treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / rtc / interface.c
blob794a4f036b99834c8fa15bcc834dddcfaa1090ba
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * RTC subsystem, interface functions
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
8 * based on arch/arm/common/rtctime.c
9 */
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
25 time64_t secs;
27 if (!rtc->offset_secs)
28 return;
30 secs = rtc_tm_to_time64(tm);
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
36 * the offset.
38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 (rtc->start_secs < rtc->range_min &&
40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 return;
43 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
48 time64_t secs;
50 if (!rtc->offset_secs)
51 return;
53 secs = rtc_tm_to_time64(tm);
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
61 if (secs >= rtc->range_min && secs <= rtc->range_max)
62 return;
64 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
69 if (rtc->range_min != rtc->range_max) {
70 time64_t time = rtc_tm_to_time64(tm);
71 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 rtc->range_min;
73 timeu64_t range_max = rtc->set_start_time ?
74 (rtc->start_secs + rtc->range_max - rtc->range_min) :
75 rtc->range_max;
77 if (time < range_min || time > range_max)
78 return -ERANGE;
81 return 0;
84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
86 int err;
88 if (!rtc->ops) {
89 err = -ENODEV;
90 } else if (!rtc->ops->read_time) {
91 err = -EINVAL;
92 } else {
93 memset(tm, 0, sizeof(struct rtc_time));
94 err = rtc->ops->read_time(rtc->dev.parent, tm);
95 if (err < 0) {
96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 err);
98 return err;
101 rtc_add_offset(rtc, tm);
103 err = rtc_valid_tm(tm);
104 if (err < 0)
105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
107 return err;
110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
112 int err;
114 err = mutex_lock_interruptible(&rtc->ops_lock);
115 if (err)
116 return err;
118 err = __rtc_read_time(rtc, tm);
119 mutex_unlock(&rtc->ops_lock);
121 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 return err;
124 EXPORT_SYMBOL_GPL(rtc_read_time);
126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
128 int err, uie;
130 err = rtc_valid_tm(tm);
131 if (err != 0)
132 return err;
134 err = rtc_valid_range(rtc, tm);
135 if (err)
136 return err;
138 rtc_subtract_offset(rtc, tm);
140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142 #else
143 uie = rtc->uie_rtctimer.enabled;
144 #endif
145 if (uie) {
146 err = rtc_update_irq_enable(rtc, 0);
147 if (err)
148 return err;
151 err = mutex_lock_interruptible(&rtc->ops_lock);
152 if (err)
153 return err;
155 if (!rtc->ops)
156 err = -ENODEV;
157 else if (rtc->ops->set_time)
158 err = rtc->ops->set_time(rtc->dev.parent, tm);
159 else
160 err = -EINVAL;
162 pm_stay_awake(rtc->dev.parent);
163 mutex_unlock(&rtc->ops_lock);
164 /* A timer might have just expired */
165 schedule_work(&rtc->irqwork);
167 if (uie) {
168 err = rtc_update_irq_enable(rtc, 1);
169 if (err)
170 return err;
173 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
174 return err;
176 EXPORT_SYMBOL_GPL(rtc_set_time);
178 static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 struct rtc_wkalrm *alarm)
181 int err;
183 err = mutex_lock_interruptible(&rtc->ops_lock);
184 if (err)
185 return err;
187 if (!rtc->ops) {
188 err = -ENODEV;
189 } else if (!rtc->ops->read_alarm) {
190 err = -EINVAL;
191 } else {
192 alarm->enabled = 0;
193 alarm->pending = 0;
194 alarm->time.tm_sec = -1;
195 alarm->time.tm_min = -1;
196 alarm->time.tm_hour = -1;
197 alarm->time.tm_mday = -1;
198 alarm->time.tm_mon = -1;
199 alarm->time.tm_year = -1;
200 alarm->time.tm_wday = -1;
201 alarm->time.tm_yday = -1;
202 alarm->time.tm_isdst = -1;
203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
206 mutex_unlock(&rtc->ops_lock);
208 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
209 return err;
212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
214 int err;
215 struct rtc_time before, now;
216 int first_time = 1;
217 time64_t t_now, t_alm;
218 enum { none, day, month, year } missing = none;
219 unsigned int days;
221 /* The lower level RTC driver may return -1 in some fields,
222 * creating invalid alarm->time values, for reasons like:
224 * - The hardware may not be capable of filling them in;
225 * many alarms match only on time-of-day fields, not
226 * day/month/year calendar data.
228 * - Some hardware uses illegal values as "wildcard" match
229 * values, which non-Linux firmware (like a BIOS) may try
230 * to set up as e.g. "alarm 15 minutes after each hour".
231 * Linux uses only oneshot alarms.
233 * When we see that here, we deal with it by using values from
234 * a current RTC timestamp for any missing (-1) values. The
235 * RTC driver prevents "periodic alarm" modes.
237 * But this can be racey, because some fields of the RTC timestamp
238 * may have wrapped in the interval since we read the RTC alarm,
239 * which would lead to us inserting inconsistent values in place
240 * of the -1 fields.
242 * Reading the alarm and timestamp in the reverse sequence
243 * would have the same race condition, and not solve the issue.
245 * So, we must first read the RTC timestamp,
246 * then read the RTC alarm value,
247 * and then read a second RTC timestamp.
249 * If any fields of the second timestamp have changed
250 * when compared with the first timestamp, then we know
251 * our timestamp may be inconsistent with that used by
252 * the low-level rtc_read_alarm_internal() function.
254 * So, when the two timestamps disagree, we just loop and do
255 * the process again to get a fully consistent set of values.
257 * This could all instead be done in the lower level driver,
258 * but since more than one lower level RTC implementation needs it,
259 * then it's probably best best to do it here instead of there..
262 /* Get the "before" timestamp */
263 err = rtc_read_time(rtc, &before);
264 if (err < 0)
265 return err;
266 do {
267 if (!first_time)
268 memcpy(&before, &now, sizeof(struct rtc_time));
269 first_time = 0;
271 /* get the RTC alarm values, which may be incomplete */
272 err = rtc_read_alarm_internal(rtc, alarm);
273 if (err)
274 return err;
276 /* full-function RTCs won't have such missing fields */
277 if (rtc_valid_tm(&alarm->time) == 0) {
278 rtc_add_offset(rtc, &alarm->time);
279 return 0;
282 /* get the "after" timestamp, to detect wrapped fields */
283 err = rtc_read_time(rtc, &now);
284 if (err < 0)
285 return err;
287 /* note that tm_sec is a "don't care" value here: */
288 } while (before.tm_min != now.tm_min ||
289 before.tm_hour != now.tm_hour ||
290 before.tm_mon != now.tm_mon ||
291 before.tm_year != now.tm_year);
293 /* Fill in the missing alarm fields using the timestamp; we
294 * know there's at least one since alarm->time is invalid.
296 if (alarm->time.tm_sec == -1)
297 alarm->time.tm_sec = now.tm_sec;
298 if (alarm->time.tm_min == -1)
299 alarm->time.tm_min = now.tm_min;
300 if (alarm->time.tm_hour == -1)
301 alarm->time.tm_hour = now.tm_hour;
303 /* For simplicity, only support date rollover for now */
304 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
305 alarm->time.tm_mday = now.tm_mday;
306 missing = day;
308 if ((unsigned int)alarm->time.tm_mon >= 12) {
309 alarm->time.tm_mon = now.tm_mon;
310 if (missing == none)
311 missing = month;
313 if (alarm->time.tm_year == -1) {
314 alarm->time.tm_year = now.tm_year;
315 if (missing == none)
316 missing = year;
319 /* Can't proceed if alarm is still invalid after replacing
320 * missing fields.
322 err = rtc_valid_tm(&alarm->time);
323 if (err)
324 goto done;
326 /* with luck, no rollover is needed */
327 t_now = rtc_tm_to_time64(&now);
328 t_alm = rtc_tm_to_time64(&alarm->time);
329 if (t_now < t_alm)
330 goto done;
332 switch (missing) {
333 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
334 * that will trigger at 5am will do so at 5am Tuesday, which
335 * could also be in the next month or year. This is a common
336 * case, especially for PCs.
338 case day:
339 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
340 t_alm += 24 * 60 * 60;
341 rtc_time64_to_tm(t_alm, &alarm->time);
342 break;
344 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
345 * be next month. An alarm matching on the 30th, 29th, or 28th
346 * may end up in the month after that! Many newer PCs support
347 * this type of alarm.
349 case month:
350 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
351 do {
352 if (alarm->time.tm_mon < 11) {
353 alarm->time.tm_mon++;
354 } else {
355 alarm->time.tm_mon = 0;
356 alarm->time.tm_year++;
358 days = rtc_month_days(alarm->time.tm_mon,
359 alarm->time.tm_year);
360 } while (days < alarm->time.tm_mday);
361 break;
363 /* Year rollover ... easy except for leap years! */
364 case year:
365 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
366 do {
367 alarm->time.tm_year++;
368 } while (!is_leap_year(alarm->time.tm_year + 1900) &&
369 rtc_valid_tm(&alarm->time) != 0);
370 break;
372 default:
373 dev_warn(&rtc->dev, "alarm rollover not handled\n");
376 err = rtc_valid_tm(&alarm->time);
378 done:
379 if (err)
380 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
381 &alarm->time);
383 return err;
386 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
388 int err;
390 err = mutex_lock_interruptible(&rtc->ops_lock);
391 if (err)
392 return err;
393 if (!rtc->ops) {
394 err = -ENODEV;
395 } else if (!rtc->ops->read_alarm) {
396 err = -EINVAL;
397 } else {
398 memset(alarm, 0, sizeof(struct rtc_wkalrm));
399 alarm->enabled = rtc->aie_timer.enabled;
400 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
402 mutex_unlock(&rtc->ops_lock);
404 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
405 return err;
407 EXPORT_SYMBOL_GPL(rtc_read_alarm);
409 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
411 struct rtc_time tm;
412 time64_t now, scheduled;
413 int err;
415 err = rtc_valid_tm(&alarm->time);
416 if (err)
417 return err;
419 scheduled = rtc_tm_to_time64(&alarm->time);
421 /* Make sure we're not setting alarms in the past */
422 err = __rtc_read_time(rtc, &tm);
423 if (err)
424 return err;
425 now = rtc_tm_to_time64(&tm);
426 if (scheduled <= now)
427 return -ETIME;
429 * XXX - We just checked to make sure the alarm time is not
430 * in the past, but there is still a race window where if
431 * the is alarm set for the next second and the second ticks
432 * over right here, before we set the alarm.
435 rtc_subtract_offset(rtc, &alarm->time);
437 if (!rtc->ops)
438 err = -ENODEV;
439 else if (!rtc->ops->set_alarm)
440 err = -EINVAL;
441 else
442 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
444 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
445 return err;
448 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
450 int err;
452 if (!rtc->ops)
453 return -ENODEV;
454 else if (!rtc->ops->set_alarm)
455 return -EINVAL;
457 err = rtc_valid_tm(&alarm->time);
458 if (err != 0)
459 return err;
461 err = rtc_valid_range(rtc, &alarm->time);
462 if (err)
463 return err;
465 err = mutex_lock_interruptible(&rtc->ops_lock);
466 if (err)
467 return err;
468 if (rtc->aie_timer.enabled)
469 rtc_timer_remove(rtc, &rtc->aie_timer);
471 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
472 rtc->aie_timer.period = 0;
473 if (alarm->enabled)
474 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
476 mutex_unlock(&rtc->ops_lock);
478 return err;
480 EXPORT_SYMBOL_GPL(rtc_set_alarm);
482 /* Called once per device from rtc_device_register */
483 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
485 int err;
486 struct rtc_time now;
488 err = rtc_valid_tm(&alarm->time);
489 if (err != 0)
490 return err;
492 err = rtc_read_time(rtc, &now);
493 if (err)
494 return err;
496 err = mutex_lock_interruptible(&rtc->ops_lock);
497 if (err)
498 return err;
500 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
501 rtc->aie_timer.period = 0;
503 /* Alarm has to be enabled & in the future for us to enqueue it */
504 if (alarm->enabled && (rtc_tm_to_ktime(now) <
505 rtc->aie_timer.node.expires)) {
506 rtc->aie_timer.enabled = 1;
507 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
508 trace_rtc_timer_enqueue(&rtc->aie_timer);
510 mutex_unlock(&rtc->ops_lock);
511 return err;
513 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
515 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
517 int err;
519 err = mutex_lock_interruptible(&rtc->ops_lock);
520 if (err)
521 return err;
523 if (rtc->aie_timer.enabled != enabled) {
524 if (enabled)
525 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
526 else
527 rtc_timer_remove(rtc, &rtc->aie_timer);
530 if (err)
531 /* nothing */;
532 else if (!rtc->ops)
533 err = -ENODEV;
534 else if (!rtc->ops->alarm_irq_enable)
535 err = -EINVAL;
536 else
537 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
539 mutex_unlock(&rtc->ops_lock);
541 trace_rtc_alarm_irq_enable(enabled, err);
542 return err;
544 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
546 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
548 int rc = 0, err;
550 err = mutex_lock_interruptible(&rtc->ops_lock);
551 if (err)
552 return err;
554 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
555 if (enabled == 0 && rtc->uie_irq_active) {
556 mutex_unlock(&rtc->ops_lock);
557 return rtc_dev_update_irq_enable_emul(rtc, 0);
559 #endif
560 /* make sure we're changing state */
561 if (rtc->uie_rtctimer.enabled == enabled)
562 goto out;
564 if (rtc->uie_unsupported) {
565 err = -EINVAL;
566 goto out;
569 if (enabled) {
570 struct rtc_time tm;
571 ktime_t now, onesec;
573 rc = __rtc_read_time(rtc, &tm);
574 if (rc)
575 goto out;
576 onesec = ktime_set(1, 0);
577 now = rtc_tm_to_ktime(tm);
578 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
579 rtc->uie_rtctimer.period = ktime_set(1, 0);
580 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
581 } else {
582 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
585 out:
586 mutex_unlock(&rtc->ops_lock);
589 * __rtc_read_time() failed, this probably means that the RTC time has
590 * never been set or less probably there is a transient error on the
591 * bus. In any case, avoid enabling emulation has this will fail when
592 * reading the time too.
594 if (rc)
595 return rc;
597 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
599 * Enable emulation if the driver returned -EINVAL to signal that it has
600 * been configured without interrupts or they are not available at the
601 * moment.
603 if (err == -EINVAL)
604 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
605 #endif
606 return err;
608 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
611 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
612 * @rtc: pointer to the rtc device
613 * @num: number of occurence of the event
614 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
616 * This function is called when an AIE, UIE or PIE mode interrupt
617 * has occurred (or been emulated).
620 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
622 unsigned long flags;
624 /* mark one irq of the appropriate mode */
625 spin_lock_irqsave(&rtc->irq_lock, flags);
626 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
627 spin_unlock_irqrestore(&rtc->irq_lock, flags);
629 wake_up_interruptible(&rtc->irq_queue);
630 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
634 * rtc_aie_update_irq - AIE mode rtctimer hook
635 * @rtc: pointer to the rtc_device
637 * This functions is called when the aie_timer expires.
639 void rtc_aie_update_irq(struct rtc_device *rtc)
641 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
645 * rtc_uie_update_irq - UIE mode rtctimer hook
646 * @rtc: pointer to the rtc_device
648 * This functions is called when the uie_timer expires.
650 void rtc_uie_update_irq(struct rtc_device *rtc)
652 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
656 * rtc_pie_update_irq - PIE mode hrtimer hook
657 * @timer: pointer to the pie mode hrtimer
659 * This function is used to emulate PIE mode interrupts
660 * using an hrtimer. This function is called when the periodic
661 * hrtimer expires.
663 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
665 struct rtc_device *rtc;
666 ktime_t period;
667 u64 count;
669 rtc = container_of(timer, struct rtc_device, pie_timer);
671 period = NSEC_PER_SEC / rtc->irq_freq;
672 count = hrtimer_forward_now(timer, period);
674 rtc_handle_legacy_irq(rtc, count, RTC_PF);
676 return HRTIMER_RESTART;
680 * rtc_update_irq - Triggered when a RTC interrupt occurs.
681 * @rtc: the rtc device
682 * @num: how many irqs are being reported (usually one)
683 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
684 * Context: any
686 void rtc_update_irq(struct rtc_device *rtc,
687 unsigned long num, unsigned long events)
689 if (IS_ERR_OR_NULL(rtc))
690 return;
692 pm_stay_awake(rtc->dev.parent);
693 schedule_work(&rtc->irqwork);
695 EXPORT_SYMBOL_GPL(rtc_update_irq);
697 struct rtc_device *rtc_class_open(const char *name)
699 struct device *dev;
700 struct rtc_device *rtc = NULL;
702 dev = class_find_device_by_name(rtc_class, name);
703 if (dev)
704 rtc = to_rtc_device(dev);
706 if (rtc) {
707 if (!try_module_get(rtc->owner)) {
708 put_device(dev);
709 rtc = NULL;
713 return rtc;
715 EXPORT_SYMBOL_GPL(rtc_class_open);
717 void rtc_class_close(struct rtc_device *rtc)
719 module_put(rtc->owner);
720 put_device(&rtc->dev);
722 EXPORT_SYMBOL_GPL(rtc_class_close);
724 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
727 * We always cancel the timer here first, because otherwise
728 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
729 * when we manage to start the timer before the callback
730 * returns HRTIMER_RESTART.
732 * We cannot use hrtimer_cancel() here as a running callback
733 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
734 * would spin forever.
736 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
737 return -1;
739 if (enabled) {
740 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
742 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
744 return 0;
748 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
749 * @rtc: the rtc device
750 * @enabled: true to enable periodic IRQs
751 * Context: any
753 * Note that rtc_irq_set_freq() should previously have been used to
754 * specify the desired frequency of periodic IRQ.
756 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
758 int err = 0;
760 while (rtc_update_hrtimer(rtc, enabled) < 0)
761 cpu_relax();
763 rtc->pie_enabled = enabled;
765 trace_rtc_irq_set_state(enabled, err);
766 return err;
770 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
771 * @rtc: the rtc device
772 * @freq: positive frequency
773 * Context: any
775 * Note that rtc_irq_set_state() is used to enable or disable the
776 * periodic IRQs.
778 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
780 int err = 0;
782 if (freq <= 0 || freq > RTC_MAX_FREQ)
783 return -EINVAL;
785 rtc->irq_freq = freq;
786 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
787 cpu_relax();
789 trace_rtc_irq_set_freq(freq, err);
790 return err;
794 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
795 * @rtc: rtc device
796 * @timer: timer being added.
798 * Enqueues a timer onto the rtc devices timerqueue and sets
799 * the next alarm event appropriately.
801 * Sets the enabled bit on the added timer.
803 * Must hold ops_lock for proper serialization of timerqueue
805 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
807 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
808 struct rtc_time tm;
809 ktime_t now;
811 timer->enabled = 1;
812 __rtc_read_time(rtc, &tm);
813 now = rtc_tm_to_ktime(tm);
815 /* Skip over expired timers */
816 while (next) {
817 if (next->expires >= now)
818 break;
819 next = timerqueue_iterate_next(next);
822 timerqueue_add(&rtc->timerqueue, &timer->node);
823 trace_rtc_timer_enqueue(timer);
824 if (!next || ktime_before(timer->node.expires, next->expires)) {
825 struct rtc_wkalrm alarm;
826 int err;
828 alarm.time = rtc_ktime_to_tm(timer->node.expires);
829 alarm.enabled = 1;
830 err = __rtc_set_alarm(rtc, &alarm);
831 if (err == -ETIME) {
832 pm_stay_awake(rtc->dev.parent);
833 schedule_work(&rtc->irqwork);
834 } else if (err) {
835 timerqueue_del(&rtc->timerqueue, &timer->node);
836 trace_rtc_timer_dequeue(timer);
837 timer->enabled = 0;
838 return err;
841 return 0;
844 static void rtc_alarm_disable(struct rtc_device *rtc)
846 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
847 return;
849 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
850 trace_rtc_alarm_irq_enable(0, 0);
854 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
855 * @rtc: rtc device
856 * @timer: timer being removed.
858 * Removes a timer onto the rtc devices timerqueue and sets
859 * the next alarm event appropriately.
861 * Clears the enabled bit on the removed timer.
863 * Must hold ops_lock for proper serialization of timerqueue
865 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
867 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
869 timerqueue_del(&rtc->timerqueue, &timer->node);
870 trace_rtc_timer_dequeue(timer);
871 timer->enabled = 0;
872 if (next == &timer->node) {
873 struct rtc_wkalrm alarm;
874 int err;
876 next = timerqueue_getnext(&rtc->timerqueue);
877 if (!next) {
878 rtc_alarm_disable(rtc);
879 return;
881 alarm.time = rtc_ktime_to_tm(next->expires);
882 alarm.enabled = 1;
883 err = __rtc_set_alarm(rtc, &alarm);
884 if (err == -ETIME) {
885 pm_stay_awake(rtc->dev.parent);
886 schedule_work(&rtc->irqwork);
892 * rtc_timer_do_work - Expires rtc timers
893 * @work: work item
895 * Expires rtc timers. Reprograms next alarm event if needed.
896 * Called via worktask.
898 * Serializes access to timerqueue via ops_lock mutex
900 void rtc_timer_do_work(struct work_struct *work)
902 struct rtc_timer *timer;
903 struct timerqueue_node *next;
904 ktime_t now;
905 struct rtc_time tm;
907 struct rtc_device *rtc =
908 container_of(work, struct rtc_device, irqwork);
910 mutex_lock(&rtc->ops_lock);
911 again:
912 __rtc_read_time(rtc, &tm);
913 now = rtc_tm_to_ktime(tm);
914 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
915 if (next->expires > now)
916 break;
918 /* expire timer */
919 timer = container_of(next, struct rtc_timer, node);
920 timerqueue_del(&rtc->timerqueue, &timer->node);
921 trace_rtc_timer_dequeue(timer);
922 timer->enabled = 0;
923 if (timer->func)
924 timer->func(timer->rtc);
926 trace_rtc_timer_fired(timer);
927 /* Re-add/fwd periodic timers */
928 if (ktime_to_ns(timer->period)) {
929 timer->node.expires = ktime_add(timer->node.expires,
930 timer->period);
931 timer->enabled = 1;
932 timerqueue_add(&rtc->timerqueue, &timer->node);
933 trace_rtc_timer_enqueue(timer);
937 /* Set next alarm */
938 if (next) {
939 struct rtc_wkalrm alarm;
940 int err;
941 int retry = 3;
943 alarm.time = rtc_ktime_to_tm(next->expires);
944 alarm.enabled = 1;
945 reprogram:
946 err = __rtc_set_alarm(rtc, &alarm);
947 if (err == -ETIME) {
948 goto again;
949 } else if (err) {
950 if (retry-- > 0)
951 goto reprogram;
953 timer = container_of(next, struct rtc_timer, node);
954 timerqueue_del(&rtc->timerqueue, &timer->node);
955 trace_rtc_timer_dequeue(timer);
956 timer->enabled = 0;
957 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
958 goto again;
960 } else {
961 rtc_alarm_disable(rtc);
964 pm_relax(rtc->dev.parent);
965 mutex_unlock(&rtc->ops_lock);
968 /* rtc_timer_init - Initializes an rtc_timer
969 * @timer: timer to be intiialized
970 * @f: function pointer to be called when timer fires
971 * @rtc: pointer to the rtc_device
973 * Kernel interface to initializing an rtc_timer.
975 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
976 struct rtc_device *rtc)
978 timerqueue_init(&timer->node);
979 timer->enabled = 0;
980 timer->func = f;
981 timer->rtc = rtc;
984 /* rtc_timer_start - Sets an rtc_timer to fire in the future
985 * @ rtc: rtc device to be used
986 * @ timer: timer being set
987 * @ expires: time at which to expire the timer
988 * @ period: period that the timer will recur
990 * Kernel interface to set an rtc_timer
992 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
993 ktime_t expires, ktime_t period)
995 int ret = 0;
997 mutex_lock(&rtc->ops_lock);
998 if (timer->enabled)
999 rtc_timer_remove(rtc, timer);
1001 timer->node.expires = expires;
1002 timer->period = period;
1004 ret = rtc_timer_enqueue(rtc, timer);
1006 mutex_unlock(&rtc->ops_lock);
1007 return ret;
1010 /* rtc_timer_cancel - Stops an rtc_timer
1011 * @ rtc: rtc device to be used
1012 * @ timer: timer being set
1014 * Kernel interface to cancel an rtc_timer
1016 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1018 mutex_lock(&rtc->ops_lock);
1019 if (timer->enabled)
1020 rtc_timer_remove(rtc, timer);
1021 mutex_unlock(&rtc->ops_lock);
1025 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1026 * @rtc: rtc device to be used
1027 * @offset: the offset in parts per billion
1029 * see below for details.
1031 * Kernel interface to read rtc clock offset
1032 * Returns 0 on success, or a negative number on error.
1033 * If read_offset() is not implemented for the rtc, return -EINVAL
1035 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1037 int ret;
1039 if (!rtc->ops)
1040 return -ENODEV;
1042 if (!rtc->ops->read_offset)
1043 return -EINVAL;
1045 mutex_lock(&rtc->ops_lock);
1046 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1047 mutex_unlock(&rtc->ops_lock);
1049 trace_rtc_read_offset(*offset, ret);
1050 return ret;
1054 * rtc_set_offset - Adjusts the duration of the average second
1055 * @rtc: rtc device to be used
1056 * @offset: the offset in parts per billion
1058 * Some rtc's allow an adjustment to the average duration of a second
1059 * to compensate for differences in the actual clock rate due to temperature,
1060 * the crystal, capacitor, etc.
1062 * The adjustment applied is as follows:
1063 * t = t0 * (1 + offset * 1e-9)
1064 * where t0 is the measured length of 1 RTC second with offset = 0
1066 * Kernel interface to adjust an rtc clock offset.
1067 * Return 0 on success, or a negative number on error.
1068 * If the rtc offset is not setable (or not implemented), return -EINVAL
1070 int rtc_set_offset(struct rtc_device *rtc, long offset)
1072 int ret;
1074 if (!rtc->ops)
1075 return -ENODEV;
1077 if (!rtc->ops->set_offset)
1078 return -EINVAL;
1080 mutex_lock(&rtc->ops_lock);
1081 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1082 mutex_unlock(&rtc->ops_lock);
1084 trace_rtc_set_offset(offset, ret);
1085 return ret;