treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / scsi / esp_scsi.c
blob89afa31e33cba889a9af63dd5253cf8a72f7ff0d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* esp_scsi.c: ESP SCSI driver.
4 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
5 */
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/list.h>
12 #include <linux/completion.h>
13 #include <linux/kallsyms.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/irqreturn.h>
19 #include <asm/irq.h>
20 #include <asm/io.h>
21 #include <asm/dma.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_host.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_tcq.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_transport_spi.h>
31 #include "esp_scsi.h"
33 #define DRV_MODULE_NAME "esp"
34 #define PFX DRV_MODULE_NAME ": "
35 #define DRV_VERSION "2.000"
36 #define DRV_MODULE_RELDATE "April 19, 2007"
38 /* SCSI bus reset settle time in seconds. */
39 static int esp_bus_reset_settle = 3;
41 static u32 esp_debug;
42 #define ESP_DEBUG_INTR 0x00000001
43 #define ESP_DEBUG_SCSICMD 0x00000002
44 #define ESP_DEBUG_RESET 0x00000004
45 #define ESP_DEBUG_MSGIN 0x00000008
46 #define ESP_DEBUG_MSGOUT 0x00000010
47 #define ESP_DEBUG_CMDDONE 0x00000020
48 #define ESP_DEBUG_DISCONNECT 0x00000040
49 #define ESP_DEBUG_DATASTART 0x00000080
50 #define ESP_DEBUG_DATADONE 0x00000100
51 #define ESP_DEBUG_RECONNECT 0x00000200
52 #define ESP_DEBUG_AUTOSENSE 0x00000400
53 #define ESP_DEBUG_EVENT 0x00000800
54 #define ESP_DEBUG_COMMAND 0x00001000
56 #define esp_log_intr(f, a...) \
57 do { if (esp_debug & ESP_DEBUG_INTR) \
58 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
59 } while (0)
61 #define esp_log_reset(f, a...) \
62 do { if (esp_debug & ESP_DEBUG_RESET) \
63 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
64 } while (0)
66 #define esp_log_msgin(f, a...) \
67 do { if (esp_debug & ESP_DEBUG_MSGIN) \
68 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
69 } while (0)
71 #define esp_log_msgout(f, a...) \
72 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
73 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
74 } while (0)
76 #define esp_log_cmddone(f, a...) \
77 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
78 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
79 } while (0)
81 #define esp_log_disconnect(f, a...) \
82 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
83 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
84 } while (0)
86 #define esp_log_datastart(f, a...) \
87 do { if (esp_debug & ESP_DEBUG_DATASTART) \
88 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
89 } while (0)
91 #define esp_log_datadone(f, a...) \
92 do { if (esp_debug & ESP_DEBUG_DATADONE) \
93 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
94 } while (0)
96 #define esp_log_reconnect(f, a...) \
97 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
98 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
99 } while (0)
101 #define esp_log_autosense(f, a...) \
102 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
103 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
104 } while (0)
106 #define esp_log_event(f, a...) \
107 do { if (esp_debug & ESP_DEBUG_EVENT) \
108 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
109 } while (0)
111 #define esp_log_command(f, a...) \
112 do { if (esp_debug & ESP_DEBUG_COMMAND) \
113 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
114 } while (0)
116 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
117 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
119 static void esp_log_fill_regs(struct esp *esp,
120 struct esp_event_ent *p)
122 p->sreg = esp->sreg;
123 p->seqreg = esp->seqreg;
124 p->sreg2 = esp->sreg2;
125 p->ireg = esp->ireg;
126 p->select_state = esp->select_state;
127 p->event = esp->event;
130 void scsi_esp_cmd(struct esp *esp, u8 val)
132 struct esp_event_ent *p;
133 int idx = esp->esp_event_cur;
135 p = &esp->esp_event_log[idx];
136 p->type = ESP_EVENT_TYPE_CMD;
137 p->val = val;
138 esp_log_fill_regs(esp, p);
140 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
142 esp_log_command("cmd[%02x]\n", val);
143 esp_write8(val, ESP_CMD);
145 EXPORT_SYMBOL(scsi_esp_cmd);
147 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
149 if (esp->flags & ESP_FLAG_USE_FIFO) {
150 int i;
152 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
153 for (i = 0; i < len; i++)
154 esp_write8(esp->command_block[i], ESP_FDATA);
155 scsi_esp_cmd(esp, cmd);
156 } else {
157 if (esp->rev == FASHME)
158 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
159 cmd |= ESP_CMD_DMA;
160 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
161 len, max_len, 0, cmd);
165 static void esp_event(struct esp *esp, u8 val)
167 struct esp_event_ent *p;
168 int idx = esp->esp_event_cur;
170 p = &esp->esp_event_log[idx];
171 p->type = ESP_EVENT_TYPE_EVENT;
172 p->val = val;
173 esp_log_fill_regs(esp, p);
175 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
177 esp->event = val;
180 static void esp_dump_cmd_log(struct esp *esp)
182 int idx = esp->esp_event_cur;
183 int stop = idx;
185 shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
186 do {
187 struct esp_event_ent *p = &esp->esp_event_log[idx];
189 shost_printk(KERN_INFO, esp->host,
190 "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
191 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
192 idx,
193 p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
194 p->val, p->sreg, p->seqreg,
195 p->sreg2, p->ireg, p->select_state, p->event);
197 idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
198 } while (idx != stop);
201 static void esp_flush_fifo(struct esp *esp)
203 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
204 if (esp->rev == ESP236) {
205 int lim = 1000;
207 while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
208 if (--lim == 0) {
209 shost_printk(KERN_ALERT, esp->host,
210 "ESP_FF_BYTES will not clear!\n");
211 break;
213 udelay(1);
218 static void hme_read_fifo(struct esp *esp)
220 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
221 int idx = 0;
223 while (fcnt--) {
224 esp->fifo[idx++] = esp_read8(ESP_FDATA);
225 esp->fifo[idx++] = esp_read8(ESP_FDATA);
227 if (esp->sreg2 & ESP_STAT2_F1BYTE) {
228 esp_write8(0, ESP_FDATA);
229 esp->fifo[idx++] = esp_read8(ESP_FDATA);
230 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
232 esp->fifo_cnt = idx;
235 static void esp_set_all_config3(struct esp *esp, u8 val)
237 int i;
239 for (i = 0; i < ESP_MAX_TARGET; i++)
240 esp->target[i].esp_config3 = val;
243 /* Reset the ESP chip, _not_ the SCSI bus. */
244 static void esp_reset_esp(struct esp *esp)
246 /* Now reset the ESP chip */
247 scsi_esp_cmd(esp, ESP_CMD_RC);
248 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
249 if (esp->rev == FAST)
250 esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
251 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
253 /* This is the only point at which it is reliable to read
254 * the ID-code for a fast ESP chip variants.
256 esp->max_period = ((35 * esp->ccycle) / 1000);
257 if (esp->rev == FAST) {
258 u8 family_code = ESP_FAMILY(esp_read8(ESP_UID));
260 if (family_code == ESP_UID_F236) {
261 esp->rev = FAS236;
262 } else if (family_code == ESP_UID_HME) {
263 esp->rev = FASHME; /* Version is usually '5'. */
264 } else if (family_code == ESP_UID_FSC) {
265 esp->rev = FSC;
266 /* Enable Active Negation */
267 esp_write8(ESP_CONFIG4_RADE, ESP_CFG4);
268 } else {
269 esp->rev = FAS100A;
271 esp->min_period = ((4 * esp->ccycle) / 1000);
272 } else {
273 esp->min_period = ((5 * esp->ccycle) / 1000);
275 if (esp->rev == FAS236) {
277 * The AM53c974 chip returns the same ID as FAS236;
278 * try to configure glitch eater.
280 u8 config4 = ESP_CONFIG4_GE1;
281 esp_write8(config4, ESP_CFG4);
282 config4 = esp_read8(ESP_CFG4);
283 if (config4 & ESP_CONFIG4_GE1) {
284 esp->rev = PCSCSI;
285 esp_write8(esp->config4, ESP_CFG4);
288 esp->max_period = (esp->max_period + 3)>>2;
289 esp->min_period = (esp->min_period + 3)>>2;
291 esp_write8(esp->config1, ESP_CFG1);
292 switch (esp->rev) {
293 case ESP100:
294 /* nothing to do */
295 break;
297 case ESP100A:
298 esp_write8(esp->config2, ESP_CFG2);
299 break;
301 case ESP236:
302 /* Slow 236 */
303 esp_write8(esp->config2, ESP_CFG2);
304 esp->prev_cfg3 = esp->target[0].esp_config3;
305 esp_write8(esp->prev_cfg3, ESP_CFG3);
306 break;
308 case FASHME:
309 esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
310 /* fallthrough... */
312 case FAS236:
313 case PCSCSI:
314 case FSC:
315 esp_write8(esp->config2, ESP_CFG2);
316 if (esp->rev == FASHME) {
317 u8 cfg3 = esp->target[0].esp_config3;
319 cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
320 if (esp->scsi_id >= 8)
321 cfg3 |= ESP_CONFIG3_IDBIT3;
322 esp_set_all_config3(esp, cfg3);
323 } else {
324 u32 cfg3 = esp->target[0].esp_config3;
326 cfg3 |= ESP_CONFIG3_FCLK;
327 esp_set_all_config3(esp, cfg3);
329 esp->prev_cfg3 = esp->target[0].esp_config3;
330 esp_write8(esp->prev_cfg3, ESP_CFG3);
331 if (esp->rev == FASHME) {
332 esp->radelay = 80;
333 } else {
334 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
335 esp->radelay = 0;
336 else
337 esp->radelay = 96;
339 break;
341 case FAS100A:
342 /* Fast 100a */
343 esp_write8(esp->config2, ESP_CFG2);
344 esp_set_all_config3(esp,
345 (esp->target[0].esp_config3 |
346 ESP_CONFIG3_FCLOCK));
347 esp->prev_cfg3 = esp->target[0].esp_config3;
348 esp_write8(esp->prev_cfg3, ESP_CFG3);
349 esp->radelay = 32;
350 break;
352 default:
353 break;
356 /* Reload the configuration registers */
357 esp_write8(esp->cfact, ESP_CFACT);
359 esp->prev_stp = 0;
360 esp_write8(esp->prev_stp, ESP_STP);
362 esp->prev_soff = 0;
363 esp_write8(esp->prev_soff, ESP_SOFF);
365 esp_write8(esp->neg_defp, ESP_TIMEO);
367 /* Eat any bitrot in the chip */
368 esp_read8(ESP_INTRPT);
369 udelay(100);
372 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
374 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
375 struct scatterlist *sg = scsi_sglist(cmd);
376 int total = 0, i;
377 struct scatterlist *s;
379 if (cmd->sc_data_direction == DMA_NONE)
380 return;
382 if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
384 * For pseudo DMA and PIO we need the virtual address instead of
385 * a dma address, so perform an identity mapping.
387 spriv->num_sg = scsi_sg_count(cmd);
389 scsi_for_each_sg(cmd, s, spriv->num_sg, i) {
390 s->dma_address = (uintptr_t)sg_virt(s);
391 total += sg_dma_len(s);
393 } else {
394 spriv->num_sg = scsi_dma_map(cmd);
395 scsi_for_each_sg(cmd, s, spriv->num_sg, i)
396 total += sg_dma_len(s);
398 spriv->cur_residue = sg_dma_len(sg);
399 spriv->prv_sg = NULL;
400 spriv->cur_sg = sg;
401 spriv->tot_residue = total;
404 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
405 struct scsi_cmnd *cmd)
407 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
409 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
410 return ent->sense_dma +
411 (ent->sense_ptr - cmd->sense_buffer);
414 return sg_dma_address(p->cur_sg) +
415 (sg_dma_len(p->cur_sg) -
416 p->cur_residue);
419 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
420 struct scsi_cmnd *cmd)
422 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
424 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
425 return SCSI_SENSE_BUFFERSIZE -
426 (ent->sense_ptr - cmd->sense_buffer);
428 return p->cur_residue;
431 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
432 struct scsi_cmnd *cmd, unsigned int len)
434 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
436 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
437 ent->sense_ptr += len;
438 return;
441 p->cur_residue -= len;
442 p->tot_residue -= len;
443 if (p->cur_residue < 0 || p->tot_residue < 0) {
444 shost_printk(KERN_ERR, esp->host,
445 "Data transfer overflow.\n");
446 shost_printk(KERN_ERR, esp->host,
447 "cur_residue[%d] tot_residue[%d] len[%u]\n",
448 p->cur_residue, p->tot_residue, len);
449 p->cur_residue = 0;
450 p->tot_residue = 0;
452 if (!p->cur_residue && p->tot_residue) {
453 p->prv_sg = p->cur_sg;
454 p->cur_sg = sg_next(p->cur_sg);
455 p->cur_residue = sg_dma_len(p->cur_sg);
459 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
461 if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
462 scsi_dma_unmap(cmd);
465 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
467 struct scsi_cmnd *cmd = ent->cmd;
468 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
470 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
471 ent->saved_sense_ptr = ent->sense_ptr;
472 return;
474 ent->saved_cur_residue = spriv->cur_residue;
475 ent->saved_prv_sg = spriv->prv_sg;
476 ent->saved_cur_sg = spriv->cur_sg;
477 ent->saved_tot_residue = spriv->tot_residue;
480 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
482 struct scsi_cmnd *cmd = ent->cmd;
483 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
485 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
486 ent->sense_ptr = ent->saved_sense_ptr;
487 return;
489 spriv->cur_residue = ent->saved_cur_residue;
490 spriv->prv_sg = ent->saved_prv_sg;
491 spriv->cur_sg = ent->saved_cur_sg;
492 spriv->tot_residue = ent->saved_tot_residue;
495 static void esp_write_tgt_config3(struct esp *esp, int tgt)
497 if (esp->rev > ESP100A) {
498 u8 val = esp->target[tgt].esp_config3;
500 if (val != esp->prev_cfg3) {
501 esp->prev_cfg3 = val;
502 esp_write8(val, ESP_CFG3);
507 static void esp_write_tgt_sync(struct esp *esp, int tgt)
509 u8 off = esp->target[tgt].esp_offset;
510 u8 per = esp->target[tgt].esp_period;
512 if (off != esp->prev_soff) {
513 esp->prev_soff = off;
514 esp_write8(off, ESP_SOFF);
516 if (per != esp->prev_stp) {
517 esp->prev_stp = per;
518 esp_write8(per, ESP_STP);
522 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
524 if (esp->rev == FASHME) {
525 /* Arbitrary segment boundaries, 24-bit counts. */
526 if (dma_len > (1U << 24))
527 dma_len = (1U << 24);
528 } else {
529 u32 base, end;
531 /* ESP chip limits other variants by 16-bits of transfer
532 * count. Actually on FAS100A and FAS236 we could get
533 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
534 * in the ESP_CFG2 register but that causes other unwanted
535 * changes so we don't use it currently.
537 if (dma_len > (1U << 16))
538 dma_len = (1U << 16);
540 /* All of the DMA variants hooked up to these chips
541 * cannot handle crossing a 24-bit address boundary.
543 base = dma_addr & ((1U << 24) - 1U);
544 end = base + dma_len;
545 if (end > (1U << 24))
546 end = (1U <<24);
547 dma_len = end - base;
549 return dma_len;
552 static int esp_need_to_nego_wide(struct esp_target_data *tp)
554 struct scsi_target *target = tp->starget;
556 return spi_width(target) != tp->nego_goal_width;
559 static int esp_need_to_nego_sync(struct esp_target_data *tp)
561 struct scsi_target *target = tp->starget;
563 /* When offset is zero, period is "don't care". */
564 if (!spi_offset(target) && !tp->nego_goal_offset)
565 return 0;
567 if (spi_offset(target) == tp->nego_goal_offset &&
568 spi_period(target) == tp->nego_goal_period)
569 return 0;
571 return 1;
574 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
575 struct esp_lun_data *lp)
577 if (!ent->orig_tag[0]) {
578 /* Non-tagged, slot already taken? */
579 if (lp->non_tagged_cmd)
580 return -EBUSY;
582 if (lp->hold) {
583 /* We are being held by active tagged
584 * commands.
586 if (lp->num_tagged)
587 return -EBUSY;
589 /* Tagged commands completed, we can unplug
590 * the queue and run this untagged command.
592 lp->hold = 0;
593 } else if (lp->num_tagged) {
594 /* Plug the queue until num_tagged decreases
595 * to zero in esp_free_lun_tag.
597 lp->hold = 1;
598 return -EBUSY;
601 lp->non_tagged_cmd = ent;
602 return 0;
605 /* Tagged command. Check that it isn't blocked by a non-tagged one. */
606 if (lp->non_tagged_cmd || lp->hold)
607 return -EBUSY;
609 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
611 lp->tagged_cmds[ent->orig_tag[1]] = ent;
612 lp->num_tagged++;
614 return 0;
617 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
618 struct esp_lun_data *lp)
620 if (ent->orig_tag[0]) {
621 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
622 lp->tagged_cmds[ent->orig_tag[1]] = NULL;
623 lp->num_tagged--;
624 } else {
625 BUG_ON(lp->non_tagged_cmd != ent);
626 lp->non_tagged_cmd = NULL;
630 static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent)
632 ent->sense_ptr = ent->cmd->sense_buffer;
633 if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
634 ent->sense_dma = (uintptr_t)ent->sense_ptr;
635 return;
638 ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr,
639 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
642 static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent)
644 if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
645 dma_unmap_single(esp->dev, ent->sense_dma,
646 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
647 ent->sense_ptr = NULL;
650 /* When a contingent allegiance conditon is created, we force feed a
651 * REQUEST_SENSE command to the device to fetch the sense data. I
652 * tried many other schemes, relying on the scsi error handling layer
653 * to send out the REQUEST_SENSE automatically, but this was difficult
654 * to get right especially in the presence of applications like smartd
655 * which use SG_IO to send out their own REQUEST_SENSE commands.
657 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
659 struct scsi_cmnd *cmd = ent->cmd;
660 struct scsi_device *dev = cmd->device;
661 int tgt, lun;
662 u8 *p, val;
664 tgt = dev->id;
665 lun = dev->lun;
668 if (!ent->sense_ptr) {
669 esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
670 tgt, lun);
671 esp_map_sense(esp, ent);
673 ent->saved_sense_ptr = ent->sense_ptr;
675 esp->active_cmd = ent;
677 p = esp->command_block;
678 esp->msg_out_len = 0;
680 *p++ = IDENTIFY(0, lun);
681 *p++ = REQUEST_SENSE;
682 *p++ = ((dev->scsi_level <= SCSI_2) ?
683 (lun << 5) : 0);
684 *p++ = 0;
685 *p++ = 0;
686 *p++ = SCSI_SENSE_BUFFERSIZE;
687 *p++ = 0;
689 esp->select_state = ESP_SELECT_BASIC;
691 val = tgt;
692 if (esp->rev == FASHME)
693 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
694 esp_write8(val, ESP_BUSID);
696 esp_write_tgt_sync(esp, tgt);
697 esp_write_tgt_config3(esp, tgt);
699 val = (p - esp->command_block);
701 esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
704 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
706 struct esp_cmd_entry *ent;
708 list_for_each_entry(ent, &esp->queued_cmds, list) {
709 struct scsi_cmnd *cmd = ent->cmd;
710 struct scsi_device *dev = cmd->device;
711 struct esp_lun_data *lp = dev->hostdata;
713 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
714 ent->tag[0] = 0;
715 ent->tag[1] = 0;
716 return ent;
719 if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
720 ent->tag[0] = 0;
721 ent->tag[1] = 0;
723 ent->orig_tag[0] = ent->tag[0];
724 ent->orig_tag[1] = ent->tag[1];
726 if (esp_alloc_lun_tag(ent, lp) < 0)
727 continue;
729 return ent;
732 return NULL;
735 static void esp_maybe_execute_command(struct esp *esp)
737 struct esp_target_data *tp;
738 struct scsi_device *dev;
739 struct scsi_cmnd *cmd;
740 struct esp_cmd_entry *ent;
741 bool select_and_stop = false;
742 int tgt, lun, i;
743 u32 val, start_cmd;
744 u8 *p;
746 if (esp->active_cmd ||
747 (esp->flags & ESP_FLAG_RESETTING))
748 return;
750 ent = find_and_prep_issuable_command(esp);
751 if (!ent)
752 return;
754 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
755 esp_autosense(esp, ent);
756 return;
759 cmd = ent->cmd;
760 dev = cmd->device;
761 tgt = dev->id;
762 lun = dev->lun;
763 tp = &esp->target[tgt];
765 list_move(&ent->list, &esp->active_cmds);
767 esp->active_cmd = ent;
769 esp_map_dma(esp, cmd);
770 esp_save_pointers(esp, ent);
772 if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12))
773 select_and_stop = true;
775 p = esp->command_block;
777 esp->msg_out_len = 0;
778 if (tp->flags & ESP_TGT_CHECK_NEGO) {
779 /* Need to negotiate. If the target is broken
780 * go for synchronous transfers and non-wide.
782 if (tp->flags & ESP_TGT_BROKEN) {
783 tp->flags &= ~ESP_TGT_DISCONNECT;
784 tp->nego_goal_period = 0;
785 tp->nego_goal_offset = 0;
786 tp->nego_goal_width = 0;
787 tp->nego_goal_tags = 0;
790 /* If the settings are not changing, skip this. */
791 if (spi_width(tp->starget) == tp->nego_goal_width &&
792 spi_period(tp->starget) == tp->nego_goal_period &&
793 spi_offset(tp->starget) == tp->nego_goal_offset) {
794 tp->flags &= ~ESP_TGT_CHECK_NEGO;
795 goto build_identify;
798 if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
799 esp->msg_out_len =
800 spi_populate_width_msg(&esp->msg_out[0],
801 (tp->nego_goal_width ?
802 1 : 0));
803 tp->flags |= ESP_TGT_NEGO_WIDE;
804 } else if (esp_need_to_nego_sync(tp)) {
805 esp->msg_out_len =
806 spi_populate_sync_msg(&esp->msg_out[0],
807 tp->nego_goal_period,
808 tp->nego_goal_offset);
809 tp->flags |= ESP_TGT_NEGO_SYNC;
810 } else {
811 tp->flags &= ~ESP_TGT_CHECK_NEGO;
814 /* If there are multiple message bytes, use Select and Stop */
815 if (esp->msg_out_len)
816 select_and_stop = true;
819 build_identify:
820 *p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun);
822 if (ent->tag[0] && esp->rev == ESP100) {
823 /* ESP100 lacks select w/atn3 command, use select
824 * and stop instead.
826 select_and_stop = true;
829 if (select_and_stop) {
830 esp->cmd_bytes_left = cmd->cmd_len;
831 esp->cmd_bytes_ptr = &cmd->cmnd[0];
833 if (ent->tag[0]) {
834 for (i = esp->msg_out_len - 1;
835 i >= 0; i--)
836 esp->msg_out[i + 2] = esp->msg_out[i];
837 esp->msg_out[0] = ent->tag[0];
838 esp->msg_out[1] = ent->tag[1];
839 esp->msg_out_len += 2;
842 start_cmd = ESP_CMD_SELAS;
843 esp->select_state = ESP_SELECT_MSGOUT;
844 } else {
845 start_cmd = ESP_CMD_SELA;
846 if (ent->tag[0]) {
847 *p++ = ent->tag[0];
848 *p++ = ent->tag[1];
850 start_cmd = ESP_CMD_SA3;
853 for (i = 0; i < cmd->cmd_len; i++)
854 *p++ = cmd->cmnd[i];
856 esp->select_state = ESP_SELECT_BASIC;
858 val = tgt;
859 if (esp->rev == FASHME)
860 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
861 esp_write8(val, ESP_BUSID);
863 esp_write_tgt_sync(esp, tgt);
864 esp_write_tgt_config3(esp, tgt);
866 val = (p - esp->command_block);
868 if (esp_debug & ESP_DEBUG_SCSICMD) {
869 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
870 for (i = 0; i < cmd->cmd_len; i++)
871 printk("%02x ", cmd->cmnd[i]);
872 printk("]\n");
875 esp_send_dma_cmd(esp, val, 16, start_cmd);
878 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
880 struct list_head *head = &esp->esp_cmd_pool;
881 struct esp_cmd_entry *ret;
883 if (list_empty(head)) {
884 ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
885 } else {
886 ret = list_entry(head->next, struct esp_cmd_entry, list);
887 list_del(&ret->list);
888 memset(ret, 0, sizeof(*ret));
890 return ret;
893 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
895 list_add(&ent->list, &esp->esp_cmd_pool);
898 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
899 struct scsi_cmnd *cmd, unsigned int result)
901 struct scsi_device *dev = cmd->device;
902 int tgt = dev->id;
903 int lun = dev->lun;
905 esp->active_cmd = NULL;
906 esp_unmap_dma(esp, cmd);
907 esp_free_lun_tag(ent, dev->hostdata);
908 cmd->result = result;
910 if (ent->eh_done) {
911 complete(ent->eh_done);
912 ent->eh_done = NULL;
915 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
916 esp_unmap_sense(esp, ent);
918 /* Restore the message/status bytes to what we actually
919 * saw originally. Also, report that we are providing
920 * the sense data.
922 cmd->result = ((DRIVER_SENSE << 24) |
923 (DID_OK << 16) |
924 (COMMAND_COMPLETE << 8) |
925 (SAM_STAT_CHECK_CONDITION << 0));
927 ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
928 if (esp_debug & ESP_DEBUG_AUTOSENSE) {
929 int i;
931 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
932 esp->host->unique_id, tgt, lun);
933 for (i = 0; i < 18; i++)
934 printk("%02x ", cmd->sense_buffer[i]);
935 printk("]\n");
939 cmd->scsi_done(cmd);
941 list_del(&ent->list);
942 esp_put_ent(esp, ent);
944 esp_maybe_execute_command(esp);
947 static unsigned int compose_result(unsigned int status, unsigned int message,
948 unsigned int driver_code)
950 return (status | (message << 8) | (driver_code << 16));
953 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
955 struct scsi_device *dev = ent->cmd->device;
956 struct esp_lun_data *lp = dev->hostdata;
958 scsi_track_queue_full(dev, lp->num_tagged - 1);
961 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
963 struct scsi_device *dev = cmd->device;
964 struct esp *esp = shost_priv(dev->host);
965 struct esp_cmd_priv *spriv;
966 struct esp_cmd_entry *ent;
968 ent = esp_get_ent(esp);
969 if (!ent)
970 return SCSI_MLQUEUE_HOST_BUSY;
972 ent->cmd = cmd;
974 cmd->scsi_done = done;
976 spriv = ESP_CMD_PRIV(cmd);
977 spriv->num_sg = 0;
979 list_add_tail(&ent->list, &esp->queued_cmds);
981 esp_maybe_execute_command(esp);
983 return 0;
986 static DEF_SCSI_QCMD(esp_queuecommand)
988 static int esp_check_gross_error(struct esp *esp)
990 if (esp->sreg & ESP_STAT_SPAM) {
991 /* Gross Error, could be one of:
992 * - top of fifo overwritten
993 * - top of command register overwritten
994 * - DMA programmed with wrong direction
995 * - improper phase change
997 shost_printk(KERN_ERR, esp->host,
998 "Gross error sreg[%02x]\n", esp->sreg);
999 /* XXX Reset the chip. XXX */
1000 return 1;
1002 return 0;
1005 static int esp_check_spur_intr(struct esp *esp)
1007 switch (esp->rev) {
1008 case ESP100:
1009 case ESP100A:
1010 /* The interrupt pending bit of the status register cannot
1011 * be trusted on these revisions.
1013 esp->sreg &= ~ESP_STAT_INTR;
1014 break;
1016 default:
1017 if (!(esp->sreg & ESP_STAT_INTR)) {
1018 if (esp->ireg & ESP_INTR_SR)
1019 return 1;
1021 /* If the DMA is indicating interrupt pending and the
1022 * ESP is not, the only possibility is a DMA error.
1024 if (!esp->ops->dma_error(esp)) {
1025 shost_printk(KERN_ERR, esp->host,
1026 "Spurious irq, sreg=%02x.\n",
1027 esp->sreg);
1028 return -1;
1031 shost_printk(KERN_ERR, esp->host, "DMA error\n");
1033 /* XXX Reset the chip. XXX */
1034 return -1;
1036 break;
1039 return 0;
1042 static void esp_schedule_reset(struct esp *esp)
1044 esp_log_reset("esp_schedule_reset() from %ps\n",
1045 __builtin_return_address(0));
1046 esp->flags |= ESP_FLAG_RESETTING;
1047 esp_event(esp, ESP_EVENT_RESET);
1050 /* In order to avoid having to add a special half-reconnected state
1051 * into the driver we just sit here and poll through the rest of
1052 * the reselection process to get the tag message bytes.
1054 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1055 struct esp_lun_data *lp)
1057 struct esp_cmd_entry *ent;
1058 int i;
1060 if (!lp->num_tagged) {
1061 shost_printk(KERN_ERR, esp->host,
1062 "Reconnect w/num_tagged==0\n");
1063 return NULL;
1066 esp_log_reconnect("reconnect tag, ");
1068 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1069 if (esp->ops->irq_pending(esp))
1070 break;
1072 if (i == ESP_QUICKIRQ_LIMIT) {
1073 shost_printk(KERN_ERR, esp->host,
1074 "Reconnect IRQ1 timeout\n");
1075 return NULL;
1078 esp->sreg = esp_read8(ESP_STATUS);
1079 esp->ireg = esp_read8(ESP_INTRPT);
1081 esp_log_reconnect("IRQ(%d:%x:%x), ",
1082 i, esp->ireg, esp->sreg);
1084 if (esp->ireg & ESP_INTR_DC) {
1085 shost_printk(KERN_ERR, esp->host,
1086 "Reconnect, got disconnect.\n");
1087 return NULL;
1090 if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1091 shost_printk(KERN_ERR, esp->host,
1092 "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
1093 return NULL;
1096 /* DMA in the tag bytes... */
1097 esp->command_block[0] = 0xff;
1098 esp->command_block[1] = 0xff;
1099 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1100 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1102 /* ACK the message. */
1103 scsi_esp_cmd(esp, ESP_CMD_MOK);
1105 for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1106 if (esp->ops->irq_pending(esp)) {
1107 esp->sreg = esp_read8(ESP_STATUS);
1108 esp->ireg = esp_read8(ESP_INTRPT);
1109 if (esp->ireg & ESP_INTR_FDONE)
1110 break;
1112 udelay(1);
1114 if (i == ESP_RESELECT_TAG_LIMIT) {
1115 shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
1116 return NULL;
1118 esp->ops->dma_drain(esp);
1119 esp->ops->dma_invalidate(esp);
1121 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1122 i, esp->ireg, esp->sreg,
1123 esp->command_block[0],
1124 esp->command_block[1]);
1126 if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1127 esp->command_block[0] > ORDERED_QUEUE_TAG) {
1128 shost_printk(KERN_ERR, esp->host,
1129 "Reconnect, bad tag type %02x.\n",
1130 esp->command_block[0]);
1131 return NULL;
1134 ent = lp->tagged_cmds[esp->command_block[1]];
1135 if (!ent) {
1136 shost_printk(KERN_ERR, esp->host,
1137 "Reconnect, no entry for tag %02x.\n",
1138 esp->command_block[1]);
1139 return NULL;
1142 return ent;
1145 static int esp_reconnect(struct esp *esp)
1147 struct esp_cmd_entry *ent;
1148 struct esp_target_data *tp;
1149 struct esp_lun_data *lp;
1150 struct scsi_device *dev;
1151 int target, lun;
1153 BUG_ON(esp->active_cmd);
1154 if (esp->rev == FASHME) {
1155 /* FASHME puts the target and lun numbers directly
1156 * into the fifo.
1158 target = esp->fifo[0];
1159 lun = esp->fifo[1] & 0x7;
1160 } else {
1161 u8 bits = esp_read8(ESP_FDATA);
1163 /* Older chips put the lun directly into the fifo, but
1164 * the target is given as a sample of the arbitration
1165 * lines on the bus at reselection time. So we should
1166 * see the ID of the ESP and the one reconnecting target
1167 * set in the bitmap.
1169 if (!(bits & esp->scsi_id_mask))
1170 goto do_reset;
1171 bits &= ~esp->scsi_id_mask;
1172 if (!bits || (bits & (bits - 1)))
1173 goto do_reset;
1175 target = ffs(bits) - 1;
1176 lun = (esp_read8(ESP_FDATA) & 0x7);
1178 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1179 if (esp->rev == ESP100) {
1180 u8 ireg = esp_read8(ESP_INTRPT);
1181 /* This chip has a bug during reselection that can
1182 * cause a spurious illegal-command interrupt, which
1183 * we simply ACK here. Another possibility is a bus
1184 * reset so we must check for that.
1186 if (ireg & ESP_INTR_SR)
1187 goto do_reset;
1189 scsi_esp_cmd(esp, ESP_CMD_NULL);
1192 esp_write_tgt_sync(esp, target);
1193 esp_write_tgt_config3(esp, target);
1195 scsi_esp_cmd(esp, ESP_CMD_MOK);
1197 if (esp->rev == FASHME)
1198 esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1199 ESP_BUSID);
1201 tp = &esp->target[target];
1202 dev = __scsi_device_lookup_by_target(tp->starget, lun);
1203 if (!dev) {
1204 shost_printk(KERN_ERR, esp->host,
1205 "Reconnect, no lp tgt[%u] lun[%u]\n",
1206 target, lun);
1207 goto do_reset;
1209 lp = dev->hostdata;
1211 ent = lp->non_tagged_cmd;
1212 if (!ent) {
1213 ent = esp_reconnect_with_tag(esp, lp);
1214 if (!ent)
1215 goto do_reset;
1218 esp->active_cmd = ent;
1220 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1221 esp_restore_pointers(esp, ent);
1222 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1223 return 1;
1225 do_reset:
1226 esp_schedule_reset(esp);
1227 return 0;
1230 static int esp_finish_select(struct esp *esp)
1232 struct esp_cmd_entry *ent;
1233 struct scsi_cmnd *cmd;
1235 /* No longer selecting. */
1236 esp->select_state = ESP_SELECT_NONE;
1238 esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1239 ent = esp->active_cmd;
1240 cmd = ent->cmd;
1242 if (esp->ops->dma_error(esp)) {
1243 /* If we see a DMA error during or as a result of selection,
1244 * all bets are off.
1246 esp_schedule_reset(esp);
1247 esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1248 return 0;
1251 esp->ops->dma_invalidate(esp);
1253 if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1254 struct esp_target_data *tp = &esp->target[cmd->device->id];
1256 /* Carefully back out of the selection attempt. Release
1257 * resources (such as DMA mapping & TAG) and reset state (such
1258 * as message out and command delivery variables).
1260 if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1261 esp_unmap_dma(esp, cmd);
1262 esp_free_lun_tag(ent, cmd->device->hostdata);
1263 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1264 esp->cmd_bytes_ptr = NULL;
1265 esp->cmd_bytes_left = 0;
1266 } else {
1267 esp_unmap_sense(esp, ent);
1270 /* Now that the state is unwound properly, put back onto
1271 * the issue queue. This command is no longer active.
1273 list_move(&ent->list, &esp->queued_cmds);
1274 esp->active_cmd = NULL;
1276 /* Return value ignored by caller, it directly invokes
1277 * esp_reconnect().
1279 return 0;
1282 if (esp->ireg == ESP_INTR_DC) {
1283 struct scsi_device *dev = cmd->device;
1285 /* Disconnect. Make sure we re-negotiate sync and
1286 * wide parameters if this target starts responding
1287 * again in the future.
1289 esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1291 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1292 esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1293 return 1;
1296 if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1297 /* Selection successful. On pre-FAST chips we have
1298 * to do a NOP and possibly clean out the FIFO.
1300 if (esp->rev <= ESP236) {
1301 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1303 scsi_esp_cmd(esp, ESP_CMD_NULL);
1305 if (!fcnt &&
1306 (!esp->prev_soff ||
1307 ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1308 esp_flush_fifo(esp);
1311 /* If we are doing a Select And Stop command, negotiation, etc.
1312 * we'll do the right thing as we transition to the next phase.
1314 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1315 return 0;
1318 shost_printk(KERN_INFO, esp->host,
1319 "Unexpected selection completion ireg[%x]\n", esp->ireg);
1320 esp_schedule_reset(esp);
1321 return 0;
1324 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1325 struct scsi_cmnd *cmd)
1327 int fifo_cnt, ecount, bytes_sent, flush_fifo;
1329 fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1330 if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1331 fifo_cnt <<= 1;
1333 ecount = 0;
1334 if (!(esp->sreg & ESP_STAT_TCNT)) {
1335 ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1336 (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1337 if (esp->rev == FASHME)
1338 ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1339 if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
1340 ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
1343 bytes_sent = esp->data_dma_len;
1344 bytes_sent -= ecount;
1345 bytes_sent -= esp->send_cmd_residual;
1348 * The am53c974 has a DMA 'pecularity'. The doc states:
1349 * In some odd byte conditions, one residual byte will
1350 * be left in the SCSI FIFO, and the FIFO Flags will
1351 * never count to '0 '. When this happens, the residual
1352 * byte should be retrieved via PIO following completion
1353 * of the BLAST operation.
1355 if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
1356 size_t count = 1;
1357 size_t offset = bytes_sent;
1358 u8 bval = esp_read8(ESP_FDATA);
1360 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
1361 ent->sense_ptr[bytes_sent] = bval;
1362 else {
1363 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
1364 u8 *ptr;
1366 ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg,
1367 &offset, &count);
1368 if (likely(ptr)) {
1369 *(ptr + offset) = bval;
1370 scsi_kunmap_atomic_sg(ptr);
1373 bytes_sent += fifo_cnt;
1374 ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
1376 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1377 bytes_sent -= fifo_cnt;
1379 flush_fifo = 0;
1380 if (!esp->prev_soff) {
1381 /* Synchronous data transfer, always flush fifo. */
1382 flush_fifo = 1;
1383 } else {
1384 if (esp->rev == ESP100) {
1385 u32 fflags, phase;
1387 /* ESP100 has a chip bug where in the synchronous data
1388 * phase it can mistake a final long REQ pulse from the
1389 * target as an extra data byte. Fun.
1391 * To detect this case we resample the status register
1392 * and fifo flags. If we're still in a data phase and
1393 * we see spurious chunks in the fifo, we return error
1394 * to the caller which should reset and set things up
1395 * such that we only try future transfers to this
1396 * target in synchronous mode.
1398 esp->sreg = esp_read8(ESP_STATUS);
1399 phase = esp->sreg & ESP_STAT_PMASK;
1400 fflags = esp_read8(ESP_FFLAGS);
1402 if ((phase == ESP_DOP &&
1403 (fflags & ESP_FF_ONOTZERO)) ||
1404 (phase == ESP_DIP &&
1405 (fflags & ESP_FF_FBYTES)))
1406 return -1;
1408 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1409 flush_fifo = 1;
1412 if (flush_fifo)
1413 esp_flush_fifo(esp);
1415 return bytes_sent;
1418 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1419 u8 scsi_period, u8 scsi_offset,
1420 u8 esp_stp, u8 esp_soff)
1422 spi_period(tp->starget) = scsi_period;
1423 spi_offset(tp->starget) = scsi_offset;
1424 spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1426 if (esp_soff) {
1427 esp_stp &= 0x1f;
1428 esp_soff |= esp->radelay;
1429 if (esp->rev >= FAS236) {
1430 u8 bit = ESP_CONFIG3_FSCSI;
1431 if (esp->rev >= FAS100A)
1432 bit = ESP_CONFIG3_FAST;
1434 if (scsi_period < 50) {
1435 if (esp->rev == FASHME)
1436 esp_soff &= ~esp->radelay;
1437 tp->esp_config3 |= bit;
1438 } else {
1439 tp->esp_config3 &= ~bit;
1441 esp->prev_cfg3 = tp->esp_config3;
1442 esp_write8(esp->prev_cfg3, ESP_CFG3);
1446 tp->esp_period = esp->prev_stp = esp_stp;
1447 tp->esp_offset = esp->prev_soff = esp_soff;
1449 esp_write8(esp_soff, ESP_SOFF);
1450 esp_write8(esp_stp, ESP_STP);
1452 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1454 spi_display_xfer_agreement(tp->starget);
1457 static void esp_msgin_reject(struct esp *esp)
1459 struct esp_cmd_entry *ent = esp->active_cmd;
1460 struct scsi_cmnd *cmd = ent->cmd;
1461 struct esp_target_data *tp;
1462 int tgt;
1464 tgt = cmd->device->id;
1465 tp = &esp->target[tgt];
1467 if (tp->flags & ESP_TGT_NEGO_WIDE) {
1468 tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1470 if (!esp_need_to_nego_sync(tp)) {
1471 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1472 scsi_esp_cmd(esp, ESP_CMD_RATN);
1473 } else {
1474 esp->msg_out_len =
1475 spi_populate_sync_msg(&esp->msg_out[0],
1476 tp->nego_goal_period,
1477 tp->nego_goal_offset);
1478 tp->flags |= ESP_TGT_NEGO_SYNC;
1479 scsi_esp_cmd(esp, ESP_CMD_SATN);
1481 return;
1484 if (tp->flags & ESP_TGT_NEGO_SYNC) {
1485 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1486 tp->esp_period = 0;
1487 tp->esp_offset = 0;
1488 esp_setsync(esp, tp, 0, 0, 0, 0);
1489 scsi_esp_cmd(esp, ESP_CMD_RATN);
1490 return;
1493 shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
1494 esp_schedule_reset(esp);
1497 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1499 u8 period = esp->msg_in[3];
1500 u8 offset = esp->msg_in[4];
1501 u8 stp;
1503 if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1504 goto do_reject;
1506 if (offset > 15)
1507 goto do_reject;
1509 if (offset) {
1510 int one_clock;
1512 if (period > esp->max_period) {
1513 period = offset = 0;
1514 goto do_sdtr;
1516 if (period < esp->min_period)
1517 goto do_reject;
1519 one_clock = esp->ccycle / 1000;
1520 stp = DIV_ROUND_UP(period << 2, one_clock);
1521 if (stp && esp->rev >= FAS236) {
1522 if (stp >= 50)
1523 stp--;
1525 } else {
1526 stp = 0;
1529 esp_setsync(esp, tp, period, offset, stp, offset);
1530 return;
1532 do_reject:
1533 esp->msg_out[0] = MESSAGE_REJECT;
1534 esp->msg_out_len = 1;
1535 scsi_esp_cmd(esp, ESP_CMD_SATN);
1536 return;
1538 do_sdtr:
1539 tp->nego_goal_period = period;
1540 tp->nego_goal_offset = offset;
1541 esp->msg_out_len =
1542 spi_populate_sync_msg(&esp->msg_out[0],
1543 tp->nego_goal_period,
1544 tp->nego_goal_offset);
1545 scsi_esp_cmd(esp, ESP_CMD_SATN);
1548 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1550 int size = 8 << esp->msg_in[3];
1551 u8 cfg3;
1553 if (esp->rev != FASHME)
1554 goto do_reject;
1556 if (size != 8 && size != 16)
1557 goto do_reject;
1559 if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1560 goto do_reject;
1562 cfg3 = tp->esp_config3;
1563 if (size == 16) {
1564 tp->flags |= ESP_TGT_WIDE;
1565 cfg3 |= ESP_CONFIG3_EWIDE;
1566 } else {
1567 tp->flags &= ~ESP_TGT_WIDE;
1568 cfg3 &= ~ESP_CONFIG3_EWIDE;
1570 tp->esp_config3 = cfg3;
1571 esp->prev_cfg3 = cfg3;
1572 esp_write8(cfg3, ESP_CFG3);
1574 tp->flags &= ~ESP_TGT_NEGO_WIDE;
1576 spi_period(tp->starget) = 0;
1577 spi_offset(tp->starget) = 0;
1578 if (!esp_need_to_nego_sync(tp)) {
1579 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1580 scsi_esp_cmd(esp, ESP_CMD_RATN);
1581 } else {
1582 esp->msg_out_len =
1583 spi_populate_sync_msg(&esp->msg_out[0],
1584 tp->nego_goal_period,
1585 tp->nego_goal_offset);
1586 tp->flags |= ESP_TGT_NEGO_SYNC;
1587 scsi_esp_cmd(esp, ESP_CMD_SATN);
1589 return;
1591 do_reject:
1592 esp->msg_out[0] = MESSAGE_REJECT;
1593 esp->msg_out_len = 1;
1594 scsi_esp_cmd(esp, ESP_CMD_SATN);
1597 static void esp_msgin_extended(struct esp *esp)
1599 struct esp_cmd_entry *ent = esp->active_cmd;
1600 struct scsi_cmnd *cmd = ent->cmd;
1601 struct esp_target_data *tp;
1602 int tgt = cmd->device->id;
1604 tp = &esp->target[tgt];
1605 if (esp->msg_in[2] == EXTENDED_SDTR) {
1606 esp_msgin_sdtr(esp, tp);
1607 return;
1609 if (esp->msg_in[2] == EXTENDED_WDTR) {
1610 esp_msgin_wdtr(esp, tp);
1611 return;
1614 shost_printk(KERN_INFO, esp->host,
1615 "Unexpected extended msg type %x\n", esp->msg_in[2]);
1617 esp->msg_out[0] = MESSAGE_REJECT;
1618 esp->msg_out_len = 1;
1619 scsi_esp_cmd(esp, ESP_CMD_SATN);
1622 /* Analyze msgin bytes received from target so far. Return non-zero
1623 * if there are more bytes needed to complete the message.
1625 static int esp_msgin_process(struct esp *esp)
1627 u8 msg0 = esp->msg_in[0];
1628 int len = esp->msg_in_len;
1630 if (msg0 & 0x80) {
1631 /* Identify */
1632 shost_printk(KERN_INFO, esp->host,
1633 "Unexpected msgin identify\n");
1634 return 0;
1637 switch (msg0) {
1638 case EXTENDED_MESSAGE:
1639 if (len == 1)
1640 return 1;
1641 if (len < esp->msg_in[1] + 2)
1642 return 1;
1643 esp_msgin_extended(esp);
1644 return 0;
1646 case IGNORE_WIDE_RESIDUE: {
1647 struct esp_cmd_entry *ent;
1648 struct esp_cmd_priv *spriv;
1649 if (len == 1)
1650 return 1;
1652 if (esp->msg_in[1] != 1)
1653 goto do_reject;
1655 ent = esp->active_cmd;
1656 spriv = ESP_CMD_PRIV(ent->cmd);
1658 if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1659 spriv->cur_sg = spriv->prv_sg;
1660 spriv->cur_residue = 1;
1661 } else
1662 spriv->cur_residue++;
1663 spriv->tot_residue++;
1664 return 0;
1666 case NOP:
1667 return 0;
1668 case RESTORE_POINTERS:
1669 esp_restore_pointers(esp, esp->active_cmd);
1670 return 0;
1671 case SAVE_POINTERS:
1672 esp_save_pointers(esp, esp->active_cmd);
1673 return 0;
1675 case COMMAND_COMPLETE:
1676 case DISCONNECT: {
1677 struct esp_cmd_entry *ent = esp->active_cmd;
1679 ent->message = msg0;
1680 esp_event(esp, ESP_EVENT_FREE_BUS);
1681 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1682 return 0;
1684 case MESSAGE_REJECT:
1685 esp_msgin_reject(esp);
1686 return 0;
1688 default:
1689 do_reject:
1690 esp->msg_out[0] = MESSAGE_REJECT;
1691 esp->msg_out_len = 1;
1692 scsi_esp_cmd(esp, ESP_CMD_SATN);
1693 return 0;
1697 static int esp_process_event(struct esp *esp)
1699 int write, i;
1701 again:
1702 write = 0;
1703 esp_log_event("process event %d phase %x\n",
1704 esp->event, esp->sreg & ESP_STAT_PMASK);
1705 switch (esp->event) {
1706 case ESP_EVENT_CHECK_PHASE:
1707 switch (esp->sreg & ESP_STAT_PMASK) {
1708 case ESP_DOP:
1709 esp_event(esp, ESP_EVENT_DATA_OUT);
1710 break;
1711 case ESP_DIP:
1712 esp_event(esp, ESP_EVENT_DATA_IN);
1713 break;
1714 case ESP_STATP:
1715 esp_flush_fifo(esp);
1716 scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1717 esp_event(esp, ESP_EVENT_STATUS);
1718 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1719 return 1;
1721 case ESP_MOP:
1722 esp_event(esp, ESP_EVENT_MSGOUT);
1723 break;
1725 case ESP_MIP:
1726 esp_event(esp, ESP_EVENT_MSGIN);
1727 break;
1729 case ESP_CMDP:
1730 esp_event(esp, ESP_EVENT_CMD_START);
1731 break;
1733 default:
1734 shost_printk(KERN_INFO, esp->host,
1735 "Unexpected phase, sreg=%02x\n",
1736 esp->sreg);
1737 esp_schedule_reset(esp);
1738 return 0;
1740 goto again;
1742 case ESP_EVENT_DATA_IN:
1743 write = 1;
1744 /* fallthru */
1746 case ESP_EVENT_DATA_OUT: {
1747 struct esp_cmd_entry *ent = esp->active_cmd;
1748 struct scsi_cmnd *cmd = ent->cmd;
1749 dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1750 unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1752 if (esp->rev == ESP100)
1753 scsi_esp_cmd(esp, ESP_CMD_NULL);
1755 if (write)
1756 ent->flags |= ESP_CMD_FLAG_WRITE;
1757 else
1758 ent->flags &= ~ESP_CMD_FLAG_WRITE;
1760 if (esp->ops->dma_length_limit)
1761 dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1762 dma_len);
1763 else
1764 dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1766 esp->data_dma_len = dma_len;
1768 if (!dma_len) {
1769 shost_printk(KERN_ERR, esp->host,
1770 "DMA length is zero!\n");
1771 shost_printk(KERN_ERR, esp->host,
1772 "cur adr[%08llx] len[%08x]\n",
1773 (unsigned long long)esp_cur_dma_addr(ent, cmd),
1774 esp_cur_dma_len(ent, cmd));
1775 esp_schedule_reset(esp);
1776 return 0;
1779 esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1780 (unsigned long long)dma_addr, dma_len, write);
1782 esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1783 write, ESP_CMD_DMA | ESP_CMD_TI);
1784 esp_event(esp, ESP_EVENT_DATA_DONE);
1785 break;
1787 case ESP_EVENT_DATA_DONE: {
1788 struct esp_cmd_entry *ent = esp->active_cmd;
1789 struct scsi_cmnd *cmd = ent->cmd;
1790 int bytes_sent;
1792 if (esp->ops->dma_error(esp)) {
1793 shost_printk(KERN_INFO, esp->host,
1794 "data done, DMA error, resetting\n");
1795 esp_schedule_reset(esp);
1796 return 0;
1799 if (ent->flags & ESP_CMD_FLAG_WRITE) {
1800 /* XXX parity errors, etc. XXX */
1802 esp->ops->dma_drain(esp);
1804 esp->ops->dma_invalidate(esp);
1806 if (esp->ireg != ESP_INTR_BSERV) {
1807 /* We should always see exactly a bus-service
1808 * interrupt at the end of a successful transfer.
1810 shost_printk(KERN_INFO, esp->host,
1811 "data done, not BSERV, resetting\n");
1812 esp_schedule_reset(esp);
1813 return 0;
1816 bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1818 esp_log_datadone("data done flgs[%x] sent[%d]\n",
1819 ent->flags, bytes_sent);
1821 if (bytes_sent < 0) {
1822 /* XXX force sync mode for this target XXX */
1823 esp_schedule_reset(esp);
1824 return 0;
1827 esp_advance_dma(esp, ent, cmd, bytes_sent);
1828 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1829 goto again;
1832 case ESP_EVENT_STATUS: {
1833 struct esp_cmd_entry *ent = esp->active_cmd;
1835 if (esp->ireg & ESP_INTR_FDONE) {
1836 ent->status = esp_read8(ESP_FDATA);
1837 ent->message = esp_read8(ESP_FDATA);
1838 scsi_esp_cmd(esp, ESP_CMD_MOK);
1839 } else if (esp->ireg == ESP_INTR_BSERV) {
1840 ent->status = esp_read8(ESP_FDATA);
1841 ent->message = 0xff;
1842 esp_event(esp, ESP_EVENT_MSGIN);
1843 return 0;
1846 if (ent->message != COMMAND_COMPLETE) {
1847 shost_printk(KERN_INFO, esp->host,
1848 "Unexpected message %x in status\n",
1849 ent->message);
1850 esp_schedule_reset(esp);
1851 return 0;
1854 esp_event(esp, ESP_EVENT_FREE_BUS);
1855 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1856 break;
1858 case ESP_EVENT_FREE_BUS: {
1859 struct esp_cmd_entry *ent = esp->active_cmd;
1860 struct scsi_cmnd *cmd = ent->cmd;
1862 if (ent->message == COMMAND_COMPLETE ||
1863 ent->message == DISCONNECT)
1864 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1866 if (ent->message == COMMAND_COMPLETE) {
1867 esp_log_cmddone("Command done status[%x] message[%x]\n",
1868 ent->status, ent->message);
1869 if (ent->status == SAM_STAT_TASK_SET_FULL)
1870 esp_event_queue_full(esp, ent);
1872 if (ent->status == SAM_STAT_CHECK_CONDITION &&
1873 !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1874 ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1875 esp_autosense(esp, ent);
1876 } else {
1877 esp_cmd_is_done(esp, ent, cmd,
1878 compose_result(ent->status,
1879 ent->message,
1880 DID_OK));
1882 } else if (ent->message == DISCONNECT) {
1883 esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1884 cmd->device->id,
1885 ent->tag[0], ent->tag[1]);
1887 esp->active_cmd = NULL;
1888 esp_maybe_execute_command(esp);
1889 } else {
1890 shost_printk(KERN_INFO, esp->host,
1891 "Unexpected message %x in freebus\n",
1892 ent->message);
1893 esp_schedule_reset(esp);
1894 return 0;
1896 if (esp->active_cmd)
1897 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1898 break;
1900 case ESP_EVENT_MSGOUT: {
1901 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1903 if (esp_debug & ESP_DEBUG_MSGOUT) {
1904 int i;
1905 printk("ESP: Sending message [ ");
1906 for (i = 0; i < esp->msg_out_len; i++)
1907 printk("%02x ", esp->msg_out[i]);
1908 printk("]\n");
1911 if (esp->rev == FASHME) {
1912 int i;
1914 /* Always use the fifo. */
1915 for (i = 0; i < esp->msg_out_len; i++) {
1916 esp_write8(esp->msg_out[i], ESP_FDATA);
1917 esp_write8(0, ESP_FDATA);
1919 scsi_esp_cmd(esp, ESP_CMD_TI);
1920 } else {
1921 if (esp->msg_out_len == 1) {
1922 esp_write8(esp->msg_out[0], ESP_FDATA);
1923 scsi_esp_cmd(esp, ESP_CMD_TI);
1924 } else if (esp->flags & ESP_FLAG_USE_FIFO) {
1925 for (i = 0; i < esp->msg_out_len; i++)
1926 esp_write8(esp->msg_out[i], ESP_FDATA);
1927 scsi_esp_cmd(esp, ESP_CMD_TI);
1928 } else {
1929 /* Use DMA. */
1930 memcpy(esp->command_block,
1931 esp->msg_out,
1932 esp->msg_out_len);
1934 esp->ops->send_dma_cmd(esp,
1935 esp->command_block_dma,
1936 esp->msg_out_len,
1937 esp->msg_out_len,
1939 ESP_CMD_DMA|ESP_CMD_TI);
1942 esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1943 break;
1945 case ESP_EVENT_MSGOUT_DONE:
1946 if (esp->rev == FASHME) {
1947 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1948 } else {
1949 if (esp->msg_out_len > 1)
1950 esp->ops->dma_invalidate(esp);
1952 /* XXX if the chip went into disconnected mode,
1953 * we can't run the phase state machine anyway.
1955 if (!(esp->ireg & ESP_INTR_DC))
1956 scsi_esp_cmd(esp, ESP_CMD_NULL);
1959 esp->msg_out_len = 0;
1961 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1962 goto again;
1963 case ESP_EVENT_MSGIN:
1964 if (esp->ireg & ESP_INTR_BSERV) {
1965 if (esp->rev == FASHME) {
1966 if (!(esp_read8(ESP_STATUS2) &
1967 ESP_STAT2_FEMPTY))
1968 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1969 } else {
1970 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1971 if (esp->rev == ESP100)
1972 scsi_esp_cmd(esp, ESP_CMD_NULL);
1974 scsi_esp_cmd(esp, ESP_CMD_TI);
1975 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1976 return 1;
1978 if (esp->ireg & ESP_INTR_FDONE) {
1979 u8 val;
1981 if (esp->rev == FASHME)
1982 val = esp->fifo[0];
1983 else
1984 val = esp_read8(ESP_FDATA);
1985 esp->msg_in[esp->msg_in_len++] = val;
1987 esp_log_msgin("Got msgin byte %x\n", val);
1989 if (!esp_msgin_process(esp))
1990 esp->msg_in_len = 0;
1992 if (esp->rev == FASHME)
1993 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1995 scsi_esp_cmd(esp, ESP_CMD_MOK);
1997 /* Check whether a bus reset is to be done next */
1998 if (esp->event == ESP_EVENT_RESET)
1999 return 0;
2001 if (esp->event != ESP_EVENT_FREE_BUS)
2002 esp_event(esp, ESP_EVENT_CHECK_PHASE);
2003 } else {
2004 shost_printk(KERN_INFO, esp->host,
2005 "MSGIN neither BSERV not FDON, resetting");
2006 esp_schedule_reset(esp);
2007 return 0;
2009 break;
2010 case ESP_EVENT_CMD_START:
2011 memcpy(esp->command_block, esp->cmd_bytes_ptr,
2012 esp->cmd_bytes_left);
2013 esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
2014 esp_event(esp, ESP_EVENT_CMD_DONE);
2015 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
2016 break;
2017 case ESP_EVENT_CMD_DONE:
2018 esp->ops->dma_invalidate(esp);
2019 if (esp->ireg & ESP_INTR_BSERV) {
2020 esp_event(esp, ESP_EVENT_CHECK_PHASE);
2021 goto again;
2023 esp_schedule_reset(esp);
2024 return 0;
2026 case ESP_EVENT_RESET:
2027 scsi_esp_cmd(esp, ESP_CMD_RS);
2028 break;
2030 default:
2031 shost_printk(KERN_INFO, esp->host,
2032 "Unexpected event %x, resetting\n", esp->event);
2033 esp_schedule_reset(esp);
2034 return 0;
2036 return 1;
2039 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
2041 struct scsi_cmnd *cmd = ent->cmd;
2043 esp_unmap_dma(esp, cmd);
2044 esp_free_lun_tag(ent, cmd->device->hostdata);
2045 cmd->result = DID_RESET << 16;
2047 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
2048 esp_unmap_sense(esp, ent);
2050 cmd->scsi_done(cmd);
2051 list_del(&ent->list);
2052 esp_put_ent(esp, ent);
2055 static void esp_clear_hold(struct scsi_device *dev, void *data)
2057 struct esp_lun_data *lp = dev->hostdata;
2059 BUG_ON(lp->num_tagged);
2060 lp->hold = 0;
2063 static void esp_reset_cleanup(struct esp *esp)
2065 struct esp_cmd_entry *ent, *tmp;
2066 int i;
2068 list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2069 struct scsi_cmnd *cmd = ent->cmd;
2071 list_del(&ent->list);
2072 cmd->result = DID_RESET << 16;
2073 cmd->scsi_done(cmd);
2074 esp_put_ent(esp, ent);
2077 list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2078 if (ent == esp->active_cmd)
2079 esp->active_cmd = NULL;
2080 esp_reset_cleanup_one(esp, ent);
2083 BUG_ON(esp->active_cmd != NULL);
2085 /* Force renegotiation of sync/wide transfers. */
2086 for (i = 0; i < ESP_MAX_TARGET; i++) {
2087 struct esp_target_data *tp = &esp->target[i];
2089 tp->esp_period = 0;
2090 tp->esp_offset = 0;
2091 tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2092 ESP_CONFIG3_FSCSI |
2093 ESP_CONFIG3_FAST);
2094 tp->flags &= ~ESP_TGT_WIDE;
2095 tp->flags |= ESP_TGT_CHECK_NEGO;
2097 if (tp->starget)
2098 __starget_for_each_device(tp->starget, NULL,
2099 esp_clear_hold);
2101 esp->flags &= ~ESP_FLAG_RESETTING;
2104 /* Runs under host->lock */
2105 static void __esp_interrupt(struct esp *esp)
2107 int finish_reset, intr_done;
2108 u8 phase;
2111 * Once INTRPT is read STATUS and SSTEP are cleared.
2113 esp->sreg = esp_read8(ESP_STATUS);
2114 esp->seqreg = esp_read8(ESP_SSTEP);
2115 esp->ireg = esp_read8(ESP_INTRPT);
2117 if (esp->flags & ESP_FLAG_RESETTING) {
2118 finish_reset = 1;
2119 } else {
2120 if (esp_check_gross_error(esp))
2121 return;
2123 finish_reset = esp_check_spur_intr(esp);
2124 if (finish_reset < 0)
2125 return;
2128 if (esp->ireg & ESP_INTR_SR)
2129 finish_reset = 1;
2131 if (finish_reset) {
2132 esp_reset_cleanup(esp);
2133 if (esp->eh_reset) {
2134 complete(esp->eh_reset);
2135 esp->eh_reset = NULL;
2137 return;
2140 phase = (esp->sreg & ESP_STAT_PMASK);
2141 if (esp->rev == FASHME) {
2142 if (((phase != ESP_DIP && phase != ESP_DOP) &&
2143 esp->select_state == ESP_SELECT_NONE &&
2144 esp->event != ESP_EVENT_STATUS &&
2145 esp->event != ESP_EVENT_DATA_DONE) ||
2146 (esp->ireg & ESP_INTR_RSEL)) {
2147 esp->sreg2 = esp_read8(ESP_STATUS2);
2148 if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2149 (esp->sreg2 & ESP_STAT2_F1BYTE))
2150 hme_read_fifo(esp);
2154 esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2155 "sreg2[%02x] ireg[%02x]\n",
2156 esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2158 intr_done = 0;
2160 if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2161 shost_printk(KERN_INFO, esp->host,
2162 "unexpected IREG %02x\n", esp->ireg);
2163 if (esp->ireg & ESP_INTR_IC)
2164 esp_dump_cmd_log(esp);
2166 esp_schedule_reset(esp);
2167 } else {
2168 if (esp->ireg & ESP_INTR_RSEL) {
2169 if (esp->active_cmd)
2170 (void) esp_finish_select(esp);
2171 intr_done = esp_reconnect(esp);
2172 } else {
2173 /* Some combination of FDONE, BSERV, DC. */
2174 if (esp->select_state != ESP_SELECT_NONE)
2175 intr_done = esp_finish_select(esp);
2178 while (!intr_done)
2179 intr_done = esp_process_event(esp);
2182 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2184 struct esp *esp = dev_id;
2185 unsigned long flags;
2186 irqreturn_t ret;
2188 spin_lock_irqsave(esp->host->host_lock, flags);
2189 ret = IRQ_NONE;
2190 if (esp->ops->irq_pending(esp)) {
2191 ret = IRQ_HANDLED;
2192 for (;;) {
2193 int i;
2195 __esp_interrupt(esp);
2196 if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2197 break;
2198 esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2200 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2201 if (esp->ops->irq_pending(esp))
2202 break;
2204 if (i == ESP_QUICKIRQ_LIMIT)
2205 break;
2208 spin_unlock_irqrestore(esp->host->host_lock, flags);
2210 return ret;
2212 EXPORT_SYMBOL(scsi_esp_intr);
2214 static void esp_get_revision(struct esp *esp)
2216 u8 val;
2218 esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2219 if (esp->config2 == 0) {
2220 esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2221 esp_write8(esp->config2, ESP_CFG2);
2223 val = esp_read8(ESP_CFG2);
2224 val &= ~ESP_CONFIG2_MAGIC;
2226 esp->config2 = 0;
2227 if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2229 * If what we write to cfg2 does not come back,
2230 * cfg2 is not implemented.
2231 * Therefore this must be a plain esp100.
2233 esp->rev = ESP100;
2234 return;
2238 esp_set_all_config3(esp, 5);
2239 esp->prev_cfg3 = 5;
2240 esp_write8(esp->config2, ESP_CFG2);
2241 esp_write8(0, ESP_CFG3);
2242 esp_write8(esp->prev_cfg3, ESP_CFG3);
2244 val = esp_read8(ESP_CFG3);
2245 if (val != 5) {
2246 /* The cfg2 register is implemented, however
2247 * cfg3 is not, must be esp100a.
2249 esp->rev = ESP100A;
2250 } else {
2251 esp_set_all_config3(esp, 0);
2252 esp->prev_cfg3 = 0;
2253 esp_write8(esp->prev_cfg3, ESP_CFG3);
2255 /* All of cfg{1,2,3} implemented, must be one of
2256 * the fas variants, figure out which one.
2258 if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2259 esp->rev = FAST;
2260 esp->sync_defp = SYNC_DEFP_FAST;
2261 } else {
2262 esp->rev = ESP236;
2267 static void esp_init_swstate(struct esp *esp)
2269 int i;
2271 INIT_LIST_HEAD(&esp->queued_cmds);
2272 INIT_LIST_HEAD(&esp->active_cmds);
2273 INIT_LIST_HEAD(&esp->esp_cmd_pool);
2275 /* Start with a clear state, domain validation (via ->slave_configure,
2276 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2277 * commands.
2279 for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2280 esp->target[i].flags = 0;
2281 esp->target[i].nego_goal_period = 0;
2282 esp->target[i].nego_goal_offset = 0;
2283 esp->target[i].nego_goal_width = 0;
2284 esp->target[i].nego_goal_tags = 0;
2288 /* This places the ESP into a known state at boot time. */
2289 static void esp_bootup_reset(struct esp *esp)
2291 u8 val;
2293 /* Reset the DMA */
2294 esp->ops->reset_dma(esp);
2296 /* Reset the ESP */
2297 esp_reset_esp(esp);
2299 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2300 val = esp_read8(ESP_CFG1);
2301 val |= ESP_CONFIG1_SRRDISAB;
2302 esp_write8(val, ESP_CFG1);
2304 scsi_esp_cmd(esp, ESP_CMD_RS);
2305 udelay(400);
2307 esp_write8(esp->config1, ESP_CFG1);
2309 /* Eat any bitrot in the chip and we are done... */
2310 esp_read8(ESP_INTRPT);
2313 static void esp_set_clock_params(struct esp *esp)
2315 int fhz;
2316 u8 ccf;
2318 /* This is getting messy but it has to be done correctly or else
2319 * you get weird behavior all over the place. We are trying to
2320 * basically figure out three pieces of information.
2322 * a) Clock Conversion Factor
2324 * This is a representation of the input crystal clock frequency
2325 * going into the ESP on this machine. Any operation whose timing
2326 * is longer than 400ns depends on this value being correct. For
2327 * example, you'll get blips for arbitration/selection during high
2328 * load or with multiple targets if this is not set correctly.
2330 * b) Selection Time-Out
2332 * The ESP isn't very bright and will arbitrate for the bus and try
2333 * to select a target forever if you let it. This value tells the
2334 * ESP when it has taken too long to negotiate and that it should
2335 * interrupt the CPU so we can see what happened. The value is
2336 * computed as follows (from NCR/Symbios chip docs).
2338 * (Time Out Period) * (Input Clock)
2339 * STO = ----------------------------------
2340 * (8192) * (Clock Conversion Factor)
2342 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2344 * c) Imperical constants for synchronous offset and transfer period
2345 * register values
2347 * This entails the smallest and largest sync period we could ever
2348 * handle on this ESP.
2350 fhz = esp->cfreq;
2352 ccf = ((fhz / 1000000) + 4) / 5;
2353 if (ccf == 1)
2354 ccf = 2;
2356 /* If we can't find anything reasonable, just assume 20MHZ.
2357 * This is the clock frequency of the older sun4c's where I've
2358 * been unable to find the clock-frequency PROM property. All
2359 * other machines provide useful values it seems.
2361 if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2362 fhz = 20000000;
2363 ccf = 4;
2366 esp->cfact = (ccf == 8 ? 0 : ccf);
2367 esp->cfreq = fhz;
2368 esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2369 esp->ctick = ESP_TICK(ccf, esp->ccycle);
2370 esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2371 esp->sync_defp = SYNC_DEFP_SLOW;
2374 static const char *esp_chip_names[] = {
2375 "ESP100",
2376 "ESP100A",
2377 "ESP236",
2378 "FAS236",
2379 "AM53C974",
2380 "53CF9x-2",
2381 "FAS100A",
2382 "FAST",
2383 "FASHME",
2386 static struct scsi_transport_template *esp_transport_template;
2388 int scsi_esp_register(struct esp *esp)
2390 static int instance;
2391 int err;
2393 if (!esp->num_tags)
2394 esp->num_tags = ESP_DEFAULT_TAGS;
2395 esp->host->transportt = esp_transport_template;
2396 esp->host->max_lun = ESP_MAX_LUN;
2397 esp->host->cmd_per_lun = 2;
2398 esp->host->unique_id = instance;
2400 esp_set_clock_params(esp);
2402 esp_get_revision(esp);
2404 esp_init_swstate(esp);
2406 esp_bootup_reset(esp);
2408 dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
2409 esp->host->unique_id, esp->regs, esp->dma_regs,
2410 esp->host->irq);
2411 dev_printk(KERN_INFO, esp->dev,
2412 "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2413 esp->host->unique_id, esp_chip_names[esp->rev],
2414 esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2416 /* Let the SCSI bus reset settle. */
2417 ssleep(esp_bus_reset_settle);
2419 err = scsi_add_host(esp->host, esp->dev);
2420 if (err)
2421 return err;
2423 instance++;
2425 scsi_scan_host(esp->host);
2427 return 0;
2429 EXPORT_SYMBOL(scsi_esp_register);
2431 void scsi_esp_unregister(struct esp *esp)
2433 scsi_remove_host(esp->host);
2435 EXPORT_SYMBOL(scsi_esp_unregister);
2437 static int esp_target_alloc(struct scsi_target *starget)
2439 struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2440 struct esp_target_data *tp = &esp->target[starget->id];
2442 tp->starget = starget;
2444 return 0;
2447 static void esp_target_destroy(struct scsi_target *starget)
2449 struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2450 struct esp_target_data *tp = &esp->target[starget->id];
2452 tp->starget = NULL;
2455 static int esp_slave_alloc(struct scsi_device *dev)
2457 struct esp *esp = shost_priv(dev->host);
2458 struct esp_target_data *tp = &esp->target[dev->id];
2459 struct esp_lun_data *lp;
2461 lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2462 if (!lp)
2463 return -ENOMEM;
2464 dev->hostdata = lp;
2466 spi_min_period(tp->starget) = esp->min_period;
2467 spi_max_offset(tp->starget) = 15;
2469 if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2470 spi_max_width(tp->starget) = 1;
2471 else
2472 spi_max_width(tp->starget) = 0;
2474 return 0;
2477 static int esp_slave_configure(struct scsi_device *dev)
2479 struct esp *esp = shost_priv(dev->host);
2480 struct esp_target_data *tp = &esp->target[dev->id];
2482 if (dev->tagged_supported)
2483 scsi_change_queue_depth(dev, esp->num_tags);
2485 tp->flags |= ESP_TGT_DISCONNECT;
2487 if (!spi_initial_dv(dev->sdev_target))
2488 spi_dv_device(dev);
2490 return 0;
2493 static void esp_slave_destroy(struct scsi_device *dev)
2495 struct esp_lun_data *lp = dev->hostdata;
2497 kfree(lp);
2498 dev->hostdata = NULL;
2501 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2503 struct esp *esp = shost_priv(cmd->device->host);
2504 struct esp_cmd_entry *ent, *tmp;
2505 struct completion eh_done;
2506 unsigned long flags;
2508 /* XXX This helps a lot with debugging but might be a bit
2509 * XXX much for the final driver.
2511 spin_lock_irqsave(esp->host->host_lock, flags);
2512 shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
2513 cmd, cmd->cmnd[0]);
2514 ent = esp->active_cmd;
2515 if (ent)
2516 shost_printk(KERN_ERR, esp->host,
2517 "Current command [%p:%02x]\n",
2518 ent->cmd, ent->cmd->cmnd[0]);
2519 list_for_each_entry(ent, &esp->queued_cmds, list) {
2520 shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
2521 ent->cmd, ent->cmd->cmnd[0]);
2523 list_for_each_entry(ent, &esp->active_cmds, list) {
2524 shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
2525 ent->cmd, ent->cmd->cmnd[0]);
2527 esp_dump_cmd_log(esp);
2528 spin_unlock_irqrestore(esp->host->host_lock, flags);
2530 spin_lock_irqsave(esp->host->host_lock, flags);
2532 ent = NULL;
2533 list_for_each_entry(tmp, &esp->queued_cmds, list) {
2534 if (tmp->cmd == cmd) {
2535 ent = tmp;
2536 break;
2540 if (ent) {
2541 /* Easiest case, we didn't even issue the command
2542 * yet so it is trivial to abort.
2544 list_del(&ent->list);
2546 cmd->result = DID_ABORT << 16;
2547 cmd->scsi_done(cmd);
2549 esp_put_ent(esp, ent);
2551 goto out_success;
2554 init_completion(&eh_done);
2556 ent = esp->active_cmd;
2557 if (ent && ent->cmd == cmd) {
2558 /* Command is the currently active command on
2559 * the bus. If we already have an output message
2560 * pending, no dice.
2562 if (esp->msg_out_len)
2563 goto out_failure;
2565 /* Send out an abort, encouraging the target to
2566 * go to MSGOUT phase by asserting ATN.
2568 esp->msg_out[0] = ABORT_TASK_SET;
2569 esp->msg_out_len = 1;
2570 ent->eh_done = &eh_done;
2572 scsi_esp_cmd(esp, ESP_CMD_SATN);
2573 } else {
2574 /* The command is disconnected. This is not easy to
2575 * abort. For now we fail and let the scsi error
2576 * handling layer go try a scsi bus reset or host
2577 * reset.
2579 * What we could do is put together a scsi command
2580 * solely for the purpose of sending an abort message
2581 * to the target. Coming up with all the code to
2582 * cook up scsi commands, special case them everywhere,
2583 * etc. is for questionable gain and it would be better
2584 * if the generic scsi error handling layer could do at
2585 * least some of that for us.
2587 * Anyways this is an area for potential future improvement
2588 * in this driver.
2590 goto out_failure;
2593 spin_unlock_irqrestore(esp->host->host_lock, flags);
2595 if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2596 spin_lock_irqsave(esp->host->host_lock, flags);
2597 ent->eh_done = NULL;
2598 spin_unlock_irqrestore(esp->host->host_lock, flags);
2600 return FAILED;
2603 return SUCCESS;
2605 out_success:
2606 spin_unlock_irqrestore(esp->host->host_lock, flags);
2607 return SUCCESS;
2609 out_failure:
2610 /* XXX This might be a good location to set ESP_TGT_BROKEN
2611 * XXX since we know which target/lun in particular is
2612 * XXX causing trouble.
2614 spin_unlock_irqrestore(esp->host->host_lock, flags);
2615 return FAILED;
2618 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2620 struct esp *esp = shost_priv(cmd->device->host);
2621 struct completion eh_reset;
2622 unsigned long flags;
2624 init_completion(&eh_reset);
2626 spin_lock_irqsave(esp->host->host_lock, flags);
2628 esp->eh_reset = &eh_reset;
2630 /* XXX This is too simple... We should add lots of
2631 * XXX checks here so that if we find that the chip is
2632 * XXX very wedged we return failure immediately so
2633 * XXX that we can perform a full chip reset.
2635 esp->flags |= ESP_FLAG_RESETTING;
2636 scsi_esp_cmd(esp, ESP_CMD_RS);
2638 spin_unlock_irqrestore(esp->host->host_lock, flags);
2640 ssleep(esp_bus_reset_settle);
2642 if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2643 spin_lock_irqsave(esp->host->host_lock, flags);
2644 esp->eh_reset = NULL;
2645 spin_unlock_irqrestore(esp->host->host_lock, flags);
2647 return FAILED;
2650 return SUCCESS;
2653 /* All bets are off, reset the entire device. */
2654 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2656 struct esp *esp = shost_priv(cmd->device->host);
2657 unsigned long flags;
2659 spin_lock_irqsave(esp->host->host_lock, flags);
2660 esp_bootup_reset(esp);
2661 esp_reset_cleanup(esp);
2662 spin_unlock_irqrestore(esp->host->host_lock, flags);
2664 ssleep(esp_bus_reset_settle);
2666 return SUCCESS;
2669 static const char *esp_info(struct Scsi_Host *host)
2671 return "esp";
2674 struct scsi_host_template scsi_esp_template = {
2675 .module = THIS_MODULE,
2676 .name = "esp",
2677 .info = esp_info,
2678 .queuecommand = esp_queuecommand,
2679 .target_alloc = esp_target_alloc,
2680 .target_destroy = esp_target_destroy,
2681 .slave_alloc = esp_slave_alloc,
2682 .slave_configure = esp_slave_configure,
2683 .slave_destroy = esp_slave_destroy,
2684 .eh_abort_handler = esp_eh_abort_handler,
2685 .eh_bus_reset_handler = esp_eh_bus_reset_handler,
2686 .eh_host_reset_handler = esp_eh_host_reset_handler,
2687 .can_queue = 7,
2688 .this_id = 7,
2689 .sg_tablesize = SG_ALL,
2690 .max_sectors = 0xffff,
2691 .skip_settle_delay = 1,
2693 EXPORT_SYMBOL(scsi_esp_template);
2695 static void esp_get_signalling(struct Scsi_Host *host)
2697 struct esp *esp = shost_priv(host);
2698 enum spi_signal_type type;
2700 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2701 type = SPI_SIGNAL_HVD;
2702 else
2703 type = SPI_SIGNAL_SE;
2705 spi_signalling(host) = type;
2708 static void esp_set_offset(struct scsi_target *target, int offset)
2710 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2711 struct esp *esp = shost_priv(host);
2712 struct esp_target_data *tp = &esp->target[target->id];
2714 if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2715 tp->nego_goal_offset = 0;
2716 else
2717 tp->nego_goal_offset = offset;
2718 tp->flags |= ESP_TGT_CHECK_NEGO;
2721 static void esp_set_period(struct scsi_target *target, int period)
2723 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2724 struct esp *esp = shost_priv(host);
2725 struct esp_target_data *tp = &esp->target[target->id];
2727 tp->nego_goal_period = period;
2728 tp->flags |= ESP_TGT_CHECK_NEGO;
2731 static void esp_set_width(struct scsi_target *target, int width)
2733 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2734 struct esp *esp = shost_priv(host);
2735 struct esp_target_data *tp = &esp->target[target->id];
2737 tp->nego_goal_width = (width ? 1 : 0);
2738 tp->flags |= ESP_TGT_CHECK_NEGO;
2741 static struct spi_function_template esp_transport_ops = {
2742 .set_offset = esp_set_offset,
2743 .show_offset = 1,
2744 .set_period = esp_set_period,
2745 .show_period = 1,
2746 .set_width = esp_set_width,
2747 .show_width = 1,
2748 .get_signalling = esp_get_signalling,
2751 static int __init esp_init(void)
2753 BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2754 sizeof(struct esp_cmd_priv));
2756 esp_transport_template = spi_attach_transport(&esp_transport_ops);
2757 if (!esp_transport_template)
2758 return -ENODEV;
2760 return 0;
2763 static void __exit esp_exit(void)
2765 spi_release_transport(esp_transport_template);
2768 MODULE_DESCRIPTION("ESP SCSI driver core");
2769 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2770 MODULE_LICENSE("GPL");
2771 MODULE_VERSION(DRV_VERSION);
2773 module_param(esp_bus_reset_settle, int, 0);
2774 MODULE_PARM_DESC(esp_bus_reset_settle,
2775 "ESP scsi bus reset delay in seconds");
2777 module_param(esp_debug, int, 0);
2778 MODULE_PARM_DESC(esp_debug,
2779 "ESP bitmapped debugging message enable value:\n"
2780 " 0x00000001 Log interrupt events\n"
2781 " 0x00000002 Log scsi commands\n"
2782 " 0x00000004 Log resets\n"
2783 " 0x00000008 Log message in events\n"
2784 " 0x00000010 Log message out events\n"
2785 " 0x00000020 Log command completion\n"
2786 " 0x00000040 Log disconnects\n"
2787 " 0x00000080 Log data start\n"
2788 " 0x00000100 Log data done\n"
2789 " 0x00000200 Log reconnects\n"
2790 " 0x00000400 Log auto-sense data\n"
2793 module_init(esp_init);
2794 module_exit(esp_exit);
2796 #ifdef CONFIG_SCSI_ESP_PIO
2797 static inline unsigned int esp_wait_for_fifo(struct esp *esp)
2799 int i = 500000;
2801 do {
2802 unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
2804 if (fbytes)
2805 return fbytes;
2807 udelay(1);
2808 } while (--i);
2810 shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n",
2811 esp_read8(ESP_STATUS));
2812 return 0;
2815 static inline int esp_wait_for_intr(struct esp *esp)
2817 int i = 500000;
2819 do {
2820 esp->sreg = esp_read8(ESP_STATUS);
2821 if (esp->sreg & ESP_STAT_INTR)
2822 return 0;
2824 udelay(1);
2825 } while (--i);
2827 shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n",
2828 esp->sreg);
2829 return 1;
2832 #define ESP_FIFO_SIZE 16
2834 void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count,
2835 u32 dma_count, int write, u8 cmd)
2837 u8 phase = esp->sreg & ESP_STAT_PMASK;
2839 cmd &= ~ESP_CMD_DMA;
2840 esp->send_cmd_error = 0;
2842 if (write) {
2843 u8 *dst = (u8 *)addr;
2844 u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV);
2846 scsi_esp_cmd(esp, cmd);
2848 while (1) {
2849 if (!esp_wait_for_fifo(esp))
2850 break;
2852 *dst++ = readb(esp->fifo_reg);
2853 --esp_count;
2855 if (!esp_count)
2856 break;
2858 if (esp_wait_for_intr(esp)) {
2859 esp->send_cmd_error = 1;
2860 break;
2863 if ((esp->sreg & ESP_STAT_PMASK) != phase)
2864 break;
2866 esp->ireg = esp_read8(ESP_INTRPT);
2867 if (esp->ireg & mask) {
2868 esp->send_cmd_error = 1;
2869 break;
2872 if (phase == ESP_MIP)
2873 esp_write8(ESP_CMD_MOK, ESP_CMD);
2875 esp_write8(ESP_CMD_TI, ESP_CMD);
2877 } else {
2878 unsigned int n = ESP_FIFO_SIZE;
2879 u8 *src = (u8 *)addr;
2881 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
2883 if (n > esp_count)
2884 n = esp_count;
2885 writesb(esp->fifo_reg, src, n);
2886 src += n;
2887 esp_count -= n;
2889 scsi_esp_cmd(esp, cmd);
2891 while (esp_count) {
2892 if (esp_wait_for_intr(esp)) {
2893 esp->send_cmd_error = 1;
2894 break;
2897 if ((esp->sreg & ESP_STAT_PMASK) != phase)
2898 break;
2900 esp->ireg = esp_read8(ESP_INTRPT);
2901 if (esp->ireg & ~ESP_INTR_BSERV) {
2902 esp->send_cmd_error = 1;
2903 break;
2906 n = ESP_FIFO_SIZE -
2907 (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES);
2909 if (n > esp_count)
2910 n = esp_count;
2911 writesb(esp->fifo_reg, src, n);
2912 src += n;
2913 esp_count -= n;
2915 esp_write8(ESP_CMD_TI, ESP_CMD);
2919 esp->send_cmd_residual = esp_count;
2921 EXPORT_SYMBOL(esp_send_pio_cmd);
2922 #endif