1 // SPDX-License-Identifier: GPL-2.0
3 * RTC subsystem, interface functions
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
8 * based on arch/arm/common/rtctime.c
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
20 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
21 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
23 static void rtc_add_offset(struct rtc_device
*rtc
, struct rtc_time
*tm
)
27 if (!rtc
->offset_secs
)
30 secs
= rtc_tm_to_time64(tm
);
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
38 if ((rtc
->start_secs
> rtc
->range_min
&& secs
>= rtc
->start_secs
) ||
39 (rtc
->start_secs
< rtc
->range_min
&&
40 secs
<= (rtc
->start_secs
+ rtc
->range_max
- rtc
->range_min
)))
43 rtc_time64_to_tm(secs
+ rtc
->offset_secs
, tm
);
46 static void rtc_subtract_offset(struct rtc_device
*rtc
, struct rtc_time
*tm
)
50 if (!rtc
->offset_secs
)
53 secs
= rtc_tm_to_time64(tm
);
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
61 if (secs
>= rtc
->range_min
&& secs
<= rtc
->range_max
)
64 rtc_time64_to_tm(secs
- rtc
->offset_secs
, tm
);
67 static int rtc_valid_range(struct rtc_device
*rtc
, struct rtc_time
*tm
)
69 if (rtc
->range_min
!= rtc
->range_max
) {
70 time64_t time
= rtc_tm_to_time64(tm
);
71 time64_t range_min
= rtc
->set_start_time
? rtc
->start_secs
:
73 timeu64_t range_max
= rtc
->set_start_time
?
74 (rtc
->start_secs
+ rtc
->range_max
- rtc
->range_min
) :
77 if (time
< range_min
|| time
> range_max
)
84 static int __rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
90 } else if (!rtc
->ops
->read_time
) {
93 memset(tm
, 0, sizeof(struct rtc_time
));
94 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, tm
);
96 dev_dbg(&rtc
->dev
, "read_time: fail to read: %d\n",
101 rtc_add_offset(rtc
, tm
);
103 err
= rtc_valid_tm(tm
);
105 dev_dbg(&rtc
->dev
, "read_time: rtc_time isn't valid\n");
110 int rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
114 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
118 err
= __rtc_read_time(rtc
, tm
);
119 mutex_unlock(&rtc
->ops_lock
);
121 trace_rtc_read_time(rtc_tm_to_time64(tm
), err
);
124 EXPORT_SYMBOL_GPL(rtc_read_time
);
126 int rtc_set_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
130 err
= rtc_valid_tm(tm
);
134 err
= rtc_valid_range(rtc
, tm
);
138 rtc_subtract_offset(rtc
, tm
);
140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 uie
= rtc
->uie_rtctimer
.enabled
|| rtc
->uie_irq_active
;
143 uie
= rtc
->uie_rtctimer
.enabled
;
146 err
= rtc_update_irq_enable(rtc
, 0);
151 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
157 else if (rtc
->ops
->set_time
)
158 err
= rtc
->ops
->set_time(rtc
->dev
.parent
, tm
);
162 pm_stay_awake(rtc
->dev
.parent
);
163 mutex_unlock(&rtc
->ops_lock
);
164 /* A timer might have just expired */
165 schedule_work(&rtc
->irqwork
);
168 err
= rtc_update_irq_enable(rtc
, 1);
173 trace_rtc_set_time(rtc_tm_to_time64(tm
), err
);
176 EXPORT_SYMBOL_GPL(rtc_set_time
);
178 static int rtc_read_alarm_internal(struct rtc_device
*rtc
,
179 struct rtc_wkalrm
*alarm
)
183 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
189 } else if (!rtc
->ops
->read_alarm
) {
194 alarm
->time
.tm_sec
= -1;
195 alarm
->time
.tm_min
= -1;
196 alarm
->time
.tm_hour
= -1;
197 alarm
->time
.tm_mday
= -1;
198 alarm
->time
.tm_mon
= -1;
199 alarm
->time
.tm_year
= -1;
200 alarm
->time
.tm_wday
= -1;
201 alarm
->time
.tm_yday
= -1;
202 alarm
->time
.tm_isdst
= -1;
203 err
= rtc
->ops
->read_alarm(rtc
->dev
.parent
, alarm
);
206 mutex_unlock(&rtc
->ops_lock
);
208 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm
->time
), err
);
212 int __rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
215 struct rtc_time before
, now
;
217 time64_t t_now
, t_alm
;
218 enum { none
, day
, month
, year
} missing
= none
;
221 /* The lower level RTC driver may return -1 in some fields,
222 * creating invalid alarm->time values, for reasons like:
224 * - The hardware may not be capable of filling them in;
225 * many alarms match only on time-of-day fields, not
226 * day/month/year calendar data.
228 * - Some hardware uses illegal values as "wildcard" match
229 * values, which non-Linux firmware (like a BIOS) may try
230 * to set up as e.g. "alarm 15 minutes after each hour".
231 * Linux uses only oneshot alarms.
233 * When we see that here, we deal with it by using values from
234 * a current RTC timestamp for any missing (-1) values. The
235 * RTC driver prevents "periodic alarm" modes.
237 * But this can be racey, because some fields of the RTC timestamp
238 * may have wrapped in the interval since we read the RTC alarm,
239 * which would lead to us inserting inconsistent values in place
242 * Reading the alarm and timestamp in the reverse sequence
243 * would have the same race condition, and not solve the issue.
245 * So, we must first read the RTC timestamp,
246 * then read the RTC alarm value,
247 * and then read a second RTC timestamp.
249 * If any fields of the second timestamp have changed
250 * when compared with the first timestamp, then we know
251 * our timestamp may be inconsistent with that used by
252 * the low-level rtc_read_alarm_internal() function.
254 * So, when the two timestamps disagree, we just loop and do
255 * the process again to get a fully consistent set of values.
257 * This could all instead be done in the lower level driver,
258 * but since more than one lower level RTC implementation needs it,
259 * then it's probably best best to do it here instead of there..
262 /* Get the "before" timestamp */
263 err
= rtc_read_time(rtc
, &before
);
268 memcpy(&before
, &now
, sizeof(struct rtc_time
));
271 /* get the RTC alarm values, which may be incomplete */
272 err
= rtc_read_alarm_internal(rtc
, alarm
);
276 /* full-function RTCs won't have such missing fields */
277 if (rtc_valid_tm(&alarm
->time
) == 0) {
278 rtc_add_offset(rtc
, &alarm
->time
);
282 /* get the "after" timestamp, to detect wrapped fields */
283 err
= rtc_read_time(rtc
, &now
);
287 /* note that tm_sec is a "don't care" value here: */
288 } while (before
.tm_min
!= now
.tm_min
||
289 before
.tm_hour
!= now
.tm_hour
||
290 before
.tm_mon
!= now
.tm_mon
||
291 before
.tm_year
!= now
.tm_year
);
293 /* Fill in the missing alarm fields using the timestamp; we
294 * know there's at least one since alarm->time is invalid.
296 if (alarm
->time
.tm_sec
== -1)
297 alarm
->time
.tm_sec
= now
.tm_sec
;
298 if (alarm
->time
.tm_min
== -1)
299 alarm
->time
.tm_min
= now
.tm_min
;
300 if (alarm
->time
.tm_hour
== -1)
301 alarm
->time
.tm_hour
= now
.tm_hour
;
303 /* For simplicity, only support date rollover for now */
304 if (alarm
->time
.tm_mday
< 1 || alarm
->time
.tm_mday
> 31) {
305 alarm
->time
.tm_mday
= now
.tm_mday
;
308 if ((unsigned int)alarm
->time
.tm_mon
>= 12) {
309 alarm
->time
.tm_mon
= now
.tm_mon
;
313 if (alarm
->time
.tm_year
== -1) {
314 alarm
->time
.tm_year
= now
.tm_year
;
319 /* Can't proceed if alarm is still invalid after replacing
322 err
= rtc_valid_tm(&alarm
->time
);
326 /* with luck, no rollover is needed */
327 t_now
= rtc_tm_to_time64(&now
);
328 t_alm
= rtc_tm_to_time64(&alarm
->time
);
333 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
334 * that will trigger at 5am will do so at 5am Tuesday, which
335 * could also be in the next month or year. This is a common
336 * case, especially for PCs.
339 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "day");
340 t_alm
+= 24 * 60 * 60;
341 rtc_time64_to_tm(t_alm
, &alarm
->time
);
344 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
345 * be next month. An alarm matching on the 30th, 29th, or 28th
346 * may end up in the month after that! Many newer PCs support
347 * this type of alarm.
350 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "month");
352 if (alarm
->time
.tm_mon
< 11) {
353 alarm
->time
.tm_mon
++;
355 alarm
->time
.tm_mon
= 0;
356 alarm
->time
.tm_year
++;
358 days
= rtc_month_days(alarm
->time
.tm_mon
,
359 alarm
->time
.tm_year
);
360 } while (days
< alarm
->time
.tm_mday
);
363 /* Year rollover ... easy except for leap years! */
365 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "year");
367 alarm
->time
.tm_year
++;
368 } while (!is_leap_year(alarm
->time
.tm_year
+ 1900) &&
369 rtc_valid_tm(&alarm
->time
) != 0);
373 dev_warn(&rtc
->dev
, "alarm rollover not handled\n");
376 err
= rtc_valid_tm(&alarm
->time
);
380 dev_warn(&rtc
->dev
, "invalid alarm value: %ptR\n",
386 int rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
390 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
395 } else if (!rtc
->ops
->read_alarm
) {
398 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
399 alarm
->enabled
= rtc
->aie_timer
.enabled
;
400 alarm
->time
= rtc_ktime_to_tm(rtc
->aie_timer
.node
.expires
);
402 mutex_unlock(&rtc
->ops_lock
);
404 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm
->time
), err
);
407 EXPORT_SYMBOL_GPL(rtc_read_alarm
);
409 static int __rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
412 time64_t now
, scheduled
;
415 err
= rtc_valid_tm(&alarm
->time
);
419 scheduled
= rtc_tm_to_time64(&alarm
->time
);
421 /* Make sure we're not setting alarms in the past */
422 err
= __rtc_read_time(rtc
, &tm
);
425 now
= rtc_tm_to_time64(&tm
);
426 if (scheduled
<= now
)
429 * XXX - We just checked to make sure the alarm time is not
430 * in the past, but there is still a race window where if
431 * the is alarm set for the next second and the second ticks
432 * over right here, before we set the alarm.
435 rtc_subtract_offset(rtc
, &alarm
->time
);
439 else if (!rtc
->ops
->set_alarm
)
442 err
= rtc
->ops
->set_alarm(rtc
->dev
.parent
, alarm
);
444 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm
->time
), err
);
448 int rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
454 else if (!rtc
->ops
->set_alarm
)
457 err
= rtc_valid_tm(&alarm
->time
);
461 err
= rtc_valid_range(rtc
, &alarm
->time
);
465 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
468 if (rtc
->aie_timer
.enabled
)
469 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
471 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
472 rtc
->aie_timer
.period
= 0;
474 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
476 mutex_unlock(&rtc
->ops_lock
);
480 EXPORT_SYMBOL_GPL(rtc_set_alarm
);
482 /* Called once per device from rtc_device_register */
483 int rtc_initialize_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
488 err
= rtc_valid_tm(&alarm
->time
);
492 err
= rtc_read_time(rtc
, &now
);
496 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
500 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
501 rtc
->aie_timer
.period
= 0;
503 /* Alarm has to be enabled & in the future for us to enqueue it */
504 if (alarm
->enabled
&& (rtc_tm_to_ktime(now
) <
505 rtc
->aie_timer
.node
.expires
)) {
506 rtc
->aie_timer
.enabled
= 1;
507 timerqueue_add(&rtc
->timerqueue
, &rtc
->aie_timer
.node
);
508 trace_rtc_timer_enqueue(&rtc
->aie_timer
);
510 mutex_unlock(&rtc
->ops_lock
);
513 EXPORT_SYMBOL_GPL(rtc_initialize_alarm
);
515 int rtc_alarm_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
519 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
523 if (rtc
->aie_timer
.enabled
!= enabled
) {
525 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
527 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
534 else if (!rtc
->ops
->alarm_irq_enable
)
537 err
= rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, enabled
);
539 mutex_unlock(&rtc
->ops_lock
);
541 trace_rtc_alarm_irq_enable(enabled
, err
);
544 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable
);
546 int rtc_update_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
550 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
554 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
555 if (enabled
== 0 && rtc
->uie_irq_active
) {
556 mutex_unlock(&rtc
->ops_lock
);
557 return rtc_dev_update_irq_enable_emul(rtc
, 0);
560 /* make sure we're changing state */
561 if (rtc
->uie_rtctimer
.enabled
== enabled
)
564 if (rtc
->uie_unsupported
) {
573 rc
= __rtc_read_time(rtc
, &tm
);
576 onesec
= ktime_set(1, 0);
577 now
= rtc_tm_to_ktime(tm
);
578 rtc
->uie_rtctimer
.node
.expires
= ktime_add(now
, onesec
);
579 rtc
->uie_rtctimer
.period
= ktime_set(1, 0);
580 err
= rtc_timer_enqueue(rtc
, &rtc
->uie_rtctimer
);
582 rtc_timer_remove(rtc
, &rtc
->uie_rtctimer
);
586 mutex_unlock(&rtc
->ops_lock
);
589 * __rtc_read_time() failed, this probably means that the RTC time has
590 * never been set or less probably there is a transient error on the
591 * bus. In any case, avoid enabling emulation has this will fail when
592 * reading the time too.
597 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
599 * Enable emulation if the driver returned -EINVAL to signal that it has
600 * been configured without interrupts or they are not available at the
604 err
= rtc_dev_update_irq_enable_emul(rtc
, enabled
);
608 EXPORT_SYMBOL_GPL(rtc_update_irq_enable
);
611 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
612 * @rtc: pointer to the rtc device
613 * @num: number of occurence of the event
614 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
616 * This function is called when an AIE, UIE or PIE mode interrupt
617 * has occurred (or been emulated).
620 void rtc_handle_legacy_irq(struct rtc_device
*rtc
, int num
, int mode
)
624 /* mark one irq of the appropriate mode */
625 spin_lock_irqsave(&rtc
->irq_lock
, flags
);
626 rtc
->irq_data
= (rtc
->irq_data
+ (num
<< 8)) | (RTC_IRQF
| mode
);
627 spin_unlock_irqrestore(&rtc
->irq_lock
, flags
);
629 wake_up_interruptible(&rtc
->irq_queue
);
630 kill_fasync(&rtc
->async_queue
, SIGIO
, POLL_IN
);
634 * rtc_aie_update_irq - AIE mode rtctimer hook
635 * @rtc: pointer to the rtc_device
637 * This functions is called when the aie_timer expires.
639 void rtc_aie_update_irq(struct rtc_device
*rtc
)
641 rtc_handle_legacy_irq(rtc
, 1, RTC_AF
);
645 * rtc_uie_update_irq - UIE mode rtctimer hook
646 * @rtc: pointer to the rtc_device
648 * This functions is called when the uie_timer expires.
650 void rtc_uie_update_irq(struct rtc_device
*rtc
)
652 rtc_handle_legacy_irq(rtc
, 1, RTC_UF
);
656 * rtc_pie_update_irq - PIE mode hrtimer hook
657 * @timer: pointer to the pie mode hrtimer
659 * This function is used to emulate PIE mode interrupts
660 * using an hrtimer. This function is called when the periodic
663 enum hrtimer_restart
rtc_pie_update_irq(struct hrtimer
*timer
)
665 struct rtc_device
*rtc
;
669 rtc
= container_of(timer
, struct rtc_device
, pie_timer
);
671 period
= NSEC_PER_SEC
/ rtc
->irq_freq
;
672 count
= hrtimer_forward_now(timer
, period
);
674 rtc_handle_legacy_irq(rtc
, count
, RTC_PF
);
676 return HRTIMER_RESTART
;
680 * rtc_update_irq - Triggered when a RTC interrupt occurs.
681 * @rtc: the rtc device
682 * @num: how many irqs are being reported (usually one)
683 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
686 void rtc_update_irq(struct rtc_device
*rtc
,
687 unsigned long num
, unsigned long events
)
689 if (IS_ERR_OR_NULL(rtc
))
692 pm_stay_awake(rtc
->dev
.parent
);
693 schedule_work(&rtc
->irqwork
);
695 EXPORT_SYMBOL_GPL(rtc_update_irq
);
697 struct rtc_device
*rtc_class_open(const char *name
)
700 struct rtc_device
*rtc
= NULL
;
702 dev
= class_find_device_by_name(rtc_class
, name
);
704 rtc
= to_rtc_device(dev
);
707 if (!try_module_get(rtc
->owner
)) {
715 EXPORT_SYMBOL_GPL(rtc_class_open
);
717 void rtc_class_close(struct rtc_device
*rtc
)
719 module_put(rtc
->owner
);
720 put_device(&rtc
->dev
);
722 EXPORT_SYMBOL_GPL(rtc_class_close
);
724 static int rtc_update_hrtimer(struct rtc_device
*rtc
, int enabled
)
727 * We always cancel the timer here first, because otherwise
728 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
729 * when we manage to start the timer before the callback
730 * returns HRTIMER_RESTART.
732 * We cannot use hrtimer_cancel() here as a running callback
733 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
734 * would spin forever.
736 if (hrtimer_try_to_cancel(&rtc
->pie_timer
) < 0)
740 ktime_t period
= NSEC_PER_SEC
/ rtc
->irq_freq
;
742 hrtimer_start(&rtc
->pie_timer
, period
, HRTIMER_MODE_REL
);
748 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
749 * @rtc: the rtc device
750 * @enabled: true to enable periodic IRQs
753 * Note that rtc_irq_set_freq() should previously have been used to
754 * specify the desired frequency of periodic IRQ.
756 int rtc_irq_set_state(struct rtc_device
*rtc
, int enabled
)
760 while (rtc_update_hrtimer(rtc
, enabled
) < 0)
763 rtc
->pie_enabled
= enabled
;
765 trace_rtc_irq_set_state(enabled
, err
);
770 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
771 * @rtc: the rtc device
772 * @freq: positive frequency
775 * Note that rtc_irq_set_state() is used to enable or disable the
778 int rtc_irq_set_freq(struct rtc_device
*rtc
, int freq
)
782 if (freq
<= 0 || freq
> RTC_MAX_FREQ
)
785 rtc
->irq_freq
= freq
;
786 while (rtc
->pie_enabled
&& rtc_update_hrtimer(rtc
, 1) < 0)
789 trace_rtc_irq_set_freq(freq
, err
);
794 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
796 * @timer: timer being added.
798 * Enqueues a timer onto the rtc devices timerqueue and sets
799 * the next alarm event appropriately.
801 * Sets the enabled bit on the added timer.
803 * Must hold ops_lock for proper serialization of timerqueue
805 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
807 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
812 __rtc_read_time(rtc
, &tm
);
813 now
= rtc_tm_to_ktime(tm
);
815 /* Skip over expired timers */
817 if (next
->expires
>= now
)
819 next
= timerqueue_iterate_next(next
);
822 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
823 trace_rtc_timer_enqueue(timer
);
824 if (!next
|| ktime_before(timer
->node
.expires
, next
->expires
)) {
825 struct rtc_wkalrm alarm
;
828 alarm
.time
= rtc_ktime_to_tm(timer
->node
.expires
);
830 err
= __rtc_set_alarm(rtc
, &alarm
);
832 pm_stay_awake(rtc
->dev
.parent
);
833 schedule_work(&rtc
->irqwork
);
835 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
836 trace_rtc_timer_dequeue(timer
);
844 static void rtc_alarm_disable(struct rtc_device
*rtc
)
846 if (!rtc
->ops
|| !rtc
->ops
->alarm_irq_enable
)
849 rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, false);
850 trace_rtc_alarm_irq_enable(0, 0);
854 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
856 * @timer: timer being removed.
858 * Removes a timer onto the rtc devices timerqueue and sets
859 * the next alarm event appropriately.
861 * Clears the enabled bit on the removed timer.
863 * Must hold ops_lock for proper serialization of timerqueue
865 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
867 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
869 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
870 trace_rtc_timer_dequeue(timer
);
872 if (next
== &timer
->node
) {
873 struct rtc_wkalrm alarm
;
876 next
= timerqueue_getnext(&rtc
->timerqueue
);
878 rtc_alarm_disable(rtc
);
881 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
883 err
= __rtc_set_alarm(rtc
, &alarm
);
885 pm_stay_awake(rtc
->dev
.parent
);
886 schedule_work(&rtc
->irqwork
);
892 * rtc_timer_do_work - Expires rtc timers
895 * Expires rtc timers. Reprograms next alarm event if needed.
896 * Called via worktask.
898 * Serializes access to timerqueue via ops_lock mutex
900 void rtc_timer_do_work(struct work_struct
*work
)
902 struct rtc_timer
*timer
;
903 struct timerqueue_node
*next
;
907 struct rtc_device
*rtc
=
908 container_of(work
, struct rtc_device
, irqwork
);
910 mutex_lock(&rtc
->ops_lock
);
912 __rtc_read_time(rtc
, &tm
);
913 now
= rtc_tm_to_ktime(tm
);
914 while ((next
= timerqueue_getnext(&rtc
->timerqueue
))) {
915 if (next
->expires
> now
)
919 timer
= container_of(next
, struct rtc_timer
, node
);
920 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
921 trace_rtc_timer_dequeue(timer
);
924 timer
->func(timer
->rtc
);
926 trace_rtc_timer_fired(timer
);
927 /* Re-add/fwd periodic timers */
928 if (ktime_to_ns(timer
->period
)) {
929 timer
->node
.expires
= ktime_add(timer
->node
.expires
,
932 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
933 trace_rtc_timer_enqueue(timer
);
939 struct rtc_wkalrm alarm
;
943 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
946 err
= __rtc_set_alarm(rtc
, &alarm
);
953 timer
= container_of(next
, struct rtc_timer
, node
);
954 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
955 trace_rtc_timer_dequeue(timer
);
957 dev_err(&rtc
->dev
, "__rtc_set_alarm: err=%d\n", err
);
961 rtc_alarm_disable(rtc
);
964 pm_relax(rtc
->dev
.parent
);
965 mutex_unlock(&rtc
->ops_lock
);
968 /* rtc_timer_init - Initializes an rtc_timer
969 * @timer: timer to be intiialized
970 * @f: function pointer to be called when timer fires
971 * @rtc: pointer to the rtc_device
973 * Kernel interface to initializing an rtc_timer.
975 void rtc_timer_init(struct rtc_timer
*timer
, void (*f
)(struct rtc_device
*r
),
976 struct rtc_device
*rtc
)
978 timerqueue_init(&timer
->node
);
984 /* rtc_timer_start - Sets an rtc_timer to fire in the future
985 * @ rtc: rtc device to be used
986 * @ timer: timer being set
987 * @ expires: time at which to expire the timer
988 * @ period: period that the timer will recur
990 * Kernel interface to set an rtc_timer
992 int rtc_timer_start(struct rtc_device
*rtc
, struct rtc_timer
*timer
,
993 ktime_t expires
, ktime_t period
)
997 mutex_lock(&rtc
->ops_lock
);
999 rtc_timer_remove(rtc
, timer
);
1001 timer
->node
.expires
= expires
;
1002 timer
->period
= period
;
1004 ret
= rtc_timer_enqueue(rtc
, timer
);
1006 mutex_unlock(&rtc
->ops_lock
);
1010 /* rtc_timer_cancel - Stops an rtc_timer
1011 * @ rtc: rtc device to be used
1012 * @ timer: timer being set
1014 * Kernel interface to cancel an rtc_timer
1016 void rtc_timer_cancel(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
1018 mutex_lock(&rtc
->ops_lock
);
1020 rtc_timer_remove(rtc
, timer
);
1021 mutex_unlock(&rtc
->ops_lock
);
1025 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1026 * @rtc: rtc device to be used
1027 * @offset: the offset in parts per billion
1029 * see below for details.
1031 * Kernel interface to read rtc clock offset
1032 * Returns 0 on success, or a negative number on error.
1033 * If read_offset() is not implemented for the rtc, return -EINVAL
1035 int rtc_read_offset(struct rtc_device
*rtc
, long *offset
)
1042 if (!rtc
->ops
->read_offset
)
1045 mutex_lock(&rtc
->ops_lock
);
1046 ret
= rtc
->ops
->read_offset(rtc
->dev
.parent
, offset
);
1047 mutex_unlock(&rtc
->ops_lock
);
1049 trace_rtc_read_offset(*offset
, ret
);
1054 * rtc_set_offset - Adjusts the duration of the average second
1055 * @rtc: rtc device to be used
1056 * @offset: the offset in parts per billion
1058 * Some rtc's allow an adjustment to the average duration of a second
1059 * to compensate for differences in the actual clock rate due to temperature,
1060 * the crystal, capacitor, etc.
1062 * The adjustment applied is as follows:
1063 * t = t0 * (1 + offset * 1e-9)
1064 * where t0 is the measured length of 1 RTC second with offset = 0
1066 * Kernel interface to adjust an rtc clock offset.
1067 * Return 0 on success, or a negative number on error.
1068 * If the rtc offset is not setable (or not implemented), return -EINVAL
1070 int rtc_set_offset(struct rtc_device
*rtc
, long offset
)
1077 if (!rtc
->ops
->set_offset
)
1080 mutex_lock(&rtc
->ops_lock
);
1081 ret
= rtc
->ops
->set_offset(rtc
->dev
.parent
, offset
);
1082 mutex_unlock(&rtc
->ops_lock
);
1084 trace_rtc_set_offset(offset
, ret
);