364 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1365 ret
= ops
->set_soft_start(rdev
);
1367 rdev_err(rdev
, "failed to set soft start\n");
1372 if (rdev
->constraints
->over_current_protection
1373 && ops
->set_over_current_protection
) {
1374 ret
= ops
->set_over_current_protection(rdev
);
1376 rdev_err(rdev
, "failed to set over current protection\n");
1381 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1382 bool ad_state
= (rdev
->constraints
->active_discharge
==
1383 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1385 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1387 rdev_err(rdev
, "failed to set active discharge\n");
1392 /* If the constraints say the regulator should be on at this point
1393 * and we have control then make sure it is enabled.
1395 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1397 ret
= regulator_enable(rdev
->supply
);
1399 _regulator_put(rdev
->supply
);
1400 rdev
->supply
= NULL
;
1405 ret
= _regulator_do_enable(rdev
);
1406 if (ret
< 0 && ret
!= -EINVAL
) {
1407 rdev_err(rdev
, "failed to enable\n");
1411 if (rdev
->constraints
->always_on
)
1415 print_constraints(rdev
);
1420 * set_supply - set regulator supply regulator
1421 * @rdev: regulator name
1422 * @supply_rdev: supply regulator name
1424 * Called by platform initialisation code to set the supply regulator for this
1425 * regulator. This ensures that a regulators supply will also be enabled by the
1426 * core if it's child is enabled.
1428 static int set_supply(struct regulator_dev
*rdev
,
1429 struct regulator_dev
*supply_rdev
)
1433 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1435 if (!try_module_get(supply_rdev
->owner
))
1438 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1439 if (rdev
->supply
== NULL
) {
1443 supply_rdev
->open_count
++;
1449 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1450 * @rdev: regulator source
1451 * @consumer_dev_name: dev_name() string for device supply applies to
1452 * @supply: symbolic name for supply
1454 * Allows platform initialisation code to map physical regulator
1455 * sources to symbolic names for supplies for use by devices. Devices
1456 * should use these symbolic names to request regulators, avoiding the
1457 * need to provide board-specific regulator names as platform data.
1459 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1460 const char *consumer_dev_name
,
1463 struct regulator_map
*node
;
1469 if (consumer_dev_name
!= NULL
)
1474 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1475 if (node
->dev_name
&& consumer_dev_name
) {
1476 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1478 } else if (node
->dev_name
|| consumer_dev_name
) {
1482 if (strcmp(node
->supply
, supply
) != 0)
1485 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1487 dev_name(&node
->regulator
->dev
),
1488 node
->regulator
->desc
->name
,
1490 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1494 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1498 node
->regulator
= rdev
;
1499 node
->supply
= supply
;
1502 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1503 if (node
->dev_name
== NULL
) {
1509 list_add(&node
->list
, ®ulator_map_list
);
1513 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1515 struct regulator_map
*node
, *n
;
1517 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1518 if (rdev
== node
->regulator
) {
1519 list_del(&node
->list
);
1520 kfree(node
->dev_name
);
1526 #ifdef CONFIG_DEBUG_FS
1527 static ssize_t
constraint_flags_read_file(struct file
*file
,
1528 char __user
*user_buf
,
1529 size_t count
, loff_t
*ppos
)
1531 const struct regulator
*regulator
= file
->private_data
;
1532 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1539 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1543 ret
= snprintf(buf
, PAGE_SIZE
,
1547 "ramp_disable: %u\n"
1550 "over_current_protection: %u\n",
1557 c
->over_current_protection
);
1559 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1567 static const struct file_operations constraint_flags_fops
= {
1568 #ifdef CONFIG_DEBUG_FS
1569 .open
= simple_open
,
1570 .read
= constraint_flags_read_file
,
1571 .llseek
= default_llseek
,
1575 #define REG_STR_SIZE 64
1577 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1579 const char *supply_name
)
1581 struct regulator
*regulator
;
1582 char buf
[REG_STR_SIZE
];
1585 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1586 if (regulator
== NULL
)
1589 regulator_lock(rdev
);
1590 regulator
->rdev
= rdev
;
1591 list_add(®ulator
->list
, &rdev
->consumer_list
);
1594 regulator
->dev
= dev
;
1596 /* Add a link to the device sysfs entry */
1597 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1598 dev
->kobj
.name
, supply_name
);
1599 if (size
>= REG_STR_SIZE
)
1602 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1603 if (regulator
->supply_name
== NULL
)
1606 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1609 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1610 dev
->kobj
.name
, err
);
1614 regulator
->supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1615 if (regulator
->supply_name
== NULL
)
1619 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1621 if (!regulator
->debugfs
) {
1622 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1624 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1625 ®ulator
->uA_load
);
1626 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1627 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1628 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1629 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1630 debugfs_create_file("constraint_flags", 0444,
1631 regulator
->debugfs
, regulator
,
1632 &constraint_flags_fops
);
1636 * Check now if the regulator is an always on regulator - if
1637 * it is then we don't need to do nearly so much work for
1638 * enable/disable calls.
1640 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1641 _regulator_is_enabled(rdev
))
1642 regulator
->always_on
= true;
1644 regulator_unlock(rdev
);
1647 list_del(®ulator
->list
);
1649 regulator_unlock(rdev
);
1653 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1655 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1656 return rdev
->constraints
->enable_time
;
1657 if (rdev
->desc
->ops
->enable_time
)
1658 return rdev
->desc
->ops
->enable_time(rdev
);
1659 return rdev
->desc
->enable_time
;
1662 static struct regulator_supply_alias
*regulator_find_supply_alias(
1663 struct device
*dev
, const char *supply
)
1665 struct regulator_supply_alias
*map
;
1667 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1668 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1674 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1676 struct regulator_supply_alias
*map
;
1678 map
= regulator_find_supply_alias(*dev
, *supply
);
1680 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1681 *supply
, map
->alias_supply
,
1682 dev_name(map
->alias_dev
));
1683 *dev
= map
->alias_dev
;
1684 *supply
= map
->alias_supply
;
1688 static int regulator_match(struct device
*dev
, const void *data
)
1690 struct regulator_dev
*r
= dev_to_rdev(dev
);
1692 return strcmp(rdev_get_name(r
), data
) == 0;
1695 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1699 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1701 return dev
? dev_to_rdev(dev
) : NULL
;
1705 * regulator_dev_lookup - lookup a regulator device.
1706 * @dev: device for regulator "consumer".
1707 * @supply: Supply name or regulator ID.
1709 * If successful, returns a struct regulator_dev that corresponds to the name
1710 * @supply and with the embedded struct device refcount incremented by one.
1711 * The refcount must be dropped by calling put_device().
1712 * On failure one of the following ERR-PTR-encoded values is returned:
1713 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1716 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1719 struct regulator_dev
*r
= NULL
;
1720 struct device_node
*node
;
1721 struct regulator_map
*map
;
1722 const char *devname
= NULL
;
1724 regulator_supply_alias(&dev
, &supply
);
1726 /* first do a dt based lookup */
1727 if (dev
&& dev
->of_node
) {
1728 node
= of_get_regulator(dev
, supply
);
1730 r
= of_find_regulator_by_node(node
);
1735 * We have a node, but there is no device.
1736 * assume it has not registered yet.
1738 return ERR_PTR(-EPROBE_DEFER
);
1742 /* if not found, try doing it non-dt way */
1744 devname
= dev_name(dev
);
1746 mutex_lock(®ulator_list_mutex
);
1747 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1748 /* If the mapping has a device set up it must match */
1749 if (map
->dev_name
&&
1750 (!devname
|| strcmp(map
->dev_name
, devname
)))
1753 if (strcmp(map
->supply
, supply
) == 0 &&
1754 get_device(&map
->regulator
->dev
)) {
1759 mutex_unlock(®ulator_list_mutex
);
1764 r
= regulator_lookup_by_name(supply
);
1768 return ERR_PTR(-ENODEV
);
1771 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1773 struct regulator_dev
*r
;
1774 struct device
*dev
= rdev
->dev
.parent
;
1777 /* No supply to resolve? */
1778 if (!rdev
->supply_name
)
1781 /* Supply already resolved? */
1785 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1789 /* Did the lookup explicitly defer for us? */
1790 if (ret
== -EPROBE_DEFER
)
1793 if (have_full_constraints()) {
1794 r
= dummy_regulator_rdev
;
1795 get_device(&r
->dev
);
1797 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1798 rdev
->supply_name
, rdev
->desc
->name
);
1799 return -EPROBE_DEFER
;
1804 * If the supply's parent device is not the same as the
1805 * regulator's parent device, then ensure the parent device
1806 * is bound before we resolve the supply, in case the parent
1807 * device get probe deferred and unregisters the supply.
1809 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1810 if (!device_is_bound(r
->dev
.parent
)) {
1811 put_device(&r
->dev
);
1812 return -EPROBE_DEFER
;
1816 /* Recursively resolve the supply of the supply */
1817 ret
= regulator_resolve_supply(r
);
1819 put_device(&r
->dev
);
1823 ret
= set_supply(rdev
, r
);
1825 put_device(&r
->dev
);
1830 * In set_machine_constraints() we may have turned this regulator on
1831 * but we couldn't propagate to the supply if it hadn't been resolved
1834 if (rdev
->use_count
) {
1835 ret
= regulator_enable(rdev
->supply
);
1837 _regulator_put(rdev
->supply
);
1838 rdev
->supply
= NULL
;
1846 /* Internal regulator request function */
1847 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1848 enum regulator_get_type get_type
)
1850 struct regulator_dev
*rdev
;
1851 struct regulator
*regulator
;
1852 const char *devname
= dev
? dev_name(dev
) : "deviceless";
1853 struct device_link
*link
;
1856 if (get_type
>= MAX_GET_TYPE
) {
1857 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1858 return ERR_PTR(-EINVAL
);
1862 pr_err("get() with no identifier\n");
1863 return ERR_PTR(-EINVAL
);
1866 rdev
= regulator_dev_lookup(dev
, id
);
1868 ret
= PTR_ERR(rdev
);
1871 * If regulator_dev_lookup() fails with error other
1872 * than -ENODEV our job here is done, we simply return it.
1875 return ERR_PTR(ret
);
1877 if (!have_full_constraints()) {
1879 "incomplete constraints, dummy supplies not allowed\n");
1880 return ERR_PTR(-ENODEV
);
1886 * Assume that a regulator is physically present and
1887 * enabled, even if it isn't hooked up, and just
1891 "%s supply %s not found, using dummy regulator\n",
1893 rdev
= dummy_regulator_rdev
;
1894 get_device(&rdev
->dev
);
1899 "dummy supplies not allowed for exclusive requests\n");
1903 return ERR_PTR(-ENODEV
);
1907 if (rdev
->exclusive
) {
1908 regulator
= ERR_PTR(-EPERM
);
1909 put_device(&rdev
->dev
);
1913 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1914 regulator
= ERR_PTR(-EBUSY
);
1915 put_device(&rdev
->dev
);
1919 mutex_lock(®ulator_list_mutex
);
1920 ret
= (rdev
->coupling_desc
.n_resolved
!= rdev
->coupling_desc
.n_coupled
);
1921 mutex_unlock(®ulator_list_mutex
);
1924 regulator
= ERR_PTR(-EPROBE_DEFER
);
1925 put_device(&rdev
->dev
);
1929 ret
= regulator_resolve_supply(rdev
);
1931 regulator
= ERR_PTR(ret
);
1932 put_device(&rdev
->dev
);
1936 if (!try_module_get(rdev
->owner
)) {
1937 regulator
= ERR_PTR(-EPROBE_DEFER
);
1938 put_device(&rdev
->dev
);
1942 regulator
= create_regulator(rdev
, dev
, id
);
1943 if (regulator
== NULL
) {
1944 regulator
= ERR_PTR(-ENOMEM
);
1945 module_put(rdev
->owner
);
1946 put_device(&rdev
->dev
);
1951 if (get_type
== EXCLUSIVE_GET
) {
1952 rdev
->exclusive
= 1;
1954 ret
= _regulator_is_enabled(rdev
);
1956 rdev
->use_count
= 1;
1958 rdev
->use_count
= 0;
1961 link
= device_link_add(dev
, &rdev
->dev
, DL_FLAG_STATELESS
);
1962 if (!IS_ERR_OR_NULL(link
))
1963 regulator
->device_link
= true;
1969 * regulator_get - lookup and obtain a reference to a regulator.
1970 * @dev: device for regulator "consumer"
1971 * @id: Supply name or regulator ID.
1973 * Returns a struct regulator corresponding to the regulator producer,
1974 * or IS_ERR() condition containing errno.
1976 * Use of supply names configured via regulator_set_device_supply() is
1977 * strongly encouraged. It is recommended that the supply name used
1978 * should match the name used for the supply and/or the relevant
1979 * device pins in the datasheet.
1981 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1983 return _regulator_get(dev
, id
, NORMAL_GET
);
1985 EXPORT_SYMBOL_GPL(regulator_get
);
1988 * regulator_get_exclusive - obtain exclusive access to a regulator.
1989 * @dev: device for regulator "consumer"
1990 * @id: Supply name or regulator ID.
1992 * Returns a struct regulator corresponding to the regulator producer,
1993 * or IS_ERR() condition containing errno. Other consumers will be
1994 * unable to obtain this regulator while this reference is held and the
1995 * use count for the regulator will be initialised to reflect the current
1996 * state of the regulator.
1998 * This is intended for use by consumers which cannot tolerate shared
1999 * use of the regulator such as those which need to force the
2000 * regulator off for correct operation of the hardware they are
2003 * Use of supply names configured via regulator_set_device_supply() is
2004 * strongly encouraged. It is recommended that the supply name used
2005 * should match the name used for the supply and/or the relevant
2006 * device pins in the datasheet.
2008 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
2010 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
2012 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
2015 * regulator_get_optional - obtain optional access to a regulator.
2016 * @dev: device for regulator "consumer"
2017 * @id: Supply name or regulator ID.
2019 * Returns a struct regulator corresponding to the regulator producer,
2020 * or IS_ERR() condition containing errno.
2022 * This is intended for use by consumers for devices which can have
2023 * some supplies unconnected in normal use, such as some MMC devices.
2024 * It can allow the regulator core to provide stub supplies for other
2025 * supplies requested using normal regulator_get() calls without
2026 * disrupting the operation of drivers that can handle absent
2029 * Use of supply names configured via regulator_set_device_supply() is
2030 * strongly encouraged. It is recommended that the supply name used
2031 * should match the name used for the supply and/or the relevant
2032 * device pins in the datasheet.
2034 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
2036 return _regulator_get(dev
, id
, OPTIONAL_GET
);
2038 EXPORT_SYMBOL_GPL(regulator_get_optional
);
2040 /* regulator_list_mutex lock held by regulator_put() */
2041 static void _regulator_put(struct regulator
*regulator
)
2043 struct regulator_dev
*rdev
;
2045 if (IS_ERR_OR_NULL(regulator
))
2048 lockdep_assert_held_once(®ulator_list_mutex
);
2050 /* Docs say you must disable before calling regulator_put() */
2051 WARN_ON(regulator
->enable_count
);
2053 rdev
= regulator
->rdev
;
2055 debugfs_remove_recursive(regulator
->debugfs
);
2057 if (regulator
->dev
) {
2058 if (regulator
->device_link
)
2059 device_link_remove(regulator
->dev
, &rdev
->dev
);
2061 /* remove any sysfs entries */
2062 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
2065 regulator_lock(rdev
);
2066 list_del(®ulator
->list
);
2069 rdev
->exclusive
= 0;
2070 regulator_unlock(rdev
);
2072 kfree_const(regulator
->supply_name
);
2075 module_put(rdev
->owner
);
2076 put_device(&rdev
->dev
);
2080 * regulator_put - "free" the regulator source
2081 * @regulator: regulator source
2083 * Note: drivers must ensure that all regulator_enable calls made on this
2084 * regulator source are balanced by regulator_disable calls prior to calling
2087 void regulator_put(struct regulator
*regulator
)
2089 mutex_lock(®ulator_list_mutex
);
2090 _regulator_put(regulator
);
2091 mutex_unlock(®ulator_list_mutex
);
2093 EXPORT_SYMBOL_GPL(regulator_put
);
2096 * regulator_register_supply_alias - Provide device alias for supply lookup
2098 * @dev: device that will be given as the regulator "consumer"
2099 * @id: Supply name or regulator ID
2100 * @alias_dev: device that should be used to lookup the supply
2101 * @alias_id: Supply name or regulator ID that should be used to lookup the
2104 * All lookups for id on dev will instead be conducted for alias_id on
2107 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
2108 struct device
*alias_dev
,
2109 const char *alias_id
)
2111 struct regulator_supply_alias
*map
;
2113 map
= regulator_find_supply_alias(dev
, id
);
2117 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
2122 map
->src_supply
= id
;
2123 map
->alias_dev
= alias_dev
;
2124 map
->alias_supply
= alias_id
;
2126 list_add(&map
->list
, ®ulator_supply_alias_list
);
2128 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2129 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
2133 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
2136 * regulator_unregister_supply_alias - Remove device alias
2138 * @dev: device that will be given as the regulator "consumer"
2139 * @id: Supply name or regulator ID
2141 * Remove a lookup alias if one exists for id on dev.
2143 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
2145 struct regulator_supply_alias
*map
;
2147 map
= regulator_find_supply_alias(dev
, id
);
2149 list_del(&map
->list
);
2153 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
2156 * regulator_bulk_register_supply_alias - register multiple aliases
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: List of supply names or regulator IDs
2160 * @alias_dev: device that should be used to lookup the supply
2161 * @alias_id: List of supply names or regulator IDs that should be used to
2163 * @num_id: Number of aliases to register
2165 * @return 0 on success, an errno on failure.
2167 * This helper function allows drivers to register several supply
2168 * aliases in one operation. If any of the aliases cannot be
2169 * registered any aliases that were registered will be removed
2170 * before returning to the caller.
2172 int regulator_bulk_register_supply_alias(struct device
*dev
,
2173 const char *const *id
,
2174 struct device
*alias_dev
,
2175 const char *const *alias_id
,
2181 for (i
= 0; i
< num_id
; ++i
) {
2182 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
2192 "Failed to create supply alias %s,%s -> %s,%s\n",
2193 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
2196 regulator_unregister_supply_alias(dev
, id
[i
]);
2200 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
2203 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2205 * @dev: device that will be given as the regulator "consumer"
2206 * @id: List of supply names or regulator IDs
2207 * @num_id: Number of aliases to unregister
2209 * This helper function allows drivers to unregister several supply
2210 * aliases in one operation.
2212 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
2213 const char *const *id
,
2218 for (i
= 0; i
< num_id
; ++i
)
2219 regulator_unregister_supply_alias(dev
, id
[i
]);
2221 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
2224 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2225 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
2226 const struct regulator_config
*config
)
2228 struct regulator_enable_gpio
*pin
;
2229 struct gpio_desc
*gpiod
;
2231 gpiod
= config
->ena_gpiod
;
2233 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
2234 if (pin
->gpiod
== gpiod
) {
2235 rdev_dbg(rdev
, "GPIO is already used\n");
2236 goto update_ena_gpio_to_rdev
;
2240 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
2245 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
2247 update_ena_gpio_to_rdev
:
2248 pin
->request_count
++;
2249 rdev
->ena_pin
= pin
;
2253 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
2255 struct regulator_enable_gpio
*pin
, *n
;
2260 /* Free the GPIO only in case of no use */
2261 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
2262 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
2263 if (pin
->request_count
<= 1) {
2264 pin
->request_count
= 0;
2265 gpiod_put(pin
->gpiod
);
2266 list_del(&pin
->list
);
2268 rdev
->ena_pin
= NULL
;
2271 pin
->request_count
--;
2278 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2279 * @rdev: regulator_dev structure
2280 * @enable: enable GPIO at initial use?
2282 * GPIO is enabled in case of initial use. (enable_count is 0)
2283 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2285 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2287 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2293 /* Enable GPIO at initial use */
2294 if (pin
->enable_count
== 0)
2295 gpiod_set_value_cansleep(pin
->gpiod
, 1);
2297 pin
->enable_count
++;
2299 if (pin
->enable_count
> 1) {
2300 pin
->enable_count
--;
2304 /* Disable GPIO if not used */
2305 if (pin
->enable_count
<= 1) {
2306 gpiod_set_value_cansleep(pin
->gpiod
, 0);
2307 pin
->enable_count
= 0;
2315 * _regulator_enable_delay - a delay helper function
2316 * @delay: time to delay in microseconds
2318 * Delay for the requested amount of time as per the guidelines in:
2320 * Documentation/timers/timers-howto.rst
2322 * The assumption here is that regulators will never be enabled in
2323 * atomic context and therefore sleeping functions can be used.
2325 static void _regulator_enable_delay(unsigned int delay
)
2327 unsigned int ms
= delay
/ 1000;
2328 unsigned int us
= delay
% 1000;
2332 * For small enough values, handle super-millisecond
2333 * delays in the usleep_range() call below.
2342 * Give the scheduler some room to coalesce with any other
2343 * wakeup sources. For delays shorter than 10 us, don't even
2344 * bother setting up high-resolution timers and just busy-
2348 usleep_range(us
, us
+ 100);
2353 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2357 /* Query before enabling in case configuration dependent. */
2358 ret
= _regulator_get_enable_time(rdev
);
2362 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2366 trace_regulator_enable(rdev_get_name(rdev
));
2368 if (rdev
->desc
->off_on_delay
) {
2369 /* if needed, keep a distance of off_on_delay from last time
2370 * this regulator was disabled.
2372 unsigned long start_jiffy
= jiffies
;
2373 unsigned long intended
, max_delay
, remaining
;
2375 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2376 intended
= rdev
->last_off_jiffy
+ max_delay
;
2378 if (time_before(start_jiffy
, intended
)) {
2379 /* calc remaining jiffies to deal with one-time
2381 * in case of multiple timer wrapping, either it can be
2382 * detected by out-of-range remaining, or it cannot be
2383 * detected and we get a penalty of
2384 * _regulator_enable_delay().
2386 remaining
= intended
- start_jiffy
;
2387 if (remaining
<= max_delay
)
2388 _regulator_enable_delay(
2389 jiffies_to_usecs(remaining
));
2393 if (rdev
->ena_pin
) {
2394 if (!rdev
->ena_gpio_state
) {
2395 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2398 rdev
->ena_gpio_state
= 1;
2400 } else if (rdev
->desc
->ops
->enable
) {
2401 ret
= rdev
->desc
->ops
->enable(rdev
);
2408 /* Allow the regulator to ramp; it would be useful to extend
2409 * this for bulk operations so that the regulators can ramp
2411 trace_regulator_enable_delay(rdev_get_name(rdev
));
2413 _regulator_enable_delay(delay
);
2415 trace_regulator_enable_complete(rdev_get_name(rdev
));
2421 * _regulator_handle_consumer_enable - handle that a consumer enabled
2422 * @regulator: regulator source
2424 * Some things on a regulator consumer (like the contribution towards total
2425 * load on the regulator) only have an effect when the consumer wants the
2426 * regulator enabled. Explained in example with two consumers of the same
2428 * consumer A: set_load(100); => total load = 0
2429 * consumer A: regulator_enable(); => total load = 100
2430 * consumer B: set_load(1000); => total load = 100
2431 * consumer B: regulator_enable(); => total load = 1100
2432 * consumer A: regulator_disable(); => total_load = 1000
2434 * This function (together with _regulator_handle_consumer_disable) is
2435 * responsible for keeping track of the refcount for a given regulator consumer
2436 * and applying / unapplying these things.
2438 * Returns 0 upon no error; -error upon error.
2440 static int _regulator_handle_consumer_enable(struct regulator
*regulator
)
2442 struct regulator_dev
*rdev
= regulator
->rdev
;
2444 lockdep_assert_held_once(&rdev
->mutex
.base
);
2446 regulator
->enable_count
++;
2447 if (regulator
->uA_load
&& regulator
->enable_count
== 1)
2448 return drms_uA_update(rdev
);
2454 * _regulator_handle_consumer_disable - handle that a consumer disabled
2455 * @regulator: regulator source
2457 * The opposite of _regulator_handle_consumer_enable().
2459 * Returns 0 upon no error; -error upon error.
2461 static int _regulator_handle_consumer_disable(struct regulator
*regulator
)
2463 struct regulator_dev
*rdev
= regulator
->rdev
;
2465 lockdep_assert_held_once(&rdev
->mutex
.base
);
2467 if (!regulator
->enable_count
) {
2468 rdev_err(rdev
, "Underflow of regulator enable count\n");
2472 regulator
->enable_count
--;
2473 if (regulator
->uA_load
&& regulator
->enable_count
== 0)
2474 return drms_uA_update(rdev
);
2479 /* locks held by regulator_enable() */
2480 static int _regulator_enable(struct regulator
*regulator
)
2482 struct regulator_dev
*rdev
= regulator
->rdev
;
2485 lockdep_assert_held_once(&rdev
->mutex
.base
);
2487 if (rdev
->use_count
== 0 && rdev
->supply
) {
2488 ret
= _regulator_enable(rdev
->supply
);
2493 /* balance only if there are regulators coupled */
2494 if (rdev
->coupling_desc
.n_coupled
> 1) {
2495 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2497 goto err_disable_supply
;
2500 ret
= _regulator_handle_consumer_enable(regulator
);
2502 goto err_disable_supply
;
2504 if (rdev
->use_count
== 0) {
2505 /* The regulator may on if it's not switchable or left on */
2506 ret
= _regulator_is_enabled(rdev
);
2507 if (ret
== -EINVAL
|| ret
== 0) {
2508 if (!regulator_ops_is_valid(rdev
,
2509 REGULATOR_CHANGE_STATUS
)) {
2511 goto err_consumer_disable
;
2514 ret
= _regulator_do_enable(rdev
);
2516 goto err_consumer_disable
;
2518 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2520 } else if (ret
< 0) {
2521 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2522 goto err_consumer_disable
;
2524 /* Fallthrough on positive return values - already enabled */
2531 err_consumer_disable
:
2532 _regulator_handle_consumer_disable(regulator
);
2535 if (rdev
->use_count
== 0 && rdev
->supply
)
2536 _regulator_disable(rdev
->supply
);
2542 * regulator_enable - enable regulator output
2543 * @regulator: regulator source
2545 * Request that the regulator be enabled with the regulator output at
2546 * the predefined voltage or current value. Calls to regulator_enable()
2547 * must be balanced with calls to regulator_disable().
2549 * NOTE: the output value can be set by other drivers, boot loader or may be
2550 * hardwired in the regulator.
2552 int regulator_enable(struct regulator
*regulator
)
2554 struct regulator_dev
*rdev
= regulator
->rdev
;
2555 struct ww_acquire_ctx ww_ctx
;
2558 regulator_lock_dependent(rdev
, &ww_ctx
);
2559 ret
= _regulator_enable(regulator
);
2560 regulator_unlock_dependent(rdev
, &ww_ctx
);
2564 EXPORT_SYMBOL_GPL(regulator_enable
);
2566 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2570 trace_regulator_disable(rdev_get_name(rdev
));
2572 if (rdev
->ena_pin
) {
2573 if (rdev
->ena_gpio_state
) {
2574 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2577 rdev
->ena_gpio_state
= 0;
2580 } else if (rdev
->desc
->ops
->disable
) {
2581 ret
= rdev
->desc
->ops
->disable(rdev
);
2586 /* cares about last_off_jiffy only if off_on_delay is required by
2589 if (rdev
->desc
->off_on_delay
)
2590 rdev
->last_off_jiffy
= jiffies
;
2592 trace_regulator_disable_complete(rdev_get_name(rdev
));
2597 /* locks held by regulator_disable() */
2598 static int _regulator_disable(struct regulator
*regulator
)
2600 struct regulator_dev
*rdev
= regulator
->rdev
;
2603 lockdep_assert_held_once(&rdev
->mutex
.base
);
2605 if (WARN(rdev
->use_count
<= 0,
2606 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2609 /* are we the last user and permitted to disable ? */
2610 if (rdev
->use_count
== 1 &&
2611 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2613 /* we are last user */
2614 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2615 ret
= _notifier_call_chain(rdev
,
2616 REGULATOR_EVENT_PRE_DISABLE
,
2618 if (ret
& NOTIFY_STOP_MASK
)
2621 ret
= _regulator_do_disable(rdev
);
2623 rdev_err(rdev
, "failed to disable\n");
2624 _notifier_call_chain(rdev
,
2625 REGULATOR_EVENT_ABORT_DISABLE
,
2629 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2633 rdev
->use_count
= 0;
2634 } else if (rdev
->use_count
> 1) {
2639 ret
= _regulator_handle_consumer_disable(regulator
);
2641 if (ret
== 0 && rdev
->coupling_desc
.n_coupled
> 1)
2642 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2644 if (ret
== 0 && rdev
->use_count
== 0 && rdev
->supply
)
2645 ret
= _regulator_disable(rdev
->supply
);
2651 * regulator_disable - disable regulator output
2652 * @regulator: regulator source
2654 * Disable the regulator output voltage or current. Calls to
2655 * regulator_enable() must be balanced with calls to
2656 * regulator_disable().
2658 * NOTE: this will only disable the regulator output if no other consumer
2659 * devices have it enabled, the regulator device supports disabling and
2660 * machine constraints permit this operation.
2662 int regulator_disable(struct regulator
*regulator
)
2664 struct regulator_dev
*rdev
= regulator
->rdev
;
2665 struct ww_acquire_ctx ww_ctx
;
2668 regulator_lock_dependent(rdev
, &ww_ctx
);
2669 ret
= _regulator_disable(regulator
);
2670 regulator_unlock_dependent(rdev
, &ww_ctx
);
2674 EXPORT_SYMBOL_GPL(regulator_disable
);
2676 /* locks held by regulator_force_disable() */
2677 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2681 lockdep_assert_held_once(&rdev
->mutex
.base
);
2683 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2684 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2685 if (ret
& NOTIFY_STOP_MASK
)
2688 ret
= _regulator_do_disable(rdev
);
2690 rdev_err(rdev
, "failed to force disable\n");
2691 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2692 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2696 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2697 REGULATOR_EVENT_DISABLE
, NULL
);
2703 * regulator_force_disable - force disable regulator output
2704 * @regulator: regulator source
2706 * Forcibly disable the regulator output voltage or current.
2707 * NOTE: this *will* disable the regulator output even if other consumer
2708 * devices have it enabled. This should be used for situations when device
2709 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2711 int regulator_force_disable(struct regulator
*regulator
)
2713 struct regulator_dev
*rdev
= regulator
->rdev
;
2714 struct ww_acquire_ctx ww_ctx
;
2717 regulator_lock_dependent(rdev
, &ww_ctx
);
2719 ret
= _regulator_force_disable(regulator
->rdev
);
2721 if (rdev
->coupling_desc
.n_coupled
> 1)
2722 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2724 if (regulator
->uA_load
) {
2725 regulator
->uA_load
= 0;
2726 ret
= drms_uA_update(rdev
);
2729 if (rdev
->use_count
!= 0 && rdev
->supply
)
2730 _regulator_disable(rdev
->supply
);
2732 regulator_unlock_dependent(rdev
, &ww_ctx
);
2736 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2738 static void regulator_disable_work(struct work_struct
*work
)
2740 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2742 struct ww_acquire_ctx ww_ctx
;
2744 struct regulator
*regulator
;
2745 int total_count
= 0;
2747 regulator_lock_dependent(rdev
, &ww_ctx
);
2750 * Workqueue functions queue the new work instance while the previous
2751 * work instance is being processed. Cancel the queued work instance
2752 * as the work instance under processing does the job of the queued
2755 cancel_delayed_work(&rdev
->disable_work
);
2757 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
2758 count
= regulator
->deferred_disables
;
2763 total_count
+= count
;
2764 regulator
->deferred_disables
= 0;
2766 for (i
= 0; i
< count
; i
++) {
2767 ret
= _regulator_disable(regulator
);
2769 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2772 WARN_ON(!total_count
);
2774 if (rdev
->coupling_desc
.n_coupled
> 1)
2775 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2777 regulator_unlock_dependent(rdev
, &ww_ctx
);
2781 * regulator_disable_deferred - disable regulator output with delay
2782 * @regulator: regulator source
2783 * @ms: milliseconds until the regulator is disabled
2785 * Execute regulator_disable() on the regulator after a delay. This
2786 * is intended for use with devices that require some time to quiesce.
2788 * NOTE: this will only disable the regulator output if no other consumer
2789 * devices have it enabled, the regulator device supports disabling and
2790 * machine constraints permit this operation.
2792 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2794 struct regulator_dev
*rdev
= regulator
->rdev
;
2797 return regulator_disable(regulator
);
2799 regulator_lock(rdev
);
2800 regulator
->deferred_disables
++;
2801 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2802 msecs_to_jiffies(ms
));
2803 regulator_unlock(rdev
);
2807 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2809 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2811 /* A GPIO control always takes precedence */
2813 return rdev
->ena_gpio_state
;
2815 /* If we don't know then assume that the regulator is always on */
2816 if (!rdev
->desc
->ops
->is_enabled
)
2819 return rdev
->desc
->ops
->is_enabled(rdev
);
2822 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
2823 unsigned selector
, int lock
)
2825 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2828 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2829 return rdev
->desc
->fixed_uV
;
2831 if (ops
->list_voltage
) {
2832 if (selector
>= rdev
->desc
->n_voltages
)
2835 regulator_lock(rdev
);
2836 ret
= ops
->list_voltage(rdev
, selector
);
2838 regulator_unlock(rdev
);
2839 } else if (rdev
->is_switch
&& rdev
->supply
) {
2840 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
2847 if (ret
< rdev
->constraints
->min_uV
)
2849 else if (ret
> rdev
->constraints
->max_uV
)
2857 * regulator_is_enabled - is the regulator output enabled
2858 * @regulator: regulator source
2860 * Returns positive if the regulator driver backing the source/client
2861 * has requested that the device be enabled, zero if it hasn't, else a
2862 * negative errno code.
2864 * Note that the device backing this regulator handle can have multiple
2865 * users, so it might be enabled even if regulator_enable() was never
2866 * called for this particular source.
2868 int regulator_is_enabled(struct regulator
*regulator
)
2872 if (regulator
->always_on
)
2875 regulator_lock(regulator
->rdev
);
2876 ret
= _regulator_is_enabled(regulator
->rdev
);
2877 regulator_unlock(regulator
->rdev
);
2881 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2884 * regulator_count_voltages - count regulator_list_voltage() selectors
2885 * @regulator: regulator source
2887 * Returns number of selectors, or negative errno. Selectors are
2888 * numbered starting at zero, and typically correspond to bitfields
2889 * in hardware registers.
2891 int regulator_count_voltages(struct regulator
*regulator
)
2893 struct regulator_dev
*rdev
= regulator
->rdev
;
2895 if (rdev
->desc
->n_voltages
)
2896 return rdev
->desc
->n_voltages
;
2898 if (!rdev
->is_switch
|| !rdev
->supply
)
2901 return regulator_count_voltages(rdev
->supply
);
2903 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2906 * regulator_list_voltage - enumerate supported voltages
2907 * @regulator: regulator source
2908 * @selector: identify voltage to list
2909 * Context: can sleep
2911 * Returns a voltage that can be passed to @regulator_set_voltage(),
2912 * zero if this selector code can't be used on this system, or a
2915 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2917 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
2919 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2922 * regulator_get_regmap - get the regulator's register map
2923 * @regulator: regulator source
2925 * Returns the register map for the given regulator, or an ERR_PTR value
2926 * if the regulator doesn't use regmap.
2928 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2930 struct regmap
*map
= regulator
->rdev
->regmap
;
2932 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2936 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2937 * @regulator: regulator source
2938 * @vsel_reg: voltage selector register, output parameter
2939 * @vsel_mask: mask for voltage selector bitfield, output parameter
2941 * Returns the hardware register offset and bitmask used for setting the
2942 * regulator voltage. This might be useful when configuring voltage-scaling
2943 * hardware or firmware that can make I2C requests behind the kernel's back,
2946 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2947 * and 0 is returned, otherwise a negative errno is returned.
2949 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2951 unsigned *vsel_mask
)
2953 struct regulator_dev
*rdev
= regulator
->rdev
;
2954 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2956 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2959 *vsel_reg
= rdev
->desc
->vsel_reg
;
2960 *vsel_mask
= rdev
->desc
->vsel_mask
;
2964 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2967 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2968 * @regulator: regulator source
2969 * @selector: identify voltage to list
2971 * Converts the selector to a hardware-specific voltage selector that can be
2972 * directly written to the regulator registers. The address of the voltage
2973 * register can be determined by calling @regulator_get_hardware_vsel_register.
2975 * On error a negative errno is returned.
2977 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2980 struct regulator_dev
*rdev
= regulator
->rdev
;
2981 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2983 if (selector
>= rdev
->desc
->n_voltages
)
2985 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2990 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2993 * regulator_get_linear_step - return the voltage step size between VSEL values
2994 * @regulator: regulator source
2996 * Returns the voltage step size between VSEL values for linear
2997 * regulators, or return 0 if the regulator isn't a linear regulator.
2999 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
3001 struct regulator_dev
*rdev
= regulator
->rdev
;
3003 return rdev
->desc
->uV_step
;
3005 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
3008 * regulator_is_supported_voltage - check if a voltage range can be supported
3010 * @regulator: Regulator to check.
3011 * @min_uV: Minimum required voltage in uV.
3012 * @max_uV: Maximum required voltage in uV.
3014 * Returns a boolean.
3016 int regulator_is_supported_voltage(struct regulator
*regulator
,
3017 int min_uV
, int max_uV
)
3019 struct regulator_dev
*rdev
= regulator
->rdev
;
3020 int i
, voltages
, ret
;
3022 /* If we can't change voltage check the current voltage */
3023 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3024 ret
= regulator_get_voltage(regulator
);
3026 return min_uV
<= ret
&& ret
<= max_uV
;
3031 /* Any voltage within constrains range is fine? */
3032 if (rdev
->desc
->continuous_voltage_range
)
3033 return min_uV
>= rdev
->constraints
->min_uV
&&
3034 max_uV
<= rdev
->constraints
->max_uV
;
3036 ret
= regulator_count_voltages(regulator
);
3041 for (i
= 0; i
< voltages
; i
++) {
3042 ret
= regulator_list_voltage(regulator
, i
);
3044 if (ret
>= min_uV
&& ret
<= max_uV
)
3050 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
3052 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
3055 const struct regulator_desc
*desc
= rdev
->desc
;
3057 if (desc
->ops
->map_voltage
)
3058 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
3060 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
3061 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
3063 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
3064 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
3066 if (desc
->ops
->list_voltage
==
3067 regulator_list_voltage_pickable_linear_range
)
3068 return regulator_map_voltage_pickable_linear_range(rdev
,
3071 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
3074 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
3075 int min_uV
, int max_uV
,
3078 struct pre_voltage_change_data data
;
3081 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3082 data
.min_uV
= min_uV
;
3083 data
.max_uV
= max_uV
;
3084 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3086 if (ret
& NOTIFY_STOP_MASK
)
3089 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
3093 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3094 (void *)data
.old_uV
);
3099 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
3100 int uV
, unsigned selector
)
3102 struct pre_voltage_change_data data
;
3105 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3108 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3110 if (ret
& NOTIFY_STOP_MASK
)
3113 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
3117 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3118 (void *)data
.old_uV
);
3123 static int _regulator_set_voltage_sel_step(struct regulator_dev
*rdev
,
3124 int uV
, int new_selector
)
3126 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3127 int diff
, old_sel
, curr_sel
, ret
;
3129 /* Stepping is only needed if the regulator is enabled. */
3130 if (!_regulator_is_enabled(rdev
))
3133 if (!ops
->get_voltage_sel
)
3136 old_sel
= ops
->get_voltage_sel(rdev
);
3140 diff
= new_selector
- old_sel
;
3142 return 0; /* No change needed. */
3146 for (curr_sel
= old_sel
+ rdev
->desc
->vsel_step
;
3147 curr_sel
< new_selector
;
3148 curr_sel
+= rdev
->desc
->vsel_step
) {
3150 * Call the callback directly instead of using
3151 * _regulator_call_set_voltage_sel() as we don't
3152 * want to notify anyone yet. Same in the branch
3155 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3160 /* Stepping down. */
3161 for (curr_sel
= old_sel
- rdev
->desc
->vsel_step
;
3162 curr_sel
> new_selector
;
3163 curr_sel
-= rdev
->desc
->vsel_step
) {
3164 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3171 /* The final selector will trigger the notifiers. */
3172 return _regulator_call_set_voltage_sel(rdev
, uV
, new_selector
);
3176 * At least try to return to the previous voltage if setting a new
3179 (void)ops
->set_voltage_sel(rdev
, old_sel
);
3183 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
3184 int old_uV
, int new_uV
)
3186 unsigned int ramp_delay
= 0;
3188 if (rdev
->constraints
->ramp_delay
)
3189 ramp_delay
= rdev
->constraints
->ramp_delay
;
3190 else if (rdev
->desc
->ramp_delay
)
3191 ramp_delay
= rdev
->desc
->ramp_delay
;
3192 else if (rdev
->constraints
->settling_time
)
3193 return rdev
->constraints
->settling_time
;
3194 else if (rdev
->constraints
->settling_time_up
&&
3196 return rdev
->constraints
->settling_time_up
;
3197 else if (rdev
->constraints
->settling_time_down
&&
3199 return rdev
->constraints
->settling_time_down
;
3201 if (ramp_delay
== 0) {
3202 rdev_dbg(rdev
, "ramp_delay not set\n");
3206 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
3209 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
3210 int min_uV
, int max_uV
)
3215 unsigned int selector
;
3216 int old_selector
= -1;
3217 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3218 int old_uV
= regulator_get_voltage_rdev(rdev
);
3220 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
3222 min_uV
+= rdev
->constraints
->uV_offset
;
3223 max_uV
+= rdev
->constraints
->uV_offset
;
3226 * If we can't obtain the old selector there is not enough
3227 * info to call set_voltage_time_sel().
3229 if (_regulator_is_enabled(rdev
) &&
3230 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
3231 old_selector
= ops
->get_voltage_sel(rdev
);
3232 if (old_selector
< 0)
3233 return old_selector
;
3236 if (ops
->set_voltage
) {
3237 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
3241 if (ops
->list_voltage
)
3242 best_val
= ops
->list_voltage(rdev
,
3245 best_val
= regulator_get_voltage_rdev(rdev
);
3248 } else if (ops
->set_voltage_sel
) {
3249 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3251 best_val
= ops
->list_voltage(rdev
, ret
);
3252 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
3254 if (old_selector
== selector
)
3256 else if (rdev
->desc
->vsel_step
)
3257 ret
= _regulator_set_voltage_sel_step(
3258 rdev
, best_val
, selector
);
3260 ret
= _regulator_call_set_voltage_sel(
3261 rdev
, best_val
, selector
);
3273 if (ops
->set_voltage_time_sel
) {
3275 * Call set_voltage_time_sel if successfully obtained
3278 if (old_selector
>= 0 && old_selector
!= selector
)
3279 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
3282 if (old_uV
!= best_val
) {
3283 if (ops
->set_voltage_time
)
3284 delay
= ops
->set_voltage_time(rdev
, old_uV
,
3287 delay
= _regulator_set_voltage_time(rdev
,
3294 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
3298 /* Insert any necessary delays */
3299 if (delay
>= 1000) {
3300 mdelay(delay
/ 1000);
3301 udelay(delay
% 1000);
3306 if (best_val
>= 0) {
3307 unsigned long data
= best_val
;
3309 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
3314 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
3319 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
3320 int min_uV
, int max_uV
, suspend_state_t state
)
3322 struct regulator_state
*rstate
;
3325 rstate
= regulator_get_suspend_state(rdev
, state
);
3329 if (min_uV
< rstate
->min_uV
)
3330 min_uV
= rstate
->min_uV
;
3331 if (max_uV
> rstate
->max_uV
)
3332 max_uV
= rstate
->max_uV
;
3334 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3338 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3339 if (uV
>= min_uV
&& uV
<= max_uV
)
3345 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
3346 int min_uV
, int max_uV
,
3347 suspend_state_t state
)
3349 struct regulator_dev
*rdev
= regulator
->rdev
;
3350 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
3352 int old_min_uV
, old_max_uV
;
3355 /* If we're setting the same range as last time the change
3356 * should be a noop (some cpufreq implementations use the same
3357 * voltage for multiple frequencies, for example).
3359 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
3362 /* If we're trying to set a range that overlaps the current voltage,
3363 * return successfully even though the regulator does not support
3364 * changing the voltage.
3366 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3367 current_uV
= regulator_get_voltage_rdev(rdev
);
3368 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
3369 voltage
->min_uV
= min_uV
;
3370 voltage
->max_uV
= max_uV
;
3376 if (!rdev
->desc
->ops
->set_voltage
&&
3377 !rdev
->desc
->ops
->set_voltage_sel
) {
3382 /* constraints check */
3383 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3387 /* restore original values in case of error */
3388 old_min_uV
= voltage
->min_uV
;
3389 old_max_uV
= voltage
->max_uV
;
3390 voltage
->min_uV
= min_uV
;
3391 voltage
->max_uV
= max_uV
;
3393 /* for not coupled regulators this will just set the voltage */
3394 ret
= regulator_balance_voltage(rdev
, state
);
3396 voltage
->min_uV
= old_min_uV
;
3397 voltage
->max_uV
= old_max_uV
;
3404 int regulator_set_voltage_rdev(struct regulator_dev
*rdev
, int min_uV
,
3405 int max_uV
, suspend_state_t state
)
3407 int best_supply_uV
= 0;
3408 int supply_change_uV
= 0;
3412 regulator_ops_is_valid(rdev
->supply
->rdev
,
3413 REGULATOR_CHANGE_VOLTAGE
) &&
3414 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
3415 rdev
->desc
->ops
->get_voltage_sel
))) {
3416 int current_supply_uV
;
3419 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3425 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
3426 if (best_supply_uV
< 0) {
3427 ret
= best_supply_uV
;
3431 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
3433 current_supply_uV
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
3434 if (current_supply_uV
< 0) {
3435 ret
= current_supply_uV
;
3439 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3442 if (supply_change_uV
> 0) {
3443 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3444 best_supply_uV
, INT_MAX
, state
);
3446 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
3452 if (state
== PM_SUSPEND_ON
)
3453 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3455 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3460 if (supply_change_uV
< 0) {
3461 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3462 best_supply_uV
, INT_MAX
, state
);
3464 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3466 /* No need to fail here */
3473 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev
);
3475 static int regulator_limit_voltage_step(struct regulator_dev
*rdev
,
3476 int *current_uV
, int *min_uV
)
3478 struct regulation_constraints
*constraints
= rdev
->constraints
;
3480 /* Limit voltage change only if necessary */
3481 if (!constraints
->max_uV_step
|| !_regulator_is_enabled(rdev
))
3484 if (*current_uV
< 0) {
3485 *current_uV
= regulator_get_voltage_rdev(rdev
);
3487 if (*current_uV
< 0)
3491 if (abs(*current_uV
- *min_uV
) <= constraints
->max_uV_step
)
3494 /* Clamp target voltage within the given step */
3495 if (*current_uV
< *min_uV
)
3496 *min_uV
= min(*current_uV
+ constraints
->max_uV_step
,
3499 *min_uV
= max(*current_uV
- constraints
->max_uV_step
,
3505 static int regulator_get_optimal_voltage(struct regulator_dev
*rdev
,
3507 int *min_uV
, int *max_uV
,
3508 suspend_state_t state
,
3511 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3512 struct regulator_dev
**c_rdevs
= c_desc
->coupled_rdevs
;
3513 struct regulation_constraints
*constraints
= rdev
->constraints
;
3514 int desired_min_uV
= 0, desired_max_uV
= INT_MAX
;
3515 int max_current_uV
= 0, min_current_uV
= INT_MAX
;
3516 int highest_min_uV
= 0, target_uV
, possible_uV
;
3517 int i
, ret
, max_spread
;
3523 * If there are no coupled regulators, simply set the voltage
3524 * demanded by consumers.
3526 if (n_coupled
== 1) {
3528 * If consumers don't provide any demands, set voltage
3531 desired_min_uV
= constraints
->min_uV
;
3532 desired_max_uV
= constraints
->max_uV
;
3534 ret
= regulator_check_consumers(rdev
,
3536 &desired_max_uV
, state
);
3540 possible_uV
= desired_min_uV
;
3546 /* Find highest min desired voltage */
3547 for (i
= 0; i
< n_coupled
; i
++) {
3549 int tmp_max
= INT_MAX
;
3551 lockdep_assert_held_once(&c_rdevs
[i
]->mutex
.base
);
3553 ret
= regulator_check_consumers(c_rdevs
[i
],
3559 ret
= regulator_check_voltage(c_rdevs
[i
], &tmp_min
, &tmp_max
);
3563 highest_min_uV
= max(highest_min_uV
, tmp_min
);
3566 desired_min_uV
= tmp_min
;
3567 desired_max_uV
= tmp_max
;
3571 max_spread
= constraints
->max_spread
[0];
3574 * Let target_uV be equal to the desired one if possible.
3575 * If not, set it to minimum voltage, allowed by other coupled
3578 target_uV
= max(desired_min_uV
, highest_min_uV
- max_spread
);
3581 * Find min and max voltages, which currently aren't violating
3584 for (i
= 1; i
< n_coupled
; i
++) {
3587 if (!_regulator_is_enabled(c_rdevs
[i
]))
3590 tmp_act
= regulator_get_voltage_rdev(c_rdevs
[i
]);
3594 min_current_uV
= min(tmp_act
, min_current_uV
);
3595 max_current_uV
= max(tmp_act
, max_current_uV
);
3598 /* There aren't any other regulators enabled */
3599 if (max_current_uV
== 0) {
3600 possible_uV
= target_uV
;
3603 * Correct target voltage, so as it currently isn't
3604 * violating max_spread
3606 possible_uV
= max(target_uV
, max_current_uV
- max_spread
);
3607 possible_uV
= min(possible_uV
, min_current_uV
+ max_spread
);
3610 if (possible_uV
> desired_max_uV
)
3613 done
= (possible_uV
== target_uV
);
3614 desired_min_uV
= possible_uV
;
3617 /* Apply max_uV_step constraint if necessary */
3618 if (state
== PM_SUSPEND_ON
) {
3619 ret
= regulator_limit_voltage_step(rdev
, current_uV
,
3628 /* Set current_uV if wasn't done earlier in the code and if necessary */
3629 if (n_coupled
> 1 && *current_uV
== -1) {
3631 if (_regulator_is_enabled(rdev
)) {
3632 ret
= regulator_get_voltage_rdev(rdev
);
3638 *current_uV
= desired_min_uV
;
3642 *min_uV
= desired_min_uV
;
3643 *max_uV
= desired_max_uV
;
3648 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
3649 suspend_state_t state
)
3651 struct regulator_dev
**c_rdevs
;
3652 struct regulator_dev
*best_rdev
;
3653 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3654 struct regulator_coupler
*coupler
= c_desc
->coupler
;
3655 int i
, ret
, n_coupled
, best_min_uV
, best_max_uV
, best_c_rdev
;
3656 unsigned int delta
, best_delta
;
3657 unsigned long c_rdev_done
= 0;
3658 bool best_c_rdev_done
;
3660 c_rdevs
= c_desc
->coupled_rdevs
;
3661 n_coupled
= c_desc
->n_coupled
;
3664 * If system is in a state other than PM_SUSPEND_ON, don't check
3665 * other coupled regulators.
3667 if (state
!= PM_SUSPEND_ON
)
3670 if (c_desc
->n_resolved
< n_coupled
) {
3671 rdev_err(rdev
, "Not all coupled regulators registered\n");
3675 /* Invoke custom balancer for customized couplers */
3676 if (coupler
&& coupler
->balance_voltage
)
3677 return coupler
->balance_voltage(coupler
, rdev
, state
);
3680 * Find the best possible voltage change on each loop. Leave the loop
3681 * if there isn't any possible change.
3684 best_c_rdev_done
= false;
3692 * Find highest difference between optimal voltage
3693 * and current voltage.
3695 for (i
= 0; i
< n_coupled
; i
++) {
3697 * optimal_uV is the best voltage that can be set for
3698 * i-th regulator at the moment without violating
3699 * max_spread constraint in order to balance
3700 * the coupled voltages.
3702 int optimal_uV
= 0, optimal_max_uV
= 0, current_uV
= 0;
3704 if (test_bit(i
, &c_rdev_done
))
3707 ret
= regulator_get_optimal_voltage(c_rdevs
[i
],
3715 delta
= abs(optimal_uV
- current_uV
);
3717 if (delta
&& best_delta
<= delta
) {
3718 best_c_rdev_done
= ret
;
3720 best_rdev
= c_rdevs
[i
];
3721 best_min_uV
= optimal_uV
;
3722 best_max_uV
= optimal_max_uV
;
3727 /* Nothing to change, return successfully */
3733 ret
= regulator_set_voltage_rdev(best_rdev
, best_min_uV
,
3734 best_max_uV
, state
);
3739 if (best_c_rdev_done
)
3740 set_bit(best_c_rdev
, &c_rdev_done
);
3742 } while (n_coupled
> 1);
3749 * regulator_set_voltage - set regulator output voltage
3750 * @regulator: regulator source
3751 * @min_uV: Minimum required voltage in uV
3752 * @max_uV: Maximum acceptable voltage in uV
3754 * Sets a voltage regulator to the desired output voltage. This can be set
3755 * during any regulator state. IOW, regulator can be disabled or enabled.
3757 * If the regulator is enabled then the voltage will change to the new value
3758 * immediately otherwise if the regulator is disabled the regulator will
3759 * output at the new voltage when enabled.
3761 * NOTE: If the regulator is shared between several devices then the lowest
3762 * request voltage that meets the system constraints will be used.
3763 * Regulator system constraints must be set for this regulator before
3764 * calling this function otherwise this call will fail.
3766 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3768 struct ww_acquire_ctx ww_ctx
;
3771 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3773 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
3776 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3780 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3782 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
3783 suspend_state_t state
, bool en
)
3785 struct regulator_state
*rstate
;
3787 rstate
= regulator_get_suspend_state(rdev
, state
);
3791 if (!rstate
->changeable
)
3794 rstate
->enabled
= (en
) ? ENABLE_IN_SUSPEND
: DISABLE_IN_SUSPEND
;
3799 int regulator_suspend_enable(struct regulator_dev
*rdev
,
3800 suspend_state_t state
)
3802 return regulator_suspend_toggle(rdev
, state
, true);
3804 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
3806 int regulator_suspend_disable(struct regulator_dev
*rdev
,
3807 suspend_state_t state
)
3809 struct regulator
*regulator
;
3810 struct regulator_voltage
*voltage
;
3813 * if any consumer wants this regulator device keeping on in
3814 * suspend states, don't set it as disabled.
3816 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3817 voltage
= ®ulator
->voltage
[state
];
3818 if (voltage
->min_uV
|| voltage
->max_uV
)
3822 return regulator_suspend_toggle(rdev
, state
, false);
3824 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
3826 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
3827 int min_uV
, int max_uV
,
3828 suspend_state_t state
)
3830 struct regulator_dev
*rdev
= regulator
->rdev
;
3831 struct regulator_state
*rstate
;
3833 rstate
= regulator_get_suspend_state(rdev
, state
);
3837 if (rstate
->min_uV
== rstate
->max_uV
) {
3838 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
3842 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
3845 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
3846 int max_uV
, suspend_state_t state
)
3848 struct ww_acquire_ctx ww_ctx
;
3851 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3852 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
3855 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3857 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
3860 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3864 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
3867 * regulator_set_voltage_time - get raise/fall time
3868 * @regulator: regulator source
3869 * @old_uV: starting voltage in microvolts
3870 * @new_uV: target voltage in microvolts
3872 * Provided with the starting and ending voltage, this function attempts to
3873 * calculate the time in microseconds required to rise or fall to this new
3876 int regulator_set_voltage_time(struct regulator
*regulator
,
3877 int old_uV
, int new_uV
)
3879 struct regulator_dev
*rdev
= regulator
->rdev
;
3880 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3886 if (ops
->set_voltage_time
)
3887 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3888 else if (!ops
->set_voltage_time_sel
)
3889 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3891 /* Currently requires operations to do this */
3892 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3895 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3896 /* We only look for exact voltage matches here */
3897 voltage
= regulator_list_voltage(regulator
, i
);
3902 if (voltage
== old_uV
)
3904 if (voltage
== new_uV
)
3908 if (old_sel
< 0 || new_sel
< 0)
3911 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3913 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3916 * regulator_set_voltage_time_sel - get raise/fall time
3917 * @rdev: regulator source device
3918 * @old_selector: selector for starting voltage
3919 * @new_selector: selector for target voltage
3921 * Provided with the starting and target voltage selectors, this function
3922 * returns time in microseconds required to rise or fall to this new voltage
3924 * Drivers providing ramp_delay in regulation_constraints can use this as their
3925 * set_voltage_time_sel() operation.
3927 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3928 unsigned int old_selector
,
3929 unsigned int new_selector
)
3931 int old_volt
, new_volt
;
3934 if (!rdev
->desc
->ops
->list_voltage
)
3937 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3938 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3940 if (rdev
->desc
->ops
->set_voltage_time
)
3941 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
3944 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
3946 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3949 * regulator_sync_voltage - re-apply last regulator output voltage
3950 * @regulator: regulator source
3952 * Re-apply the last configured voltage. This is intended to be used
3953 * where some external control source the consumer is cooperating with
3954 * has caused the configured voltage to change.
3956 int regulator_sync_voltage(struct regulator
*regulator
)
3958 struct regulator_dev
*rdev
= regulator
->rdev
;
3959 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
3960 int ret
, min_uV
, max_uV
;
3962 regulator_lock(rdev
);
3964 if (!rdev
->desc
->ops
->set_voltage
&&
3965 !rdev
->desc
->ops
->set_voltage_sel
) {
3970 /* This is only going to work if we've had a voltage configured. */
3971 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
3976 min_uV
= voltage
->min_uV
;
3977 max_uV
= voltage
->max_uV
;
3979 /* This should be a paranoia check... */
3980 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3984 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
3988 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3991 regulator_unlock(rdev
);
3994 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3996 int regulator_get_voltage_rdev(struct regulator_dev
*rdev
)
4001 if (rdev
->desc
->ops
->get_bypass
) {
4002 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
4006 /* if bypassed the regulator must have a supply */
4007 if (!rdev
->supply
) {
4009 "bypassed regulator has no supply!\n");
4010 return -EPROBE_DEFER
;
4013 return regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4017 if (rdev
->desc
->ops
->get_voltage_sel
) {
4018 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
4021 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
4022 } else if (rdev
->desc
->ops
->get_voltage
) {
4023 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
4024 } else if (rdev
->desc
->ops
->list_voltage
) {
4025 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
4026 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
4027 ret
= rdev
->desc
->fixed_uV
;
4028 } else if (rdev
->supply
) {
4029 ret
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4036 return ret
- rdev
->constraints
->uV_offset
;
4038 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev
);
4041 * regulator_get_voltage - get regulator output voltage
4042 * @regulator: regulator source
4044 * This returns the current regulator voltage in uV.
4046 * NOTE: If the regulator is disabled it will return the voltage value. This
4047 * function should not be used to determine regulator state.
4049 int regulator_get_voltage(struct regulator
*regulator
)
4051 struct ww_acquire_ctx ww_ctx
;
4054 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
4055 ret
= regulator_get_voltage_rdev(regulator
->rdev
);
4056 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
4060 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
4063 * regulator_set_current_limit - set regulator output current limit
4064 * @regulator: regulator source
4065 * @min_uA: Minimum supported current in uA
4066 * @max_uA: Maximum supported current in uA
4068 * Sets current sink to the desired output current. This can be set during
4069 * any regulator state. IOW, regulator can be disabled or enabled.
4071 * If the regulator is enabled then the current will change to the new value
4072 * immediately otherwise if the regulator is disabled the regulator will
4073 * output at the new current when enabled.
4075 * NOTE: Regulator system constraints must be set for this regulator before
4076 * calling this function otherwise this call will fail.
4078 int regulator_set_current_limit(struct regulator
*regulator
,
4079 int min_uA
, int max_uA
)
4081 struct regulator_dev
*rdev
= regulator
->rdev
;
4084 regulator_lock(rdev
);
4087 if (!rdev
->desc
->ops
->set_current_limit
) {
4092 /* constraints check */
4093 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
4097 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
4099 regulator_unlock(rdev
);
4102 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
4104 static int _regulator_get_current_limit_unlocked(struct regulator_dev
*rdev
)
4107 if (!rdev
->desc
->ops
->get_current_limit
)
4110 return rdev
->desc
->ops
->get_current_limit(rdev
);
4113 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
4117 regulator_lock(rdev
);
4118 ret
= _regulator_get_current_limit_unlocked(rdev
);
4119 regulator_unlock(rdev
);
4125 * regulator_get_current_limit - get regulator output current
4126 * @regulator: regulator source
4128 * This returns the current supplied by the specified current sink in uA.
4130 * NOTE: If the regulator is disabled it will return the current value. This
4131 * function should not be used to determine regulator state.
4133 int regulator_get_current_limit(struct regulator
*regulator
)
4135 return _regulator_get_current_limit(regulator
->rdev
);
4137 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
4140 * regulator_set_mode - set regulator operating mode
4141 * @regulator: regulator source
4142 * @mode: operating mode - one of the REGULATOR_MODE constants
4144 * Set regulator operating mode to increase regulator efficiency or improve
4145 * regulation performance.
4147 * NOTE: Regulator system constraints must be set for this regulator before
4148 * calling this function otherwise this call will fail.
4150 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
4152 struct regulator_dev
*rdev
= regulator
->rdev
;
4154 int regulator_curr_mode
;
4156 regulator_lock(rdev
);
4159 if (!rdev
->desc
->ops
->set_mode
) {
4164 /* return if the same mode is requested */
4165 if (rdev
->desc
->ops
->get_mode
) {
4166 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
4167 if (regulator_curr_mode
== mode
) {
4173 /* constraints check */
4174 ret
= regulator_mode_constrain(rdev
, &mode
);
4178 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
4180 regulator_unlock(rdev
);
4183 EXPORT_SYMBOL_GPL(regulator_set_mode
);
4185 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev
*rdev
)
4188 if (!rdev
->desc
->ops
->get_mode
)
4191 return rdev
->desc
->ops
->get_mode(rdev
);
4194 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
4198 regulator_lock(rdev
);
4199 ret
= _regulator_get_mode_unlocked(rdev
);
4200 regulator_unlock(rdev
);
4206 * regulator_get_mode - get regulator operating mode
4207 * @regulator: regulator source
4209 * Get the current regulator operating mode.
4211 unsigned int regulator_get_mode(struct regulator
*regulator
)
4213 return _regulator_get_mode(regulator
->rdev
);
4215 EXPORT_SYMBOL_GPL(regulator_get_mode
);
4217 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
4218 unsigned int *flags
)
4222 regulator_lock(rdev
);
4225 if (!rdev
->desc
->ops
->get_error_flags
) {
4230 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
4232 regulator_unlock(rdev
);
4237 * regulator_get_error_flags - get regulator error information
4238 * @regulator: regulator source
4239 * @flags: pointer to store error flags
4241 * Get the current regulator error information.
4243 int regulator_get_error_flags(struct regulator
*regulator
,
4244 unsigned int *flags
)
4246 return _regulator_get_error_flags(regulator
->rdev
, flags
);
4248 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
4251 * regulator_set_load - set regulator load
4252 * @regulator: regulator source
4253 * @uA_load: load current
4255 * Notifies the regulator core of a new device load. This is then used by
4256 * DRMS (if enabled by constraints) to set the most efficient regulator
4257 * operating mode for the new regulator loading.
4259 * Consumer devices notify their supply regulator of the maximum power
4260 * they will require (can be taken from device datasheet in the power
4261 * consumption tables) when they change operational status and hence power
4262 * state. Examples of operational state changes that can affect power
4263 * consumption are :-
4265 * o Device is opened / closed.
4266 * o Device I/O is about to begin or has just finished.
4267 * o Device is idling in between work.
4269 * This information is also exported via sysfs to userspace.
4271 * DRMS will sum the total requested load on the regulator and change
4272 * to the most efficient operating mode if platform constraints allow.
4274 * NOTE: when a regulator consumer requests to have a regulator
4275 * disabled then any load that consumer requested no longer counts
4276 * toward the total requested load. If the regulator is re-enabled
4277 * then the previously requested load will start counting again.
4279 * If a regulator is an always-on regulator then an individual consumer's
4280 * load will still be removed if that consumer is fully disabled.
4282 * On error a negative errno is returned.
4284 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
4286 struct regulator_dev
*rdev
= regulator
->rdev
;
4290 regulator_lock(rdev
);
4291 old_uA_load
= regulator
->uA_load
;
4292 regulator
->uA_load
= uA_load
;
4293 if (regulator
->enable_count
&& old_uA_load
!= uA_load
) {
4294 ret
= drms_uA_update(rdev
);
4296 regulator
->uA_load
= old_uA_load
;
4298 regulator_unlock(rdev
);
4302 EXPORT_SYMBOL_GPL(regulator_set_load
);
4305 * regulator_allow_bypass - allow the regulator to go into bypass mode
4307 * @regulator: Regulator to configure
4308 * @enable: enable or disable bypass mode
4310 * Allow the regulator to go into bypass mode if all other consumers
4311 * for the regulator also enable bypass mode and the machine
4312 * constraints allow this. Bypass mode means that the regulator is
4313 * simply passing the input directly to the output with no regulation.
4315 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
4317 struct regulator_dev
*rdev
= regulator
->rdev
;
4320 if (!rdev
->desc
->ops
->set_bypass
)
4323 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
4326 regulator_lock(rdev
);
4328 if (enable
&& !regulator
->bypass
) {
4329 rdev
->bypass_count
++;
4331 if (rdev
->bypass_count
== rdev
->open_count
) {
4332 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4334 rdev
->bypass_count
--;
4337 } else if (!enable
&& regulator
->bypass
) {
4338 rdev
->bypass_count
--;
4340 if (rdev
->bypass_count
!= rdev
->open_count
) {
4341 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4343 rdev
->bypass_count
++;
4348 regulator
->bypass
= enable
;
4350 regulator_unlock(rdev
);
4354 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
4357 * regulator_register_notifier - register regulator event notifier
4358 * @regulator: regulator source
4359 * @nb: notifier block
4361 * Register notifier block to receive regulator events.
4363 int regulator_register_notifier(struct regulator
*regulator
,
4364 struct notifier_block
*nb
)
4366 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
4369 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
4372 * regulator_unregister_notifier - unregister regulator event notifier
4373 * @regulator: regulator source
4374 * @nb: notifier block
4376 * Unregister regulator event notifier block.
4378 int regulator_unregister_notifier(struct regulator
*regulator
,
4379 struct notifier_block
*nb
)
4381 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
4384 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
4386 /* notify regulator consumers and downstream regulator consumers.
4387 * Note mutex must be held by caller.
4389 static int _notifier_call_chain(struct regulator_dev
*rdev
,
4390 unsigned long event
, void *data
)
4392 /* call rdev chain first */
4393 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
4397 * regulator_bulk_get - get multiple regulator consumers
4399 * @dev: Device to supply
4400 * @num_consumers: Number of consumers to register
4401 * @consumers: Configuration of consumers; clients are stored here.
4403 * @return 0 on success, an errno on failure.
4405 * This helper function allows drivers to get several regulator
4406 * consumers in one operation. If any of the regulators cannot be
4407 * acquired then any regulators that were allocated will be freed
4408 * before returning to the caller.
4410 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
4411 struct regulator_bulk_data
*consumers
)
4416 for (i
= 0; i
< num_consumers
; i
++)
4417 consumers
[i
].consumer
= NULL
;
4419 for (i
= 0; i
< num_consumers
; i
++) {
4420 consumers
[i
].consumer
= regulator_get(dev
,
4421 consumers
[i
].supply
);
4422 if (IS_ERR(consumers
[i
].consumer
)) {
4423 ret
= PTR_ERR(consumers
[i
].consumer
);
4424 consumers
[i
].consumer
= NULL
;
4432 if (ret
!= -EPROBE_DEFER
)
4433 dev_err(dev
, "Failed to get supply '%s': %d\n",
4434 consumers
[i
].supply
, ret
);
4436 dev_dbg(dev
, "Failed to get supply '%s', deferring\n",
4437 consumers
[i
].supply
);
4440 regulator_put(consumers
[i
].consumer
);
4444 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
4446 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
4448 struct regulator_bulk_data
*bulk
= data
;
4450 bulk
->ret
= regulator_enable(bulk
->consumer
);
4454 * regulator_bulk_enable - enable multiple regulator consumers
4456 * @num_consumers: Number of consumers
4457 * @consumers: Consumer data; clients are stored here.
4458 * @return 0 on success, an errno on failure
4460 * This convenience API allows consumers to enable multiple regulator
4461 * clients in a single API call. If any consumers cannot be enabled
4462 * then any others that were enabled will be disabled again prior to
4465 int regulator_bulk_enable(int num_consumers
,
4466 struct regulator_bulk_data
*consumers
)
4468 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
4472 for (i
= 0; i
< num_consumers
; i
++) {
4473 async_schedule_domain(regulator_bulk_enable_async
,
4474 &consumers
[i
], &async_domain
);
4477 async_synchronize_full_domain(&async_domain
);
4479 /* If any consumer failed we need to unwind any that succeeded */
4480 for (i
= 0; i
< num_consumers
; i
++) {
4481 if (consumers
[i
].ret
!= 0) {
4482 ret
= consumers
[i
].ret
;
4490 for (i
= 0; i
< num_consumers
; i
++) {
4491 if (consumers
[i
].ret
< 0)
4492 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
4495 regulator_disable(consumers
[i
].consumer
);
4500 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
4503 * regulator_bulk_disable - disable multiple regulator consumers
4505 * @num_consumers: Number of consumers
4506 * @consumers: Consumer data; clients are stored here.
4507 * @return 0 on success, an errno on failure
4509 * This convenience API allows consumers to disable multiple regulator
4510 * clients in a single API call. If any consumers cannot be disabled
4511 * then any others that were disabled will be enabled again prior to
4514 int regulator_bulk_disable(int num_consumers
,
4515 struct regulator_bulk_data
*consumers
)
4520 for (i
= num_consumers
- 1; i
>= 0; --i
) {
4521 ret
= regulator_disable(consumers
[i
].consumer
);
4529 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
4530 for (++i
; i
< num_consumers
; ++i
) {
4531 r
= regulator_enable(consumers
[i
].consumer
);
4533 pr_err("Failed to re-enable %s: %d\n",
4534 consumers
[i
].supply
, r
);
4539 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
4542 * regulator_bulk_force_disable - force disable multiple regulator consumers
4544 * @num_consumers: Number of consumers
4545 * @consumers: Consumer data; clients are stored here.
4546 * @return 0 on success, an errno on failure
4548 * This convenience API allows consumers to forcibly disable multiple regulator
4549 * clients in a single API call.
4550 * NOTE: This should be used for situations when device damage will
4551 * likely occur if the regulators are not disabled (e.g. over temp).
4552 * Although regulator_force_disable function call for some consumers can
4553 * return error numbers, the function is called for all consumers.
4555 int regulator_bulk_force_disable(int num_consumers
,
4556 struct regulator_bulk_data
*consumers
)
4561 for (i
= 0; i
< num_consumers
; i
++) {
4563 regulator_force_disable(consumers
[i
].consumer
);
4565 /* Store first error for reporting */
4566 if (consumers
[i
].ret
&& !ret
)
4567 ret
= consumers
[i
].ret
;
4572 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
4575 * regulator_bulk_free - free multiple regulator consumers
4577 * @num_consumers: Number of consumers
4578 * @consumers: Consumer data; clients are stored here.
4580 * This convenience API allows consumers to free multiple regulator
4581 * clients in a single API call.
4583 void regulator_bulk_free(int num_consumers
,
4584 struct regulator_bulk_data
*consumers
)
4588 for (i
= 0; i
< num_consumers
; i
++) {
4589 regulator_put(consumers
[i
].consumer
);
4590 consumers
[i
].consumer
= NULL
;
4593 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
4596 * regulator_notifier_call_chain - call regulator event notifier
4597 * @rdev: regulator source
4598 * @event: notifier block
4599 * @data: callback-specific data.
4601 * Called by regulator drivers to notify clients a regulator event has
4602 * occurred. We also notify regulator clients downstream.
4603 * Note lock must be held by caller.
4605 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
4606 unsigned long event
, void *data
)
4608 lockdep_assert_held_once(&rdev
->mutex
.base
);
4610 _notifier_call_chain(rdev
, event
, data
);
4614 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
4617 * regulator_mode_to_status - convert a regulator mode into a status
4619 * @mode: Mode to convert
4621 * Convert a regulator mode into a status.
4623 int regulator_mode_to_status(unsigned int mode
)
4626 case REGULATOR_MODE_FAST
:
4627 return REGULATOR_STATUS_FAST
;
4628 case REGULATOR_MODE_NORMAL
:
4629 return REGULATOR_STATUS_NORMAL
;
4630 case REGULATOR_MODE_IDLE
:
4631 return REGULATOR_STATUS_IDLE
;
4632 case REGULATOR_MODE_STANDBY
:
4633 return REGULATOR_STATUS_STANDBY
;
4635 return REGULATOR_STATUS_UNDEFINED
;
4638 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
4640 static struct attribute
*regulator_dev_attrs
[] = {
4641 &dev_attr_name
.attr
,
4642 &dev_attr_num_users
.attr
,
4643 &dev_attr_type
.attr
,
4644 &dev_attr_microvolts
.attr
,
4645 &dev_attr_microamps
.attr
,
4646 &dev_attr_opmode
.attr
,
4647 &dev_attr_state
.attr
,
4648 &dev_attr_status
.attr
,
4649 &dev_attr_bypass
.attr
,
4650 &dev_attr_requested_microamps
.attr
,
4651 &dev_attr_min_microvolts
.attr
,
4652 &dev_attr_max_microvolts
.attr
,
4653 &dev_attr_min_microamps
.attr
,
4654 &dev_attr_max_microamps
.attr
,
4655 &dev_attr_suspend_standby_state
.attr
,
4656 &dev_attr_suspend_mem_state
.attr
,
4657 &dev_attr_suspend_disk_state
.attr
,
4658 &dev_attr_suspend_standby_microvolts
.attr
,
4659 &dev_attr_suspend_mem_microvolts
.attr
,
4660 &dev_attr_suspend_disk_microvolts
.attr
,
4661 &dev_attr_suspend_standby_mode
.attr
,
4662 &dev_attr_suspend_mem_mode
.attr
,
4663 &dev_attr_suspend_disk_mode
.attr
,
4668 * To avoid cluttering sysfs (and memory) with useless state, only
4669 * create attributes that can be meaningfully displayed.
4671 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
4672 struct attribute
*attr
, int idx
)
4674 struct device
*dev
= kobj_to_dev(kobj
);
4675 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4676 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4677 umode_t mode
= attr
->mode
;
4679 /* these three are always present */
4680 if (attr
== &dev_attr_name
.attr
||
4681 attr
== &dev_attr_num_users
.attr
||
4682 attr
== &dev_attr_type
.attr
)
4685 /* some attributes need specific methods to be displayed */
4686 if (attr
== &dev_attr_microvolts
.attr
) {
4687 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
4688 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
4689 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
4690 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
4695 if (attr
== &dev_attr_microamps
.attr
)
4696 return ops
->get_current_limit
? mode
: 0;
4698 if (attr
== &dev_attr_opmode
.attr
)
4699 return ops
->get_mode
? mode
: 0;
4701 if (attr
== &dev_attr_state
.attr
)
4702 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
4704 if (attr
== &dev_attr_status
.attr
)
4705 return ops
->get_status
? mode
: 0;
4707 if (attr
== &dev_attr_bypass
.attr
)
4708 return ops
->get_bypass
? mode
: 0;
4710 /* constraints need specific supporting methods */
4711 if (attr
== &dev_attr_min_microvolts
.attr
||
4712 attr
== &dev_attr_max_microvolts
.attr
)
4713 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
4715 if (attr
== &dev_attr_min_microamps
.attr
||
4716 attr
== &dev_attr_max_microamps
.attr
)
4717 return ops
->set_current_limit
? mode
: 0;
4719 if (attr
== &dev_attr_suspend_standby_state
.attr
||
4720 attr
== &dev_attr_suspend_mem_state
.attr
||
4721 attr
== &dev_attr_suspend_disk_state
.attr
)
4724 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
4725 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
4726 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
4727 return ops
->set_suspend_voltage
? mode
: 0;
4729 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
4730 attr
== &dev_attr_suspend_mem_mode
.attr
||
4731 attr
== &dev_attr_suspend_disk_mode
.attr
)
4732 return ops
->set_suspend_mode
? mode
: 0;
4737 static const struct attribute_group regulator_dev_group
= {
4738 .attrs
= regulator_dev_attrs
,
4739 .is_visible
= regulator_attr_is_visible
,
4742 static const struct attribute_group
*regulator_dev_groups
[] = {
4743 ®ulator_dev_group
,
4747 static void regulator_dev_release(struct device
*dev
)
4749 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
4751 kfree(rdev
->constraints
);
4752 of_node_put(rdev
->dev
.of_node
);
4756 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
4758 struct device
*parent
= rdev
->dev
.parent
;
4759 const char *rname
= rdev_get_name(rdev
);
4760 char name
[NAME_MAX
];
4762 /* Avoid duplicate debugfs directory names */
4763 if (parent
&& rname
== rdev
->desc
->name
) {
4764 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4769 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
4770 if (!rdev
->debugfs
) {
4771 rdev_warn(rdev
, "Failed to create debugfs directory\n");
4775 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
4777 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
4779 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
4780 &rdev
->bypass_count
);
4783 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
4785 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4787 if (regulator_resolve_supply(rdev
))
4788 rdev_dbg(rdev
, "unable to resolve supply\n");
4793 int regulator_coupler_register(struct regulator_coupler
*coupler
)
4795 mutex_lock(®ulator_list_mutex
);
4796 list_add_tail(&coupler
->list
, ®ulator_coupler_list
);
4797 mutex_unlock(®ulator_list_mutex
);
4802 static struct regulator_coupler
*
4803 regulator_find_coupler(struct regulator_dev
*rdev
)
4805 struct regulator_coupler
*coupler
;
4809 * Note that regulators are appended to the list and the generic
4810 * coupler is registered first, hence it will be attached at last
4813 list_for_each_entry_reverse(coupler
, ®ulator_coupler_list
, list
) {
4814 err
= coupler
->attach_regulator(coupler
, rdev
);
4816 if (!coupler
->balance_voltage
&&
4817 rdev
->coupling_desc
.n_coupled
> 2)
4818 goto err_unsupported
;
4824 return ERR_PTR(err
);
4832 return ERR_PTR(-EINVAL
);
4835 if (coupler
->detach_regulator
)
4836 coupler
->detach_regulator(coupler
, rdev
);
4839 "Voltage balancing for multiple regulator couples is unimplemented\n");
4841 return ERR_PTR(-EPERM
);
4844 static void regulator_resolve_coupling(struct regulator_dev
*rdev
)
4846 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
4847 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4848 int n_coupled
= c_desc
->n_coupled
;
4849 struct regulator_dev
*c_rdev
;
4852 for (i
= 1; i
< n_coupled
; i
++) {
4853 /* already resolved */
4854 if (c_desc
->coupled_rdevs
[i
])
4857 c_rdev
= of_parse_coupled_regulator(rdev
, i
- 1);
4862 if (c_rdev
->coupling_desc
.coupler
!= coupler
) {
4863 rdev_err(rdev
, "coupler mismatch with %s\n",
4864 rdev_get_name(c_rdev
));
4868 regulator_lock(c_rdev
);
4870 c_desc
->coupled_rdevs
[i
] = c_rdev
;
4871 c_desc
->n_resolved
++;
4873 regulator_unlock(c_rdev
);
4875 regulator_resolve_coupling(c_rdev
);
4879 static void regulator_remove_coupling(struct regulator_dev
*rdev
)
4881 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
4882 struct coupling_desc
*__c_desc
, *c_desc
= &rdev
->coupling_desc
;
4883 struct regulator_dev
*__c_rdev
, *c_rdev
;
4884 unsigned int __n_coupled
, n_coupled
;
4888 n_coupled
= c_desc
->n_coupled
;
4890 for (i
= 1; i
< n_coupled
; i
++) {
4891 c_rdev
= c_desc
->coupled_rdevs
[i
];
4896 regulator_lock(c_rdev
);
4898 __c_desc
= &c_rdev
->coupling_desc
;
4899 __n_coupled
= __c_desc
->n_coupled
;
4901 for (k
= 1; k
< __n_coupled
; k
++) {
4902 __c_rdev
= __c_desc
->coupled_rdevs
[k
];
4904 if (__c_rdev
== rdev
) {
4905 __c_desc
->coupled_rdevs
[k
] = NULL
;
4906 __c_desc
->n_resolved
--;
4911 regulator_unlock(c_rdev
);
4913 c_desc
->coupled_rdevs
[i
] = NULL
;
4914 c_desc
->n_resolved
--;
4917 if (coupler
&& coupler
->detach_regulator
) {
4918 err
= coupler
->detach_regulator(coupler
, rdev
);
4920 rdev_err(rdev
, "failed to detach from coupler: %d\n",
4924 kfree(rdev
->coupling_desc
.coupled_rdevs
);
4925 rdev
->coupling_desc
.coupled_rdevs
= NULL
;
4928 static int regulator_init_coupling(struct regulator_dev
*rdev
)
4930 int err
, n_phandles
;
4933 if (!IS_ENABLED(CONFIG_OF
))
4936 n_phandles
= of_get_n_coupled(rdev
);
4938 alloc_size
= sizeof(*rdev
) * (n_phandles
+ 1);
4940 rdev
->coupling_desc
.coupled_rdevs
= kzalloc(alloc_size
, GFP_KERNEL
);
4941 if (!rdev
->coupling_desc
.coupled_rdevs
)
4945 * Every regulator should always have coupling descriptor filled with
4946 * at least pointer to itself.
4948 rdev
->coupling_desc
.coupled_rdevs
[0] = rdev
;
4949 rdev
->coupling_desc
.n_coupled
= n_phandles
+ 1;
4950 rdev
->coupling_desc
.n_resolved
++;
4952 /* regulator isn't coupled */
4953 if (n_phandles
== 0)
4956 if (!of_check_coupling_data(rdev
))
4959 rdev
->coupling_desc
.coupler
= regulator_find_coupler(rdev
);
4960 if (IS_ERR(rdev
->coupling_desc
.coupler
)) {
4961 err
= PTR_ERR(rdev
->coupling_desc
.coupler
);
4962 rdev_err(rdev
, "failed to get coupler: %d\n", err
);
4969 static int generic_coupler_attach(struct regulator_coupler
*coupler
,
4970 struct regulator_dev
*rdev
)
4972 if (rdev
->coupling_desc
.n_coupled
> 2) {
4974 "Voltage balancing for multiple regulator couples is unimplemented\n");
4978 if (!rdev
->constraints
->always_on
) {
4980 "Coupling of a non always-on regulator is unimplemented\n");
4987 static struct regulator_coupler generic_regulator_coupler
= {
4988 .attach_regulator
= generic_coupler_attach
,
4992 * regulator_register - register regulator
4993 * @regulator_desc: regulator to register
4994 * @cfg: runtime configuration for regulator
4996 * Called by regulator drivers to register a regulator.
4997 * Returns a valid pointer to struct regulator_dev on success
4998 * or an ERR_PTR() on error.
5000 struct regulator_dev
*
5001 regulator_register(const struct regulator_desc
*regulator_desc
,
5002 const struct regulator_config
*cfg
)
5004 const struct regulation_constraints
*constraints
= NULL
;
5005 const struct regulator_init_data
*init_data
;
5006 struct regulator_config
*config
= NULL
;
5007 static atomic_t regulator_no
= ATOMIC_INIT(-1);
5008 struct regulator_dev
*rdev
;
5009 bool dangling_cfg_gpiod
= false;
5010 bool dangling_of_gpiod
= false;
5011 bool reg_device_fail
= false;
5016 return ERR_PTR(-EINVAL
);
5018 dangling_cfg_gpiod
= true;
5019 if (regulator_desc
== NULL
) {
5027 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
) {
5032 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
5033 regulator_desc
->type
!= REGULATOR_CURRENT
) {
5038 /* Only one of each should be implemented */
5039 WARN_ON(regulator_desc
->ops
->get_voltage
&&
5040 regulator_desc
->ops
->get_voltage_sel
);
5041 WARN_ON(regulator_desc
->ops
->set_voltage
&&
5042 regulator_desc
->ops
->set_voltage_sel
);
5044 /* If we're using selectors we must implement list_voltage. */
5045 if (regulator_desc
->ops
->get_voltage_sel
&&
5046 !regulator_desc
->ops
->list_voltage
) {
5050 if (regulator_desc
->ops
->set_voltage_sel
&&
5051 !regulator_desc
->ops
->list_voltage
) {
5056 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
5063 * Duplicate the config so the driver could override it after
5064 * parsing init data.
5066 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
5067 if (config
== NULL
) {
5073 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
5074 &rdev
->dev
.of_node
);
5077 * Sometimes not all resources are probed already so we need to take
5078 * that into account. This happens most the time if the ena_gpiod comes
5079 * from a gpio extender or something else.
5081 if (PTR_ERR(init_data
) == -EPROBE_DEFER
) {
5084 ret
= -EPROBE_DEFER
;
5089 * We need to keep track of any GPIO descriptor coming from the
5090 * device tree until we have handled it over to the core. If the
5091 * config that was passed in to this function DOES NOT contain
5092 * a descriptor, and the config after this call DOES contain
5093 * a descriptor, we definitely got one from parsing the device
5096 if (!cfg
->ena_gpiod
&& config
->ena_gpiod
)
5097 dangling_of_gpiod
= true;
5099 init_data
= config
->init_data
;
5100 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
5103 ww_mutex_init(&rdev
->mutex
, ®ulator_ww_class
);
5104 rdev
->reg_data
= config
->driver_data
;
5105 rdev
->owner
= regulator_desc
->owner
;
5106 rdev
->desc
= regulator_desc
;
5108 rdev
->regmap
= config
->regmap
;
5109 else if (dev_get_regmap(dev
, NULL
))
5110 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
5111 else if (dev
->parent
)
5112 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
5113 INIT_LIST_HEAD(&rdev
->consumer_list
);
5114 INIT_LIST_HEAD(&rdev
->list
);
5115 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
5116 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
5118 /* preform any regulator specific init */
5119 if (init_data
&& init_data
->regulator_init
) {
5120 ret
= init_data
->regulator_init(rdev
->reg_data
);
5125 if (config
->ena_gpiod
) {
5126 mutex_lock(®ulator_list_mutex
);
5127 ret
= regulator_ena_gpio_request(rdev
, config
);
5128 mutex_unlock(®ulator_list_mutex
);
5130 rdev_err(rdev
, "Failed to request enable GPIO: %d\n",
5134 /* The regulator core took over the GPIO descriptor */
5135 dangling_cfg_gpiod
= false;
5136 dangling_of_gpiod
= false;
5139 /* register with sysfs */
5140 rdev
->dev
.class = ®ulator_class
;
5141 rdev
->dev
.parent
= dev
;
5142 dev_set_name(&rdev
->dev
, "regulator.%lu",
5143 (unsigned long) atomic_inc_return(®ulator_no
));
5145 /* set regulator constraints */
5147 constraints
= &init_data
->constraints
;
5149 if (init_data
&& init_data
->supply_regulator
)
5150 rdev
->supply_name
= init_data
->supply_regulator
;
5151 else if (regulator_desc
->supply_name
)
5152 rdev
->supply_name
= regulator_desc
->supply_name
;
5155 * Attempt to resolve the regulator supply, if specified,
5156 * but don't return an error if we fail because we will try
5157 * to resolve it again later as more regulators are added.
5159 if (regulator_resolve_supply(rdev
))
5160 rdev_dbg(rdev
, "unable to resolve supply\n");
5162 ret
= set_machine_constraints(rdev
, constraints
);
5166 mutex_lock(®ulator_list_mutex
);
5167 ret
= regulator_init_coupling(rdev
);
5168 mutex_unlock(®ulator_list_mutex
);
5172 /* add consumers devices */
5174 mutex_lock(®ulator_list_mutex
);
5175 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
5176 ret
= set_consumer_device_supply(rdev
,
5177 init_data
->consumer_supplies
[i
].dev_name
,
5178 init_data
->consumer_supplies
[i
].supply
);
5180 mutex_unlock(®ulator_list_mutex
);
5181 dev_err(dev
, "Failed to set supply %s\n",
5182 init_data
->consumer_supplies
[i
].supply
);
5183 goto unset_supplies
;
5186 mutex_unlock(®ulator_list_mutex
);
5189 if (!rdev
->desc
->ops
->get_voltage
&&
5190 !rdev
->desc
->ops
->list_voltage
&&
5191 !rdev
->desc
->fixed_uV
)
5192 rdev
->is_switch
= true;
5194 dev_set_drvdata(&rdev
->dev
, rdev
);
5195 ret
= device_register(&rdev
->dev
);
5197 reg_device_fail
= true;
5198 goto unset_supplies
;
5201 rdev_init_debugfs(rdev
);
5203 /* try to resolve regulators coupling since a new one was registered */
5204 mutex_lock(®ulator_list_mutex
);
5205 regulator_resolve_coupling(rdev
);
5206 mutex_unlock(®ulator_list_mutex
);
5208 /* try to resolve regulators supply since a new one was registered */
5209 class_for_each_device(®ulator_class
, NULL
, NULL
,
5210 regulator_register_resolve_supply
);
5215 mutex_lock(®ulator_list_mutex
);
5216 unset_regulator_supplies(rdev
);
5217 regulator_remove_coupling(rdev
);
5218 mutex_unlock(®ulator_list_mutex
);
5220 kfree(rdev
->coupling_desc
.coupled_rdevs
);
5221 kfree(rdev
->constraints
);
5222 mutex_lock(®ulator_list_mutex
);
5223 regulator_ena_gpio_free(rdev
);
5224 mutex_unlock(®ulator_list_mutex
);
5226 if (dangling_of_gpiod
)
5227 gpiod_put(config
->ena_gpiod
);
5228 if (reg_device_fail
)
5229 put_device(&rdev
->dev
);
5234 if (dangling_cfg_gpiod
)
5235 gpiod_put(cfg
->ena_gpiod
);
5236 return ERR_PTR(ret
);
5238 EXPORT_SYMBOL_GPL(regulator_register
);
5241 * regulator_unregister - unregister regulator
5242 * @rdev: regulator to unregister
5244 * Called by regulator drivers to unregister a regulator.
5246 void regulator_unregister(struct regulator_dev
*rdev
)
5252 while (rdev
->use_count
--)
5253 regulator_disable(rdev
->supply
);
5254 regulator_put(rdev
->supply
);
5257 flush_work(&rdev
->disable_work
.work
);
5259 mutex_lock(®ulator_list_mutex
);
5261 debugfs_remove_recursive(rdev
->debugfs
);
5262 WARN_ON(rdev
->open_count
);
5263 regulator_remove_coupling(rdev
);
5264 unset_regulator_supplies(rdev
);
5265 list_del(&rdev
->list
);
5266 regulator_ena_gpio_free(rdev
);
5267 device_unregister(&rdev
->dev
);
5269 mutex_unlock(®ulator_list_mutex
);
5271 EXPORT_SYMBOL_GPL(regulator_unregister
);
5273 #ifdef CONFIG_SUSPEND
5275 * regulator_suspend - prepare regulators for system wide suspend
5276 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5278 * Configure each regulator with it's suspend operating parameters for state.
5280 static int regulator_suspend(struct device
*dev
)
5282 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5283 suspend_state_t state
= pm_suspend_target_state
;
5286 regulator_lock(rdev
);
5287 ret
= suspend_set_state(rdev
, state
);
5288 regulator_unlock(rdev
);
5293 static int regulator_resume(struct device
*dev
)
5295 suspend_state_t state
= pm_suspend_target_state
;
5296 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5297 struct regulator_state
*rstate
;
5300 rstate
= regulator_get_suspend_state(rdev
, state
);
5304 regulator_lock(rdev
);
5306 if (rdev
->desc
->ops
->resume
&&
5307 (rstate
->enabled
== ENABLE_IN_SUSPEND
||
5308 rstate
->enabled
== DISABLE_IN_SUSPEND
))
5309 ret
= rdev
->desc
->ops
->resume(rdev
);
5311 regulator_unlock(rdev
);
5315 #else /* !CONFIG_SUSPEND */
5317 #define regulator_suspend NULL
5318 #define regulator_resume NULL
5320 #endif /* !CONFIG_SUSPEND */
5323 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
5324 .suspend
= regulator_suspend
,
5325 .resume
= regulator_resume
,
5329 struct class regulator_class
= {
5330 .name
= "regulator",
5331 .dev_release
= regulator_dev_release
,
5332 .dev_groups
= regulator_dev_groups
,
5334 .pm
= ®ulator_pm_ops
,
5338 * regulator_has_full_constraints - the system has fully specified constraints
5340 * Calling this function will cause the regulator API to disable all
5341 * regulators which have a zero use count and don't have an always_on
5342 * constraint in a late_initcall.
5344 * The intention is that this will become the default behaviour in a
5345 * future kernel release so users are encouraged to use this facility
5348 void regulator_has_full_constraints(void)
5350 has_full_constraints
= 1;
5352 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
5355 * rdev_get_drvdata - get rdev regulator driver data
5358 * Get rdev regulator driver private data. This call can be used in the
5359 * regulator driver context.
5361 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
5363 return rdev
->reg_data
;
5365 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
5368 * regulator_get_drvdata - get regulator driver data
5369 * @regulator: regulator
5371 * Get regulator driver private data. This call can be used in the consumer
5372 * driver context when non API regulator specific functions need to be called.
5374 void *regulator_get_drvdata(struct regulator
*regulator
)
5376 return regulator
->rdev
->reg_data
;
5378 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
5381 * regulator_set_drvdata - set regulator driver data
5382 * @regulator: regulator
5385 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
5387 regulator
->rdev
->reg_data
= data
;
5389 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
5392 * regulator_get_id - get regulator ID
5395 int rdev_get_id(struct regulator_dev
*rdev
)
5397 return rdev
->desc
->id
;
5399 EXPORT_SYMBOL_GPL(rdev_get_id
);
5401 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
5405 EXPORT_SYMBOL_GPL(rdev_get_dev
);
5407 struct regmap
*rdev_get_regmap(struct regulator_dev
*rdev
)
5409 return rdev
->regmap
;
5411 EXPORT_SYMBOL_GPL(rdev_get_regmap
);
5413 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
5415 return reg_init_data
->driver_data
;
5417 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
5419 #ifdef CONFIG_DEBUG_FS
5420 static int supply_map_show(struct seq_file
*sf
, void *data
)
5422 struct regulator_map
*map
;
5424 list_for_each_entry(map
, ®ulator_map_list
, list
) {
5425 seq_printf(sf
, "%s -> %s.%s\n",
5426 rdev_get_name(map
->regulator
), map
->dev_name
,
5432 DEFINE_SHOW_ATTRIBUTE(supply_map
);
5434 struct summary_data
{
5436 struct regulator_dev
*parent
;
5440 static void regulator_summary_show_subtree(struct seq_file
*s
,
5441 struct regulator_dev
*rdev
,
5444 static int regulator_summary_show_children(struct device
*dev
, void *data
)
5446 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5447 struct summary_data
*summary_data
= data
;
5449 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
5450 regulator_summary_show_subtree(summary_data
->s
, rdev
,
5451 summary_data
->level
+ 1);
5456 static void regulator_summary_show_subtree(struct seq_file
*s
,
5457 struct regulator_dev
*rdev
,
5460 struct regulation_constraints
*c
;
5461 struct regulator
*consumer
;
5462 struct summary_data summary_data
;
5463 unsigned int opmode
;
5468 opmode
= _regulator_get_mode_unlocked(rdev
);
5469 seq_printf(s
, "%*s%-*s %3d %4d %6d %7s ",
5471 30 - level
* 3, rdev_get_name(rdev
),
5472 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
,
5473 regulator_opmode_to_str(opmode
));
5475 seq_printf(s
, "%5dmV ", regulator_get_voltage_rdev(rdev
) / 1000);
5476 seq_printf(s
, "%5dmA ",
5477 _regulator_get_current_limit_unlocked(rdev
) / 1000);
5479 c
= rdev
->constraints
;
5481 switch (rdev
->desc
->type
) {
5482 case REGULATOR_VOLTAGE
:
5483 seq_printf(s
, "%5dmV %5dmV ",
5484 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
5486 case REGULATOR_CURRENT
:
5487 seq_printf(s
, "%5dmA %5dmA ",
5488 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
5495 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
5496 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
5499 seq_printf(s
, "%*s%-*s ",
5500 (level
+ 1) * 3 + 1, "",
5501 30 - (level
+ 1) * 3,
5502 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
5504 switch (rdev
->desc
->type
) {
5505 case REGULATOR_VOLTAGE
:
5506 seq_printf(s
, "%3d %33dmA%c%5dmV %5dmV",
5507 consumer
->enable_count
,
5508 consumer
->uA_load
/ 1000,
5509 consumer
->uA_load
&& !consumer
->enable_count
?
5511 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
5512 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
5514 case REGULATOR_CURRENT
:
5522 summary_data
.level
= level
;
5523 summary_data
.parent
= rdev
;
5525 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
5526 regulator_summary_show_children
);
5529 struct summary_lock_data
{
5530 struct ww_acquire_ctx
*ww_ctx
;
5531 struct regulator_dev
**new_contended_rdev
;
5532 struct regulator_dev
**old_contended_rdev
;
5535 static int regulator_summary_lock_one(struct device
*dev
, void *data
)
5537 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5538 struct summary_lock_data
*lock_data
= data
;
5541 if (rdev
!= *lock_data
->old_contended_rdev
) {
5542 ret
= regulator_lock_nested(rdev
, lock_data
->ww_ctx
);
5544 if (ret
== -EDEADLK
)
5545 *lock_data
->new_contended_rdev
= rdev
;
5549 *lock_data
->old_contended_rdev
= NULL
;
5555 static int regulator_summary_unlock_one(struct device
*dev
, void *data
)
5557 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5558 struct summary_lock_data
*lock_data
= data
;
5561 if (rdev
== *lock_data
->new_contended_rdev
)
5565 regulator_unlock(rdev
);
5570 static int regulator_summary_lock_all(struct ww_acquire_ctx
*ww_ctx
,
5571 struct regulator_dev
**new_contended_rdev
,
5572 struct regulator_dev
**old_contended_rdev
)
5574 struct summary_lock_data lock_data
;
5577 lock_data
.ww_ctx
= ww_ctx
;
5578 lock_data
.new_contended_rdev
= new_contended_rdev
;
5579 lock_data
.old_contended_rdev
= old_contended_rdev
;
5581 ret
= class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5582 regulator_summary_lock_one
);
5584 class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5585 regulator_summary_unlock_one
);
5590 static void regulator_summary_lock(struct ww_acquire_ctx
*ww_ctx
)
5592 struct regulator_dev
*new_contended_rdev
= NULL
;
5593 struct regulator_dev
*old_contended_rdev
= NULL
;
5596 mutex_lock(®ulator_list_mutex
);
5598 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
5601 if (new_contended_rdev
) {
5602 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
5603 old_contended_rdev
= new_contended_rdev
;
5604 old_contended_rdev
->ref_cnt
++;
5607 err
= regulator_summary_lock_all(ww_ctx
,
5608 &new_contended_rdev
,
5609 &old_contended_rdev
);
5611 if (old_contended_rdev
)
5612 regulator_unlock(old_contended_rdev
);
5614 } while (err
== -EDEADLK
);
5616 ww_acquire_done(ww_ctx
);
5619 static void regulator_summary_unlock(struct ww_acquire_ctx
*ww_ctx
)
5621 class_for_each_device(®ulator_class
, NULL
, NULL
,
5622 regulator_summary_unlock_one
);
5623 ww_acquire_fini(ww_ctx
);
5625 mutex_unlock(®ulator_list_mutex
);
5628 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
5630 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5631 struct seq_file
*s
= data
;
5634 regulator_summary_show_subtree(s
, rdev
, 0);
5639 static int regulator_summary_show(struct seq_file
*s
, void *data
)
5641 struct ww_acquire_ctx ww_ctx
;
5643 seq_puts(s
, " regulator use open bypass opmode voltage current min max\n");
5644 seq_puts(s
, "---------------------------------------------------------------------------------------\n");
5646 regulator_summary_lock(&ww_ctx
);
5648 class_for_each_device(®ulator_class
, NULL
, s
,
5649 regulator_summary_show_roots
);
5651 regulator_summary_unlock(&ww_ctx
);
5655 DEFINE_SHOW_ATTRIBUTE(regulator_summary
);
5656 #endif /* CONFIG_DEBUG_FS */
5658 static int __init
regulator_init(void)
5662 ret
= class_register(®ulator_class
);
5664 debugfs_root
= debugfs_create_dir("regulator", NULL
);
5666 pr_warn("regulator: Failed to create debugfs directory\n");
5668 #ifdef CONFIG_DEBUG_FS
5669 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
5672 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
5673 NULL
, ®ulator_summary_fops
);
5675 regulator_dummy_init();
5677 regulator_coupler_register(&generic_regulator_coupler
);
5682 /* init early to allow our consumers to complete system booting */
5683 core_initcall(regulator_init
);
5685 static int regulator_late_cleanup(struct device
*dev
, void *data
)
5687 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5688 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
5689 struct regulation_constraints
*c
= rdev
->constraints
;
5692 if (c
&& c
->always_on
)
5695 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
5698 regulator_lock(rdev
);
5700 if (rdev
->use_count
)
5703 /* If we can't read the status assume it's on. */
5704 if (ops
->is_enabled
)
5705 enabled
= ops
->is_enabled(rdev
);
5712 if (have_full_constraints()) {
5713 /* We log since this may kill the system if it goes
5715 rdev_info(rdev
, "disabling\n");
5716 ret
= _regulator_do_disable(rdev
);
5718 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
5720 /* The intention is that in future we will
5721 * assume that full constraints are provided
5722 * so warn even if we aren't going to do
5725 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
5729 regulator_unlock(rdev
);
5734 static void regulator_init_complete_work_function(struct work_struct
*work
)
5737 * Regulators may had failed to resolve their input supplies
5738 * when were registered, either because the input supply was
5739 * not registered yet or because its parent device was not
5740 * bound yet. So attempt to resolve the input supplies for
5741 * pending regulators before trying to disable unused ones.
5743 class_for_each_device(®ulator_class
, NULL
, NULL
,
5744 regulator_register_resolve_supply
);
5746 /* If we have a full configuration then disable any regulators
5747 * we have permission to change the status for and which are
5748 * not in use or always_on. This is effectively the default
5749 * for DT and ACPI as they have full constraints.
5751 class_for_each_device(®ulator_class
, NULL
, NULL
,
5752 regulator_late_cleanup
);
5755 static DECLARE_DELAYED_WORK(regulator_init_complete_work
,
5756 regulator_init_complete_work_function
);
5758 static int __init
regulator_init_complete(void)
5761 * Since DT doesn't provide an idiomatic mechanism for
5762 * enabling full constraints and since it's much more natural
5763 * with DT to provide them just assume that a DT enabled
5764 * system has full constraints.
5766 if (of_have_populated_dt())
5767 has_full_constraints
= true;
5770 * We punt completion for an arbitrary amount of time since
5771 * systems like distros will load many drivers from userspace
5772 * so consumers might not always be ready yet, this is
5773 * particularly an issue with laptops where this might bounce
5774 * the display off then on. Ideally we'd get a notification
5775 * from userspace when this happens but we don't so just wait
5776 * a bit and hope we waited long enough. It'd be better if
5777 * we'd only do this on systems that need it, and a kernel
5778 * command line option might be useful.
5780 schedule_delayed_work(®ulator_init_complete_work
,
5781 msecs_to_jiffies(30000));
5785 late_initcall_sync(regulator_init_complete
);