1 // SPDX-License-Identifier: GPL-2.0-only
2 /* esp_scsi.c: ESP SCSI driver.
4 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/list.h>
12 #include <linux/completion.h>
13 #include <linux/kallsyms.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/irqreturn.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_host.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_tcq.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_transport_spi.h>
33 #define DRV_MODULE_NAME "esp"
34 #define PFX DRV_MODULE_NAME ": "
35 #define DRV_VERSION "2.000"
36 #define DRV_MODULE_RELDATE "April 19, 2007"
38 /* SCSI bus reset settle time in seconds. */
39 static int esp_bus_reset_settle
= 3;
42 #define ESP_DEBUG_INTR 0x00000001
43 #define ESP_DEBUG_SCSICMD 0x00000002
44 #define ESP_DEBUG_RESET 0x00000004
45 #define ESP_DEBUG_MSGIN 0x00000008
46 #define ESP_DEBUG_MSGOUT 0x00000010
47 #define ESP_DEBUG_CMDDONE 0x00000020
48 #define ESP_DEBUG_DISCONNECT 0x00000040
49 #define ESP_DEBUG_DATASTART 0x00000080
50 #define ESP_DEBUG_DATADONE 0x00000100
51 #define ESP_DEBUG_RECONNECT 0x00000200
52 #define ESP_DEBUG_AUTOSENSE 0x00000400
53 #define ESP_DEBUG_EVENT 0x00000800
54 #define ESP_DEBUG_COMMAND 0x00001000
56 #define esp_log_intr(f, a...) \
57 do { if (esp_debug & ESP_DEBUG_INTR) \
58 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
61 #define esp_log_reset(f, a...) \
62 do { if (esp_debug & ESP_DEBUG_RESET) \
63 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
66 #define esp_log_msgin(f, a...) \
67 do { if (esp_debug & ESP_DEBUG_MSGIN) \
68 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
71 #define esp_log_msgout(f, a...) \
72 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
73 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
76 #define esp_log_cmddone(f, a...) \
77 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
78 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
81 #define esp_log_disconnect(f, a...) \
82 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
83 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
86 #define esp_log_datastart(f, a...) \
87 do { if (esp_debug & ESP_DEBUG_DATASTART) \
88 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
91 #define esp_log_datadone(f, a...) \
92 do { if (esp_debug & ESP_DEBUG_DATADONE) \
93 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
96 #define esp_log_reconnect(f, a...) \
97 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
98 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
101 #define esp_log_autosense(f, a...) \
102 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
103 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
106 #define esp_log_event(f, a...) \
107 do { if (esp_debug & ESP_DEBUG_EVENT) \
108 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
111 #define esp_log_command(f, a...) \
112 do { if (esp_debug & ESP_DEBUG_COMMAND) \
113 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
116 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
117 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
119 static void esp_log_fill_regs(struct esp
*esp
,
120 struct esp_event_ent
*p
)
123 p
->seqreg
= esp
->seqreg
;
124 p
->sreg2
= esp
->sreg2
;
126 p
->select_state
= esp
->select_state
;
127 p
->event
= esp
->event
;
130 void scsi_esp_cmd(struct esp
*esp
, u8 val
)
132 struct esp_event_ent
*p
;
133 int idx
= esp
->esp_event_cur
;
135 p
= &esp
->esp_event_log
[idx
];
136 p
->type
= ESP_EVENT_TYPE_CMD
;
138 esp_log_fill_regs(esp
, p
);
140 esp
->esp_event_cur
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
142 esp_log_command("cmd[%02x]\n", val
);
143 esp_write8(val
, ESP_CMD
);
145 EXPORT_SYMBOL(scsi_esp_cmd
);
147 static void esp_send_dma_cmd(struct esp
*esp
, int len
, int max_len
, int cmd
)
149 if (esp
->flags
& ESP_FLAG_USE_FIFO
) {
152 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
153 for (i
= 0; i
< len
; i
++)
154 esp_write8(esp
->command_block
[i
], ESP_FDATA
);
155 scsi_esp_cmd(esp
, cmd
);
157 if (esp
->rev
== FASHME
)
158 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
160 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
161 len
, max_len
, 0, cmd
);
165 static void esp_event(struct esp
*esp
, u8 val
)
167 struct esp_event_ent
*p
;
168 int idx
= esp
->esp_event_cur
;
170 p
= &esp
->esp_event_log
[idx
];
171 p
->type
= ESP_EVENT_TYPE_EVENT
;
173 esp_log_fill_regs(esp
, p
);
175 esp
->esp_event_cur
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
180 static void esp_dump_cmd_log(struct esp
*esp
)
182 int idx
= esp
->esp_event_cur
;
185 shost_printk(KERN_INFO
, esp
->host
, "Dumping command log\n");
187 struct esp_event_ent
*p
= &esp
->esp_event_log
[idx
];
189 shost_printk(KERN_INFO
, esp
->host
,
190 "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
191 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
193 p
->type
== ESP_EVENT_TYPE_CMD
? "CMD" : "EVENT",
194 p
->val
, p
->sreg
, p
->seqreg
,
195 p
->sreg2
, p
->ireg
, p
->select_state
, p
->event
);
197 idx
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
198 } while (idx
!= stop
);
201 static void esp_flush_fifo(struct esp
*esp
)
203 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
204 if (esp
->rev
== ESP236
) {
207 while (esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
) {
209 shost_printk(KERN_ALERT
, esp
->host
,
210 "ESP_FF_BYTES will not clear!\n");
218 static void hme_read_fifo(struct esp
*esp
)
220 int fcnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
224 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
225 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
227 if (esp
->sreg2
& ESP_STAT2_F1BYTE
) {
228 esp_write8(0, ESP_FDATA
);
229 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
230 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
235 static void esp_set_all_config3(struct esp
*esp
, u8 val
)
239 for (i
= 0; i
< ESP_MAX_TARGET
; i
++)
240 esp
->target
[i
].esp_config3
= val
;
243 /* Reset the ESP chip, _not_ the SCSI bus. */
244 static void esp_reset_esp(struct esp
*esp
)
246 /* Now reset the ESP chip */
247 scsi_esp_cmd(esp
, ESP_CMD_RC
);
248 scsi_esp_cmd(esp
, ESP_CMD_NULL
| ESP_CMD_DMA
);
249 if (esp
->rev
== FAST
)
250 esp_write8(ESP_CONFIG2_FENAB
, ESP_CFG2
);
251 scsi_esp_cmd(esp
, ESP_CMD_NULL
| ESP_CMD_DMA
);
253 /* This is the only point at which it is reliable to read
254 * the ID-code for a fast ESP chip variants.
256 esp
->max_period
= ((35 * esp
->ccycle
) / 1000);
257 if (esp
->rev
== FAST
) {
258 u8 family_code
= ESP_FAMILY(esp_read8(ESP_UID
));
260 if (family_code
== ESP_UID_F236
) {
262 } else if (family_code
== ESP_UID_HME
) {
263 esp
->rev
= FASHME
; /* Version is usually '5'. */
264 } else if (family_code
== ESP_UID_FSC
) {
266 /* Enable Active Negation */
267 esp_write8(ESP_CONFIG4_RADE
, ESP_CFG4
);
271 esp
->min_period
= ((4 * esp
->ccycle
) / 1000);
273 esp
->min_period
= ((5 * esp
->ccycle
) / 1000);
275 if (esp
->rev
== FAS236
) {
277 * The AM53c974 chip returns the same ID as FAS236;
278 * try to configure glitch eater.
280 u8 config4
= ESP_CONFIG4_GE1
;
281 esp_write8(config4
, ESP_CFG4
);
282 config4
= esp_read8(ESP_CFG4
);
283 if (config4
& ESP_CONFIG4_GE1
) {
285 esp_write8(esp
->config4
, ESP_CFG4
);
288 esp
->max_period
= (esp
->max_period
+ 3)>>2;
289 esp
->min_period
= (esp
->min_period
+ 3)>>2;
291 esp_write8(esp
->config1
, ESP_CFG1
);
298 esp_write8(esp
->config2
, ESP_CFG2
);
303 esp_write8(esp
->config2
, ESP_CFG2
);
304 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
305 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
309 esp
->config2
|= (ESP_CONFIG2_HME32
| ESP_CONFIG2_HMEFENAB
);
315 esp_write8(esp
->config2
, ESP_CFG2
);
316 if (esp
->rev
== FASHME
) {
317 u8 cfg3
= esp
->target
[0].esp_config3
;
319 cfg3
|= ESP_CONFIG3_FCLOCK
| ESP_CONFIG3_OBPUSH
;
320 if (esp
->scsi_id
>= 8)
321 cfg3
|= ESP_CONFIG3_IDBIT3
;
322 esp_set_all_config3(esp
, cfg3
);
324 u32 cfg3
= esp
->target
[0].esp_config3
;
326 cfg3
|= ESP_CONFIG3_FCLK
;
327 esp_set_all_config3(esp
, cfg3
);
329 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
330 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
331 if (esp
->rev
== FASHME
) {
334 if (esp
->flags
& ESP_FLAG_DIFFERENTIAL
)
343 esp_write8(esp
->config2
, ESP_CFG2
);
344 esp_set_all_config3(esp
,
345 (esp
->target
[0].esp_config3
|
346 ESP_CONFIG3_FCLOCK
));
347 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
348 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
356 /* Reload the configuration registers */
357 esp_write8(esp
->cfact
, ESP_CFACT
);
360 esp_write8(esp
->prev_stp
, ESP_STP
);
363 esp_write8(esp
->prev_soff
, ESP_SOFF
);
365 esp_write8(esp
->neg_defp
, ESP_TIMEO
);
367 /* Eat any bitrot in the chip */
368 esp_read8(ESP_INTRPT
);
372 static void esp_map_dma(struct esp
*esp
, struct scsi_cmnd
*cmd
)
374 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
375 struct scatterlist
*sg
= scsi_sglist(cmd
);
377 struct scatterlist
*s
;
379 if (cmd
->sc_data_direction
== DMA_NONE
)
382 if (esp
->flags
& ESP_FLAG_NO_DMA_MAP
) {
384 * For pseudo DMA and PIO we need the virtual address instead of
385 * a dma address, so perform an identity mapping.
387 spriv
->num_sg
= scsi_sg_count(cmd
);
389 scsi_for_each_sg(cmd
, s
, spriv
->num_sg
, i
) {
390 s
->dma_address
= (uintptr_t)sg_virt(s
);
391 total
+= sg_dma_len(s
);
394 spriv
->num_sg
= scsi_dma_map(cmd
);
395 scsi_for_each_sg(cmd
, s
, spriv
->num_sg
, i
)
396 total
+= sg_dma_len(s
);
398 spriv
->cur_residue
= sg_dma_len(sg
);
399 spriv
->prv_sg
= NULL
;
401 spriv
->tot_residue
= total
;
404 static dma_addr_t
esp_cur_dma_addr(struct esp_cmd_entry
*ent
,
405 struct scsi_cmnd
*cmd
)
407 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
409 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
410 return ent
->sense_dma
+
411 (ent
->sense_ptr
- cmd
->sense_buffer
);
414 return sg_dma_address(p
->cur_sg
) +
415 (sg_dma_len(p
->cur_sg
) -
419 static unsigned int esp_cur_dma_len(struct esp_cmd_entry
*ent
,
420 struct scsi_cmnd
*cmd
)
422 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
424 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
425 return SCSI_SENSE_BUFFERSIZE
-
426 (ent
->sense_ptr
- cmd
->sense_buffer
);
428 return p
->cur_residue
;
431 static void esp_advance_dma(struct esp
*esp
, struct esp_cmd_entry
*ent
,
432 struct scsi_cmnd
*cmd
, unsigned int len
)
434 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
436 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
437 ent
->sense_ptr
+= len
;
441 p
->cur_residue
-= len
;
442 p
->tot_residue
-= len
;
443 if (p
->cur_residue
< 0 || p
->tot_residue
< 0) {
444 shost_printk(KERN_ERR
, esp
->host
,
445 "Data transfer overflow.\n");
446 shost_printk(KERN_ERR
, esp
->host
,
447 "cur_residue[%d] tot_residue[%d] len[%u]\n",
448 p
->cur_residue
, p
->tot_residue
, len
);
452 if (!p
->cur_residue
&& p
->tot_residue
) {
453 p
->prv_sg
= p
->cur_sg
;
454 p
->cur_sg
= sg_next(p
->cur_sg
);
455 p
->cur_residue
= sg_dma_len(p
->cur_sg
);
459 static void esp_unmap_dma(struct esp
*esp
, struct scsi_cmnd
*cmd
)
461 if (!(esp
->flags
& ESP_FLAG_NO_DMA_MAP
))
465 static void esp_save_pointers(struct esp
*esp
, struct esp_cmd_entry
*ent
)
467 struct scsi_cmnd
*cmd
= ent
->cmd
;
468 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
470 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
471 ent
->saved_sense_ptr
= ent
->sense_ptr
;
474 ent
->saved_cur_residue
= spriv
->cur_residue
;
475 ent
->saved_prv_sg
= spriv
->prv_sg
;
476 ent
->saved_cur_sg
= spriv
->cur_sg
;
477 ent
->saved_tot_residue
= spriv
->tot_residue
;
480 static void esp_restore_pointers(struct esp
*esp
, struct esp_cmd_entry
*ent
)
482 struct scsi_cmnd
*cmd
= ent
->cmd
;
483 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
485 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
486 ent
->sense_ptr
= ent
->saved_sense_ptr
;
489 spriv
->cur_residue
= ent
->saved_cur_residue
;
490 spriv
->prv_sg
= ent
->saved_prv_sg
;
491 spriv
->cur_sg
= ent
->saved_cur_sg
;
492 spriv
->tot_residue
= ent
->saved_tot_residue
;
495 static void esp_write_tgt_config3(struct esp
*esp
, int tgt
)
497 if (esp
->rev
> ESP100A
) {
498 u8 val
= esp
->target
[tgt
].esp_config3
;
500 if (val
!= esp
->prev_cfg3
) {
501 esp
->prev_cfg3
= val
;
502 esp_write8(val
, ESP_CFG3
);
507 static void esp_write_tgt_sync(struct esp
*esp
, int tgt
)
509 u8 off
= esp
->target
[tgt
].esp_offset
;
510 u8 per
= esp
->target
[tgt
].esp_period
;
512 if (off
!= esp
->prev_soff
) {
513 esp
->prev_soff
= off
;
514 esp_write8(off
, ESP_SOFF
);
516 if (per
!= esp
->prev_stp
) {
518 esp_write8(per
, ESP_STP
);
522 static u32
esp_dma_length_limit(struct esp
*esp
, u32 dma_addr
, u32 dma_len
)
524 if (esp
->rev
== FASHME
) {
525 /* Arbitrary segment boundaries, 24-bit counts. */
526 if (dma_len
> (1U << 24))
527 dma_len
= (1U << 24);
531 /* ESP chip limits other variants by 16-bits of transfer
532 * count. Actually on FAS100A and FAS236 we could get
533 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
534 * in the ESP_CFG2 register but that causes other unwanted
535 * changes so we don't use it currently.
537 if (dma_len
> (1U << 16))
538 dma_len
= (1U << 16);
540 /* All of the DMA variants hooked up to these chips
541 * cannot handle crossing a 24-bit address boundary.
543 base
= dma_addr
& ((1U << 24) - 1U);
544 end
= base
+ dma_len
;
545 if (end
> (1U << 24))
547 dma_len
= end
- base
;
552 static int esp_need_to_nego_wide(struct esp_target_data
*tp
)
554 struct scsi_target
*target
= tp
->starget
;
556 return spi_width(target
) != tp
->nego_goal_width
;
559 static int esp_need_to_nego_sync(struct esp_target_data
*tp
)
561 struct scsi_target
*target
= tp
->starget
;
563 /* When offset is zero, period is "don't care". */
564 if (!spi_offset(target
) && !tp
->nego_goal_offset
)
567 if (spi_offset(target
) == tp
->nego_goal_offset
&&
568 spi_period(target
) == tp
->nego_goal_period
)
574 static int esp_alloc_lun_tag(struct esp_cmd_entry
*ent
,
575 struct esp_lun_data
*lp
)
577 if (!ent
->orig_tag
[0]) {
578 /* Non-tagged, slot already taken? */
579 if (lp
->non_tagged_cmd
)
583 /* We are being held by active tagged
589 /* Tagged commands completed, we can unplug
590 * the queue and run this untagged command.
593 } else if (lp
->num_tagged
) {
594 /* Plug the queue until num_tagged decreases
595 * to zero in esp_free_lun_tag.
601 lp
->non_tagged_cmd
= ent
;
605 /* Tagged command. Check that it isn't blocked by a non-tagged one. */
606 if (lp
->non_tagged_cmd
|| lp
->hold
)
609 BUG_ON(lp
->tagged_cmds
[ent
->orig_tag
[1]]);
611 lp
->tagged_cmds
[ent
->orig_tag
[1]] = ent
;
617 static void esp_free_lun_tag(struct esp_cmd_entry
*ent
,
618 struct esp_lun_data
*lp
)
620 if (ent
->orig_tag
[0]) {
621 BUG_ON(lp
->tagged_cmds
[ent
->orig_tag
[1]] != ent
);
622 lp
->tagged_cmds
[ent
->orig_tag
[1]] = NULL
;
625 BUG_ON(lp
->non_tagged_cmd
!= ent
);
626 lp
->non_tagged_cmd
= NULL
;
630 static void esp_map_sense(struct esp
*esp
, struct esp_cmd_entry
*ent
)
632 ent
->sense_ptr
= ent
->cmd
->sense_buffer
;
633 if (esp
->flags
& ESP_FLAG_NO_DMA_MAP
) {
634 ent
->sense_dma
= (uintptr_t)ent
->sense_ptr
;
638 ent
->sense_dma
= dma_map_single(esp
->dev
, ent
->sense_ptr
,
639 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
642 static void esp_unmap_sense(struct esp
*esp
, struct esp_cmd_entry
*ent
)
644 if (!(esp
->flags
& ESP_FLAG_NO_DMA_MAP
))
645 dma_unmap_single(esp
->dev
, ent
->sense_dma
,
646 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
647 ent
->sense_ptr
= NULL
;
650 /* When a contingent allegiance conditon is created, we force feed a
651 * REQUEST_SENSE command to the device to fetch the sense data. I
652 * tried many other schemes, relying on the scsi error handling layer
653 * to send out the REQUEST_SENSE automatically, but this was difficult
654 * to get right especially in the presence of applications like smartd
655 * which use SG_IO to send out their own REQUEST_SENSE commands.
657 static void esp_autosense(struct esp
*esp
, struct esp_cmd_entry
*ent
)
659 struct scsi_cmnd
*cmd
= ent
->cmd
;
660 struct scsi_device
*dev
= cmd
->device
;
668 if (!ent
->sense_ptr
) {
669 esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
671 esp_map_sense(esp
, ent
);
673 ent
->saved_sense_ptr
= ent
->sense_ptr
;
675 esp
->active_cmd
= ent
;
677 p
= esp
->command_block
;
678 esp
->msg_out_len
= 0;
680 *p
++ = IDENTIFY(0, lun
);
681 *p
++ = REQUEST_SENSE
;
682 *p
++ = ((dev
->scsi_level
<= SCSI_2
) ?
686 *p
++ = SCSI_SENSE_BUFFERSIZE
;
689 esp
->select_state
= ESP_SELECT_BASIC
;
692 if (esp
->rev
== FASHME
)
693 val
|= ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
;
694 esp_write8(val
, ESP_BUSID
);
696 esp_write_tgt_sync(esp
, tgt
);
697 esp_write_tgt_config3(esp
, tgt
);
699 val
= (p
- esp
->command_block
);
701 esp_send_dma_cmd(esp
, val
, 16, ESP_CMD_SELA
);
704 static struct esp_cmd_entry
*find_and_prep_issuable_command(struct esp
*esp
)
706 struct esp_cmd_entry
*ent
;
708 list_for_each_entry(ent
, &esp
->queued_cmds
, list
) {
709 struct scsi_cmnd
*cmd
= ent
->cmd
;
710 struct scsi_device
*dev
= cmd
->device
;
711 struct esp_lun_data
*lp
= dev
->hostdata
;
713 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
719 if (!spi_populate_tag_msg(&ent
->tag
[0], cmd
)) {
723 ent
->orig_tag
[0] = ent
->tag
[0];
724 ent
->orig_tag
[1] = ent
->tag
[1];
726 if (esp_alloc_lun_tag(ent
, lp
) < 0)
735 static void esp_maybe_execute_command(struct esp
*esp
)
737 struct esp_target_data
*tp
;
738 struct scsi_device
*dev
;
739 struct scsi_cmnd
*cmd
;
740 struct esp_cmd_entry
*ent
;
741 bool select_and_stop
= false;
746 if (esp
->active_cmd
||
747 (esp
->flags
& ESP_FLAG_RESETTING
))
750 ent
= find_and_prep_issuable_command(esp
);
754 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
755 esp_autosense(esp
, ent
);
763 tp
= &esp
->target
[tgt
];
765 list_move(&ent
->list
, &esp
->active_cmds
);
767 esp
->active_cmd
= ent
;
769 esp_map_dma(esp
, cmd
);
770 esp_save_pointers(esp
, ent
);
772 if (!(cmd
->cmd_len
== 6 || cmd
->cmd_len
== 10 || cmd
->cmd_len
== 12))
773 select_and_stop
= true;
775 p
= esp
->command_block
;
777 esp
->msg_out_len
= 0;
778 if (tp
->flags
& ESP_TGT_CHECK_NEGO
) {
779 /* Need to negotiate. If the target is broken
780 * go for synchronous transfers and non-wide.
782 if (tp
->flags
& ESP_TGT_BROKEN
) {
783 tp
->flags
&= ~ESP_TGT_DISCONNECT
;
784 tp
->nego_goal_period
= 0;
785 tp
->nego_goal_offset
= 0;
786 tp
->nego_goal_width
= 0;
787 tp
->nego_goal_tags
= 0;
790 /* If the settings are not changing, skip this. */
791 if (spi_width(tp
->starget
) == tp
->nego_goal_width
&&
792 spi_period(tp
->starget
) == tp
->nego_goal_period
&&
793 spi_offset(tp
->starget
) == tp
->nego_goal_offset
) {
794 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
798 if (esp
->rev
== FASHME
&& esp_need_to_nego_wide(tp
)) {
800 spi_populate_width_msg(&esp
->msg_out
[0],
801 (tp
->nego_goal_width
?
803 tp
->flags
|= ESP_TGT_NEGO_WIDE
;
804 } else if (esp_need_to_nego_sync(tp
)) {
806 spi_populate_sync_msg(&esp
->msg_out
[0],
807 tp
->nego_goal_period
,
808 tp
->nego_goal_offset
);
809 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
811 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
814 /* If there are multiple message bytes, use Select and Stop */
815 if (esp
->msg_out_len
)
816 select_and_stop
= true;
820 *p
++ = IDENTIFY(tp
->flags
& ESP_TGT_DISCONNECT
, lun
);
822 if (ent
->tag
[0] && esp
->rev
== ESP100
) {
823 /* ESP100 lacks select w/atn3 command, use select
826 select_and_stop
= true;
829 if (select_and_stop
) {
830 esp
->cmd_bytes_left
= cmd
->cmd_len
;
831 esp
->cmd_bytes_ptr
= &cmd
->cmnd
[0];
834 for (i
= esp
->msg_out_len
- 1;
836 esp
->msg_out
[i
+ 2] = esp
->msg_out
[i
];
837 esp
->msg_out
[0] = ent
->tag
[0];
838 esp
->msg_out
[1] = ent
->tag
[1];
839 esp
->msg_out_len
+= 2;
842 start_cmd
= ESP_CMD_SELAS
;
843 esp
->select_state
= ESP_SELECT_MSGOUT
;
845 start_cmd
= ESP_CMD_SELA
;
850 start_cmd
= ESP_CMD_SA3
;
853 for (i
= 0; i
< cmd
->cmd_len
; i
++)
856 esp
->select_state
= ESP_SELECT_BASIC
;
859 if (esp
->rev
== FASHME
)
860 val
|= ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
;
861 esp_write8(val
, ESP_BUSID
);
863 esp_write_tgt_sync(esp
, tgt
);
864 esp_write_tgt_config3(esp
, tgt
);
866 val
= (p
- esp
->command_block
);
868 if (esp_debug
& ESP_DEBUG_SCSICMD
) {
869 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt
, lun
);
870 for (i
= 0; i
< cmd
->cmd_len
; i
++)
871 printk("%02x ", cmd
->cmnd
[i
]);
875 esp_send_dma_cmd(esp
, val
, 16, start_cmd
);
878 static struct esp_cmd_entry
*esp_get_ent(struct esp
*esp
)
880 struct list_head
*head
= &esp
->esp_cmd_pool
;
881 struct esp_cmd_entry
*ret
;
883 if (list_empty(head
)) {
884 ret
= kzalloc(sizeof(struct esp_cmd_entry
), GFP_ATOMIC
);
886 ret
= list_entry(head
->next
, struct esp_cmd_entry
, list
);
887 list_del(&ret
->list
);
888 memset(ret
, 0, sizeof(*ret
));
893 static void esp_put_ent(struct esp
*esp
, struct esp_cmd_entry
*ent
)
895 list_add(&ent
->list
, &esp
->esp_cmd_pool
);
898 static void esp_cmd_is_done(struct esp
*esp
, struct esp_cmd_entry
*ent
,
899 struct scsi_cmnd
*cmd
, unsigned int result
)
901 struct scsi_device
*dev
= cmd
->device
;
905 esp
->active_cmd
= NULL
;
906 esp_unmap_dma(esp
, cmd
);
907 esp_free_lun_tag(ent
, dev
->hostdata
);
908 cmd
->result
= result
;
911 complete(ent
->eh_done
);
915 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
916 esp_unmap_sense(esp
, ent
);
918 /* Restore the message/status bytes to what we actually
919 * saw originally. Also, report that we are providing
922 cmd
->result
= ((DRIVER_SENSE
<< 24) |
924 (COMMAND_COMPLETE
<< 8) |
925 (SAM_STAT_CHECK_CONDITION
<< 0));
927 ent
->flags
&= ~ESP_CMD_FLAG_AUTOSENSE
;
928 if (esp_debug
& ESP_DEBUG_AUTOSENSE
) {
931 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
932 esp
->host
->unique_id
, tgt
, lun
);
933 for (i
= 0; i
< 18; i
++)
934 printk("%02x ", cmd
->sense_buffer
[i
]);
941 list_del(&ent
->list
);
942 esp_put_ent(esp
, ent
);
944 esp_maybe_execute_command(esp
);
947 static unsigned int compose_result(unsigned int status
, unsigned int message
,
948 unsigned int driver_code
)
950 return (status
| (message
<< 8) | (driver_code
<< 16));
953 static void esp_event_queue_full(struct esp
*esp
, struct esp_cmd_entry
*ent
)
955 struct scsi_device
*dev
= ent
->cmd
->device
;
956 struct esp_lun_data
*lp
= dev
->hostdata
;
958 scsi_track_queue_full(dev
, lp
->num_tagged
- 1);
961 static int esp_queuecommand_lck(struct scsi_cmnd
*cmd
, void (*done
)(struct scsi_cmnd
*))
963 struct scsi_device
*dev
= cmd
->device
;
964 struct esp
*esp
= shost_priv(dev
->host
);
965 struct esp_cmd_priv
*spriv
;
966 struct esp_cmd_entry
*ent
;
968 ent
= esp_get_ent(esp
);
970 return SCSI_MLQUEUE_HOST_BUSY
;
974 cmd
->scsi_done
= done
;
976 spriv
= ESP_CMD_PRIV(cmd
);
979 list_add_tail(&ent
->list
, &esp
->queued_cmds
);
981 esp_maybe_execute_command(esp
);
986 static DEF_SCSI_QCMD(esp_queuecommand
)
988 static int esp_check_gross_error(struct esp
*esp
)
990 if (esp
->sreg
& ESP_STAT_SPAM
) {
991 /* Gross Error, could be one of:
992 * - top of fifo overwritten
993 * - top of command register overwritten
994 * - DMA programmed with wrong direction
995 * - improper phase change
997 shost_printk(KERN_ERR
, esp
->host
,
998 "Gross error sreg[%02x]\n", esp
->sreg
);
999 /* XXX Reset the chip. XXX */
1005 static int esp_check_spur_intr(struct esp
*esp
)
1010 /* The interrupt pending bit of the status register cannot
1011 * be trusted on these revisions.
1013 esp
->sreg
&= ~ESP_STAT_INTR
;
1017 if (!(esp
->sreg
& ESP_STAT_INTR
)) {
1018 if (esp
->ireg
& ESP_INTR_SR
)
1021 /* If the DMA is indicating interrupt pending and the
1022 * ESP is not, the only possibility is a DMA error.
1024 if (!esp
->ops
->dma_error(esp
)) {
1025 shost_printk(KERN_ERR
, esp
->host
,
1026 "Spurious irq, sreg=%02x.\n",
1031 shost_printk(KERN_ERR
, esp
->host
, "DMA error\n");
1033 /* XXX Reset the chip. XXX */
1042 static void esp_schedule_reset(struct esp
*esp
)
1044 esp_log_reset("esp_schedule_reset() from %ps\n",
1045 __builtin_return_address(0));
1046 esp
->flags
|= ESP_FLAG_RESETTING
;
1047 esp_event(esp
, ESP_EVENT_RESET
);
1050 /* In order to avoid having to add a special half-reconnected state
1051 * into the driver we just sit here and poll through the rest of
1052 * the reselection process to get the tag message bytes.
1054 static struct esp_cmd_entry
*esp_reconnect_with_tag(struct esp
*esp
,
1055 struct esp_lun_data
*lp
)
1057 struct esp_cmd_entry
*ent
;
1060 if (!lp
->num_tagged
) {
1061 shost_printk(KERN_ERR
, esp
->host
,
1062 "Reconnect w/num_tagged==0\n");
1066 esp_log_reconnect("reconnect tag, ");
1068 for (i
= 0; i
< ESP_QUICKIRQ_LIMIT
; i
++) {
1069 if (esp
->ops
->irq_pending(esp
))
1072 if (i
== ESP_QUICKIRQ_LIMIT
) {
1073 shost_printk(KERN_ERR
, esp
->host
,
1074 "Reconnect IRQ1 timeout\n");
1078 esp
->sreg
= esp_read8(ESP_STATUS
);
1079 esp
->ireg
= esp_read8(ESP_INTRPT
);
1081 esp_log_reconnect("IRQ(%d:%x:%x), ",
1082 i
, esp
->ireg
, esp
->sreg
);
1084 if (esp
->ireg
& ESP_INTR_DC
) {
1085 shost_printk(KERN_ERR
, esp
->host
,
1086 "Reconnect, got disconnect.\n");
1090 if ((esp
->sreg
& ESP_STAT_PMASK
) != ESP_MIP
) {
1091 shost_printk(KERN_ERR
, esp
->host
,
1092 "Reconnect, not MIP sreg[%02x].\n", esp
->sreg
);
1096 /* DMA in the tag bytes... */
1097 esp
->command_block
[0] = 0xff;
1098 esp
->command_block
[1] = 0xff;
1099 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
1100 2, 2, 1, ESP_CMD_DMA
| ESP_CMD_TI
);
1102 /* ACK the message. */
1103 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1105 for (i
= 0; i
< ESP_RESELECT_TAG_LIMIT
; i
++) {
1106 if (esp
->ops
->irq_pending(esp
)) {
1107 esp
->sreg
= esp_read8(ESP_STATUS
);
1108 esp
->ireg
= esp_read8(ESP_INTRPT
);
1109 if (esp
->ireg
& ESP_INTR_FDONE
)
1114 if (i
== ESP_RESELECT_TAG_LIMIT
) {
1115 shost_printk(KERN_ERR
, esp
->host
, "Reconnect IRQ2 timeout\n");
1118 esp
->ops
->dma_drain(esp
);
1119 esp
->ops
->dma_invalidate(esp
);
1121 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1122 i
, esp
->ireg
, esp
->sreg
,
1123 esp
->command_block
[0],
1124 esp
->command_block
[1]);
1126 if (esp
->command_block
[0] < SIMPLE_QUEUE_TAG
||
1127 esp
->command_block
[0] > ORDERED_QUEUE_TAG
) {
1128 shost_printk(KERN_ERR
, esp
->host
,
1129 "Reconnect, bad tag type %02x.\n",
1130 esp
->command_block
[0]);
1134 ent
= lp
->tagged_cmds
[esp
->command_block
[1]];
1136 shost_printk(KERN_ERR
, esp
->host
,
1137 "Reconnect, no entry for tag %02x.\n",
1138 esp
->command_block
[1]);
1145 static int esp_reconnect(struct esp
*esp
)
1147 struct esp_cmd_entry
*ent
;
1148 struct esp_target_data
*tp
;
1149 struct esp_lun_data
*lp
;
1150 struct scsi_device
*dev
;
1153 BUG_ON(esp
->active_cmd
);
1154 if (esp
->rev
== FASHME
) {
1155 /* FASHME puts the target and lun numbers directly
1158 target
= esp
->fifo
[0];
1159 lun
= esp
->fifo
[1] & 0x7;
1161 u8 bits
= esp_read8(ESP_FDATA
);
1163 /* Older chips put the lun directly into the fifo, but
1164 * the target is given as a sample of the arbitration
1165 * lines on the bus at reselection time. So we should
1166 * see the ID of the ESP and the one reconnecting target
1167 * set in the bitmap.
1169 if (!(bits
& esp
->scsi_id_mask
))
1171 bits
&= ~esp
->scsi_id_mask
;
1172 if (!bits
|| (bits
& (bits
- 1)))
1175 target
= ffs(bits
) - 1;
1176 lun
= (esp_read8(ESP_FDATA
) & 0x7);
1178 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1179 if (esp
->rev
== ESP100
) {
1180 u8 ireg
= esp_read8(ESP_INTRPT
);
1181 /* This chip has a bug during reselection that can
1182 * cause a spurious illegal-command interrupt, which
1183 * we simply ACK here. Another possibility is a bus
1184 * reset so we must check for that.
1186 if (ireg
& ESP_INTR_SR
)
1189 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1192 esp_write_tgt_sync(esp
, target
);
1193 esp_write_tgt_config3(esp
, target
);
1195 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1197 if (esp
->rev
== FASHME
)
1198 esp_write8(target
| ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
,
1201 tp
= &esp
->target
[target
];
1202 dev
= __scsi_device_lookup_by_target(tp
->starget
, lun
);
1204 shost_printk(KERN_ERR
, esp
->host
,
1205 "Reconnect, no lp tgt[%u] lun[%u]\n",
1211 ent
= lp
->non_tagged_cmd
;
1213 ent
= esp_reconnect_with_tag(esp
, lp
);
1218 esp
->active_cmd
= ent
;
1220 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1221 esp_restore_pointers(esp
, ent
);
1222 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1226 esp_schedule_reset(esp
);
1230 static int esp_finish_select(struct esp
*esp
)
1232 struct esp_cmd_entry
*ent
;
1233 struct scsi_cmnd
*cmd
;
1235 /* No longer selecting. */
1236 esp
->select_state
= ESP_SELECT_NONE
;
1238 esp
->seqreg
= esp_read8(ESP_SSTEP
) & ESP_STEP_VBITS
;
1239 ent
= esp
->active_cmd
;
1242 if (esp
->ops
->dma_error(esp
)) {
1243 /* If we see a DMA error during or as a result of selection,
1246 esp_schedule_reset(esp
);
1247 esp_cmd_is_done(esp
, ent
, cmd
, (DID_ERROR
<< 16));
1251 esp
->ops
->dma_invalidate(esp
);
1253 if (esp
->ireg
== (ESP_INTR_RSEL
| ESP_INTR_FDONE
)) {
1254 struct esp_target_data
*tp
= &esp
->target
[cmd
->device
->id
];
1256 /* Carefully back out of the selection attempt. Release
1257 * resources (such as DMA mapping & TAG) and reset state (such
1258 * as message out and command delivery variables).
1260 if (!(ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)) {
1261 esp_unmap_dma(esp
, cmd
);
1262 esp_free_lun_tag(ent
, cmd
->device
->hostdata
);
1263 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_NEGO_WIDE
);
1264 esp
->cmd_bytes_ptr
= NULL
;
1265 esp
->cmd_bytes_left
= 0;
1267 esp_unmap_sense(esp
, ent
);
1270 /* Now that the state is unwound properly, put back onto
1271 * the issue queue. This command is no longer active.
1273 list_move(&ent
->list
, &esp
->queued_cmds
);
1274 esp
->active_cmd
= NULL
;
1276 /* Return value ignored by caller, it directly invokes
1282 if (esp
->ireg
== ESP_INTR_DC
) {
1283 struct scsi_device
*dev
= cmd
->device
;
1285 /* Disconnect. Make sure we re-negotiate sync and
1286 * wide parameters if this target starts responding
1287 * again in the future.
1289 esp
->target
[dev
->id
].flags
|= ESP_TGT_CHECK_NEGO
;
1291 scsi_esp_cmd(esp
, ESP_CMD_ESEL
);
1292 esp_cmd_is_done(esp
, ent
, cmd
, (DID_BAD_TARGET
<< 16));
1296 if (esp
->ireg
== (ESP_INTR_FDONE
| ESP_INTR_BSERV
)) {
1297 /* Selection successful. On pre-FAST chips we have
1298 * to do a NOP and possibly clean out the FIFO.
1300 if (esp
->rev
<= ESP236
) {
1301 int fcnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
1303 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1307 ((esp
->sreg
& ESP_STAT_PMASK
) != ESP_DIP
)))
1308 esp_flush_fifo(esp
);
1311 /* If we are doing a Select And Stop command, negotiation, etc.
1312 * we'll do the right thing as we transition to the next phase.
1314 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1318 shost_printk(KERN_INFO
, esp
->host
,
1319 "Unexpected selection completion ireg[%x]\n", esp
->ireg
);
1320 esp_schedule_reset(esp
);
1324 static int esp_data_bytes_sent(struct esp
*esp
, struct esp_cmd_entry
*ent
,
1325 struct scsi_cmnd
*cmd
)
1327 int fifo_cnt
, ecount
, bytes_sent
, flush_fifo
;
1329 fifo_cnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
1330 if (esp
->prev_cfg3
& ESP_CONFIG3_EWIDE
)
1334 if (!(esp
->sreg
& ESP_STAT_TCNT
)) {
1335 ecount
= ((unsigned int)esp_read8(ESP_TCLOW
) |
1336 (((unsigned int)esp_read8(ESP_TCMED
)) << 8));
1337 if (esp
->rev
== FASHME
)
1338 ecount
|= ((unsigned int)esp_read8(FAS_RLO
)) << 16;
1339 if (esp
->rev
== PCSCSI
&& (esp
->config2
& ESP_CONFIG2_FENAB
))
1340 ecount
|= ((unsigned int)esp_read8(ESP_TCHI
)) << 16;
1343 bytes_sent
= esp
->data_dma_len
;
1344 bytes_sent
-= ecount
;
1345 bytes_sent
-= esp
->send_cmd_residual
;
1348 * The am53c974 has a DMA 'pecularity'. The doc states:
1349 * In some odd byte conditions, one residual byte will
1350 * be left in the SCSI FIFO, and the FIFO Flags will
1351 * never count to '0 '. When this happens, the residual
1352 * byte should be retrieved via PIO following completion
1353 * of the BLAST operation.
1355 if (fifo_cnt
== 1 && ent
->flags
& ESP_CMD_FLAG_RESIDUAL
) {
1357 size_t offset
= bytes_sent
;
1358 u8 bval
= esp_read8(ESP_FDATA
);
1360 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)
1361 ent
->sense_ptr
[bytes_sent
] = bval
;
1363 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
1366 ptr
= scsi_kmap_atomic_sg(p
->cur_sg
, p
->num_sg
,
1369 *(ptr
+ offset
) = bval
;
1370 scsi_kunmap_atomic_sg(ptr
);
1373 bytes_sent
+= fifo_cnt
;
1374 ent
->flags
&= ~ESP_CMD_FLAG_RESIDUAL
;
1376 if (!(ent
->flags
& ESP_CMD_FLAG_WRITE
))
1377 bytes_sent
-= fifo_cnt
;
1380 if (!esp
->prev_soff
) {
1381 /* Synchronous data transfer, always flush fifo. */
1384 if (esp
->rev
== ESP100
) {
1387 /* ESP100 has a chip bug where in the synchronous data
1388 * phase it can mistake a final long REQ pulse from the
1389 * target as an extra data byte. Fun.
1391 * To detect this case we resample the status register
1392 * and fifo flags. If we're still in a data phase and
1393 * we see spurious chunks in the fifo, we return error
1394 * to the caller which should reset and set things up
1395 * such that we only try future transfers to this
1396 * target in synchronous mode.
1398 esp
->sreg
= esp_read8(ESP_STATUS
);
1399 phase
= esp
->sreg
& ESP_STAT_PMASK
;
1400 fflags
= esp_read8(ESP_FFLAGS
);
1402 if ((phase
== ESP_DOP
&&
1403 (fflags
& ESP_FF_ONOTZERO
)) ||
1404 (phase
== ESP_DIP
&&
1405 (fflags
& ESP_FF_FBYTES
)))
1408 if (!(ent
->flags
& ESP_CMD_FLAG_WRITE
))
1413 esp_flush_fifo(esp
);
1418 static void esp_setsync(struct esp
*esp
, struct esp_target_data
*tp
,
1419 u8 scsi_period
, u8 scsi_offset
,
1420 u8 esp_stp
, u8 esp_soff
)
1422 spi_period(tp
->starget
) = scsi_period
;
1423 spi_offset(tp
->starget
) = scsi_offset
;
1424 spi_width(tp
->starget
) = (tp
->flags
& ESP_TGT_WIDE
) ? 1 : 0;
1428 esp_soff
|= esp
->radelay
;
1429 if (esp
->rev
>= FAS236
) {
1430 u8 bit
= ESP_CONFIG3_FSCSI
;
1431 if (esp
->rev
>= FAS100A
)
1432 bit
= ESP_CONFIG3_FAST
;
1434 if (scsi_period
< 50) {
1435 if (esp
->rev
== FASHME
)
1436 esp_soff
&= ~esp
->radelay
;
1437 tp
->esp_config3
|= bit
;
1439 tp
->esp_config3
&= ~bit
;
1441 esp
->prev_cfg3
= tp
->esp_config3
;
1442 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
1446 tp
->esp_period
= esp
->prev_stp
= esp_stp
;
1447 tp
->esp_offset
= esp
->prev_soff
= esp_soff
;
1449 esp_write8(esp_soff
, ESP_SOFF
);
1450 esp_write8(esp_stp
, ESP_STP
);
1452 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_CHECK_NEGO
);
1454 spi_display_xfer_agreement(tp
->starget
);
1457 static void esp_msgin_reject(struct esp
*esp
)
1459 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1460 struct scsi_cmnd
*cmd
= ent
->cmd
;
1461 struct esp_target_data
*tp
;
1464 tgt
= cmd
->device
->id
;
1465 tp
= &esp
->target
[tgt
];
1467 if (tp
->flags
& ESP_TGT_NEGO_WIDE
) {
1468 tp
->flags
&= ~(ESP_TGT_NEGO_WIDE
| ESP_TGT_WIDE
);
1470 if (!esp_need_to_nego_sync(tp
)) {
1471 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
1472 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1475 spi_populate_sync_msg(&esp
->msg_out
[0],
1476 tp
->nego_goal_period
,
1477 tp
->nego_goal_offset
);
1478 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
1479 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1484 if (tp
->flags
& ESP_TGT_NEGO_SYNC
) {
1485 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_CHECK_NEGO
);
1488 esp_setsync(esp
, tp
, 0, 0, 0, 0);
1489 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1493 shost_printk(KERN_INFO
, esp
->host
, "Unexpected MESSAGE REJECT\n");
1494 esp_schedule_reset(esp
);
1497 static void esp_msgin_sdtr(struct esp
*esp
, struct esp_target_data
*tp
)
1499 u8 period
= esp
->msg_in
[3];
1500 u8 offset
= esp
->msg_in
[4];
1503 if (!(tp
->flags
& ESP_TGT_NEGO_SYNC
))
1512 if (period
> esp
->max_period
) {
1513 period
= offset
= 0;
1516 if (period
< esp
->min_period
)
1519 one_clock
= esp
->ccycle
/ 1000;
1520 stp
= DIV_ROUND_UP(period
<< 2, one_clock
);
1521 if (stp
&& esp
->rev
>= FAS236
) {
1529 esp_setsync(esp
, tp
, period
, offset
, stp
, offset
);
1533 esp
->msg_out
[0] = MESSAGE_REJECT
;
1534 esp
->msg_out_len
= 1;
1535 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1539 tp
->nego_goal_period
= period
;
1540 tp
->nego_goal_offset
= offset
;
1542 spi_populate_sync_msg(&esp
->msg_out
[0],
1543 tp
->nego_goal_period
,
1544 tp
->nego_goal_offset
);
1545 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1548 static void esp_msgin_wdtr(struct esp
*esp
, struct esp_target_data
*tp
)
1550 int size
= 8 << esp
->msg_in
[3];
1553 if (esp
->rev
!= FASHME
)
1556 if (size
!= 8 && size
!= 16)
1559 if (!(tp
->flags
& ESP_TGT_NEGO_WIDE
))
1562 cfg3
= tp
->esp_config3
;
1564 tp
->flags
|= ESP_TGT_WIDE
;
1565 cfg3
|= ESP_CONFIG3_EWIDE
;
1567 tp
->flags
&= ~ESP_TGT_WIDE
;
1568 cfg3
&= ~ESP_CONFIG3_EWIDE
;
1570 tp
->esp_config3
= cfg3
;
1571 esp
->prev_cfg3
= cfg3
;
1572 esp_write8(cfg3
, ESP_CFG3
);
1574 tp
->flags
&= ~ESP_TGT_NEGO_WIDE
;
1576 spi_period(tp
->starget
) = 0;
1577 spi_offset(tp
->starget
) = 0;
1578 if (!esp_need_to_nego_sync(tp
)) {
1579 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
1580 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1583 spi_populate_sync_msg(&esp
->msg_out
[0],
1584 tp
->nego_goal_period
,
1585 tp
->nego_goal_offset
);
1586 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
1587 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1592 esp
->msg_out
[0] = MESSAGE_REJECT
;
1593 esp
->msg_out_len
= 1;
1594 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1597 static void esp_msgin_extended(struct esp
*esp
)
1599 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1600 struct scsi_cmnd
*cmd
= ent
->cmd
;
1601 struct esp_target_data
*tp
;
1602 int tgt
= cmd
->device
->id
;
1604 tp
= &esp
->target
[tgt
];
1605 if (esp
->msg_in
[2] == EXTENDED_SDTR
) {
1606 esp_msgin_sdtr(esp
, tp
);
1609 if (esp
->msg_in
[2] == EXTENDED_WDTR
) {
1610 esp_msgin_wdtr(esp
, tp
);
1614 shost_printk(KERN_INFO
, esp
->host
,
1615 "Unexpected extended msg type %x\n", esp
->msg_in
[2]);
1617 esp
->msg_out
[0] = MESSAGE_REJECT
;
1618 esp
->msg_out_len
= 1;
1619 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1622 /* Analyze msgin bytes received from target so far. Return non-zero
1623 * if there are more bytes needed to complete the message.
1625 static int esp_msgin_process(struct esp
*esp
)
1627 u8 msg0
= esp
->msg_in
[0];
1628 int len
= esp
->msg_in_len
;
1632 shost_printk(KERN_INFO
, esp
->host
,
1633 "Unexpected msgin identify\n");
1638 case EXTENDED_MESSAGE
:
1641 if (len
< esp
->msg_in
[1] + 2)
1643 esp_msgin_extended(esp
);
1646 case IGNORE_WIDE_RESIDUE
: {
1647 struct esp_cmd_entry
*ent
;
1648 struct esp_cmd_priv
*spriv
;
1652 if (esp
->msg_in
[1] != 1)
1655 ent
= esp
->active_cmd
;
1656 spriv
= ESP_CMD_PRIV(ent
->cmd
);
1658 if (spriv
->cur_residue
== sg_dma_len(spriv
->cur_sg
)) {
1659 spriv
->cur_sg
= spriv
->prv_sg
;
1660 spriv
->cur_residue
= 1;
1662 spriv
->cur_residue
++;
1663 spriv
->tot_residue
++;
1668 case RESTORE_POINTERS
:
1669 esp_restore_pointers(esp
, esp
->active_cmd
);
1672 esp_save_pointers(esp
, esp
->active_cmd
);
1675 case COMMAND_COMPLETE
:
1677 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1679 ent
->message
= msg0
;
1680 esp_event(esp
, ESP_EVENT_FREE_BUS
);
1681 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1684 case MESSAGE_REJECT
:
1685 esp_msgin_reject(esp
);
1690 esp
->msg_out
[0] = MESSAGE_REJECT
;
1691 esp
->msg_out_len
= 1;
1692 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1697 static int esp_process_event(struct esp
*esp
)
1703 esp_log_event("process event %d phase %x\n",
1704 esp
->event
, esp
->sreg
& ESP_STAT_PMASK
);
1705 switch (esp
->event
) {
1706 case ESP_EVENT_CHECK_PHASE
:
1707 switch (esp
->sreg
& ESP_STAT_PMASK
) {
1709 esp_event(esp
, ESP_EVENT_DATA_OUT
);
1712 esp_event(esp
, ESP_EVENT_DATA_IN
);
1715 esp_flush_fifo(esp
);
1716 scsi_esp_cmd(esp
, ESP_CMD_ICCSEQ
);
1717 esp_event(esp
, ESP_EVENT_STATUS
);
1718 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1722 esp_event(esp
, ESP_EVENT_MSGOUT
);
1726 esp_event(esp
, ESP_EVENT_MSGIN
);
1730 esp_event(esp
, ESP_EVENT_CMD_START
);
1734 shost_printk(KERN_INFO
, esp
->host
,
1735 "Unexpected phase, sreg=%02x\n",
1737 esp_schedule_reset(esp
);
1742 case ESP_EVENT_DATA_IN
:
1746 case ESP_EVENT_DATA_OUT
: {
1747 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1748 struct scsi_cmnd
*cmd
= ent
->cmd
;
1749 dma_addr_t dma_addr
= esp_cur_dma_addr(ent
, cmd
);
1750 unsigned int dma_len
= esp_cur_dma_len(ent
, cmd
);
1752 if (esp
->rev
== ESP100
)
1753 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1756 ent
->flags
|= ESP_CMD_FLAG_WRITE
;
1758 ent
->flags
&= ~ESP_CMD_FLAG_WRITE
;
1760 if (esp
->ops
->dma_length_limit
)
1761 dma_len
= esp
->ops
->dma_length_limit(esp
, dma_addr
,
1764 dma_len
= esp_dma_length_limit(esp
, dma_addr
, dma_len
);
1766 esp
->data_dma_len
= dma_len
;
1769 shost_printk(KERN_ERR
, esp
->host
,
1770 "DMA length is zero!\n");
1771 shost_printk(KERN_ERR
, esp
->host
,
1772 "cur adr[%08llx] len[%08x]\n",
1773 (unsigned long long)esp_cur_dma_addr(ent
, cmd
),
1774 esp_cur_dma_len(ent
, cmd
));
1775 esp_schedule_reset(esp
);
1779 esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1780 (unsigned long long)dma_addr
, dma_len
, write
);
1782 esp
->ops
->send_dma_cmd(esp
, dma_addr
, dma_len
, dma_len
,
1783 write
, ESP_CMD_DMA
| ESP_CMD_TI
);
1784 esp_event(esp
, ESP_EVENT_DATA_DONE
);
1787 case ESP_EVENT_DATA_DONE
: {
1788 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1789 struct scsi_cmnd
*cmd
= ent
->cmd
;
1792 if (esp
->ops
->dma_error(esp
)) {
1793 shost_printk(KERN_INFO
, esp
->host
,
1794 "data done, DMA error, resetting\n");
1795 esp_schedule_reset(esp
);
1799 if (ent
->flags
& ESP_CMD_FLAG_WRITE
) {
1800 /* XXX parity errors, etc. XXX */
1802 esp
->ops
->dma_drain(esp
);
1804 esp
->ops
->dma_invalidate(esp
);
1806 if (esp
->ireg
!= ESP_INTR_BSERV
) {
1807 /* We should always see exactly a bus-service
1808 * interrupt at the end of a successful transfer.
1810 shost_printk(KERN_INFO
, esp
->host
,
1811 "data done, not BSERV, resetting\n");
1812 esp_schedule_reset(esp
);
1816 bytes_sent
= esp_data_bytes_sent(esp
, ent
, cmd
);
1818 esp_log_datadone("data done flgs[%x] sent[%d]\n",
1819 ent
->flags
, bytes_sent
);
1821 if (bytes_sent
< 0) {
1822 /* XXX force sync mode for this target XXX */
1823 esp_schedule_reset(esp
);
1827 esp_advance_dma(esp
, ent
, cmd
, bytes_sent
);
1828 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1832 case ESP_EVENT_STATUS
: {
1833 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1835 if (esp
->ireg
& ESP_INTR_FDONE
) {
1836 ent
->status
= esp_read8(ESP_FDATA
);
1837 ent
->message
= esp_read8(ESP_FDATA
);
1838 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1839 } else if (esp
->ireg
== ESP_INTR_BSERV
) {
1840 ent
->status
= esp_read8(ESP_FDATA
);
1841 ent
->message
= 0xff;
1842 esp_event(esp
, ESP_EVENT_MSGIN
);
1846 if (ent
->message
!= COMMAND_COMPLETE
) {
1847 shost_printk(KERN_INFO
, esp
->host
,
1848 "Unexpected message %x in status\n",
1850 esp_schedule_reset(esp
);
1854 esp_event(esp
, ESP_EVENT_FREE_BUS
);
1855 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1858 case ESP_EVENT_FREE_BUS
: {
1859 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1860 struct scsi_cmnd
*cmd
= ent
->cmd
;
1862 if (ent
->message
== COMMAND_COMPLETE
||
1863 ent
->message
== DISCONNECT
)
1864 scsi_esp_cmd(esp
, ESP_CMD_ESEL
);
1866 if (ent
->message
== COMMAND_COMPLETE
) {
1867 esp_log_cmddone("Command done status[%x] message[%x]\n",
1868 ent
->status
, ent
->message
);
1869 if (ent
->status
== SAM_STAT_TASK_SET_FULL
)
1870 esp_event_queue_full(esp
, ent
);
1872 if (ent
->status
== SAM_STAT_CHECK_CONDITION
&&
1873 !(ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)) {
1874 ent
->flags
|= ESP_CMD_FLAG_AUTOSENSE
;
1875 esp_autosense(esp
, ent
);
1877 esp_cmd_is_done(esp
, ent
, cmd
,
1878 compose_result(ent
->status
,
1882 } else if (ent
->message
== DISCONNECT
) {
1883 esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1885 ent
->tag
[0], ent
->tag
[1]);
1887 esp
->active_cmd
= NULL
;
1888 esp_maybe_execute_command(esp
);
1890 shost_printk(KERN_INFO
, esp
->host
,
1891 "Unexpected message %x in freebus\n",
1893 esp_schedule_reset(esp
);
1896 if (esp
->active_cmd
)
1897 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1900 case ESP_EVENT_MSGOUT
: {
1901 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1903 if (esp_debug
& ESP_DEBUG_MSGOUT
) {
1905 printk("ESP: Sending message [ ");
1906 for (i
= 0; i
< esp
->msg_out_len
; i
++)
1907 printk("%02x ", esp
->msg_out
[i
]);
1911 if (esp
->rev
== FASHME
) {
1914 /* Always use the fifo. */
1915 for (i
= 0; i
< esp
->msg_out_len
; i
++) {
1916 esp_write8(esp
->msg_out
[i
], ESP_FDATA
);
1917 esp_write8(0, ESP_FDATA
);
1919 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1921 if (esp
->msg_out_len
== 1) {
1922 esp_write8(esp
->msg_out
[0], ESP_FDATA
);
1923 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1924 } else if (esp
->flags
& ESP_FLAG_USE_FIFO
) {
1925 for (i
= 0; i
< esp
->msg_out_len
; i
++)
1926 esp_write8(esp
->msg_out
[i
], ESP_FDATA
);
1927 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1930 memcpy(esp
->command_block
,
1934 esp
->ops
->send_dma_cmd(esp
,
1935 esp
->command_block_dma
,
1939 ESP_CMD_DMA
|ESP_CMD_TI
);
1942 esp_event(esp
, ESP_EVENT_MSGOUT_DONE
);
1945 case ESP_EVENT_MSGOUT_DONE
:
1946 if (esp
->rev
== FASHME
) {
1947 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1949 if (esp
->msg_out_len
> 1)
1950 esp
->ops
->dma_invalidate(esp
);
1952 /* XXX if the chip went into disconnected mode,
1953 * we can't run the phase state machine anyway.
1955 if (!(esp
->ireg
& ESP_INTR_DC
))
1956 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1959 esp
->msg_out_len
= 0;
1961 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1963 case ESP_EVENT_MSGIN
:
1964 if (esp
->ireg
& ESP_INTR_BSERV
) {
1965 if (esp
->rev
== FASHME
) {
1966 if (!(esp_read8(ESP_STATUS2
) &
1968 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1970 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1971 if (esp
->rev
== ESP100
)
1972 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1974 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1975 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1978 if (esp
->ireg
& ESP_INTR_FDONE
) {
1981 if (esp
->rev
== FASHME
)
1984 val
= esp_read8(ESP_FDATA
);
1985 esp
->msg_in
[esp
->msg_in_len
++] = val
;
1987 esp_log_msgin("Got msgin byte %x\n", val
);
1989 if (!esp_msgin_process(esp
))
1990 esp
->msg_in_len
= 0;
1992 if (esp
->rev
== FASHME
)
1993 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1995 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1997 /* Check whether a bus reset is to be done next */
1998 if (esp
->event
== ESP_EVENT_RESET
)
2001 if (esp
->event
!= ESP_EVENT_FREE_BUS
)
2002 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
2004 shost_printk(KERN_INFO
, esp
->host
,
2005 "MSGIN neither BSERV not FDON, resetting");
2006 esp_schedule_reset(esp
);
2010 case ESP_EVENT_CMD_START
:
2011 memcpy(esp
->command_block
, esp
->cmd_bytes_ptr
,
2012 esp
->cmd_bytes_left
);
2013 esp_send_dma_cmd(esp
, esp
->cmd_bytes_left
, 16, ESP_CMD_TI
);
2014 esp_event(esp
, ESP_EVENT_CMD_DONE
);
2015 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
2017 case ESP_EVENT_CMD_DONE
:
2018 esp
->ops
->dma_invalidate(esp
);
2019 if (esp
->ireg
& ESP_INTR_BSERV
) {
2020 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
2023 esp_schedule_reset(esp
);
2026 case ESP_EVENT_RESET
:
2027 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2031 shost_printk(KERN_INFO
, esp
->host
,
2032 "Unexpected event %x, resetting\n", esp
->event
);
2033 esp_schedule_reset(esp
);
2039 static void esp_reset_cleanup_one(struct esp
*esp
, struct esp_cmd_entry
*ent
)
2041 struct scsi_cmnd
*cmd
= ent
->cmd
;
2043 esp_unmap_dma(esp
, cmd
);
2044 esp_free_lun_tag(ent
, cmd
->device
->hostdata
);
2045 cmd
->result
= DID_RESET
<< 16;
2047 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)
2048 esp_unmap_sense(esp
, ent
);
2050 cmd
->scsi_done(cmd
);
2051 list_del(&ent
->list
);
2052 esp_put_ent(esp
, ent
);
2055 static void esp_clear_hold(struct scsi_device
*dev
, void *data
)
2057 struct esp_lun_data
*lp
= dev
->hostdata
;
2059 BUG_ON(lp
->num_tagged
);
2063 static void esp_reset_cleanup(struct esp
*esp
)
2065 struct esp_cmd_entry
*ent
, *tmp
;
2068 list_for_each_entry_safe(ent
, tmp
, &esp
->queued_cmds
, list
) {
2069 struct scsi_cmnd
*cmd
= ent
->cmd
;
2071 list_del(&ent
->list
);
2072 cmd
->result
= DID_RESET
<< 16;
2073 cmd
->scsi_done(cmd
);
2074 esp_put_ent(esp
, ent
);
2077 list_for_each_entry_safe(ent
, tmp
, &esp
->active_cmds
, list
) {
2078 if (ent
== esp
->active_cmd
)
2079 esp
->active_cmd
= NULL
;
2080 esp_reset_cleanup_one(esp
, ent
);
2083 BUG_ON(esp
->active_cmd
!= NULL
);
2085 /* Force renegotiation of sync/wide transfers. */
2086 for (i
= 0; i
< ESP_MAX_TARGET
; i
++) {
2087 struct esp_target_data
*tp
= &esp
->target
[i
];
2091 tp
->esp_config3
&= ~(ESP_CONFIG3_EWIDE
|
2094 tp
->flags
&= ~ESP_TGT_WIDE
;
2095 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2098 __starget_for_each_device(tp
->starget
, NULL
,
2101 esp
->flags
&= ~ESP_FLAG_RESETTING
;
2104 /* Runs under host->lock */
2105 static void __esp_interrupt(struct esp
*esp
)
2107 int finish_reset
, intr_done
;
2111 * Once INTRPT is read STATUS and SSTEP are cleared.
2113 esp
->sreg
= esp_read8(ESP_STATUS
);
2114 esp
->seqreg
= esp_read8(ESP_SSTEP
);
2115 esp
->ireg
= esp_read8(ESP_INTRPT
);
2117 if (esp
->flags
& ESP_FLAG_RESETTING
) {
2120 if (esp_check_gross_error(esp
))
2123 finish_reset
= esp_check_spur_intr(esp
);
2124 if (finish_reset
< 0)
2128 if (esp
->ireg
& ESP_INTR_SR
)
2132 esp_reset_cleanup(esp
);
2133 if (esp
->eh_reset
) {
2134 complete(esp
->eh_reset
);
2135 esp
->eh_reset
= NULL
;
2140 phase
= (esp
->sreg
& ESP_STAT_PMASK
);
2141 if (esp
->rev
== FASHME
) {
2142 if (((phase
!= ESP_DIP
&& phase
!= ESP_DOP
) &&
2143 esp
->select_state
== ESP_SELECT_NONE
&&
2144 esp
->event
!= ESP_EVENT_STATUS
&&
2145 esp
->event
!= ESP_EVENT_DATA_DONE
) ||
2146 (esp
->ireg
& ESP_INTR_RSEL
)) {
2147 esp
->sreg2
= esp_read8(ESP_STATUS2
);
2148 if (!(esp
->sreg2
& ESP_STAT2_FEMPTY
) ||
2149 (esp
->sreg2
& ESP_STAT2_F1BYTE
))
2154 esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2155 "sreg2[%02x] ireg[%02x]\n",
2156 esp
->sreg
, esp
->seqreg
, esp
->sreg2
, esp
->ireg
);
2160 if (esp
->ireg
& (ESP_INTR_S
| ESP_INTR_SATN
| ESP_INTR_IC
)) {
2161 shost_printk(KERN_INFO
, esp
->host
,
2162 "unexpected IREG %02x\n", esp
->ireg
);
2163 if (esp
->ireg
& ESP_INTR_IC
)
2164 esp_dump_cmd_log(esp
);
2166 esp_schedule_reset(esp
);
2168 if (esp
->ireg
& ESP_INTR_RSEL
) {
2169 if (esp
->active_cmd
)
2170 (void) esp_finish_select(esp
);
2171 intr_done
= esp_reconnect(esp
);
2173 /* Some combination of FDONE, BSERV, DC. */
2174 if (esp
->select_state
!= ESP_SELECT_NONE
)
2175 intr_done
= esp_finish_select(esp
);
2179 intr_done
= esp_process_event(esp
);
2182 irqreturn_t
scsi_esp_intr(int irq
, void *dev_id
)
2184 struct esp
*esp
= dev_id
;
2185 unsigned long flags
;
2188 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2190 if (esp
->ops
->irq_pending(esp
)) {
2195 __esp_interrupt(esp
);
2196 if (!(esp
->flags
& ESP_FLAG_QUICKIRQ_CHECK
))
2198 esp
->flags
&= ~ESP_FLAG_QUICKIRQ_CHECK
;
2200 for (i
= 0; i
< ESP_QUICKIRQ_LIMIT
; i
++) {
2201 if (esp
->ops
->irq_pending(esp
))
2204 if (i
== ESP_QUICKIRQ_LIMIT
)
2208 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2212 EXPORT_SYMBOL(scsi_esp_intr
);
2214 static void esp_get_revision(struct esp
*esp
)
2218 esp
->config1
= (ESP_CONFIG1_PENABLE
| (esp
->scsi_id
& 7));
2219 if (esp
->config2
== 0) {
2220 esp
->config2
= (ESP_CONFIG2_SCSI2ENAB
| ESP_CONFIG2_REGPARITY
);
2221 esp_write8(esp
->config2
, ESP_CFG2
);
2223 val
= esp_read8(ESP_CFG2
);
2224 val
&= ~ESP_CONFIG2_MAGIC
;
2227 if (val
!= (ESP_CONFIG2_SCSI2ENAB
| ESP_CONFIG2_REGPARITY
)) {
2229 * If what we write to cfg2 does not come back,
2230 * cfg2 is not implemented.
2231 * Therefore this must be a plain esp100.
2238 esp_set_all_config3(esp
, 5);
2240 esp_write8(esp
->config2
, ESP_CFG2
);
2241 esp_write8(0, ESP_CFG3
);
2242 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
2244 val
= esp_read8(ESP_CFG3
);
2246 /* The cfg2 register is implemented, however
2247 * cfg3 is not, must be esp100a.
2251 esp_set_all_config3(esp
, 0);
2253 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
2255 /* All of cfg{1,2,3} implemented, must be one of
2256 * the fas variants, figure out which one.
2258 if (esp
->cfact
== 0 || esp
->cfact
> ESP_CCF_F5
) {
2260 esp
->sync_defp
= SYNC_DEFP_FAST
;
2267 static void esp_init_swstate(struct esp
*esp
)
2271 INIT_LIST_HEAD(&esp
->queued_cmds
);
2272 INIT_LIST_HEAD(&esp
->active_cmds
);
2273 INIT_LIST_HEAD(&esp
->esp_cmd_pool
);
2275 /* Start with a clear state, domain validation (via ->slave_configure,
2276 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2279 for (i
= 0 ; i
< ESP_MAX_TARGET
; i
++) {
2280 esp
->target
[i
].flags
= 0;
2281 esp
->target
[i
].nego_goal_period
= 0;
2282 esp
->target
[i
].nego_goal_offset
= 0;
2283 esp
->target
[i
].nego_goal_width
= 0;
2284 esp
->target
[i
].nego_goal_tags
= 0;
2288 /* This places the ESP into a known state at boot time. */
2289 static void esp_bootup_reset(struct esp
*esp
)
2294 esp
->ops
->reset_dma(esp
);
2299 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2300 val
= esp_read8(ESP_CFG1
);
2301 val
|= ESP_CONFIG1_SRRDISAB
;
2302 esp_write8(val
, ESP_CFG1
);
2304 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2307 esp_write8(esp
->config1
, ESP_CFG1
);
2309 /* Eat any bitrot in the chip and we are done... */
2310 esp_read8(ESP_INTRPT
);
2313 static void esp_set_clock_params(struct esp
*esp
)
2318 /* This is getting messy but it has to be done correctly or else
2319 * you get weird behavior all over the place. We are trying to
2320 * basically figure out three pieces of information.
2322 * a) Clock Conversion Factor
2324 * This is a representation of the input crystal clock frequency
2325 * going into the ESP on this machine. Any operation whose timing
2326 * is longer than 400ns depends on this value being correct. For
2327 * example, you'll get blips for arbitration/selection during high
2328 * load or with multiple targets if this is not set correctly.
2330 * b) Selection Time-Out
2332 * The ESP isn't very bright and will arbitrate for the bus and try
2333 * to select a target forever if you let it. This value tells the
2334 * ESP when it has taken too long to negotiate and that it should
2335 * interrupt the CPU so we can see what happened. The value is
2336 * computed as follows (from NCR/Symbios chip docs).
2338 * (Time Out Period) * (Input Clock)
2339 * STO = ----------------------------------
2340 * (8192) * (Clock Conversion Factor)
2342 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2344 * c) Imperical constants for synchronous offset and transfer period
2347 * This entails the smallest and largest sync period we could ever
2348 * handle on this ESP.
2352 ccf
= ((fhz
/ 1000000) + 4) / 5;
2356 /* If we can't find anything reasonable, just assume 20MHZ.
2357 * This is the clock frequency of the older sun4c's where I've
2358 * been unable to find the clock-frequency PROM property. All
2359 * other machines provide useful values it seems.
2361 if (fhz
<= 5000000 || ccf
< 1 || ccf
> 8) {
2366 esp
->cfact
= (ccf
== 8 ? 0 : ccf
);
2368 esp
->ccycle
= ESP_HZ_TO_CYCLE(fhz
);
2369 esp
->ctick
= ESP_TICK(ccf
, esp
->ccycle
);
2370 esp
->neg_defp
= ESP_NEG_DEFP(fhz
, ccf
);
2371 esp
->sync_defp
= SYNC_DEFP_SLOW
;
2374 static const char *esp_chip_names
[] = {
2386 static struct scsi_transport_template
*esp_transport_template
;
2388 int scsi_esp_register(struct esp
*esp
)
2390 static int instance
;
2394 esp
->num_tags
= ESP_DEFAULT_TAGS
;
2395 esp
->host
->transportt
= esp_transport_template
;
2396 esp
->host
->max_lun
= ESP_MAX_LUN
;
2397 esp
->host
->cmd_per_lun
= 2;
2398 esp
->host
->unique_id
= instance
;
2400 esp_set_clock_params(esp
);
2402 esp_get_revision(esp
);
2404 esp_init_swstate(esp
);
2406 esp_bootup_reset(esp
);
2408 dev_printk(KERN_INFO
, esp
->dev
, "esp%u: regs[%1p:%1p] irq[%u]\n",
2409 esp
->host
->unique_id
, esp
->regs
, esp
->dma_regs
,
2411 dev_printk(KERN_INFO
, esp
->dev
,
2412 "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2413 esp
->host
->unique_id
, esp_chip_names
[esp
->rev
],
2414 esp
->cfreq
/ 1000000, esp
->cfact
, esp
->scsi_id
);
2416 /* Let the SCSI bus reset settle. */
2417 ssleep(esp_bus_reset_settle
);
2419 err
= scsi_add_host(esp
->host
, esp
->dev
);
2425 scsi_scan_host(esp
->host
);
2429 EXPORT_SYMBOL(scsi_esp_register
);
2431 void scsi_esp_unregister(struct esp
*esp
)
2433 scsi_remove_host(esp
->host
);
2435 EXPORT_SYMBOL(scsi_esp_unregister
);
2437 static int esp_target_alloc(struct scsi_target
*starget
)
2439 struct esp
*esp
= shost_priv(dev_to_shost(&starget
->dev
));
2440 struct esp_target_data
*tp
= &esp
->target
[starget
->id
];
2442 tp
->starget
= starget
;
2447 static void esp_target_destroy(struct scsi_target
*starget
)
2449 struct esp
*esp
= shost_priv(dev_to_shost(&starget
->dev
));
2450 struct esp_target_data
*tp
= &esp
->target
[starget
->id
];
2455 static int esp_slave_alloc(struct scsi_device
*dev
)
2457 struct esp
*esp
= shost_priv(dev
->host
);
2458 struct esp_target_data
*tp
= &esp
->target
[dev
->id
];
2459 struct esp_lun_data
*lp
;
2461 lp
= kzalloc(sizeof(*lp
), GFP_KERNEL
);
2466 spi_min_period(tp
->starget
) = esp
->min_period
;
2467 spi_max_offset(tp
->starget
) = 15;
2469 if (esp
->flags
& ESP_FLAG_WIDE_CAPABLE
)
2470 spi_max_width(tp
->starget
) = 1;
2472 spi_max_width(tp
->starget
) = 0;
2477 static int esp_slave_configure(struct scsi_device
*dev
)
2479 struct esp
*esp
= shost_priv(dev
->host
);
2480 struct esp_target_data
*tp
= &esp
->target
[dev
->id
];
2482 if (dev
->tagged_supported
)
2483 scsi_change_queue_depth(dev
, esp
->num_tags
);
2485 tp
->flags
|= ESP_TGT_DISCONNECT
;
2487 if (!spi_initial_dv(dev
->sdev_target
))
2493 static void esp_slave_destroy(struct scsi_device
*dev
)
2495 struct esp_lun_data
*lp
= dev
->hostdata
;
2498 dev
->hostdata
= NULL
;
2501 static int esp_eh_abort_handler(struct scsi_cmnd
*cmd
)
2503 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2504 struct esp_cmd_entry
*ent
, *tmp
;
2505 struct completion eh_done
;
2506 unsigned long flags
;
2508 /* XXX This helps a lot with debugging but might be a bit
2509 * XXX much for the final driver.
2511 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2512 shost_printk(KERN_ERR
, esp
->host
, "Aborting command [%p:%02x]\n",
2514 ent
= esp
->active_cmd
;
2516 shost_printk(KERN_ERR
, esp
->host
,
2517 "Current command [%p:%02x]\n",
2518 ent
->cmd
, ent
->cmd
->cmnd
[0]);
2519 list_for_each_entry(ent
, &esp
->queued_cmds
, list
) {
2520 shost_printk(KERN_ERR
, esp
->host
, "Queued command [%p:%02x]\n",
2521 ent
->cmd
, ent
->cmd
->cmnd
[0]);
2523 list_for_each_entry(ent
, &esp
->active_cmds
, list
) {
2524 shost_printk(KERN_ERR
, esp
->host
, " Active command [%p:%02x]\n",
2525 ent
->cmd
, ent
->cmd
->cmnd
[0]);
2527 esp_dump_cmd_log(esp
);
2528 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2530 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2533 list_for_each_entry(tmp
, &esp
->queued_cmds
, list
) {
2534 if (tmp
->cmd
== cmd
) {
2541 /* Easiest case, we didn't even issue the command
2542 * yet so it is trivial to abort.
2544 list_del(&ent
->list
);
2546 cmd
->result
= DID_ABORT
<< 16;
2547 cmd
->scsi_done(cmd
);
2549 esp_put_ent(esp
, ent
);
2554 init_completion(&eh_done
);
2556 ent
= esp
->active_cmd
;
2557 if (ent
&& ent
->cmd
== cmd
) {
2558 /* Command is the currently active command on
2559 * the bus. If we already have an output message
2562 if (esp
->msg_out_len
)
2565 /* Send out an abort, encouraging the target to
2566 * go to MSGOUT phase by asserting ATN.
2568 esp
->msg_out
[0] = ABORT_TASK_SET
;
2569 esp
->msg_out_len
= 1;
2570 ent
->eh_done
= &eh_done
;
2572 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
2574 /* The command is disconnected. This is not easy to
2575 * abort. For now we fail and let the scsi error
2576 * handling layer go try a scsi bus reset or host
2579 * What we could do is put together a scsi command
2580 * solely for the purpose of sending an abort message
2581 * to the target. Coming up with all the code to
2582 * cook up scsi commands, special case them everywhere,
2583 * etc. is for questionable gain and it would be better
2584 * if the generic scsi error handling layer could do at
2585 * least some of that for us.
2587 * Anyways this is an area for potential future improvement
2593 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2595 if (!wait_for_completion_timeout(&eh_done
, 5 * HZ
)) {
2596 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2597 ent
->eh_done
= NULL
;
2598 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2606 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2610 /* XXX This might be a good location to set ESP_TGT_BROKEN
2611 * XXX since we know which target/lun in particular is
2612 * XXX causing trouble.
2614 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2618 static int esp_eh_bus_reset_handler(struct scsi_cmnd
*cmd
)
2620 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2621 struct completion eh_reset
;
2622 unsigned long flags
;
2624 init_completion(&eh_reset
);
2626 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2628 esp
->eh_reset
= &eh_reset
;
2630 /* XXX This is too simple... We should add lots of
2631 * XXX checks here so that if we find that the chip is
2632 * XXX very wedged we return failure immediately so
2633 * XXX that we can perform a full chip reset.
2635 esp
->flags
|= ESP_FLAG_RESETTING
;
2636 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2638 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2640 ssleep(esp_bus_reset_settle
);
2642 if (!wait_for_completion_timeout(&eh_reset
, 5 * HZ
)) {
2643 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2644 esp
->eh_reset
= NULL
;
2645 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2653 /* All bets are off, reset the entire device. */
2654 static int esp_eh_host_reset_handler(struct scsi_cmnd
*cmd
)
2656 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2657 unsigned long flags
;
2659 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2660 esp_bootup_reset(esp
);
2661 esp_reset_cleanup(esp
);
2662 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2664 ssleep(esp_bus_reset_settle
);
2669 static const char *esp_info(struct Scsi_Host
*host
)
2674 struct scsi_host_template scsi_esp_template
= {
2675 .module
= THIS_MODULE
,
2678 .queuecommand
= esp_queuecommand
,
2679 .target_alloc
= esp_target_alloc
,
2680 .target_destroy
= esp_target_destroy
,
2681 .slave_alloc
= esp_slave_alloc
,
2682 .slave_configure
= esp_slave_configure
,
2683 .slave_destroy
= esp_slave_destroy
,
2684 .eh_abort_handler
= esp_eh_abort_handler
,
2685 .eh_bus_reset_handler
= esp_eh_bus_reset_handler
,
2686 .eh_host_reset_handler
= esp_eh_host_reset_handler
,
2689 .sg_tablesize
= SG_ALL
,
2690 .max_sectors
= 0xffff,
2691 .skip_settle_delay
= 1,
2693 EXPORT_SYMBOL(scsi_esp_template
);
2695 static void esp_get_signalling(struct Scsi_Host
*host
)
2697 struct esp
*esp
= shost_priv(host
);
2698 enum spi_signal_type type
;
2700 if (esp
->flags
& ESP_FLAG_DIFFERENTIAL
)
2701 type
= SPI_SIGNAL_HVD
;
2703 type
= SPI_SIGNAL_SE
;
2705 spi_signalling(host
) = type
;
2708 static void esp_set_offset(struct scsi_target
*target
, int offset
)
2710 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2711 struct esp
*esp
= shost_priv(host
);
2712 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2714 if (esp
->flags
& ESP_FLAG_DISABLE_SYNC
)
2715 tp
->nego_goal_offset
= 0;
2717 tp
->nego_goal_offset
= offset
;
2718 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2721 static void esp_set_period(struct scsi_target
*target
, int period
)
2723 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2724 struct esp
*esp
= shost_priv(host
);
2725 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2727 tp
->nego_goal_period
= period
;
2728 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2731 static void esp_set_width(struct scsi_target
*target
, int width
)
2733 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2734 struct esp
*esp
= shost_priv(host
);
2735 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2737 tp
->nego_goal_width
= (width
? 1 : 0);
2738 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2741 static struct spi_function_template esp_transport_ops
= {
2742 .set_offset
= esp_set_offset
,
2744 .set_period
= esp_set_period
,
2746 .set_width
= esp_set_width
,
2748 .get_signalling
= esp_get_signalling
,
2751 static int __init
esp_init(void)
2753 BUILD_BUG_ON(sizeof(struct scsi_pointer
) <
2754 sizeof(struct esp_cmd_priv
));
2756 esp_transport_template
= spi_attach_transport(&esp_transport_ops
);
2757 if (!esp_transport_template
)
2763 static void __exit
esp_exit(void)
2765 spi_release_transport(esp_transport_template
);
2768 MODULE_DESCRIPTION("ESP SCSI driver core");
2769 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2770 MODULE_LICENSE("GPL");
2771 MODULE_VERSION(DRV_VERSION
);
2773 module_param(esp_bus_reset_settle
, int, 0);
2774 MODULE_PARM_DESC(esp_bus_reset_settle
,
2775 "ESP scsi bus reset delay in seconds");
2777 module_param(esp_debug
, int, 0);
2778 MODULE_PARM_DESC(esp_debug
,
2779 "ESP bitmapped debugging message enable value:\n"
2780 " 0x00000001 Log interrupt events\n"
2781 " 0x00000002 Log scsi commands\n"
2782 " 0x00000004 Log resets\n"
2783 " 0x00000008 Log message in events\n"
2784 " 0x00000010 Log message out events\n"
2785 " 0x00000020 Log command completion\n"
2786 " 0x00000040 Log disconnects\n"
2787 " 0x00000080 Log data start\n"
2788 " 0x00000100 Log data done\n"
2789 " 0x00000200 Log reconnects\n"
2790 " 0x00000400 Log auto-sense data\n"
2793 module_init(esp_init
);
2794 module_exit(esp_exit
);
2796 #ifdef CONFIG_SCSI_ESP_PIO
2797 static inline unsigned int esp_wait_for_fifo(struct esp
*esp
)
2802 unsigned int fbytes
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
2810 shost_printk(KERN_ERR
, esp
->host
, "FIFO is empty. sreg [%02x]\n",
2811 esp_read8(ESP_STATUS
));
2815 static inline int esp_wait_for_intr(struct esp
*esp
)
2820 esp
->sreg
= esp_read8(ESP_STATUS
);
2821 if (esp
->sreg
& ESP_STAT_INTR
)
2827 shost_printk(KERN_ERR
, esp
->host
, "IRQ timeout. sreg [%02x]\n",
2832 #define ESP_FIFO_SIZE 16
2834 void esp_send_pio_cmd(struct esp
*esp
, u32 addr
, u32 esp_count
,
2835 u32 dma_count
, int write
, u8 cmd
)
2837 u8 phase
= esp
->sreg
& ESP_STAT_PMASK
;
2839 cmd
&= ~ESP_CMD_DMA
;
2840 esp
->send_cmd_error
= 0;
2843 u8
*dst
= (u8
*)addr
;
2844 u8 mask
= ~(phase
== ESP_MIP
? ESP_INTR_FDONE
: ESP_INTR_BSERV
);
2846 scsi_esp_cmd(esp
, cmd
);
2849 if (!esp_wait_for_fifo(esp
))
2852 *dst
++ = readb(esp
->fifo_reg
);
2858 if (esp_wait_for_intr(esp
)) {
2859 esp
->send_cmd_error
= 1;
2863 if ((esp
->sreg
& ESP_STAT_PMASK
) != phase
)
2866 esp
->ireg
= esp_read8(ESP_INTRPT
);
2867 if (esp
->ireg
& mask
) {
2868 esp
->send_cmd_error
= 1;
2872 if (phase
== ESP_MIP
)
2873 esp_write8(ESP_CMD_MOK
, ESP_CMD
);
2875 esp_write8(ESP_CMD_TI
, ESP_CMD
);
2878 unsigned int n
= ESP_FIFO_SIZE
;
2879 u8
*src
= (u8
*)addr
;
2881 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
2885 writesb(esp
->fifo_reg
, src
, n
);
2889 scsi_esp_cmd(esp
, cmd
);
2892 if (esp_wait_for_intr(esp
)) {
2893 esp
->send_cmd_error
= 1;
2897 if ((esp
->sreg
& ESP_STAT_PMASK
) != phase
)
2900 esp
->ireg
= esp_read8(ESP_INTRPT
);
2901 if (esp
->ireg
& ~ESP_INTR_BSERV
) {
2902 esp
->send_cmd_error
= 1;
2907 (esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
);
2911 writesb(esp
->fifo_reg
, src
, n
);
2915 esp_write8(ESP_CMD_TI
, ESP_CMD
);
2919 esp
->send_cmd_residual
= esp_count
;
2921 EXPORT_SYMBOL(esp_send_pio_cmd
);