treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / scsi / lpfc / lpfc_sli.c
blob64002b0cb02d464b643d9c48b550a8fa09aa072b
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
42 #include <linux/nvme-fc-driver.h>
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 LPFC_UNKNOWN_IOCB,
64 LPFC_UNSOL_IOCB,
65 LPFC_SOL_IOCB,
66 LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 struct lpfc_queue *eq,
87 struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
90 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
91 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
92 struct lpfc_queue *cq,
93 struct lpfc_cqe *cqe);
95 static IOCB_t *
96 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
98 return &iocbq->iocb;
101 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
103 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
104 * @srcp: Source memory pointer.
105 * @destp: Destination memory pointer.
106 * @cnt: Number of words required to be copied.
107 * Must be a multiple of sizeof(uint64_t)
109 * This function is used for copying data between driver memory
110 * and the SLI WQ. This function also changes the endianness
111 * of each word if native endianness is different from SLI
112 * endianness. This function can be called with or without
113 * lock.
115 static void
116 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
118 uint64_t *src = srcp;
119 uint64_t *dest = destp;
120 int i;
122 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
123 *dest++ = *src++;
125 #else
126 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
127 #endif
130 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
131 * @q: The Work Queue to operate on.
132 * @wqe: The work Queue Entry to put on the Work queue.
134 * This routine will copy the contents of @wqe to the next available entry on
135 * the @q. This function will then ring the Work Queue Doorbell to signal the
136 * HBA to start processing the Work Queue Entry. This function returns 0 if
137 * successful. If no entries are available on @q then this function will return
138 * -ENOMEM.
139 * The caller is expected to hold the hbalock when calling this routine.
141 static int
142 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
144 union lpfc_wqe *temp_wqe;
145 struct lpfc_register doorbell;
146 uint32_t host_index;
147 uint32_t idx;
148 uint32_t i = 0;
149 uint8_t *tmp;
150 u32 if_type;
152 /* sanity check on queue memory */
153 if (unlikely(!q))
154 return -ENOMEM;
155 temp_wqe = lpfc_sli4_qe(q, q->host_index);
157 /* If the host has not yet processed the next entry then we are done */
158 idx = ((q->host_index + 1) % q->entry_count);
159 if (idx == q->hba_index) {
160 q->WQ_overflow++;
161 return -EBUSY;
163 q->WQ_posted++;
164 /* set consumption flag every once in a while */
165 if (!((q->host_index + 1) % q->notify_interval))
166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
167 else
168 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
169 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
170 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
171 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
172 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
173 /* write to DPP aperture taking advatage of Combined Writes */
174 tmp = (uint8_t *)temp_wqe;
175 #ifdef __raw_writeq
176 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
177 __raw_writeq(*((uint64_t *)(tmp + i)),
178 q->dpp_regaddr + i);
179 #else
180 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
181 __raw_writel(*((uint32_t *)(tmp + i)),
182 q->dpp_regaddr + i);
183 #endif
185 /* ensure WQE bcopy and DPP flushed before doorbell write */
186 wmb();
188 /* Update the host index before invoking device */
189 host_index = q->host_index;
191 q->host_index = idx;
193 /* Ring Doorbell */
194 doorbell.word0 = 0;
195 if (q->db_format == LPFC_DB_LIST_FORMAT) {
196 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
197 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
198 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
199 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
200 q->dpp_id);
201 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
202 q->queue_id);
203 } else {
204 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
205 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
207 /* Leave bits <23:16> clear for if_type 6 dpp */
208 if_type = bf_get(lpfc_sli_intf_if_type,
209 &q->phba->sli4_hba.sli_intf);
210 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
211 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
212 host_index);
214 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
215 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
216 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
217 } else {
218 return -EINVAL;
220 writel(doorbell.word0, q->db_regaddr);
222 return 0;
226 * lpfc_sli4_wq_release - Updates internal hba index for WQ
227 * @q: The Work Queue to operate on.
228 * @index: The index to advance the hba index to.
230 * This routine will update the HBA index of a queue to reflect consumption of
231 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
232 * an entry the host calls this function to update the queue's internal
233 * pointers. This routine returns the number of entries that were consumed by
234 * the HBA.
236 static uint32_t
237 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
239 uint32_t released = 0;
241 /* sanity check on queue memory */
242 if (unlikely(!q))
243 return 0;
245 if (q->hba_index == index)
246 return 0;
247 do {
248 q->hba_index = ((q->hba_index + 1) % q->entry_count);
249 released++;
250 } while (q->hba_index != index);
251 return released;
255 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
256 * @q: The Mailbox Queue to operate on.
257 * @wqe: The Mailbox Queue Entry to put on the Work queue.
259 * This routine will copy the contents of @mqe to the next available entry on
260 * the @q. This function will then ring the Work Queue Doorbell to signal the
261 * HBA to start processing the Work Queue Entry. This function returns 0 if
262 * successful. If no entries are available on @q then this function will return
263 * -ENOMEM.
264 * The caller is expected to hold the hbalock when calling this routine.
266 static uint32_t
267 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
269 struct lpfc_mqe *temp_mqe;
270 struct lpfc_register doorbell;
272 /* sanity check on queue memory */
273 if (unlikely(!q))
274 return -ENOMEM;
275 temp_mqe = lpfc_sli4_qe(q, q->host_index);
277 /* If the host has not yet processed the next entry then we are done */
278 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
279 return -ENOMEM;
280 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
281 /* Save off the mailbox pointer for completion */
282 q->phba->mbox = (MAILBOX_t *)temp_mqe;
284 /* Update the host index before invoking device */
285 q->host_index = ((q->host_index + 1) % q->entry_count);
287 /* Ring Doorbell */
288 doorbell.word0 = 0;
289 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
290 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
291 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
292 return 0;
296 * lpfc_sli4_mq_release - Updates internal hba index for MQ
297 * @q: The Mailbox Queue to operate on.
299 * This routine will update the HBA index of a queue to reflect consumption of
300 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
301 * an entry the host calls this function to update the queue's internal
302 * pointers. This routine returns the number of entries that were consumed by
303 * the HBA.
305 static uint32_t
306 lpfc_sli4_mq_release(struct lpfc_queue *q)
308 /* sanity check on queue memory */
309 if (unlikely(!q))
310 return 0;
312 /* Clear the mailbox pointer for completion */
313 q->phba->mbox = NULL;
314 q->hba_index = ((q->hba_index + 1) % q->entry_count);
315 return 1;
319 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
320 * @q: The Event Queue to get the first valid EQE from
322 * This routine will get the first valid Event Queue Entry from @q, update
323 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
324 * the Queue (no more work to do), or the Queue is full of EQEs that have been
325 * processed, but not popped back to the HBA then this routine will return NULL.
327 static struct lpfc_eqe *
328 lpfc_sli4_eq_get(struct lpfc_queue *q)
330 struct lpfc_eqe *eqe;
332 /* sanity check on queue memory */
333 if (unlikely(!q))
334 return NULL;
335 eqe = lpfc_sli4_qe(q, q->host_index);
337 /* If the next EQE is not valid then we are done */
338 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
339 return NULL;
342 * insert barrier for instruction interlock : data from the hardware
343 * must have the valid bit checked before it can be copied and acted
344 * upon. Speculative instructions were allowing a bcopy at the start
345 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
346 * after our return, to copy data before the valid bit check above
347 * was done. As such, some of the copied data was stale. The barrier
348 * ensures the check is before any data is copied.
350 mb();
351 return eqe;
355 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
356 * @q: The Event Queue to disable interrupts
359 void
360 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
362 struct lpfc_register doorbell;
364 doorbell.word0 = 0;
365 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
366 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
367 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
368 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
369 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
370 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
374 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
375 * @q: The Event Queue to disable interrupts
378 void
379 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
381 struct lpfc_register doorbell;
383 doorbell.word0 = 0;
384 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
385 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
389 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
390 * @phba: adapter with EQ
391 * @q: The Event Queue that the host has completed processing for.
392 * @count: Number of elements that have been consumed
393 * @arm: Indicates whether the host wants to arms this CQ.
395 * This routine will notify the HBA, by ringing the doorbell, that count
396 * number of EQEs have been processed. The @arm parameter indicates whether
397 * the queue should be rearmed when ringing the doorbell.
399 void
400 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
401 uint32_t count, bool arm)
403 struct lpfc_register doorbell;
405 /* sanity check on queue memory */
406 if (unlikely(!q || (count == 0 && !arm)))
407 return;
409 /* ring doorbell for number popped */
410 doorbell.word0 = 0;
411 if (arm) {
412 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
413 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
415 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
416 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
417 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
418 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
419 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
420 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
421 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
422 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
423 readl(q->phba->sli4_hba.EQDBregaddr);
427 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
428 * @phba: adapter with EQ
429 * @q: The Event Queue that the host has completed processing for.
430 * @count: Number of elements that have been consumed
431 * @arm: Indicates whether the host wants to arms this CQ.
433 * This routine will notify the HBA, by ringing the doorbell, that count
434 * number of EQEs have been processed. The @arm parameter indicates whether
435 * the queue should be rearmed when ringing the doorbell.
437 void
438 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
439 uint32_t count, bool arm)
441 struct lpfc_register doorbell;
443 /* sanity check on queue memory */
444 if (unlikely(!q || (count == 0 && !arm)))
445 return;
447 /* ring doorbell for number popped */
448 doorbell.word0 = 0;
449 if (arm)
450 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
451 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
452 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
453 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
454 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
455 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
456 readl(q->phba->sli4_hba.EQDBregaddr);
459 static void
460 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
461 struct lpfc_eqe *eqe)
463 if (!phba->sli4_hba.pc_sli4_params.eqav)
464 bf_set_le32(lpfc_eqe_valid, eqe, 0);
466 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
468 /* if the index wrapped around, toggle the valid bit */
469 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
470 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
473 static void
474 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
476 struct lpfc_eqe *eqe = NULL;
477 u32 eq_count = 0, cq_count = 0;
478 struct lpfc_cqe *cqe = NULL;
479 struct lpfc_queue *cq = NULL, *childq = NULL;
480 int cqid = 0;
482 /* walk all the EQ entries and drop on the floor */
483 eqe = lpfc_sli4_eq_get(eq);
484 while (eqe) {
485 /* Get the reference to the corresponding CQ */
486 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
487 cq = NULL;
489 list_for_each_entry(childq, &eq->child_list, list) {
490 if (childq->queue_id == cqid) {
491 cq = childq;
492 break;
495 /* If CQ is valid, iterate through it and drop all the CQEs */
496 if (cq) {
497 cqe = lpfc_sli4_cq_get(cq);
498 while (cqe) {
499 __lpfc_sli4_consume_cqe(phba, cq, cqe);
500 cq_count++;
501 cqe = lpfc_sli4_cq_get(cq);
503 /* Clear and re-arm the CQ */
504 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
505 LPFC_QUEUE_REARM);
506 cq_count = 0;
508 __lpfc_sli4_consume_eqe(phba, eq, eqe);
509 eq_count++;
510 eqe = lpfc_sli4_eq_get(eq);
513 /* Clear and re-arm the EQ */
514 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
517 static int
518 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
519 uint8_t rearm)
521 struct lpfc_eqe *eqe;
522 int count = 0, consumed = 0;
524 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
525 goto rearm_and_exit;
527 eqe = lpfc_sli4_eq_get(eq);
528 while (eqe) {
529 lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
530 __lpfc_sli4_consume_eqe(phba, eq, eqe);
532 consumed++;
533 if (!(++count % eq->max_proc_limit))
534 break;
536 if (!(count % eq->notify_interval)) {
537 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
538 LPFC_QUEUE_NOARM);
539 consumed = 0;
542 eqe = lpfc_sli4_eq_get(eq);
544 eq->EQ_processed += count;
546 /* Track the max number of EQEs processed in 1 intr */
547 if (count > eq->EQ_max_eqe)
548 eq->EQ_max_eqe = count;
550 eq->queue_claimed = 0;
552 rearm_and_exit:
553 /* Always clear the EQ. */
554 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
556 return count;
560 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
561 * @q: The Completion Queue to get the first valid CQE from
563 * This routine will get the first valid Completion Queue Entry from @q, update
564 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
565 * the Queue (no more work to do), or the Queue is full of CQEs that have been
566 * processed, but not popped back to the HBA then this routine will return NULL.
568 static struct lpfc_cqe *
569 lpfc_sli4_cq_get(struct lpfc_queue *q)
571 struct lpfc_cqe *cqe;
573 /* sanity check on queue memory */
574 if (unlikely(!q))
575 return NULL;
576 cqe = lpfc_sli4_qe(q, q->host_index);
578 /* If the next CQE is not valid then we are done */
579 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
580 return NULL;
583 * insert barrier for instruction interlock : data from the hardware
584 * must have the valid bit checked before it can be copied and acted
585 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
586 * instructions allowing action on content before valid bit checked,
587 * add barrier here as well. May not be needed as "content" is a
588 * single 32-bit entity here (vs multi word structure for cq's).
590 mb();
591 return cqe;
594 static void
595 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
596 struct lpfc_cqe *cqe)
598 if (!phba->sli4_hba.pc_sli4_params.cqav)
599 bf_set_le32(lpfc_cqe_valid, cqe, 0);
601 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
603 /* if the index wrapped around, toggle the valid bit */
604 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
605 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
609 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
610 * @phba: the adapter with the CQ
611 * @q: The Completion Queue that the host has completed processing for.
612 * @count: the number of elements that were consumed
613 * @arm: Indicates whether the host wants to arms this CQ.
615 * This routine will notify the HBA, by ringing the doorbell, that the
616 * CQEs have been processed. The @arm parameter specifies whether the
617 * queue should be rearmed when ringing the doorbell.
619 void
620 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
621 uint32_t count, bool arm)
623 struct lpfc_register doorbell;
625 /* sanity check on queue memory */
626 if (unlikely(!q || (count == 0 && !arm)))
627 return;
629 /* ring doorbell for number popped */
630 doorbell.word0 = 0;
631 if (arm)
632 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
633 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
634 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
635 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
636 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
637 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
638 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
642 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
643 * @phba: the adapter with the CQ
644 * @q: The Completion Queue that the host has completed processing for.
645 * @count: the number of elements that were consumed
646 * @arm: Indicates whether the host wants to arms this CQ.
648 * This routine will notify the HBA, by ringing the doorbell, that the
649 * CQEs have been processed. The @arm parameter specifies whether the
650 * queue should be rearmed when ringing the doorbell.
652 void
653 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
654 uint32_t count, bool arm)
656 struct lpfc_register doorbell;
658 /* sanity check on queue memory */
659 if (unlikely(!q || (count == 0 && !arm)))
660 return;
662 /* ring doorbell for number popped */
663 doorbell.word0 = 0;
664 if (arm)
665 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
666 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
667 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
668 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
672 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
673 * @q: The Header Receive Queue to operate on.
674 * @wqe: The Receive Queue Entry to put on the Receive queue.
676 * This routine will copy the contents of @wqe to the next available entry on
677 * the @q. This function will then ring the Receive Queue Doorbell to signal the
678 * HBA to start processing the Receive Queue Entry. This function returns the
679 * index that the rqe was copied to if successful. If no entries are available
680 * on @q then this function will return -ENOMEM.
681 * The caller is expected to hold the hbalock when calling this routine.
684 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
685 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
687 struct lpfc_rqe *temp_hrqe;
688 struct lpfc_rqe *temp_drqe;
689 struct lpfc_register doorbell;
690 int hq_put_index;
691 int dq_put_index;
693 /* sanity check on queue memory */
694 if (unlikely(!hq) || unlikely(!dq))
695 return -ENOMEM;
696 hq_put_index = hq->host_index;
697 dq_put_index = dq->host_index;
698 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
699 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
701 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
702 return -EINVAL;
703 if (hq_put_index != dq_put_index)
704 return -EINVAL;
705 /* If the host has not yet processed the next entry then we are done */
706 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
707 return -EBUSY;
708 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
709 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
711 /* Update the host index to point to the next slot */
712 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
713 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
714 hq->RQ_buf_posted++;
716 /* Ring The Header Receive Queue Doorbell */
717 if (!(hq->host_index % hq->notify_interval)) {
718 doorbell.word0 = 0;
719 if (hq->db_format == LPFC_DB_RING_FORMAT) {
720 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
721 hq->notify_interval);
722 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
723 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
724 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
725 hq->notify_interval);
726 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
727 hq->host_index);
728 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
729 } else {
730 return -EINVAL;
732 writel(doorbell.word0, hq->db_regaddr);
734 return hq_put_index;
738 * lpfc_sli4_rq_release - Updates internal hba index for RQ
739 * @q: The Header Receive Queue to operate on.
741 * This routine will update the HBA index of a queue to reflect consumption of
742 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
743 * consumed an entry the host calls this function to update the queue's
744 * internal pointers. This routine returns the number of entries that were
745 * consumed by the HBA.
747 static uint32_t
748 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
750 /* sanity check on queue memory */
751 if (unlikely(!hq) || unlikely(!dq))
752 return 0;
754 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
755 return 0;
756 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
757 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
758 return 1;
762 * lpfc_cmd_iocb - Get next command iocb entry in the ring
763 * @phba: Pointer to HBA context object.
764 * @pring: Pointer to driver SLI ring object.
766 * This function returns pointer to next command iocb entry
767 * in the command ring. The caller must hold hbalock to prevent
768 * other threads consume the next command iocb.
769 * SLI-2/SLI-3 provide different sized iocbs.
771 static inline IOCB_t *
772 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
774 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
775 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
779 * lpfc_resp_iocb - Get next response iocb entry in the ring
780 * @phba: Pointer to HBA context object.
781 * @pring: Pointer to driver SLI ring object.
783 * This function returns pointer to next response iocb entry
784 * in the response ring. The caller must hold hbalock to make sure
785 * that no other thread consume the next response iocb.
786 * SLI-2/SLI-3 provide different sized iocbs.
788 static inline IOCB_t *
789 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
791 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
792 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
796 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
797 * @phba: Pointer to HBA context object.
799 * This function is called with hbalock held. This function
800 * allocates a new driver iocb object from the iocb pool. If the
801 * allocation is successful, it returns pointer to the newly
802 * allocated iocb object else it returns NULL.
804 struct lpfc_iocbq *
805 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
807 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
808 struct lpfc_iocbq * iocbq = NULL;
810 lockdep_assert_held(&phba->hbalock);
812 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
813 if (iocbq)
814 phba->iocb_cnt++;
815 if (phba->iocb_cnt > phba->iocb_max)
816 phba->iocb_max = phba->iocb_cnt;
817 return iocbq;
821 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
822 * @phba: Pointer to HBA context object.
823 * @xritag: XRI value.
825 * This function clears the sglq pointer from the array of acive
826 * sglq's. The xritag that is passed in is used to index into the
827 * array. Before the xritag can be used it needs to be adjusted
828 * by subtracting the xribase.
830 * Returns sglq ponter = success, NULL = Failure.
832 struct lpfc_sglq *
833 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
835 struct lpfc_sglq *sglq;
837 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
838 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
839 return sglq;
843 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
844 * @phba: Pointer to HBA context object.
845 * @xritag: XRI value.
847 * This function returns the sglq pointer from the array of acive
848 * sglq's. The xritag that is passed in is used to index into the
849 * array. Before the xritag can be used it needs to be adjusted
850 * by subtracting the xribase.
852 * Returns sglq ponter = success, NULL = Failure.
854 struct lpfc_sglq *
855 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
857 struct lpfc_sglq *sglq;
859 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
860 return sglq;
864 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
865 * @phba: Pointer to HBA context object.
866 * @xritag: xri used in this exchange.
867 * @rrq: The RRQ to be cleared.
870 void
871 lpfc_clr_rrq_active(struct lpfc_hba *phba,
872 uint16_t xritag,
873 struct lpfc_node_rrq *rrq)
875 struct lpfc_nodelist *ndlp = NULL;
877 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
878 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
880 /* The target DID could have been swapped (cable swap)
881 * we should use the ndlp from the findnode if it is
882 * available.
884 if ((!ndlp) && rrq->ndlp)
885 ndlp = rrq->ndlp;
887 if (!ndlp)
888 goto out;
890 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
891 rrq->send_rrq = 0;
892 rrq->xritag = 0;
893 rrq->rrq_stop_time = 0;
895 out:
896 mempool_free(rrq, phba->rrq_pool);
900 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
901 * @phba: Pointer to HBA context object.
903 * This function is called with hbalock held. This function
904 * Checks if stop_time (ratov from setting rrq active) has
905 * been reached, if it has and the send_rrq flag is set then
906 * it will call lpfc_send_rrq. If the send_rrq flag is not set
907 * then it will just call the routine to clear the rrq and
908 * free the rrq resource.
909 * The timer is set to the next rrq that is going to expire before
910 * leaving the routine.
913 void
914 lpfc_handle_rrq_active(struct lpfc_hba *phba)
916 struct lpfc_node_rrq *rrq;
917 struct lpfc_node_rrq *nextrrq;
918 unsigned long next_time;
919 unsigned long iflags;
920 LIST_HEAD(send_rrq);
922 spin_lock_irqsave(&phba->hbalock, iflags);
923 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
924 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
925 list_for_each_entry_safe(rrq, nextrrq,
926 &phba->active_rrq_list, list) {
927 if (time_after(jiffies, rrq->rrq_stop_time))
928 list_move(&rrq->list, &send_rrq);
929 else if (time_before(rrq->rrq_stop_time, next_time))
930 next_time = rrq->rrq_stop_time;
932 spin_unlock_irqrestore(&phba->hbalock, iflags);
933 if ((!list_empty(&phba->active_rrq_list)) &&
934 (!(phba->pport->load_flag & FC_UNLOADING)))
935 mod_timer(&phba->rrq_tmr, next_time);
936 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
937 list_del(&rrq->list);
938 if (!rrq->send_rrq) {
939 /* this call will free the rrq */
940 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
941 } else if (lpfc_send_rrq(phba, rrq)) {
942 /* if we send the rrq then the completion handler
943 * will clear the bit in the xribitmap.
945 lpfc_clr_rrq_active(phba, rrq->xritag,
946 rrq);
952 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
953 * @vport: Pointer to vport context object.
954 * @xri: The xri used in the exchange.
955 * @did: The targets DID for this exchange.
957 * returns NULL = rrq not found in the phba->active_rrq_list.
958 * rrq = rrq for this xri and target.
960 struct lpfc_node_rrq *
961 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
963 struct lpfc_hba *phba = vport->phba;
964 struct lpfc_node_rrq *rrq;
965 struct lpfc_node_rrq *nextrrq;
966 unsigned long iflags;
968 if (phba->sli_rev != LPFC_SLI_REV4)
969 return NULL;
970 spin_lock_irqsave(&phba->hbalock, iflags);
971 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
972 if (rrq->vport == vport && rrq->xritag == xri &&
973 rrq->nlp_DID == did){
974 list_del(&rrq->list);
975 spin_unlock_irqrestore(&phba->hbalock, iflags);
976 return rrq;
979 spin_unlock_irqrestore(&phba->hbalock, iflags);
980 return NULL;
984 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
985 * @vport: Pointer to vport context object.
986 * @ndlp: Pointer to the lpfc_node_list structure.
987 * If ndlp is NULL Remove all active RRQs for this vport from the
988 * phba->active_rrq_list and clear the rrq.
989 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
991 void
992 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
995 struct lpfc_hba *phba = vport->phba;
996 struct lpfc_node_rrq *rrq;
997 struct lpfc_node_rrq *nextrrq;
998 unsigned long iflags;
999 LIST_HEAD(rrq_list);
1001 if (phba->sli_rev != LPFC_SLI_REV4)
1002 return;
1003 if (!ndlp) {
1004 lpfc_sli4_vport_delete_els_xri_aborted(vport);
1005 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1007 spin_lock_irqsave(&phba->hbalock, iflags);
1008 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
1009 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
1010 list_move(&rrq->list, &rrq_list);
1011 spin_unlock_irqrestore(&phba->hbalock, iflags);
1013 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1014 list_del(&rrq->list);
1015 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1020 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1021 * @phba: Pointer to HBA context object.
1022 * @ndlp: Targets nodelist pointer for this exchange.
1023 * @xritag the xri in the bitmap to test.
1025 * This function returns:
1026 * 0 = rrq not active for this xri
1027 * 1 = rrq is valid for this xri.
1030 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1031 uint16_t xritag)
1033 if (!ndlp)
1034 return 0;
1035 if (!ndlp->active_rrqs_xri_bitmap)
1036 return 0;
1037 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1038 return 1;
1039 else
1040 return 0;
1044 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1045 * @phba: Pointer to HBA context object.
1046 * @ndlp: nodelist pointer for this target.
1047 * @xritag: xri used in this exchange.
1048 * @rxid: Remote Exchange ID.
1049 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1051 * This function takes the hbalock.
1052 * The active bit is always set in the active rrq xri_bitmap even
1053 * if there is no slot avaiable for the other rrq information.
1055 * returns 0 rrq actived for this xri
1056 * < 0 No memory or invalid ndlp.
1059 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1060 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1062 unsigned long iflags;
1063 struct lpfc_node_rrq *rrq;
1064 int empty;
1066 if (!ndlp)
1067 return -EINVAL;
1069 if (!phba->cfg_enable_rrq)
1070 return -EINVAL;
1072 spin_lock_irqsave(&phba->hbalock, iflags);
1073 if (phba->pport->load_flag & FC_UNLOADING) {
1074 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1075 goto out;
1079 * set the active bit even if there is no mem available.
1081 if (NLP_CHK_FREE_REQ(ndlp))
1082 goto out;
1084 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1085 goto out;
1087 if (!ndlp->active_rrqs_xri_bitmap)
1088 goto out;
1090 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1091 goto out;
1093 spin_unlock_irqrestore(&phba->hbalock, iflags);
1094 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1095 if (!rrq) {
1096 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1097 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1098 " DID:0x%x Send:%d\n",
1099 xritag, rxid, ndlp->nlp_DID, send_rrq);
1100 return -EINVAL;
1102 if (phba->cfg_enable_rrq == 1)
1103 rrq->send_rrq = send_rrq;
1104 else
1105 rrq->send_rrq = 0;
1106 rrq->xritag = xritag;
1107 rrq->rrq_stop_time = jiffies +
1108 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1109 rrq->ndlp = ndlp;
1110 rrq->nlp_DID = ndlp->nlp_DID;
1111 rrq->vport = ndlp->vport;
1112 rrq->rxid = rxid;
1113 spin_lock_irqsave(&phba->hbalock, iflags);
1114 empty = list_empty(&phba->active_rrq_list);
1115 list_add_tail(&rrq->list, &phba->active_rrq_list);
1116 phba->hba_flag |= HBA_RRQ_ACTIVE;
1117 if (empty)
1118 lpfc_worker_wake_up(phba);
1119 spin_unlock_irqrestore(&phba->hbalock, iflags);
1120 return 0;
1121 out:
1122 spin_unlock_irqrestore(&phba->hbalock, iflags);
1123 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1124 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1125 " DID:0x%x Send:%d\n",
1126 xritag, rxid, ndlp->nlp_DID, send_rrq);
1127 return -EINVAL;
1131 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1132 * @phba: Pointer to HBA context object.
1133 * @piocb: Pointer to the iocbq.
1135 * The driver calls this function with either the nvme ls ring lock
1136 * or the fc els ring lock held depending on the iocb usage. This function
1137 * gets a new driver sglq object from the sglq list. If the list is not empty
1138 * then it is successful, it returns pointer to the newly allocated sglq
1139 * object else it returns NULL.
1141 static struct lpfc_sglq *
1142 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1144 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1145 struct lpfc_sglq *sglq = NULL;
1146 struct lpfc_sglq *start_sglq = NULL;
1147 struct lpfc_io_buf *lpfc_cmd;
1148 struct lpfc_nodelist *ndlp;
1149 struct lpfc_sli_ring *pring = NULL;
1150 int found = 0;
1152 if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1153 pring = phba->sli4_hba.nvmels_wq->pring;
1154 else
1155 pring = lpfc_phba_elsring(phba);
1157 lockdep_assert_held(&pring->ring_lock);
1159 if (piocbq->iocb_flag & LPFC_IO_FCP) {
1160 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1161 ndlp = lpfc_cmd->rdata->pnode;
1162 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1163 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1164 ndlp = piocbq->context_un.ndlp;
1165 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1166 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1167 ndlp = NULL;
1168 else
1169 ndlp = piocbq->context_un.ndlp;
1170 } else {
1171 ndlp = piocbq->context1;
1174 spin_lock(&phba->sli4_hba.sgl_list_lock);
1175 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1176 start_sglq = sglq;
1177 while (!found) {
1178 if (!sglq)
1179 break;
1180 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1181 test_bit(sglq->sli4_lxritag,
1182 ndlp->active_rrqs_xri_bitmap)) {
1183 /* This xri has an rrq outstanding for this DID.
1184 * put it back in the list and get another xri.
1186 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1187 sglq = NULL;
1188 list_remove_head(lpfc_els_sgl_list, sglq,
1189 struct lpfc_sglq, list);
1190 if (sglq == start_sglq) {
1191 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1192 sglq = NULL;
1193 break;
1194 } else
1195 continue;
1197 sglq->ndlp = ndlp;
1198 found = 1;
1199 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1200 sglq->state = SGL_ALLOCATED;
1202 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1203 return sglq;
1207 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1208 * @phba: Pointer to HBA context object.
1209 * @piocb: Pointer to the iocbq.
1211 * This function is called with the sgl_list lock held. This function
1212 * gets a new driver sglq object from the sglq list. If the
1213 * list is not empty then it is successful, it returns pointer to the newly
1214 * allocated sglq object else it returns NULL.
1216 struct lpfc_sglq *
1217 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1219 struct list_head *lpfc_nvmet_sgl_list;
1220 struct lpfc_sglq *sglq = NULL;
1222 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1224 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1226 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1227 if (!sglq)
1228 return NULL;
1229 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1230 sglq->state = SGL_ALLOCATED;
1231 return sglq;
1235 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1236 * @phba: Pointer to HBA context object.
1238 * This function is called with no lock held. This function
1239 * allocates a new driver iocb object from the iocb pool. If the
1240 * allocation is successful, it returns pointer to the newly
1241 * allocated iocb object else it returns NULL.
1243 struct lpfc_iocbq *
1244 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1246 struct lpfc_iocbq * iocbq = NULL;
1247 unsigned long iflags;
1249 spin_lock_irqsave(&phba->hbalock, iflags);
1250 iocbq = __lpfc_sli_get_iocbq(phba);
1251 spin_unlock_irqrestore(&phba->hbalock, iflags);
1252 return iocbq;
1256 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1257 * @phba: Pointer to HBA context object.
1258 * @iocbq: Pointer to driver iocb object.
1260 * This function is called with hbalock held to release driver
1261 * iocb object to the iocb pool. The iotag in the iocb object
1262 * does not change for each use of the iocb object. This function
1263 * clears all other fields of the iocb object when it is freed.
1264 * The sqlq structure that holds the xritag and phys and virtual
1265 * mappings for the scatter gather list is retrieved from the
1266 * active array of sglq. The get of the sglq pointer also clears
1267 * the entry in the array. If the status of the IO indiactes that
1268 * this IO was aborted then the sglq entry it put on the
1269 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1270 * IO has good status or fails for any other reason then the sglq
1271 * entry is added to the free list (lpfc_els_sgl_list).
1273 static void
1274 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1276 struct lpfc_sglq *sglq;
1277 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1278 unsigned long iflag = 0;
1279 struct lpfc_sli_ring *pring;
1281 lockdep_assert_held(&phba->hbalock);
1283 if (iocbq->sli4_xritag == NO_XRI)
1284 sglq = NULL;
1285 else
1286 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1289 if (sglq) {
1290 if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1291 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1292 iflag);
1293 sglq->state = SGL_FREED;
1294 sglq->ndlp = NULL;
1295 list_add_tail(&sglq->list,
1296 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1297 spin_unlock_irqrestore(
1298 &phba->sli4_hba.sgl_list_lock, iflag);
1299 goto out;
1302 pring = phba->sli4_hba.els_wq->pring;
1303 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1304 (sglq->state != SGL_XRI_ABORTED)) {
1305 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1306 iflag);
1307 list_add(&sglq->list,
1308 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1309 spin_unlock_irqrestore(
1310 &phba->sli4_hba.sgl_list_lock, iflag);
1311 } else {
1312 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1313 iflag);
1314 sglq->state = SGL_FREED;
1315 sglq->ndlp = NULL;
1316 list_add_tail(&sglq->list,
1317 &phba->sli4_hba.lpfc_els_sgl_list);
1318 spin_unlock_irqrestore(
1319 &phba->sli4_hba.sgl_list_lock, iflag);
1321 /* Check if TXQ queue needs to be serviced */
1322 if (!list_empty(&pring->txq))
1323 lpfc_worker_wake_up(phba);
1327 out:
1329 * Clean all volatile data fields, preserve iotag and node struct.
1331 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1332 iocbq->sli4_lxritag = NO_XRI;
1333 iocbq->sli4_xritag = NO_XRI;
1334 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1335 LPFC_IO_NVME_LS);
1336 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1341 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1342 * @phba: Pointer to HBA context object.
1343 * @iocbq: Pointer to driver iocb object.
1345 * This function is called with hbalock held to release driver
1346 * iocb object to the iocb pool. The iotag in the iocb object
1347 * does not change for each use of the iocb object. This function
1348 * clears all other fields of the iocb object when it is freed.
1350 static void
1351 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1353 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1355 lockdep_assert_held(&phba->hbalock);
1358 * Clean all volatile data fields, preserve iotag and node struct.
1360 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1361 iocbq->sli4_xritag = NO_XRI;
1362 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1366 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1367 * @phba: Pointer to HBA context object.
1368 * @iocbq: Pointer to driver iocb object.
1370 * This function is called with hbalock held to release driver
1371 * iocb object to the iocb pool. The iotag in the iocb object
1372 * does not change for each use of the iocb object. This function
1373 * clears all other fields of the iocb object when it is freed.
1375 static void
1376 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1378 lockdep_assert_held(&phba->hbalock);
1380 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1381 phba->iocb_cnt--;
1385 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1386 * @phba: Pointer to HBA context object.
1387 * @iocbq: Pointer to driver iocb object.
1389 * This function is called with no lock held to release the iocb to
1390 * iocb pool.
1392 void
1393 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1395 unsigned long iflags;
1398 * Clean all volatile data fields, preserve iotag and node struct.
1400 spin_lock_irqsave(&phba->hbalock, iflags);
1401 __lpfc_sli_release_iocbq(phba, iocbq);
1402 spin_unlock_irqrestore(&phba->hbalock, iflags);
1406 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1407 * @phba: Pointer to HBA context object.
1408 * @iocblist: List of IOCBs.
1409 * @ulpstatus: ULP status in IOCB command field.
1410 * @ulpWord4: ULP word-4 in IOCB command field.
1412 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1413 * on the list by invoking the complete callback function associated with the
1414 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1415 * fields.
1417 void
1418 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1419 uint32_t ulpstatus, uint32_t ulpWord4)
1421 struct lpfc_iocbq *piocb;
1423 while (!list_empty(iocblist)) {
1424 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1425 if (!piocb->iocb_cmpl) {
1426 if (piocb->iocb_flag & LPFC_IO_NVME)
1427 lpfc_nvme_cancel_iocb(phba, piocb);
1428 else
1429 lpfc_sli_release_iocbq(phba, piocb);
1430 } else {
1431 piocb->iocb.ulpStatus = ulpstatus;
1432 piocb->iocb.un.ulpWord[4] = ulpWord4;
1433 (piocb->iocb_cmpl) (phba, piocb, piocb);
1436 return;
1440 * lpfc_sli_iocb_cmd_type - Get the iocb type
1441 * @iocb_cmnd: iocb command code.
1443 * This function is called by ring event handler function to get the iocb type.
1444 * This function translates the iocb command to an iocb command type used to
1445 * decide the final disposition of each completed IOCB.
1446 * The function returns
1447 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1448 * LPFC_SOL_IOCB if it is a solicited iocb completion
1449 * LPFC_ABORT_IOCB if it is an abort iocb
1450 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1452 * The caller is not required to hold any lock.
1454 static lpfc_iocb_type
1455 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1457 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1459 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1460 return 0;
1462 switch (iocb_cmnd) {
1463 case CMD_XMIT_SEQUENCE_CR:
1464 case CMD_XMIT_SEQUENCE_CX:
1465 case CMD_XMIT_BCAST_CN:
1466 case CMD_XMIT_BCAST_CX:
1467 case CMD_ELS_REQUEST_CR:
1468 case CMD_ELS_REQUEST_CX:
1469 case CMD_CREATE_XRI_CR:
1470 case CMD_CREATE_XRI_CX:
1471 case CMD_GET_RPI_CN:
1472 case CMD_XMIT_ELS_RSP_CX:
1473 case CMD_GET_RPI_CR:
1474 case CMD_FCP_IWRITE_CR:
1475 case CMD_FCP_IWRITE_CX:
1476 case CMD_FCP_IREAD_CR:
1477 case CMD_FCP_IREAD_CX:
1478 case CMD_FCP_ICMND_CR:
1479 case CMD_FCP_ICMND_CX:
1480 case CMD_FCP_TSEND_CX:
1481 case CMD_FCP_TRSP_CX:
1482 case CMD_FCP_TRECEIVE_CX:
1483 case CMD_FCP_AUTO_TRSP_CX:
1484 case CMD_ADAPTER_MSG:
1485 case CMD_ADAPTER_DUMP:
1486 case CMD_XMIT_SEQUENCE64_CR:
1487 case CMD_XMIT_SEQUENCE64_CX:
1488 case CMD_XMIT_BCAST64_CN:
1489 case CMD_XMIT_BCAST64_CX:
1490 case CMD_ELS_REQUEST64_CR:
1491 case CMD_ELS_REQUEST64_CX:
1492 case CMD_FCP_IWRITE64_CR:
1493 case CMD_FCP_IWRITE64_CX:
1494 case CMD_FCP_IREAD64_CR:
1495 case CMD_FCP_IREAD64_CX:
1496 case CMD_FCP_ICMND64_CR:
1497 case CMD_FCP_ICMND64_CX:
1498 case CMD_FCP_TSEND64_CX:
1499 case CMD_FCP_TRSP64_CX:
1500 case CMD_FCP_TRECEIVE64_CX:
1501 case CMD_GEN_REQUEST64_CR:
1502 case CMD_GEN_REQUEST64_CX:
1503 case CMD_XMIT_ELS_RSP64_CX:
1504 case DSSCMD_IWRITE64_CR:
1505 case DSSCMD_IWRITE64_CX:
1506 case DSSCMD_IREAD64_CR:
1507 case DSSCMD_IREAD64_CX:
1508 type = LPFC_SOL_IOCB;
1509 break;
1510 case CMD_ABORT_XRI_CN:
1511 case CMD_ABORT_XRI_CX:
1512 case CMD_CLOSE_XRI_CN:
1513 case CMD_CLOSE_XRI_CX:
1514 case CMD_XRI_ABORTED_CX:
1515 case CMD_ABORT_MXRI64_CN:
1516 case CMD_XMIT_BLS_RSP64_CX:
1517 type = LPFC_ABORT_IOCB;
1518 break;
1519 case CMD_RCV_SEQUENCE_CX:
1520 case CMD_RCV_ELS_REQ_CX:
1521 case CMD_RCV_SEQUENCE64_CX:
1522 case CMD_RCV_ELS_REQ64_CX:
1523 case CMD_ASYNC_STATUS:
1524 case CMD_IOCB_RCV_SEQ64_CX:
1525 case CMD_IOCB_RCV_ELS64_CX:
1526 case CMD_IOCB_RCV_CONT64_CX:
1527 case CMD_IOCB_RET_XRI64_CX:
1528 type = LPFC_UNSOL_IOCB;
1529 break;
1530 case CMD_IOCB_XMIT_MSEQ64_CR:
1531 case CMD_IOCB_XMIT_MSEQ64_CX:
1532 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1533 case CMD_IOCB_RCV_ELS_LIST64_CX:
1534 case CMD_IOCB_CLOSE_EXTENDED_CN:
1535 case CMD_IOCB_ABORT_EXTENDED_CN:
1536 case CMD_IOCB_RET_HBQE64_CN:
1537 case CMD_IOCB_FCP_IBIDIR64_CR:
1538 case CMD_IOCB_FCP_IBIDIR64_CX:
1539 case CMD_IOCB_FCP_ITASKMGT64_CX:
1540 case CMD_IOCB_LOGENTRY_CN:
1541 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1542 printk("%s - Unhandled SLI-3 Command x%x\n",
1543 __func__, iocb_cmnd);
1544 type = LPFC_UNKNOWN_IOCB;
1545 break;
1546 default:
1547 type = LPFC_UNKNOWN_IOCB;
1548 break;
1551 return type;
1555 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1556 * @phba: Pointer to HBA context object.
1558 * This function is called from SLI initialization code
1559 * to configure every ring of the HBA's SLI interface. The
1560 * caller is not required to hold any lock. This function issues
1561 * a config_ring mailbox command for each ring.
1562 * This function returns zero if successful else returns a negative
1563 * error code.
1565 static int
1566 lpfc_sli_ring_map(struct lpfc_hba *phba)
1568 struct lpfc_sli *psli = &phba->sli;
1569 LPFC_MBOXQ_t *pmb;
1570 MAILBOX_t *pmbox;
1571 int i, rc, ret = 0;
1573 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1574 if (!pmb)
1575 return -ENOMEM;
1576 pmbox = &pmb->u.mb;
1577 phba->link_state = LPFC_INIT_MBX_CMDS;
1578 for (i = 0; i < psli->num_rings; i++) {
1579 lpfc_config_ring(phba, i, pmb);
1580 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1581 if (rc != MBX_SUCCESS) {
1582 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1583 "0446 Adapter failed to init (%d), "
1584 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1585 "ring %d\n",
1586 rc, pmbox->mbxCommand,
1587 pmbox->mbxStatus, i);
1588 phba->link_state = LPFC_HBA_ERROR;
1589 ret = -ENXIO;
1590 break;
1593 mempool_free(pmb, phba->mbox_mem_pool);
1594 return ret;
1598 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1599 * @phba: Pointer to HBA context object.
1600 * @pring: Pointer to driver SLI ring object.
1601 * @piocb: Pointer to the driver iocb object.
1603 * The driver calls this function with the hbalock held for SLI3 ports or
1604 * the ring lock held for SLI4 ports. The function adds the
1605 * new iocb to txcmplq of the given ring. This function always returns
1606 * 0. If this function is called for ELS ring, this function checks if
1607 * there is a vport associated with the ELS command. This function also
1608 * starts els_tmofunc timer if this is an ELS command.
1610 static int
1611 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1612 struct lpfc_iocbq *piocb)
1614 if (phba->sli_rev == LPFC_SLI_REV4)
1615 lockdep_assert_held(&pring->ring_lock);
1616 else
1617 lockdep_assert_held(&phba->hbalock);
1619 BUG_ON(!piocb);
1621 list_add_tail(&piocb->list, &pring->txcmplq);
1622 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1623 pring->txcmplq_cnt++;
1625 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1626 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1627 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1628 BUG_ON(!piocb->vport);
1629 if (!(piocb->vport->load_flag & FC_UNLOADING))
1630 mod_timer(&piocb->vport->els_tmofunc,
1631 jiffies +
1632 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1635 return 0;
1639 * lpfc_sli_ringtx_get - Get first element of the txq
1640 * @phba: Pointer to HBA context object.
1641 * @pring: Pointer to driver SLI ring object.
1643 * This function is called with hbalock held to get next
1644 * iocb in txq of the given ring. If there is any iocb in
1645 * the txq, the function returns first iocb in the list after
1646 * removing the iocb from the list, else it returns NULL.
1648 struct lpfc_iocbq *
1649 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1651 struct lpfc_iocbq *cmd_iocb;
1653 lockdep_assert_held(&phba->hbalock);
1655 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1656 return cmd_iocb;
1660 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1661 * @phba: Pointer to HBA context object.
1662 * @pring: Pointer to driver SLI ring object.
1664 * This function is called with hbalock held and the caller must post the
1665 * iocb without releasing the lock. If the caller releases the lock,
1666 * iocb slot returned by the function is not guaranteed to be available.
1667 * The function returns pointer to the next available iocb slot if there
1668 * is available slot in the ring, else it returns NULL.
1669 * If the get index of the ring is ahead of the put index, the function
1670 * will post an error attention event to the worker thread to take the
1671 * HBA to offline state.
1673 static IOCB_t *
1674 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1676 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1677 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1679 lockdep_assert_held(&phba->hbalock);
1681 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1682 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1683 pring->sli.sli3.next_cmdidx = 0;
1685 if (unlikely(pring->sli.sli3.local_getidx ==
1686 pring->sli.sli3.next_cmdidx)) {
1688 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1690 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1691 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1692 "0315 Ring %d issue: portCmdGet %d "
1693 "is bigger than cmd ring %d\n",
1694 pring->ringno,
1695 pring->sli.sli3.local_getidx,
1696 max_cmd_idx);
1698 phba->link_state = LPFC_HBA_ERROR;
1700 * All error attention handlers are posted to
1701 * worker thread
1703 phba->work_ha |= HA_ERATT;
1704 phba->work_hs = HS_FFER3;
1706 lpfc_worker_wake_up(phba);
1708 return NULL;
1711 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1712 return NULL;
1715 return lpfc_cmd_iocb(phba, pring);
1719 * lpfc_sli_next_iotag - Get an iotag for the iocb
1720 * @phba: Pointer to HBA context object.
1721 * @iocbq: Pointer to driver iocb object.
1723 * This function gets an iotag for the iocb. If there is no unused iotag and
1724 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1725 * array and assigns a new iotag.
1726 * The function returns the allocated iotag if successful, else returns zero.
1727 * Zero is not a valid iotag.
1728 * The caller is not required to hold any lock.
1730 uint16_t
1731 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1733 struct lpfc_iocbq **new_arr;
1734 struct lpfc_iocbq **old_arr;
1735 size_t new_len;
1736 struct lpfc_sli *psli = &phba->sli;
1737 uint16_t iotag;
1739 spin_lock_irq(&phba->hbalock);
1740 iotag = psli->last_iotag;
1741 if(++iotag < psli->iocbq_lookup_len) {
1742 psli->last_iotag = iotag;
1743 psli->iocbq_lookup[iotag] = iocbq;
1744 spin_unlock_irq(&phba->hbalock);
1745 iocbq->iotag = iotag;
1746 return iotag;
1747 } else if (psli->iocbq_lookup_len < (0xffff
1748 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1749 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1750 spin_unlock_irq(&phba->hbalock);
1751 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1752 GFP_KERNEL);
1753 if (new_arr) {
1754 spin_lock_irq(&phba->hbalock);
1755 old_arr = psli->iocbq_lookup;
1756 if (new_len <= psli->iocbq_lookup_len) {
1757 /* highly unprobable case */
1758 kfree(new_arr);
1759 iotag = psli->last_iotag;
1760 if(++iotag < psli->iocbq_lookup_len) {
1761 psli->last_iotag = iotag;
1762 psli->iocbq_lookup[iotag] = iocbq;
1763 spin_unlock_irq(&phba->hbalock);
1764 iocbq->iotag = iotag;
1765 return iotag;
1767 spin_unlock_irq(&phba->hbalock);
1768 return 0;
1770 if (psli->iocbq_lookup)
1771 memcpy(new_arr, old_arr,
1772 ((psli->last_iotag + 1) *
1773 sizeof (struct lpfc_iocbq *)));
1774 psli->iocbq_lookup = new_arr;
1775 psli->iocbq_lookup_len = new_len;
1776 psli->last_iotag = iotag;
1777 psli->iocbq_lookup[iotag] = iocbq;
1778 spin_unlock_irq(&phba->hbalock);
1779 iocbq->iotag = iotag;
1780 kfree(old_arr);
1781 return iotag;
1783 } else
1784 spin_unlock_irq(&phba->hbalock);
1786 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1787 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1788 psli->last_iotag);
1790 return 0;
1794 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1795 * @phba: Pointer to HBA context object.
1796 * @pring: Pointer to driver SLI ring object.
1797 * @iocb: Pointer to iocb slot in the ring.
1798 * @nextiocb: Pointer to driver iocb object which need to be
1799 * posted to firmware.
1801 * This function is called with hbalock held to post a new iocb to
1802 * the firmware. This function copies the new iocb to ring iocb slot and
1803 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1804 * a completion call back for this iocb else the function will free the
1805 * iocb object.
1807 static void
1808 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1809 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1811 lockdep_assert_held(&phba->hbalock);
1813 * Set up an iotag
1815 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1818 if (pring->ringno == LPFC_ELS_RING) {
1819 lpfc_debugfs_slow_ring_trc(phba,
1820 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1821 *(((uint32_t *) &nextiocb->iocb) + 4),
1822 *(((uint32_t *) &nextiocb->iocb) + 6),
1823 *(((uint32_t *) &nextiocb->iocb) + 7));
1827 * Issue iocb command to adapter
1829 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1830 wmb();
1831 pring->stats.iocb_cmd++;
1834 * If there is no completion routine to call, we can release the
1835 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1836 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1838 if (nextiocb->iocb_cmpl)
1839 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1840 else
1841 __lpfc_sli_release_iocbq(phba, nextiocb);
1844 * Let the HBA know what IOCB slot will be the next one the
1845 * driver will put a command into.
1847 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1848 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1852 * lpfc_sli_update_full_ring - Update the chip attention register
1853 * @phba: Pointer to HBA context object.
1854 * @pring: Pointer to driver SLI ring object.
1856 * The caller is not required to hold any lock for calling this function.
1857 * This function updates the chip attention bits for the ring to inform firmware
1858 * that there are pending work to be done for this ring and requests an
1859 * interrupt when there is space available in the ring. This function is
1860 * called when the driver is unable to post more iocbs to the ring due
1861 * to unavailability of space in the ring.
1863 static void
1864 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1866 int ringno = pring->ringno;
1868 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1870 wmb();
1873 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1874 * The HBA will tell us when an IOCB entry is available.
1876 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1877 readl(phba->CAregaddr); /* flush */
1879 pring->stats.iocb_cmd_full++;
1883 * lpfc_sli_update_ring - Update chip attention register
1884 * @phba: Pointer to HBA context object.
1885 * @pring: Pointer to driver SLI ring object.
1887 * This function updates the chip attention register bit for the
1888 * given ring to inform HBA that there is more work to be done
1889 * in this ring. The caller is not required to hold any lock.
1891 static void
1892 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1894 int ringno = pring->ringno;
1897 * Tell the HBA that there is work to do in this ring.
1899 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1900 wmb();
1901 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1902 readl(phba->CAregaddr); /* flush */
1907 * lpfc_sli_resume_iocb - Process iocbs in the txq
1908 * @phba: Pointer to HBA context object.
1909 * @pring: Pointer to driver SLI ring object.
1911 * This function is called with hbalock held to post pending iocbs
1912 * in the txq to the firmware. This function is called when driver
1913 * detects space available in the ring.
1915 static void
1916 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1918 IOCB_t *iocb;
1919 struct lpfc_iocbq *nextiocb;
1921 lockdep_assert_held(&phba->hbalock);
1924 * Check to see if:
1925 * (a) there is anything on the txq to send
1926 * (b) link is up
1927 * (c) link attention events can be processed (fcp ring only)
1928 * (d) IOCB processing is not blocked by the outstanding mbox command.
1931 if (lpfc_is_link_up(phba) &&
1932 (!list_empty(&pring->txq)) &&
1933 (pring->ringno != LPFC_FCP_RING ||
1934 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1936 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1937 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1938 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1940 if (iocb)
1941 lpfc_sli_update_ring(phba, pring);
1942 else
1943 lpfc_sli_update_full_ring(phba, pring);
1946 return;
1950 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1951 * @phba: Pointer to HBA context object.
1952 * @hbqno: HBQ number.
1954 * This function is called with hbalock held to get the next
1955 * available slot for the given HBQ. If there is free slot
1956 * available for the HBQ it will return pointer to the next available
1957 * HBQ entry else it will return NULL.
1959 static struct lpfc_hbq_entry *
1960 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1962 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1964 lockdep_assert_held(&phba->hbalock);
1966 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1967 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1968 hbqp->next_hbqPutIdx = 0;
1970 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1971 uint32_t raw_index = phba->hbq_get[hbqno];
1972 uint32_t getidx = le32_to_cpu(raw_index);
1974 hbqp->local_hbqGetIdx = getidx;
1976 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1977 lpfc_printf_log(phba, KERN_ERR,
1978 LOG_SLI | LOG_VPORT,
1979 "1802 HBQ %d: local_hbqGetIdx "
1980 "%u is > than hbqp->entry_count %u\n",
1981 hbqno, hbqp->local_hbqGetIdx,
1982 hbqp->entry_count);
1984 phba->link_state = LPFC_HBA_ERROR;
1985 return NULL;
1988 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1989 return NULL;
1992 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1993 hbqp->hbqPutIdx;
1997 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1998 * @phba: Pointer to HBA context object.
2000 * This function is called with no lock held to free all the
2001 * hbq buffers while uninitializing the SLI interface. It also
2002 * frees the HBQ buffers returned by the firmware but not yet
2003 * processed by the upper layers.
2005 void
2006 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2008 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2009 struct hbq_dmabuf *hbq_buf;
2010 unsigned long flags;
2011 int i, hbq_count;
2013 hbq_count = lpfc_sli_hbq_count();
2014 /* Return all memory used by all HBQs */
2015 spin_lock_irqsave(&phba->hbalock, flags);
2016 for (i = 0; i < hbq_count; ++i) {
2017 list_for_each_entry_safe(dmabuf, next_dmabuf,
2018 &phba->hbqs[i].hbq_buffer_list, list) {
2019 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2020 list_del(&hbq_buf->dbuf.list);
2021 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2023 phba->hbqs[i].buffer_count = 0;
2026 /* Mark the HBQs not in use */
2027 phba->hbq_in_use = 0;
2028 spin_unlock_irqrestore(&phba->hbalock, flags);
2032 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2033 * @phba: Pointer to HBA context object.
2034 * @hbqno: HBQ number.
2035 * @hbq_buf: Pointer to HBQ buffer.
2037 * This function is called with the hbalock held to post a
2038 * hbq buffer to the firmware. If the function finds an empty
2039 * slot in the HBQ, it will post the buffer. The function will return
2040 * pointer to the hbq entry if it successfully post the buffer
2041 * else it will return NULL.
2043 static int
2044 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2045 struct hbq_dmabuf *hbq_buf)
2047 lockdep_assert_held(&phba->hbalock);
2048 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2052 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2053 * @phba: Pointer to HBA context object.
2054 * @hbqno: HBQ number.
2055 * @hbq_buf: Pointer to HBQ buffer.
2057 * This function is called with the hbalock held to post a hbq buffer to the
2058 * firmware. If the function finds an empty slot in the HBQ, it will post the
2059 * buffer and place it on the hbq_buffer_list. The function will return zero if
2060 * it successfully post the buffer else it will return an error.
2062 static int
2063 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2064 struct hbq_dmabuf *hbq_buf)
2066 struct lpfc_hbq_entry *hbqe;
2067 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2069 lockdep_assert_held(&phba->hbalock);
2070 /* Get next HBQ entry slot to use */
2071 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2072 if (hbqe) {
2073 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2075 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2076 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2077 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2078 hbqe->bde.tus.f.bdeFlags = 0;
2079 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2080 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2081 /* Sync SLIM */
2082 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2083 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2084 /* flush */
2085 readl(phba->hbq_put + hbqno);
2086 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2087 return 0;
2088 } else
2089 return -ENOMEM;
2093 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2094 * @phba: Pointer to HBA context object.
2095 * @hbqno: HBQ number.
2096 * @hbq_buf: Pointer to HBQ buffer.
2098 * This function is called with the hbalock held to post an RQE to the SLI4
2099 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2100 * the hbq_buffer_list and return zero, otherwise it will return an error.
2102 static int
2103 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2104 struct hbq_dmabuf *hbq_buf)
2106 int rc;
2107 struct lpfc_rqe hrqe;
2108 struct lpfc_rqe drqe;
2109 struct lpfc_queue *hrq;
2110 struct lpfc_queue *drq;
2112 if (hbqno != LPFC_ELS_HBQ)
2113 return 1;
2114 hrq = phba->sli4_hba.hdr_rq;
2115 drq = phba->sli4_hba.dat_rq;
2117 lockdep_assert_held(&phba->hbalock);
2118 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2119 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2120 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2121 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2122 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2123 if (rc < 0)
2124 return rc;
2125 hbq_buf->tag = (rc | (hbqno << 16));
2126 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2127 return 0;
2130 /* HBQ for ELS and CT traffic. */
2131 static struct lpfc_hbq_init lpfc_els_hbq = {
2132 .rn = 1,
2133 .entry_count = 256,
2134 .mask_count = 0,
2135 .profile = 0,
2136 .ring_mask = (1 << LPFC_ELS_RING),
2137 .buffer_count = 0,
2138 .init_count = 40,
2139 .add_count = 40,
2142 /* Array of HBQs */
2143 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2144 &lpfc_els_hbq,
2148 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2149 * @phba: Pointer to HBA context object.
2150 * @hbqno: HBQ number.
2151 * @count: Number of HBQ buffers to be posted.
2153 * This function is called with no lock held to post more hbq buffers to the
2154 * given HBQ. The function returns the number of HBQ buffers successfully
2155 * posted.
2157 static int
2158 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2160 uint32_t i, posted = 0;
2161 unsigned long flags;
2162 struct hbq_dmabuf *hbq_buffer;
2163 LIST_HEAD(hbq_buf_list);
2164 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2165 return 0;
2167 if ((phba->hbqs[hbqno].buffer_count + count) >
2168 lpfc_hbq_defs[hbqno]->entry_count)
2169 count = lpfc_hbq_defs[hbqno]->entry_count -
2170 phba->hbqs[hbqno].buffer_count;
2171 if (!count)
2172 return 0;
2173 /* Allocate HBQ entries */
2174 for (i = 0; i < count; i++) {
2175 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2176 if (!hbq_buffer)
2177 break;
2178 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2180 /* Check whether HBQ is still in use */
2181 spin_lock_irqsave(&phba->hbalock, flags);
2182 if (!phba->hbq_in_use)
2183 goto err;
2184 while (!list_empty(&hbq_buf_list)) {
2185 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2186 dbuf.list);
2187 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2188 (hbqno << 16));
2189 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2190 phba->hbqs[hbqno].buffer_count++;
2191 posted++;
2192 } else
2193 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2195 spin_unlock_irqrestore(&phba->hbalock, flags);
2196 return posted;
2197 err:
2198 spin_unlock_irqrestore(&phba->hbalock, flags);
2199 while (!list_empty(&hbq_buf_list)) {
2200 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2201 dbuf.list);
2202 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2204 return 0;
2208 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2209 * @phba: Pointer to HBA context object.
2210 * @qno: HBQ number.
2212 * This function posts more buffers to the HBQ. This function
2213 * is called with no lock held. The function returns the number of HBQ entries
2214 * successfully allocated.
2217 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2219 if (phba->sli_rev == LPFC_SLI_REV4)
2220 return 0;
2221 else
2222 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2223 lpfc_hbq_defs[qno]->add_count);
2227 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2228 * @phba: Pointer to HBA context object.
2229 * @qno: HBQ queue number.
2231 * This function is called from SLI initialization code path with
2232 * no lock held to post initial HBQ buffers to firmware. The
2233 * function returns the number of HBQ entries successfully allocated.
2235 static int
2236 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2238 if (phba->sli_rev == LPFC_SLI_REV4)
2239 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2240 lpfc_hbq_defs[qno]->entry_count);
2241 else
2242 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2243 lpfc_hbq_defs[qno]->init_count);
2247 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2248 * @phba: Pointer to HBA context object.
2249 * @hbqno: HBQ number.
2251 * This function removes the first hbq buffer on an hbq list and returns a
2252 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2254 static struct hbq_dmabuf *
2255 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2257 struct lpfc_dmabuf *d_buf;
2259 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2260 if (!d_buf)
2261 return NULL;
2262 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2266 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2267 * @phba: Pointer to HBA context object.
2268 * @hbqno: HBQ number.
2270 * This function removes the first RQ buffer on an RQ buffer list and returns a
2271 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2273 static struct rqb_dmabuf *
2274 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2276 struct lpfc_dmabuf *h_buf;
2277 struct lpfc_rqb *rqbp;
2279 rqbp = hrq->rqbp;
2280 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2281 struct lpfc_dmabuf, list);
2282 if (!h_buf)
2283 return NULL;
2284 rqbp->buffer_count--;
2285 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2289 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2290 * @phba: Pointer to HBA context object.
2291 * @tag: Tag of the hbq buffer.
2293 * This function searches for the hbq buffer associated with the given tag in
2294 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2295 * otherwise it returns NULL.
2297 static struct hbq_dmabuf *
2298 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2300 struct lpfc_dmabuf *d_buf;
2301 struct hbq_dmabuf *hbq_buf;
2302 uint32_t hbqno;
2304 hbqno = tag >> 16;
2305 if (hbqno >= LPFC_MAX_HBQS)
2306 return NULL;
2308 spin_lock_irq(&phba->hbalock);
2309 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2310 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2311 if (hbq_buf->tag == tag) {
2312 spin_unlock_irq(&phba->hbalock);
2313 return hbq_buf;
2316 spin_unlock_irq(&phba->hbalock);
2317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2318 "1803 Bad hbq tag. Data: x%x x%x\n",
2319 tag, phba->hbqs[tag >> 16].buffer_count);
2320 return NULL;
2324 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2325 * @phba: Pointer to HBA context object.
2326 * @hbq_buffer: Pointer to HBQ buffer.
2328 * This function is called with hbalock. This function gives back
2329 * the hbq buffer to firmware. If the HBQ does not have space to
2330 * post the buffer, it will free the buffer.
2332 void
2333 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2335 uint32_t hbqno;
2337 if (hbq_buffer) {
2338 hbqno = hbq_buffer->tag >> 16;
2339 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2340 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2345 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2346 * @mbxCommand: mailbox command code.
2348 * This function is called by the mailbox event handler function to verify
2349 * that the completed mailbox command is a legitimate mailbox command. If the
2350 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2351 * and the mailbox event handler will take the HBA offline.
2353 static int
2354 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2356 uint8_t ret;
2358 switch (mbxCommand) {
2359 case MBX_LOAD_SM:
2360 case MBX_READ_NV:
2361 case MBX_WRITE_NV:
2362 case MBX_WRITE_VPARMS:
2363 case MBX_RUN_BIU_DIAG:
2364 case MBX_INIT_LINK:
2365 case MBX_DOWN_LINK:
2366 case MBX_CONFIG_LINK:
2367 case MBX_CONFIG_RING:
2368 case MBX_RESET_RING:
2369 case MBX_READ_CONFIG:
2370 case MBX_READ_RCONFIG:
2371 case MBX_READ_SPARM:
2372 case MBX_READ_STATUS:
2373 case MBX_READ_RPI:
2374 case MBX_READ_XRI:
2375 case MBX_READ_REV:
2376 case MBX_READ_LNK_STAT:
2377 case MBX_REG_LOGIN:
2378 case MBX_UNREG_LOGIN:
2379 case MBX_CLEAR_LA:
2380 case MBX_DUMP_MEMORY:
2381 case MBX_DUMP_CONTEXT:
2382 case MBX_RUN_DIAGS:
2383 case MBX_RESTART:
2384 case MBX_UPDATE_CFG:
2385 case MBX_DOWN_LOAD:
2386 case MBX_DEL_LD_ENTRY:
2387 case MBX_RUN_PROGRAM:
2388 case MBX_SET_MASK:
2389 case MBX_SET_VARIABLE:
2390 case MBX_UNREG_D_ID:
2391 case MBX_KILL_BOARD:
2392 case MBX_CONFIG_FARP:
2393 case MBX_BEACON:
2394 case MBX_LOAD_AREA:
2395 case MBX_RUN_BIU_DIAG64:
2396 case MBX_CONFIG_PORT:
2397 case MBX_READ_SPARM64:
2398 case MBX_READ_RPI64:
2399 case MBX_REG_LOGIN64:
2400 case MBX_READ_TOPOLOGY:
2401 case MBX_WRITE_WWN:
2402 case MBX_SET_DEBUG:
2403 case MBX_LOAD_EXP_ROM:
2404 case MBX_ASYNCEVT_ENABLE:
2405 case MBX_REG_VPI:
2406 case MBX_UNREG_VPI:
2407 case MBX_HEARTBEAT:
2408 case MBX_PORT_CAPABILITIES:
2409 case MBX_PORT_IOV_CONTROL:
2410 case MBX_SLI4_CONFIG:
2411 case MBX_SLI4_REQ_FTRS:
2412 case MBX_REG_FCFI:
2413 case MBX_UNREG_FCFI:
2414 case MBX_REG_VFI:
2415 case MBX_UNREG_VFI:
2416 case MBX_INIT_VPI:
2417 case MBX_INIT_VFI:
2418 case MBX_RESUME_RPI:
2419 case MBX_READ_EVENT_LOG_STATUS:
2420 case MBX_READ_EVENT_LOG:
2421 case MBX_SECURITY_MGMT:
2422 case MBX_AUTH_PORT:
2423 case MBX_ACCESS_VDATA:
2424 ret = mbxCommand;
2425 break;
2426 default:
2427 ret = MBX_SHUTDOWN;
2428 break;
2430 return ret;
2434 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2435 * @phba: Pointer to HBA context object.
2436 * @pmboxq: Pointer to mailbox command.
2438 * This is completion handler function for mailbox commands issued from
2439 * lpfc_sli_issue_mbox_wait function. This function is called by the
2440 * mailbox event handler function with no lock held. This function
2441 * will wake up thread waiting on the wait queue pointed by context1
2442 * of the mailbox.
2444 void
2445 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2447 unsigned long drvr_flag;
2448 struct completion *pmbox_done;
2451 * If pmbox_done is empty, the driver thread gave up waiting and
2452 * continued running.
2454 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2455 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2456 pmbox_done = (struct completion *)pmboxq->context3;
2457 if (pmbox_done)
2458 complete(pmbox_done);
2459 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2460 return;
2463 static void
2464 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2466 unsigned long iflags;
2468 if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2469 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2470 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags);
2471 ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2472 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2473 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags);
2475 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2479 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2480 * @phba: Pointer to HBA context object.
2481 * @pmb: Pointer to mailbox object.
2483 * This function is the default mailbox completion handler. It
2484 * frees the memory resources associated with the completed mailbox
2485 * command. If the completed command is a REG_LOGIN mailbox command,
2486 * this function will issue a UREG_LOGIN to re-claim the RPI.
2488 void
2489 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2491 struct lpfc_vport *vport = pmb->vport;
2492 struct lpfc_dmabuf *mp;
2493 struct lpfc_nodelist *ndlp;
2494 struct Scsi_Host *shost;
2495 uint16_t rpi, vpi;
2496 int rc;
2498 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2500 if (mp) {
2501 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2502 kfree(mp);
2506 * If a REG_LOGIN succeeded after node is destroyed or node
2507 * is in re-discovery driver need to cleanup the RPI.
2509 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2510 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2511 !pmb->u.mb.mbxStatus) {
2512 rpi = pmb->u.mb.un.varWords[0];
2513 vpi = pmb->u.mb.un.varRegLogin.vpi;
2514 lpfc_unreg_login(phba, vpi, rpi, pmb);
2515 pmb->vport = vport;
2516 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2517 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2518 if (rc != MBX_NOT_FINISHED)
2519 return;
2522 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2523 !(phba->pport->load_flag & FC_UNLOADING) &&
2524 !pmb->u.mb.mbxStatus) {
2525 shost = lpfc_shost_from_vport(vport);
2526 spin_lock_irq(shost->host_lock);
2527 vport->vpi_state |= LPFC_VPI_REGISTERED;
2528 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2529 spin_unlock_irq(shost->host_lock);
2532 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2533 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2534 lpfc_nlp_put(ndlp);
2535 pmb->ctx_buf = NULL;
2536 pmb->ctx_ndlp = NULL;
2539 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2540 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2542 /* Check to see if there are any deferred events to process */
2543 if (ndlp) {
2544 lpfc_printf_vlog(
2545 vport,
2546 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2547 "1438 UNREG cmpl deferred mbox x%x "
2548 "on NPort x%x Data: x%x x%x %px\n",
2549 ndlp->nlp_rpi, ndlp->nlp_DID,
2550 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2552 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2553 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2554 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2555 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2556 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2557 } else {
2558 __lpfc_sli_rpi_release(vport, ndlp);
2560 if (vport->load_flag & FC_UNLOADING)
2561 lpfc_nlp_put(ndlp);
2562 pmb->ctx_ndlp = NULL;
2566 /* Check security permission status on INIT_LINK mailbox command */
2567 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2568 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2569 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2570 "2860 SLI authentication is required "
2571 "for INIT_LINK but has not done yet\n");
2573 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2574 lpfc_sli4_mbox_cmd_free(phba, pmb);
2575 else
2576 mempool_free(pmb, phba->mbox_mem_pool);
2579 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2580 * @phba: Pointer to HBA context object.
2581 * @pmb: Pointer to mailbox object.
2583 * This function is the unreg rpi mailbox completion handler. It
2584 * frees the memory resources associated with the completed mailbox
2585 * command. An additional refrenece is put on the ndlp to prevent
2586 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2587 * the unreg mailbox command completes, this routine puts the
2588 * reference back.
2591 void
2592 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2594 struct lpfc_vport *vport = pmb->vport;
2595 struct lpfc_nodelist *ndlp;
2597 ndlp = pmb->ctx_ndlp;
2598 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2599 if (phba->sli_rev == LPFC_SLI_REV4 &&
2600 (bf_get(lpfc_sli_intf_if_type,
2601 &phba->sli4_hba.sli_intf) >=
2602 LPFC_SLI_INTF_IF_TYPE_2)) {
2603 if (ndlp) {
2604 lpfc_printf_vlog(
2605 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2606 "0010 UNREG_LOGIN vpi:%x "
2607 "rpi:%x DID:%x defer x%x flg x%x "
2608 "map:%x %px\n",
2609 vport->vpi, ndlp->nlp_rpi,
2610 ndlp->nlp_DID, ndlp->nlp_defer_did,
2611 ndlp->nlp_flag,
2612 ndlp->nlp_usg_map, ndlp);
2613 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2614 lpfc_nlp_put(ndlp);
2616 /* Check to see if there are any deferred
2617 * events to process
2619 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2620 (ndlp->nlp_defer_did !=
2621 NLP_EVT_NOTHING_PENDING)) {
2622 lpfc_printf_vlog(
2623 vport, KERN_INFO, LOG_DISCOVERY,
2624 "4111 UNREG cmpl deferred "
2625 "clr x%x on "
2626 "NPort x%x Data: x%x x%px\n",
2627 ndlp->nlp_rpi, ndlp->nlp_DID,
2628 ndlp->nlp_defer_did, ndlp);
2629 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2630 ndlp->nlp_defer_did =
2631 NLP_EVT_NOTHING_PENDING;
2632 lpfc_issue_els_plogi(
2633 vport, ndlp->nlp_DID, 0);
2634 } else {
2635 __lpfc_sli_rpi_release(vport, ndlp);
2641 mempool_free(pmb, phba->mbox_mem_pool);
2645 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2646 * @phba: Pointer to HBA context object.
2648 * This function is called with no lock held. This function processes all
2649 * the completed mailbox commands and gives it to upper layers. The interrupt
2650 * service routine processes mailbox completion interrupt and adds completed
2651 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2652 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2653 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2654 * function returns the mailbox commands to the upper layer by calling the
2655 * completion handler function of each mailbox.
2658 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2660 MAILBOX_t *pmbox;
2661 LPFC_MBOXQ_t *pmb;
2662 int rc;
2663 LIST_HEAD(cmplq);
2665 phba->sli.slistat.mbox_event++;
2667 /* Get all completed mailboxe buffers into the cmplq */
2668 spin_lock_irq(&phba->hbalock);
2669 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2670 spin_unlock_irq(&phba->hbalock);
2672 /* Get a Mailbox buffer to setup mailbox commands for callback */
2673 do {
2674 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2675 if (pmb == NULL)
2676 break;
2678 pmbox = &pmb->u.mb;
2680 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2681 if (pmb->vport) {
2682 lpfc_debugfs_disc_trc(pmb->vport,
2683 LPFC_DISC_TRC_MBOX_VPORT,
2684 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2685 (uint32_t)pmbox->mbxCommand,
2686 pmbox->un.varWords[0],
2687 pmbox->un.varWords[1]);
2689 else {
2690 lpfc_debugfs_disc_trc(phba->pport,
2691 LPFC_DISC_TRC_MBOX,
2692 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2693 (uint32_t)pmbox->mbxCommand,
2694 pmbox->un.varWords[0],
2695 pmbox->un.varWords[1]);
2700 * It is a fatal error if unknown mbox command completion.
2702 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2703 MBX_SHUTDOWN) {
2704 /* Unknown mailbox command compl */
2705 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2706 "(%d):0323 Unknown Mailbox command "
2707 "x%x (x%x/x%x) Cmpl\n",
2708 pmb->vport ? pmb->vport->vpi :
2709 LPFC_VPORT_UNKNOWN,
2710 pmbox->mbxCommand,
2711 lpfc_sli_config_mbox_subsys_get(phba,
2712 pmb),
2713 lpfc_sli_config_mbox_opcode_get(phba,
2714 pmb));
2715 phba->link_state = LPFC_HBA_ERROR;
2716 phba->work_hs = HS_FFER3;
2717 lpfc_handle_eratt(phba);
2718 continue;
2721 if (pmbox->mbxStatus) {
2722 phba->sli.slistat.mbox_stat_err++;
2723 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2724 /* Mbox cmd cmpl error - RETRYing */
2725 lpfc_printf_log(phba, KERN_INFO,
2726 LOG_MBOX | LOG_SLI,
2727 "(%d):0305 Mbox cmd cmpl "
2728 "error - RETRYing Data: x%x "
2729 "(x%x/x%x) x%x x%x x%x\n",
2730 pmb->vport ? pmb->vport->vpi :
2731 LPFC_VPORT_UNKNOWN,
2732 pmbox->mbxCommand,
2733 lpfc_sli_config_mbox_subsys_get(phba,
2734 pmb),
2735 lpfc_sli_config_mbox_opcode_get(phba,
2736 pmb),
2737 pmbox->mbxStatus,
2738 pmbox->un.varWords[0],
2739 pmb->vport ? pmb->vport->port_state :
2740 LPFC_VPORT_UNKNOWN);
2741 pmbox->mbxStatus = 0;
2742 pmbox->mbxOwner = OWN_HOST;
2743 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2744 if (rc != MBX_NOT_FINISHED)
2745 continue;
2749 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2750 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2751 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2752 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2753 "x%x x%x x%x\n",
2754 pmb->vport ? pmb->vport->vpi : 0,
2755 pmbox->mbxCommand,
2756 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2757 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2758 pmb->mbox_cmpl,
2759 *((uint32_t *) pmbox),
2760 pmbox->un.varWords[0],
2761 pmbox->un.varWords[1],
2762 pmbox->un.varWords[2],
2763 pmbox->un.varWords[3],
2764 pmbox->un.varWords[4],
2765 pmbox->un.varWords[5],
2766 pmbox->un.varWords[6],
2767 pmbox->un.varWords[7],
2768 pmbox->un.varWords[8],
2769 pmbox->un.varWords[9],
2770 pmbox->un.varWords[10]);
2772 if (pmb->mbox_cmpl)
2773 pmb->mbox_cmpl(phba,pmb);
2774 } while (1);
2775 return 0;
2779 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2780 * @phba: Pointer to HBA context object.
2781 * @pring: Pointer to driver SLI ring object.
2782 * @tag: buffer tag.
2784 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2785 * is set in the tag the buffer is posted for a particular exchange,
2786 * the function will return the buffer without replacing the buffer.
2787 * If the buffer is for unsolicited ELS or CT traffic, this function
2788 * returns the buffer and also posts another buffer to the firmware.
2790 static struct lpfc_dmabuf *
2791 lpfc_sli_get_buff(struct lpfc_hba *phba,
2792 struct lpfc_sli_ring *pring,
2793 uint32_t tag)
2795 struct hbq_dmabuf *hbq_entry;
2797 if (tag & QUE_BUFTAG_BIT)
2798 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2799 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2800 if (!hbq_entry)
2801 return NULL;
2802 return &hbq_entry->dbuf;
2806 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2807 * @phba: Pointer to HBA context object.
2808 * @pring: Pointer to driver SLI ring object.
2809 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2810 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2811 * @fch_type: the type for the first frame of the sequence.
2813 * This function is called with no lock held. This function uses the r_ctl and
2814 * type of the received sequence to find the correct callback function to call
2815 * to process the sequence.
2817 static int
2818 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2819 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2820 uint32_t fch_type)
2822 int i;
2824 switch (fch_type) {
2825 case FC_TYPE_NVME:
2826 lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2827 return 1;
2828 default:
2829 break;
2832 /* unSolicited Responses */
2833 if (pring->prt[0].profile) {
2834 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2835 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2836 saveq);
2837 return 1;
2839 /* We must search, based on rctl / type
2840 for the right routine */
2841 for (i = 0; i < pring->num_mask; i++) {
2842 if ((pring->prt[i].rctl == fch_r_ctl) &&
2843 (pring->prt[i].type == fch_type)) {
2844 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2845 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2846 (phba, pring, saveq);
2847 return 1;
2850 return 0;
2854 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2855 * @phba: Pointer to HBA context object.
2856 * @pring: Pointer to driver SLI ring object.
2857 * @saveq: Pointer to the unsolicited iocb.
2859 * This function is called with no lock held by the ring event handler
2860 * when there is an unsolicited iocb posted to the response ring by the
2861 * firmware. This function gets the buffer associated with the iocbs
2862 * and calls the event handler for the ring. This function handles both
2863 * qring buffers and hbq buffers.
2864 * When the function returns 1 the caller can free the iocb object otherwise
2865 * upper layer functions will free the iocb objects.
2867 static int
2868 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2869 struct lpfc_iocbq *saveq)
2871 IOCB_t * irsp;
2872 WORD5 * w5p;
2873 uint32_t Rctl, Type;
2874 struct lpfc_iocbq *iocbq;
2875 struct lpfc_dmabuf *dmzbuf;
2877 irsp = &(saveq->iocb);
2879 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2880 if (pring->lpfc_sli_rcv_async_status)
2881 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2882 else
2883 lpfc_printf_log(phba,
2884 KERN_WARNING,
2885 LOG_SLI,
2886 "0316 Ring %d handler: unexpected "
2887 "ASYNC_STATUS iocb received evt_code "
2888 "0x%x\n",
2889 pring->ringno,
2890 irsp->un.asyncstat.evt_code);
2891 return 1;
2894 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2895 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2896 if (irsp->ulpBdeCount > 0) {
2897 dmzbuf = lpfc_sli_get_buff(phba, pring,
2898 irsp->un.ulpWord[3]);
2899 lpfc_in_buf_free(phba, dmzbuf);
2902 if (irsp->ulpBdeCount > 1) {
2903 dmzbuf = lpfc_sli_get_buff(phba, pring,
2904 irsp->unsli3.sli3Words[3]);
2905 lpfc_in_buf_free(phba, dmzbuf);
2908 if (irsp->ulpBdeCount > 2) {
2909 dmzbuf = lpfc_sli_get_buff(phba, pring,
2910 irsp->unsli3.sli3Words[7]);
2911 lpfc_in_buf_free(phba, dmzbuf);
2914 return 1;
2917 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2918 if (irsp->ulpBdeCount != 0) {
2919 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2920 irsp->un.ulpWord[3]);
2921 if (!saveq->context2)
2922 lpfc_printf_log(phba,
2923 KERN_ERR,
2924 LOG_SLI,
2925 "0341 Ring %d Cannot find buffer for "
2926 "an unsolicited iocb. tag 0x%x\n",
2927 pring->ringno,
2928 irsp->un.ulpWord[3]);
2930 if (irsp->ulpBdeCount == 2) {
2931 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2932 irsp->unsli3.sli3Words[7]);
2933 if (!saveq->context3)
2934 lpfc_printf_log(phba,
2935 KERN_ERR,
2936 LOG_SLI,
2937 "0342 Ring %d Cannot find buffer for an"
2938 " unsolicited iocb. tag 0x%x\n",
2939 pring->ringno,
2940 irsp->unsli3.sli3Words[7]);
2942 list_for_each_entry(iocbq, &saveq->list, list) {
2943 irsp = &(iocbq->iocb);
2944 if (irsp->ulpBdeCount != 0) {
2945 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2946 irsp->un.ulpWord[3]);
2947 if (!iocbq->context2)
2948 lpfc_printf_log(phba,
2949 KERN_ERR,
2950 LOG_SLI,
2951 "0343 Ring %d Cannot find "
2952 "buffer for an unsolicited iocb"
2953 ". tag 0x%x\n", pring->ringno,
2954 irsp->un.ulpWord[3]);
2956 if (irsp->ulpBdeCount == 2) {
2957 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2958 irsp->unsli3.sli3Words[7]);
2959 if (!iocbq->context3)
2960 lpfc_printf_log(phba,
2961 KERN_ERR,
2962 LOG_SLI,
2963 "0344 Ring %d Cannot find "
2964 "buffer for an unsolicited "
2965 "iocb. tag 0x%x\n",
2966 pring->ringno,
2967 irsp->unsli3.sli3Words[7]);
2971 if (irsp->ulpBdeCount != 0 &&
2972 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2973 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2974 int found = 0;
2976 /* search continue save q for same XRI */
2977 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2978 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2979 saveq->iocb.unsli3.rcvsli3.ox_id) {
2980 list_add_tail(&saveq->list, &iocbq->list);
2981 found = 1;
2982 break;
2985 if (!found)
2986 list_add_tail(&saveq->clist,
2987 &pring->iocb_continue_saveq);
2988 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2989 list_del_init(&iocbq->clist);
2990 saveq = iocbq;
2991 irsp = &(saveq->iocb);
2992 } else
2993 return 0;
2995 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2996 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2997 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2998 Rctl = FC_RCTL_ELS_REQ;
2999 Type = FC_TYPE_ELS;
3000 } else {
3001 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3002 Rctl = w5p->hcsw.Rctl;
3003 Type = w5p->hcsw.Type;
3005 /* Firmware Workaround */
3006 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3007 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3008 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3009 Rctl = FC_RCTL_ELS_REQ;
3010 Type = FC_TYPE_ELS;
3011 w5p->hcsw.Rctl = Rctl;
3012 w5p->hcsw.Type = Type;
3016 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3017 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3018 "0313 Ring %d handler: unexpected Rctl x%x "
3019 "Type x%x received\n",
3020 pring->ringno, Rctl, Type);
3022 return 1;
3026 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3027 * @phba: Pointer to HBA context object.
3028 * @pring: Pointer to driver SLI ring object.
3029 * @prspiocb: Pointer to response iocb object.
3031 * This function looks up the iocb_lookup table to get the command iocb
3032 * corresponding to the given response iocb using the iotag of the
3033 * response iocb. The driver calls this function with the hbalock held
3034 * for SLI3 ports or the ring lock held for SLI4 ports.
3035 * This function returns the command iocb object if it finds the command
3036 * iocb else returns NULL.
3038 static struct lpfc_iocbq *
3039 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3040 struct lpfc_sli_ring *pring,
3041 struct lpfc_iocbq *prspiocb)
3043 struct lpfc_iocbq *cmd_iocb = NULL;
3044 uint16_t iotag;
3045 spinlock_t *temp_lock = NULL;
3046 unsigned long iflag = 0;
3048 if (phba->sli_rev == LPFC_SLI_REV4)
3049 temp_lock = &pring->ring_lock;
3050 else
3051 temp_lock = &phba->hbalock;
3053 spin_lock_irqsave(temp_lock, iflag);
3054 iotag = prspiocb->iocb.ulpIoTag;
3056 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3057 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3058 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3059 /* remove from txcmpl queue list */
3060 list_del_init(&cmd_iocb->list);
3061 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3062 pring->txcmplq_cnt--;
3063 spin_unlock_irqrestore(temp_lock, iflag);
3064 return cmd_iocb;
3068 spin_unlock_irqrestore(temp_lock, iflag);
3069 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3070 "0317 iotag x%x is out of "
3071 "range: max iotag x%x wd0 x%x\n",
3072 iotag, phba->sli.last_iotag,
3073 *(((uint32_t *) &prspiocb->iocb) + 7));
3074 return NULL;
3078 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3079 * @phba: Pointer to HBA context object.
3080 * @pring: Pointer to driver SLI ring object.
3081 * @iotag: IOCB tag.
3083 * This function looks up the iocb_lookup table to get the command iocb
3084 * corresponding to the given iotag. The driver calls this function with
3085 * the ring lock held because this function is an SLI4 port only helper.
3086 * This function returns the command iocb object if it finds the command
3087 * iocb else returns NULL.
3089 static struct lpfc_iocbq *
3090 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3091 struct lpfc_sli_ring *pring, uint16_t iotag)
3093 struct lpfc_iocbq *cmd_iocb = NULL;
3094 spinlock_t *temp_lock = NULL;
3095 unsigned long iflag = 0;
3097 if (phba->sli_rev == LPFC_SLI_REV4)
3098 temp_lock = &pring->ring_lock;
3099 else
3100 temp_lock = &phba->hbalock;
3102 spin_lock_irqsave(temp_lock, iflag);
3103 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3104 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3105 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3106 /* remove from txcmpl queue list */
3107 list_del_init(&cmd_iocb->list);
3108 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3109 pring->txcmplq_cnt--;
3110 spin_unlock_irqrestore(temp_lock, iflag);
3111 return cmd_iocb;
3115 spin_unlock_irqrestore(temp_lock, iflag);
3116 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3117 "0372 iotag x%x lookup error: max iotag (x%x) "
3118 "iocb_flag x%x\n",
3119 iotag, phba->sli.last_iotag,
3120 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3121 return NULL;
3125 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3126 * @phba: Pointer to HBA context object.
3127 * @pring: Pointer to driver SLI ring object.
3128 * @saveq: Pointer to the response iocb to be processed.
3130 * This function is called by the ring event handler for non-fcp
3131 * rings when there is a new response iocb in the response ring.
3132 * The caller is not required to hold any locks. This function
3133 * gets the command iocb associated with the response iocb and
3134 * calls the completion handler for the command iocb. If there
3135 * is no completion handler, the function will free the resources
3136 * associated with command iocb. If the response iocb is for
3137 * an already aborted command iocb, the status of the completion
3138 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3139 * This function always returns 1.
3141 static int
3142 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3143 struct lpfc_iocbq *saveq)
3145 struct lpfc_iocbq *cmdiocbp;
3146 int rc = 1;
3147 unsigned long iflag;
3149 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3150 if (cmdiocbp) {
3151 if (cmdiocbp->iocb_cmpl) {
3153 * If an ELS command failed send an event to mgmt
3154 * application.
3156 if (saveq->iocb.ulpStatus &&
3157 (pring->ringno == LPFC_ELS_RING) &&
3158 (cmdiocbp->iocb.ulpCommand ==
3159 CMD_ELS_REQUEST64_CR))
3160 lpfc_send_els_failure_event(phba,
3161 cmdiocbp, saveq);
3164 * Post all ELS completions to the worker thread.
3165 * All other are passed to the completion callback.
3167 if (pring->ringno == LPFC_ELS_RING) {
3168 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3169 (cmdiocbp->iocb_flag &
3170 LPFC_DRIVER_ABORTED)) {
3171 spin_lock_irqsave(&phba->hbalock,
3172 iflag);
3173 cmdiocbp->iocb_flag &=
3174 ~LPFC_DRIVER_ABORTED;
3175 spin_unlock_irqrestore(&phba->hbalock,
3176 iflag);
3177 saveq->iocb.ulpStatus =
3178 IOSTAT_LOCAL_REJECT;
3179 saveq->iocb.un.ulpWord[4] =
3180 IOERR_SLI_ABORTED;
3182 /* Firmware could still be in progress
3183 * of DMAing payload, so don't free data
3184 * buffer till after a hbeat.
3186 spin_lock_irqsave(&phba->hbalock,
3187 iflag);
3188 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3189 spin_unlock_irqrestore(&phba->hbalock,
3190 iflag);
3192 if (phba->sli_rev == LPFC_SLI_REV4) {
3193 if (saveq->iocb_flag &
3194 LPFC_EXCHANGE_BUSY) {
3195 /* Set cmdiocb flag for the
3196 * exchange busy so sgl (xri)
3197 * will not be released until
3198 * the abort xri is received
3199 * from hba.
3201 spin_lock_irqsave(
3202 &phba->hbalock, iflag);
3203 cmdiocbp->iocb_flag |=
3204 LPFC_EXCHANGE_BUSY;
3205 spin_unlock_irqrestore(
3206 &phba->hbalock, iflag);
3208 if (cmdiocbp->iocb_flag &
3209 LPFC_DRIVER_ABORTED) {
3211 * Clear LPFC_DRIVER_ABORTED
3212 * bit in case it was driver
3213 * initiated abort.
3215 spin_lock_irqsave(
3216 &phba->hbalock, iflag);
3217 cmdiocbp->iocb_flag &=
3218 ~LPFC_DRIVER_ABORTED;
3219 spin_unlock_irqrestore(
3220 &phba->hbalock, iflag);
3221 cmdiocbp->iocb.ulpStatus =
3222 IOSTAT_LOCAL_REJECT;
3223 cmdiocbp->iocb.un.ulpWord[4] =
3224 IOERR_ABORT_REQUESTED;
3226 * For SLI4, irsiocb contains
3227 * NO_XRI in sli_xritag, it
3228 * shall not affect releasing
3229 * sgl (xri) process.
3231 saveq->iocb.ulpStatus =
3232 IOSTAT_LOCAL_REJECT;
3233 saveq->iocb.un.ulpWord[4] =
3234 IOERR_SLI_ABORTED;
3235 spin_lock_irqsave(
3236 &phba->hbalock, iflag);
3237 saveq->iocb_flag |=
3238 LPFC_DELAY_MEM_FREE;
3239 spin_unlock_irqrestore(
3240 &phba->hbalock, iflag);
3244 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3245 } else
3246 lpfc_sli_release_iocbq(phba, cmdiocbp);
3247 } else {
3249 * Unknown initiating command based on the response iotag.
3250 * This could be the case on the ELS ring because of
3251 * lpfc_els_abort().
3253 if (pring->ringno != LPFC_ELS_RING) {
3255 * Ring <ringno> handler: unexpected completion IoTag
3256 * <IoTag>
3258 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3259 "0322 Ring %d handler: "
3260 "unexpected completion IoTag x%x "
3261 "Data: x%x x%x x%x x%x\n",
3262 pring->ringno,
3263 saveq->iocb.ulpIoTag,
3264 saveq->iocb.ulpStatus,
3265 saveq->iocb.un.ulpWord[4],
3266 saveq->iocb.ulpCommand,
3267 saveq->iocb.ulpContext);
3271 return rc;
3275 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3276 * @phba: Pointer to HBA context object.
3277 * @pring: Pointer to driver SLI ring object.
3279 * This function is called from the iocb ring event handlers when
3280 * put pointer is ahead of the get pointer for a ring. This function signal
3281 * an error attention condition to the worker thread and the worker
3282 * thread will transition the HBA to offline state.
3284 static void
3285 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3287 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3289 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3290 * rsp ring <portRspMax>
3292 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3293 "0312 Ring %d handler: portRspPut %d "
3294 "is bigger than rsp ring %d\n",
3295 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3296 pring->sli.sli3.numRiocb);
3298 phba->link_state = LPFC_HBA_ERROR;
3301 * All error attention handlers are posted to
3302 * worker thread
3304 phba->work_ha |= HA_ERATT;
3305 phba->work_hs = HS_FFER3;
3307 lpfc_worker_wake_up(phba);
3309 return;
3313 * lpfc_poll_eratt - Error attention polling timer timeout handler
3314 * @ptr: Pointer to address of HBA context object.
3316 * This function is invoked by the Error Attention polling timer when the
3317 * timer times out. It will check the SLI Error Attention register for
3318 * possible attention events. If so, it will post an Error Attention event
3319 * and wake up worker thread to process it. Otherwise, it will set up the
3320 * Error Attention polling timer for the next poll.
3322 void lpfc_poll_eratt(struct timer_list *t)
3324 struct lpfc_hba *phba;
3325 uint32_t eratt = 0;
3326 uint64_t sli_intr, cnt;
3328 phba = from_timer(phba, t, eratt_poll);
3330 /* Here we will also keep track of interrupts per sec of the hba */
3331 sli_intr = phba->sli.slistat.sli_intr;
3333 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3334 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3335 sli_intr);
3336 else
3337 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3339 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3340 do_div(cnt, phba->eratt_poll_interval);
3341 phba->sli.slistat.sli_ips = cnt;
3343 phba->sli.slistat.sli_prev_intr = sli_intr;
3345 /* Check chip HA register for error event */
3346 eratt = lpfc_sli_check_eratt(phba);
3348 if (eratt)
3349 /* Tell the worker thread there is work to do */
3350 lpfc_worker_wake_up(phba);
3351 else
3352 /* Restart the timer for next eratt poll */
3353 mod_timer(&phba->eratt_poll,
3354 jiffies +
3355 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3356 return;
3361 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3362 * @phba: Pointer to HBA context object.
3363 * @pring: Pointer to driver SLI ring object.
3364 * @mask: Host attention register mask for this ring.
3366 * This function is called from the interrupt context when there is a ring
3367 * event for the fcp ring. The caller does not hold any lock.
3368 * The function processes each response iocb in the response ring until it
3369 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3370 * LE bit set. The function will call the completion handler of the command iocb
3371 * if the response iocb indicates a completion for a command iocb or it is
3372 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3373 * function if this is an unsolicited iocb.
3374 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3375 * to check it explicitly.
3378 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3379 struct lpfc_sli_ring *pring, uint32_t mask)
3381 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3382 IOCB_t *irsp = NULL;
3383 IOCB_t *entry = NULL;
3384 struct lpfc_iocbq *cmdiocbq = NULL;
3385 struct lpfc_iocbq rspiocbq;
3386 uint32_t status;
3387 uint32_t portRspPut, portRspMax;
3388 int rc = 1;
3389 lpfc_iocb_type type;
3390 unsigned long iflag;
3391 uint32_t rsp_cmpl = 0;
3393 spin_lock_irqsave(&phba->hbalock, iflag);
3394 pring->stats.iocb_event++;
3397 * The next available response entry should never exceed the maximum
3398 * entries. If it does, treat it as an adapter hardware error.
3400 portRspMax = pring->sli.sli3.numRiocb;
3401 portRspPut = le32_to_cpu(pgp->rspPutInx);
3402 if (unlikely(portRspPut >= portRspMax)) {
3403 lpfc_sli_rsp_pointers_error(phba, pring);
3404 spin_unlock_irqrestore(&phba->hbalock, iflag);
3405 return 1;
3407 if (phba->fcp_ring_in_use) {
3408 spin_unlock_irqrestore(&phba->hbalock, iflag);
3409 return 1;
3410 } else
3411 phba->fcp_ring_in_use = 1;
3413 rmb();
3414 while (pring->sli.sli3.rspidx != portRspPut) {
3416 * Fetch an entry off the ring and copy it into a local data
3417 * structure. The copy involves a byte-swap since the
3418 * network byte order and pci byte orders are different.
3420 entry = lpfc_resp_iocb(phba, pring);
3421 phba->last_completion_time = jiffies;
3423 if (++pring->sli.sli3.rspidx >= portRspMax)
3424 pring->sli.sli3.rspidx = 0;
3426 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3427 (uint32_t *) &rspiocbq.iocb,
3428 phba->iocb_rsp_size);
3429 INIT_LIST_HEAD(&(rspiocbq.list));
3430 irsp = &rspiocbq.iocb;
3432 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3433 pring->stats.iocb_rsp++;
3434 rsp_cmpl++;
3436 if (unlikely(irsp->ulpStatus)) {
3438 * If resource errors reported from HBA, reduce
3439 * queuedepths of the SCSI device.
3441 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3442 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3443 IOERR_NO_RESOURCES)) {
3444 spin_unlock_irqrestore(&phba->hbalock, iflag);
3445 phba->lpfc_rampdown_queue_depth(phba);
3446 spin_lock_irqsave(&phba->hbalock, iflag);
3449 /* Rsp ring <ringno> error: IOCB */
3450 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3451 "0336 Rsp Ring %d error: IOCB Data: "
3452 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3453 pring->ringno,
3454 irsp->un.ulpWord[0],
3455 irsp->un.ulpWord[1],
3456 irsp->un.ulpWord[2],
3457 irsp->un.ulpWord[3],
3458 irsp->un.ulpWord[4],
3459 irsp->un.ulpWord[5],
3460 *(uint32_t *)&irsp->un1,
3461 *((uint32_t *)&irsp->un1 + 1));
3464 switch (type) {
3465 case LPFC_ABORT_IOCB:
3466 case LPFC_SOL_IOCB:
3468 * Idle exchange closed via ABTS from port. No iocb
3469 * resources need to be recovered.
3471 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3472 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3473 "0333 IOCB cmd 0x%x"
3474 " processed. Skipping"
3475 " completion\n",
3476 irsp->ulpCommand);
3477 break;
3480 spin_unlock_irqrestore(&phba->hbalock, iflag);
3481 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3482 &rspiocbq);
3483 spin_lock_irqsave(&phba->hbalock, iflag);
3484 if (unlikely(!cmdiocbq))
3485 break;
3486 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3487 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3488 if (cmdiocbq->iocb_cmpl) {
3489 spin_unlock_irqrestore(&phba->hbalock, iflag);
3490 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3491 &rspiocbq);
3492 spin_lock_irqsave(&phba->hbalock, iflag);
3494 break;
3495 case LPFC_UNSOL_IOCB:
3496 spin_unlock_irqrestore(&phba->hbalock, iflag);
3497 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3498 spin_lock_irqsave(&phba->hbalock, iflag);
3499 break;
3500 default:
3501 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3502 char adaptermsg[LPFC_MAX_ADPTMSG];
3503 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3504 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3505 MAX_MSG_DATA);
3506 dev_warn(&((phba->pcidev)->dev),
3507 "lpfc%d: %s\n",
3508 phba->brd_no, adaptermsg);
3509 } else {
3510 /* Unknown IOCB command */
3511 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3512 "0334 Unknown IOCB command "
3513 "Data: x%x, x%x x%x x%x x%x\n",
3514 type, irsp->ulpCommand,
3515 irsp->ulpStatus,
3516 irsp->ulpIoTag,
3517 irsp->ulpContext);
3519 break;
3523 * The response IOCB has been processed. Update the ring
3524 * pointer in SLIM. If the port response put pointer has not
3525 * been updated, sync the pgp->rspPutInx and fetch the new port
3526 * response put pointer.
3528 writel(pring->sli.sli3.rspidx,
3529 &phba->host_gp[pring->ringno].rspGetInx);
3531 if (pring->sli.sli3.rspidx == portRspPut)
3532 portRspPut = le32_to_cpu(pgp->rspPutInx);
3535 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3536 pring->stats.iocb_rsp_full++;
3537 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3538 writel(status, phba->CAregaddr);
3539 readl(phba->CAregaddr);
3541 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3542 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3543 pring->stats.iocb_cmd_empty++;
3545 /* Force update of the local copy of cmdGetInx */
3546 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3547 lpfc_sli_resume_iocb(phba, pring);
3549 if ((pring->lpfc_sli_cmd_available))
3550 (pring->lpfc_sli_cmd_available) (phba, pring);
3554 phba->fcp_ring_in_use = 0;
3555 spin_unlock_irqrestore(&phba->hbalock, iflag);
3556 return rc;
3560 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3561 * @phba: Pointer to HBA context object.
3562 * @pring: Pointer to driver SLI ring object.
3563 * @rspiocbp: Pointer to driver response IOCB object.
3565 * This function is called from the worker thread when there is a slow-path
3566 * response IOCB to process. This function chains all the response iocbs until
3567 * seeing the iocb with the LE bit set. The function will call
3568 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3569 * completion of a command iocb. The function will call the
3570 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3571 * The function frees the resources or calls the completion handler if this
3572 * iocb is an abort completion. The function returns NULL when the response
3573 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3574 * this function shall chain the iocb on to the iocb_continueq and return the
3575 * response iocb passed in.
3577 static struct lpfc_iocbq *
3578 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3579 struct lpfc_iocbq *rspiocbp)
3581 struct lpfc_iocbq *saveq;
3582 struct lpfc_iocbq *cmdiocbp;
3583 struct lpfc_iocbq *next_iocb;
3584 IOCB_t *irsp = NULL;
3585 uint32_t free_saveq;
3586 uint8_t iocb_cmd_type;
3587 lpfc_iocb_type type;
3588 unsigned long iflag;
3589 int rc;
3591 spin_lock_irqsave(&phba->hbalock, iflag);
3592 /* First add the response iocb to the countinueq list */
3593 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3594 pring->iocb_continueq_cnt++;
3596 /* Now, determine whether the list is completed for processing */
3597 irsp = &rspiocbp->iocb;
3598 if (irsp->ulpLe) {
3600 * By default, the driver expects to free all resources
3601 * associated with this iocb completion.
3603 free_saveq = 1;
3604 saveq = list_get_first(&pring->iocb_continueq,
3605 struct lpfc_iocbq, list);
3606 irsp = &(saveq->iocb);
3607 list_del_init(&pring->iocb_continueq);
3608 pring->iocb_continueq_cnt = 0;
3610 pring->stats.iocb_rsp++;
3613 * If resource errors reported from HBA, reduce
3614 * queuedepths of the SCSI device.
3616 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3617 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3618 IOERR_NO_RESOURCES)) {
3619 spin_unlock_irqrestore(&phba->hbalock, iflag);
3620 phba->lpfc_rampdown_queue_depth(phba);
3621 spin_lock_irqsave(&phba->hbalock, iflag);
3624 if (irsp->ulpStatus) {
3625 /* Rsp ring <ringno> error: IOCB */
3626 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3627 "0328 Rsp Ring %d error: "
3628 "IOCB Data: "
3629 "x%x x%x x%x x%x "
3630 "x%x x%x x%x x%x "
3631 "x%x x%x x%x x%x "
3632 "x%x x%x x%x x%x\n",
3633 pring->ringno,
3634 irsp->un.ulpWord[0],
3635 irsp->un.ulpWord[1],
3636 irsp->un.ulpWord[2],
3637 irsp->un.ulpWord[3],
3638 irsp->un.ulpWord[4],
3639 irsp->un.ulpWord[5],
3640 *(((uint32_t *) irsp) + 6),
3641 *(((uint32_t *) irsp) + 7),
3642 *(((uint32_t *) irsp) + 8),
3643 *(((uint32_t *) irsp) + 9),
3644 *(((uint32_t *) irsp) + 10),
3645 *(((uint32_t *) irsp) + 11),
3646 *(((uint32_t *) irsp) + 12),
3647 *(((uint32_t *) irsp) + 13),
3648 *(((uint32_t *) irsp) + 14),
3649 *(((uint32_t *) irsp) + 15));
3653 * Fetch the IOCB command type and call the correct completion
3654 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3655 * get freed back to the lpfc_iocb_list by the discovery
3656 * kernel thread.
3658 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3659 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3660 switch (type) {
3661 case LPFC_SOL_IOCB:
3662 spin_unlock_irqrestore(&phba->hbalock, iflag);
3663 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3664 spin_lock_irqsave(&phba->hbalock, iflag);
3665 break;
3667 case LPFC_UNSOL_IOCB:
3668 spin_unlock_irqrestore(&phba->hbalock, iflag);
3669 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3670 spin_lock_irqsave(&phba->hbalock, iflag);
3671 if (!rc)
3672 free_saveq = 0;
3673 break;
3675 case LPFC_ABORT_IOCB:
3676 cmdiocbp = NULL;
3677 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3678 spin_unlock_irqrestore(&phba->hbalock, iflag);
3679 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3680 saveq);
3681 spin_lock_irqsave(&phba->hbalock, iflag);
3683 if (cmdiocbp) {
3684 /* Call the specified completion routine */
3685 if (cmdiocbp->iocb_cmpl) {
3686 spin_unlock_irqrestore(&phba->hbalock,
3687 iflag);
3688 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3689 saveq);
3690 spin_lock_irqsave(&phba->hbalock,
3691 iflag);
3692 } else
3693 __lpfc_sli_release_iocbq(phba,
3694 cmdiocbp);
3696 break;
3698 case LPFC_UNKNOWN_IOCB:
3699 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3700 char adaptermsg[LPFC_MAX_ADPTMSG];
3701 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3702 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3703 MAX_MSG_DATA);
3704 dev_warn(&((phba->pcidev)->dev),
3705 "lpfc%d: %s\n",
3706 phba->brd_no, adaptermsg);
3707 } else {
3708 /* Unknown IOCB command */
3709 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3710 "0335 Unknown IOCB "
3711 "command Data: x%x "
3712 "x%x x%x x%x\n",
3713 irsp->ulpCommand,
3714 irsp->ulpStatus,
3715 irsp->ulpIoTag,
3716 irsp->ulpContext);
3718 break;
3721 if (free_saveq) {
3722 list_for_each_entry_safe(rspiocbp, next_iocb,
3723 &saveq->list, list) {
3724 list_del_init(&rspiocbp->list);
3725 __lpfc_sli_release_iocbq(phba, rspiocbp);
3727 __lpfc_sli_release_iocbq(phba, saveq);
3729 rspiocbp = NULL;
3731 spin_unlock_irqrestore(&phba->hbalock, iflag);
3732 return rspiocbp;
3736 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3737 * @phba: Pointer to HBA context object.
3738 * @pring: Pointer to driver SLI ring object.
3739 * @mask: Host attention register mask for this ring.
3741 * This routine wraps the actual slow_ring event process routine from the
3742 * API jump table function pointer from the lpfc_hba struct.
3744 void
3745 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3746 struct lpfc_sli_ring *pring, uint32_t mask)
3748 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3752 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3753 * @phba: Pointer to HBA context object.
3754 * @pring: Pointer to driver SLI ring object.
3755 * @mask: Host attention register mask for this ring.
3757 * This function is called from the worker thread when there is a ring event
3758 * for non-fcp rings. The caller does not hold any lock. The function will
3759 * remove each response iocb in the response ring and calls the handle
3760 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3762 static void
3763 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3764 struct lpfc_sli_ring *pring, uint32_t mask)
3766 struct lpfc_pgp *pgp;
3767 IOCB_t *entry;
3768 IOCB_t *irsp = NULL;
3769 struct lpfc_iocbq *rspiocbp = NULL;
3770 uint32_t portRspPut, portRspMax;
3771 unsigned long iflag;
3772 uint32_t status;
3774 pgp = &phba->port_gp[pring->ringno];
3775 spin_lock_irqsave(&phba->hbalock, iflag);
3776 pring->stats.iocb_event++;
3779 * The next available response entry should never exceed the maximum
3780 * entries. If it does, treat it as an adapter hardware error.
3782 portRspMax = pring->sli.sli3.numRiocb;
3783 portRspPut = le32_to_cpu(pgp->rspPutInx);
3784 if (portRspPut >= portRspMax) {
3786 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3787 * rsp ring <portRspMax>
3789 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3790 "0303 Ring %d handler: portRspPut %d "
3791 "is bigger than rsp ring %d\n",
3792 pring->ringno, portRspPut, portRspMax);
3794 phba->link_state = LPFC_HBA_ERROR;
3795 spin_unlock_irqrestore(&phba->hbalock, iflag);
3797 phba->work_hs = HS_FFER3;
3798 lpfc_handle_eratt(phba);
3800 return;
3803 rmb();
3804 while (pring->sli.sli3.rspidx != portRspPut) {
3806 * Build a completion list and call the appropriate handler.
3807 * The process is to get the next available response iocb, get
3808 * a free iocb from the list, copy the response data into the
3809 * free iocb, insert to the continuation list, and update the
3810 * next response index to slim. This process makes response
3811 * iocb's in the ring available to DMA as fast as possible but
3812 * pays a penalty for a copy operation. Since the iocb is
3813 * only 32 bytes, this penalty is considered small relative to
3814 * the PCI reads for register values and a slim write. When
3815 * the ulpLe field is set, the entire Command has been
3816 * received.
3818 entry = lpfc_resp_iocb(phba, pring);
3820 phba->last_completion_time = jiffies;
3821 rspiocbp = __lpfc_sli_get_iocbq(phba);
3822 if (rspiocbp == NULL) {
3823 printk(KERN_ERR "%s: out of buffers! Failing "
3824 "completion.\n", __func__);
3825 break;
3828 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3829 phba->iocb_rsp_size);
3830 irsp = &rspiocbp->iocb;
3832 if (++pring->sli.sli3.rspidx >= portRspMax)
3833 pring->sli.sli3.rspidx = 0;
3835 if (pring->ringno == LPFC_ELS_RING) {
3836 lpfc_debugfs_slow_ring_trc(phba,
3837 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3838 *(((uint32_t *) irsp) + 4),
3839 *(((uint32_t *) irsp) + 6),
3840 *(((uint32_t *) irsp) + 7));
3843 writel(pring->sli.sli3.rspidx,
3844 &phba->host_gp[pring->ringno].rspGetInx);
3846 spin_unlock_irqrestore(&phba->hbalock, iflag);
3847 /* Handle the response IOCB */
3848 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3849 spin_lock_irqsave(&phba->hbalock, iflag);
3852 * If the port response put pointer has not been updated, sync
3853 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3854 * response put pointer.
3856 if (pring->sli.sli3.rspidx == portRspPut) {
3857 portRspPut = le32_to_cpu(pgp->rspPutInx);
3859 } /* while (pring->sli.sli3.rspidx != portRspPut) */
3861 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3862 /* At least one response entry has been freed */
3863 pring->stats.iocb_rsp_full++;
3864 /* SET RxRE_RSP in Chip Att register */
3865 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3866 writel(status, phba->CAregaddr);
3867 readl(phba->CAregaddr); /* flush */
3869 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3870 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3871 pring->stats.iocb_cmd_empty++;
3873 /* Force update of the local copy of cmdGetInx */
3874 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3875 lpfc_sli_resume_iocb(phba, pring);
3877 if ((pring->lpfc_sli_cmd_available))
3878 (pring->lpfc_sli_cmd_available) (phba, pring);
3882 spin_unlock_irqrestore(&phba->hbalock, iflag);
3883 return;
3887 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3888 * @phba: Pointer to HBA context object.
3889 * @pring: Pointer to driver SLI ring object.
3890 * @mask: Host attention register mask for this ring.
3892 * This function is called from the worker thread when there is a pending
3893 * ELS response iocb on the driver internal slow-path response iocb worker
3894 * queue. The caller does not hold any lock. The function will remove each
3895 * response iocb from the response worker queue and calls the handle
3896 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3898 static void
3899 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3900 struct lpfc_sli_ring *pring, uint32_t mask)
3902 struct lpfc_iocbq *irspiocbq;
3903 struct hbq_dmabuf *dmabuf;
3904 struct lpfc_cq_event *cq_event;
3905 unsigned long iflag;
3906 int count = 0;
3908 spin_lock_irqsave(&phba->hbalock, iflag);
3909 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3910 spin_unlock_irqrestore(&phba->hbalock, iflag);
3911 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3912 /* Get the response iocb from the head of work queue */
3913 spin_lock_irqsave(&phba->hbalock, iflag);
3914 list_remove_head(&phba->sli4_hba.sp_queue_event,
3915 cq_event, struct lpfc_cq_event, list);
3916 spin_unlock_irqrestore(&phba->hbalock, iflag);
3918 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3919 case CQE_CODE_COMPL_WQE:
3920 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3921 cq_event);
3922 /* Translate ELS WCQE to response IOCBQ */
3923 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3924 irspiocbq);
3925 if (irspiocbq)
3926 lpfc_sli_sp_handle_rspiocb(phba, pring,
3927 irspiocbq);
3928 count++;
3929 break;
3930 case CQE_CODE_RECEIVE:
3931 case CQE_CODE_RECEIVE_V1:
3932 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3933 cq_event);
3934 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3935 count++;
3936 break;
3937 default:
3938 break;
3941 /* Limit the number of events to 64 to avoid soft lockups */
3942 if (count == 64)
3943 break;
3948 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3949 * @phba: Pointer to HBA context object.
3950 * @pring: Pointer to driver SLI ring object.
3952 * This function aborts all iocbs in the given ring and frees all the iocb
3953 * objects in txq. This function issues an abort iocb for all the iocb commands
3954 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3955 * the return of this function. The caller is not required to hold any locks.
3957 void
3958 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3960 LIST_HEAD(completions);
3961 struct lpfc_iocbq *iocb, *next_iocb;
3963 if (pring->ringno == LPFC_ELS_RING) {
3964 lpfc_fabric_abort_hba(phba);
3967 /* Error everything on txq and txcmplq
3968 * First do the txq.
3970 if (phba->sli_rev >= LPFC_SLI_REV4) {
3971 spin_lock_irq(&pring->ring_lock);
3972 list_splice_init(&pring->txq, &completions);
3973 pring->txq_cnt = 0;
3974 spin_unlock_irq(&pring->ring_lock);
3976 spin_lock_irq(&phba->hbalock);
3977 /* Next issue ABTS for everything on the txcmplq */
3978 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3979 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3980 spin_unlock_irq(&phba->hbalock);
3981 } else {
3982 spin_lock_irq(&phba->hbalock);
3983 list_splice_init(&pring->txq, &completions);
3984 pring->txq_cnt = 0;
3986 /* Next issue ABTS for everything on the txcmplq */
3987 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3988 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3989 spin_unlock_irq(&phba->hbalock);
3992 /* Cancel all the IOCBs from the completions list */
3993 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3994 IOERR_SLI_ABORTED);
3998 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3999 * @phba: Pointer to HBA context object.
4000 * @pring: Pointer to driver SLI ring object.
4002 * This function aborts all iocbs in FCP rings and frees all the iocb
4003 * objects in txq. This function issues an abort iocb for all the iocb commands
4004 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4005 * the return of this function. The caller is not required to hold any locks.
4007 void
4008 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4010 struct lpfc_sli *psli = &phba->sli;
4011 struct lpfc_sli_ring *pring;
4012 uint32_t i;
4014 /* Look on all the FCP Rings for the iotag */
4015 if (phba->sli_rev >= LPFC_SLI_REV4) {
4016 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4017 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4018 lpfc_sli_abort_iocb_ring(phba, pring);
4020 } else {
4021 pring = &psli->sli3_ring[LPFC_FCP_RING];
4022 lpfc_sli_abort_iocb_ring(phba, pring);
4027 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4028 * @phba: Pointer to HBA context object.
4030 * This function flushes all iocbs in the IO ring and frees all the iocb
4031 * objects in txq and txcmplq. This function will not issue abort iocbs
4032 * for all the iocb commands in txcmplq, they will just be returned with
4033 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4034 * slot has been permanently disabled.
4036 void
4037 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4039 LIST_HEAD(txq);
4040 LIST_HEAD(txcmplq);
4041 struct lpfc_sli *psli = &phba->sli;
4042 struct lpfc_sli_ring *pring;
4043 uint32_t i;
4044 struct lpfc_iocbq *piocb, *next_iocb;
4046 spin_lock_irq(&phba->hbalock);
4047 /* Indicate the I/O queues are flushed */
4048 phba->hba_flag |= HBA_IOQ_FLUSH;
4049 spin_unlock_irq(&phba->hbalock);
4051 /* Look on all the FCP Rings for the iotag */
4052 if (phba->sli_rev >= LPFC_SLI_REV4) {
4053 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4054 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4056 spin_lock_irq(&pring->ring_lock);
4057 /* Retrieve everything on txq */
4058 list_splice_init(&pring->txq, &txq);
4059 list_for_each_entry_safe(piocb, next_iocb,
4060 &pring->txcmplq, list)
4061 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4062 /* Retrieve everything on the txcmplq */
4063 list_splice_init(&pring->txcmplq, &txcmplq);
4064 pring->txq_cnt = 0;
4065 pring->txcmplq_cnt = 0;
4066 spin_unlock_irq(&pring->ring_lock);
4068 /* Flush the txq */
4069 lpfc_sli_cancel_iocbs(phba, &txq,
4070 IOSTAT_LOCAL_REJECT,
4071 IOERR_SLI_DOWN);
4072 /* Flush the txcmpq */
4073 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4074 IOSTAT_LOCAL_REJECT,
4075 IOERR_SLI_DOWN);
4077 } else {
4078 pring = &psli->sli3_ring[LPFC_FCP_RING];
4080 spin_lock_irq(&phba->hbalock);
4081 /* Retrieve everything on txq */
4082 list_splice_init(&pring->txq, &txq);
4083 list_for_each_entry_safe(piocb, next_iocb,
4084 &pring->txcmplq, list)
4085 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4086 /* Retrieve everything on the txcmplq */
4087 list_splice_init(&pring->txcmplq, &txcmplq);
4088 pring->txq_cnt = 0;
4089 pring->txcmplq_cnt = 0;
4090 spin_unlock_irq(&phba->hbalock);
4092 /* Flush the txq */
4093 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4094 IOERR_SLI_DOWN);
4095 /* Flush the txcmpq */
4096 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4097 IOERR_SLI_DOWN);
4102 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4103 * @phba: Pointer to HBA context object.
4104 * @mask: Bit mask to be checked.
4106 * This function reads the host status register and compares
4107 * with the provided bit mask to check if HBA completed
4108 * the restart. This function will wait in a loop for the
4109 * HBA to complete restart. If the HBA does not restart within
4110 * 15 iterations, the function will reset the HBA again. The
4111 * function returns 1 when HBA fail to restart otherwise returns
4112 * zero.
4114 static int
4115 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4117 uint32_t status;
4118 int i = 0;
4119 int retval = 0;
4121 /* Read the HBA Host Status Register */
4122 if (lpfc_readl(phba->HSregaddr, &status))
4123 return 1;
4126 * Check status register every 100ms for 5 retries, then every
4127 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4128 * every 2.5 sec for 4.
4129 * Break our of the loop if errors occurred during init.
4131 while (((status & mask) != mask) &&
4132 !(status & HS_FFERM) &&
4133 i++ < 20) {
4135 if (i <= 5)
4136 msleep(10);
4137 else if (i <= 10)
4138 msleep(500);
4139 else
4140 msleep(2500);
4142 if (i == 15) {
4143 /* Do post */
4144 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4145 lpfc_sli_brdrestart(phba);
4147 /* Read the HBA Host Status Register */
4148 if (lpfc_readl(phba->HSregaddr, &status)) {
4149 retval = 1;
4150 break;
4154 /* Check to see if any errors occurred during init */
4155 if ((status & HS_FFERM) || (i >= 20)) {
4156 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4157 "2751 Adapter failed to restart, "
4158 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4159 status,
4160 readl(phba->MBslimaddr + 0xa8),
4161 readl(phba->MBslimaddr + 0xac));
4162 phba->link_state = LPFC_HBA_ERROR;
4163 retval = 1;
4166 return retval;
4170 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4171 * @phba: Pointer to HBA context object.
4172 * @mask: Bit mask to be checked.
4174 * This function checks the host status register to check if HBA is
4175 * ready. This function will wait in a loop for the HBA to be ready
4176 * If the HBA is not ready , the function will will reset the HBA PCI
4177 * function again. The function returns 1 when HBA fail to be ready
4178 * otherwise returns zero.
4180 static int
4181 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4183 uint32_t status;
4184 int retval = 0;
4186 /* Read the HBA Host Status Register */
4187 status = lpfc_sli4_post_status_check(phba);
4189 if (status) {
4190 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4191 lpfc_sli_brdrestart(phba);
4192 status = lpfc_sli4_post_status_check(phba);
4195 /* Check to see if any errors occurred during init */
4196 if (status) {
4197 phba->link_state = LPFC_HBA_ERROR;
4198 retval = 1;
4199 } else
4200 phba->sli4_hba.intr_enable = 0;
4202 return retval;
4206 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4207 * @phba: Pointer to HBA context object.
4208 * @mask: Bit mask to be checked.
4210 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4211 * from the API jump table function pointer from the lpfc_hba struct.
4214 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4216 return phba->lpfc_sli_brdready(phba, mask);
4219 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4222 * lpfc_reset_barrier - Make HBA ready for HBA reset
4223 * @phba: Pointer to HBA context object.
4225 * This function is called before resetting an HBA. This function is called
4226 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4228 void lpfc_reset_barrier(struct lpfc_hba *phba)
4230 uint32_t __iomem *resp_buf;
4231 uint32_t __iomem *mbox_buf;
4232 volatile uint32_t mbox;
4233 uint32_t hc_copy, ha_copy, resp_data;
4234 int i;
4235 uint8_t hdrtype;
4237 lockdep_assert_held(&phba->hbalock);
4239 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4240 if (hdrtype != 0x80 ||
4241 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4242 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4243 return;
4246 * Tell the other part of the chip to suspend temporarily all
4247 * its DMA activity.
4249 resp_buf = phba->MBslimaddr;
4251 /* Disable the error attention */
4252 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4253 return;
4254 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4255 readl(phba->HCregaddr); /* flush */
4256 phba->link_flag |= LS_IGNORE_ERATT;
4258 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4259 return;
4260 if (ha_copy & HA_ERATT) {
4261 /* Clear Chip error bit */
4262 writel(HA_ERATT, phba->HAregaddr);
4263 phba->pport->stopped = 1;
4266 mbox = 0;
4267 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4268 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4270 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4271 mbox_buf = phba->MBslimaddr;
4272 writel(mbox, mbox_buf);
4274 for (i = 0; i < 50; i++) {
4275 if (lpfc_readl((resp_buf + 1), &resp_data))
4276 return;
4277 if (resp_data != ~(BARRIER_TEST_PATTERN))
4278 mdelay(1);
4279 else
4280 break;
4282 resp_data = 0;
4283 if (lpfc_readl((resp_buf + 1), &resp_data))
4284 return;
4285 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4286 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4287 phba->pport->stopped)
4288 goto restore_hc;
4289 else
4290 goto clear_errat;
4293 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4294 resp_data = 0;
4295 for (i = 0; i < 500; i++) {
4296 if (lpfc_readl(resp_buf, &resp_data))
4297 return;
4298 if (resp_data != mbox)
4299 mdelay(1);
4300 else
4301 break;
4304 clear_errat:
4306 while (++i < 500) {
4307 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4308 return;
4309 if (!(ha_copy & HA_ERATT))
4310 mdelay(1);
4311 else
4312 break;
4315 if (readl(phba->HAregaddr) & HA_ERATT) {
4316 writel(HA_ERATT, phba->HAregaddr);
4317 phba->pport->stopped = 1;
4320 restore_hc:
4321 phba->link_flag &= ~LS_IGNORE_ERATT;
4322 writel(hc_copy, phba->HCregaddr);
4323 readl(phba->HCregaddr); /* flush */
4327 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4328 * @phba: Pointer to HBA context object.
4330 * This function issues a kill_board mailbox command and waits for
4331 * the error attention interrupt. This function is called for stopping
4332 * the firmware processing. The caller is not required to hold any
4333 * locks. This function calls lpfc_hba_down_post function to free
4334 * any pending commands after the kill. The function will return 1 when it
4335 * fails to kill the board else will return 0.
4338 lpfc_sli_brdkill(struct lpfc_hba *phba)
4340 struct lpfc_sli *psli;
4341 LPFC_MBOXQ_t *pmb;
4342 uint32_t status;
4343 uint32_t ha_copy;
4344 int retval;
4345 int i = 0;
4347 psli = &phba->sli;
4349 /* Kill HBA */
4350 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4351 "0329 Kill HBA Data: x%x x%x\n",
4352 phba->pport->port_state, psli->sli_flag);
4354 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4355 if (!pmb)
4356 return 1;
4358 /* Disable the error attention */
4359 spin_lock_irq(&phba->hbalock);
4360 if (lpfc_readl(phba->HCregaddr, &status)) {
4361 spin_unlock_irq(&phba->hbalock);
4362 mempool_free(pmb, phba->mbox_mem_pool);
4363 return 1;
4365 status &= ~HC_ERINT_ENA;
4366 writel(status, phba->HCregaddr);
4367 readl(phba->HCregaddr); /* flush */
4368 phba->link_flag |= LS_IGNORE_ERATT;
4369 spin_unlock_irq(&phba->hbalock);
4371 lpfc_kill_board(phba, pmb);
4372 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4373 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4375 if (retval != MBX_SUCCESS) {
4376 if (retval != MBX_BUSY)
4377 mempool_free(pmb, phba->mbox_mem_pool);
4378 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4379 "2752 KILL_BOARD command failed retval %d\n",
4380 retval);
4381 spin_lock_irq(&phba->hbalock);
4382 phba->link_flag &= ~LS_IGNORE_ERATT;
4383 spin_unlock_irq(&phba->hbalock);
4384 return 1;
4387 spin_lock_irq(&phba->hbalock);
4388 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4389 spin_unlock_irq(&phba->hbalock);
4391 mempool_free(pmb, phba->mbox_mem_pool);
4393 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4394 * attention every 100ms for 3 seconds. If we don't get ERATT after
4395 * 3 seconds we still set HBA_ERROR state because the status of the
4396 * board is now undefined.
4398 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4399 return 1;
4400 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4401 mdelay(100);
4402 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4403 return 1;
4406 del_timer_sync(&psli->mbox_tmo);
4407 if (ha_copy & HA_ERATT) {
4408 writel(HA_ERATT, phba->HAregaddr);
4409 phba->pport->stopped = 1;
4411 spin_lock_irq(&phba->hbalock);
4412 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4413 psli->mbox_active = NULL;
4414 phba->link_flag &= ~LS_IGNORE_ERATT;
4415 spin_unlock_irq(&phba->hbalock);
4417 lpfc_hba_down_post(phba);
4418 phba->link_state = LPFC_HBA_ERROR;
4420 return ha_copy & HA_ERATT ? 0 : 1;
4424 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4425 * @phba: Pointer to HBA context object.
4427 * This function resets the HBA by writing HC_INITFF to the control
4428 * register. After the HBA resets, this function resets all the iocb ring
4429 * indices. This function disables PCI layer parity checking during
4430 * the reset.
4431 * This function returns 0 always.
4432 * The caller is not required to hold any locks.
4435 lpfc_sli_brdreset(struct lpfc_hba *phba)
4437 struct lpfc_sli *psli;
4438 struct lpfc_sli_ring *pring;
4439 uint16_t cfg_value;
4440 int i;
4442 psli = &phba->sli;
4444 /* Reset HBA */
4445 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4446 "0325 Reset HBA Data: x%x x%x\n",
4447 (phba->pport) ? phba->pport->port_state : 0,
4448 psli->sli_flag);
4450 /* perform board reset */
4451 phba->fc_eventTag = 0;
4452 phba->link_events = 0;
4453 if (phba->pport) {
4454 phba->pport->fc_myDID = 0;
4455 phba->pport->fc_prevDID = 0;
4458 /* Turn off parity checking and serr during the physical reset */
4459 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4460 return -EIO;
4462 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4463 (cfg_value &
4464 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4466 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4468 /* Now toggle INITFF bit in the Host Control Register */
4469 writel(HC_INITFF, phba->HCregaddr);
4470 mdelay(1);
4471 readl(phba->HCregaddr); /* flush */
4472 writel(0, phba->HCregaddr);
4473 readl(phba->HCregaddr); /* flush */
4475 /* Restore PCI cmd register */
4476 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4478 /* Initialize relevant SLI info */
4479 for (i = 0; i < psli->num_rings; i++) {
4480 pring = &psli->sli3_ring[i];
4481 pring->flag = 0;
4482 pring->sli.sli3.rspidx = 0;
4483 pring->sli.sli3.next_cmdidx = 0;
4484 pring->sli.sli3.local_getidx = 0;
4485 pring->sli.sli3.cmdidx = 0;
4486 pring->missbufcnt = 0;
4489 phba->link_state = LPFC_WARM_START;
4490 return 0;
4494 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4495 * @phba: Pointer to HBA context object.
4497 * This function resets a SLI4 HBA. This function disables PCI layer parity
4498 * checking during resets the device. The caller is not required to hold
4499 * any locks.
4501 * This function returns 0 on success else returns negative error code.
4504 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4506 struct lpfc_sli *psli = &phba->sli;
4507 uint16_t cfg_value;
4508 int rc = 0;
4510 /* Reset HBA */
4511 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4512 "0295 Reset HBA Data: x%x x%x x%x\n",
4513 phba->pport->port_state, psli->sli_flag,
4514 phba->hba_flag);
4516 /* perform board reset */
4517 phba->fc_eventTag = 0;
4518 phba->link_events = 0;
4519 phba->pport->fc_myDID = 0;
4520 phba->pport->fc_prevDID = 0;
4522 spin_lock_irq(&phba->hbalock);
4523 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4524 phba->fcf.fcf_flag = 0;
4525 spin_unlock_irq(&phba->hbalock);
4527 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4528 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4529 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4530 return rc;
4533 /* Now physically reset the device */
4534 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4535 "0389 Performing PCI function reset!\n");
4537 /* Turn off parity checking and serr during the physical reset */
4538 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4539 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4540 "3205 PCI read Config failed\n");
4541 return -EIO;
4544 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4545 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4547 /* Perform FCoE PCI function reset before freeing queue memory */
4548 rc = lpfc_pci_function_reset(phba);
4550 /* Restore PCI cmd register */
4551 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4553 return rc;
4557 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4558 * @phba: Pointer to HBA context object.
4560 * This function is called in the SLI initialization code path to
4561 * restart the HBA. The caller is not required to hold any lock.
4562 * This function writes MBX_RESTART mailbox command to the SLIM and
4563 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4564 * function to free any pending commands. The function enables
4565 * POST only during the first initialization. The function returns zero.
4566 * The function does not guarantee completion of MBX_RESTART mailbox
4567 * command before the return of this function.
4569 static int
4570 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4572 MAILBOX_t *mb;
4573 struct lpfc_sli *psli;
4574 volatile uint32_t word0;
4575 void __iomem *to_slim;
4576 uint32_t hba_aer_enabled;
4578 spin_lock_irq(&phba->hbalock);
4580 /* Take PCIe device Advanced Error Reporting (AER) state */
4581 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4583 psli = &phba->sli;
4585 /* Restart HBA */
4586 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4587 "0337 Restart HBA Data: x%x x%x\n",
4588 (phba->pport) ? phba->pport->port_state : 0,
4589 psli->sli_flag);
4591 word0 = 0;
4592 mb = (MAILBOX_t *) &word0;
4593 mb->mbxCommand = MBX_RESTART;
4594 mb->mbxHc = 1;
4596 lpfc_reset_barrier(phba);
4598 to_slim = phba->MBslimaddr;
4599 writel(*(uint32_t *) mb, to_slim);
4600 readl(to_slim); /* flush */
4602 /* Only skip post after fc_ffinit is completed */
4603 if (phba->pport && phba->pport->port_state)
4604 word0 = 1; /* This is really setting up word1 */
4605 else
4606 word0 = 0; /* This is really setting up word1 */
4607 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4608 writel(*(uint32_t *) mb, to_slim);
4609 readl(to_slim); /* flush */
4611 lpfc_sli_brdreset(phba);
4612 if (phba->pport)
4613 phba->pport->stopped = 0;
4614 phba->link_state = LPFC_INIT_START;
4615 phba->hba_flag = 0;
4616 spin_unlock_irq(&phba->hbalock);
4618 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4619 psli->stats_start = ktime_get_seconds();
4621 /* Give the INITFF and Post time to settle. */
4622 mdelay(100);
4624 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4625 if (hba_aer_enabled)
4626 pci_disable_pcie_error_reporting(phba->pcidev);
4628 lpfc_hba_down_post(phba);
4630 return 0;
4634 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4635 * @phba: Pointer to HBA context object.
4637 * This function is called in the SLI initialization code path to restart
4638 * a SLI4 HBA. The caller is not required to hold any lock.
4639 * At the end of the function, it calls lpfc_hba_down_post function to
4640 * free any pending commands.
4642 static int
4643 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4645 struct lpfc_sli *psli = &phba->sli;
4646 uint32_t hba_aer_enabled;
4647 int rc;
4649 /* Restart HBA */
4650 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4651 "0296 Restart HBA Data: x%x x%x\n",
4652 phba->pport->port_state, psli->sli_flag);
4654 /* Take PCIe device Advanced Error Reporting (AER) state */
4655 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4657 rc = lpfc_sli4_brdreset(phba);
4658 if (rc) {
4659 phba->link_state = LPFC_HBA_ERROR;
4660 goto hba_down_queue;
4663 spin_lock_irq(&phba->hbalock);
4664 phba->pport->stopped = 0;
4665 phba->link_state = LPFC_INIT_START;
4666 phba->hba_flag = 0;
4667 spin_unlock_irq(&phba->hbalock);
4669 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4670 psli->stats_start = ktime_get_seconds();
4672 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4673 if (hba_aer_enabled)
4674 pci_disable_pcie_error_reporting(phba->pcidev);
4676 hba_down_queue:
4677 lpfc_hba_down_post(phba);
4678 lpfc_sli4_queue_destroy(phba);
4680 return rc;
4684 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4685 * @phba: Pointer to HBA context object.
4687 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4688 * API jump table function pointer from the lpfc_hba struct.
4691 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4693 return phba->lpfc_sli_brdrestart(phba);
4697 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4698 * @phba: Pointer to HBA context object.
4700 * This function is called after a HBA restart to wait for successful
4701 * restart of the HBA. Successful restart of the HBA is indicated by
4702 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4703 * iteration, the function will restart the HBA again. The function returns
4704 * zero if HBA successfully restarted else returns negative error code.
4707 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4709 uint32_t status, i = 0;
4711 /* Read the HBA Host Status Register */
4712 if (lpfc_readl(phba->HSregaddr, &status))
4713 return -EIO;
4715 /* Check status register to see what current state is */
4716 i = 0;
4717 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4719 /* Check every 10ms for 10 retries, then every 100ms for 90
4720 * retries, then every 1 sec for 50 retires for a total of
4721 * ~60 seconds before reset the board again and check every
4722 * 1 sec for 50 retries. The up to 60 seconds before the
4723 * board ready is required by the Falcon FIPS zeroization
4724 * complete, and any reset the board in between shall cause
4725 * restart of zeroization, further delay the board ready.
4727 if (i++ >= 200) {
4728 /* Adapter failed to init, timeout, status reg
4729 <status> */
4730 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4731 "0436 Adapter failed to init, "
4732 "timeout, status reg x%x, "
4733 "FW Data: A8 x%x AC x%x\n", status,
4734 readl(phba->MBslimaddr + 0xa8),
4735 readl(phba->MBslimaddr + 0xac));
4736 phba->link_state = LPFC_HBA_ERROR;
4737 return -ETIMEDOUT;
4740 /* Check to see if any errors occurred during init */
4741 if (status & HS_FFERM) {
4742 /* ERROR: During chipset initialization */
4743 /* Adapter failed to init, chipset, status reg
4744 <status> */
4745 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4746 "0437 Adapter failed to init, "
4747 "chipset, status reg x%x, "
4748 "FW Data: A8 x%x AC x%x\n", status,
4749 readl(phba->MBslimaddr + 0xa8),
4750 readl(phba->MBslimaddr + 0xac));
4751 phba->link_state = LPFC_HBA_ERROR;
4752 return -EIO;
4755 if (i <= 10)
4756 msleep(10);
4757 else if (i <= 100)
4758 msleep(100);
4759 else
4760 msleep(1000);
4762 if (i == 150) {
4763 /* Do post */
4764 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4765 lpfc_sli_brdrestart(phba);
4767 /* Read the HBA Host Status Register */
4768 if (lpfc_readl(phba->HSregaddr, &status))
4769 return -EIO;
4772 /* Check to see if any errors occurred during init */
4773 if (status & HS_FFERM) {
4774 /* ERROR: During chipset initialization */
4775 /* Adapter failed to init, chipset, status reg <status> */
4776 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4777 "0438 Adapter failed to init, chipset, "
4778 "status reg x%x, "
4779 "FW Data: A8 x%x AC x%x\n", status,
4780 readl(phba->MBslimaddr + 0xa8),
4781 readl(phba->MBslimaddr + 0xac));
4782 phba->link_state = LPFC_HBA_ERROR;
4783 return -EIO;
4786 /* Clear all interrupt enable conditions */
4787 writel(0, phba->HCregaddr);
4788 readl(phba->HCregaddr); /* flush */
4790 /* setup host attn register */
4791 writel(0xffffffff, phba->HAregaddr);
4792 readl(phba->HAregaddr); /* flush */
4793 return 0;
4797 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4799 * This function calculates and returns the number of HBQs required to be
4800 * configured.
4803 lpfc_sli_hbq_count(void)
4805 return ARRAY_SIZE(lpfc_hbq_defs);
4809 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4811 * This function adds the number of hbq entries in every HBQ to get
4812 * the total number of hbq entries required for the HBA and returns
4813 * the total count.
4815 static int
4816 lpfc_sli_hbq_entry_count(void)
4818 int hbq_count = lpfc_sli_hbq_count();
4819 int count = 0;
4820 int i;
4822 for (i = 0; i < hbq_count; ++i)
4823 count += lpfc_hbq_defs[i]->entry_count;
4824 return count;
4828 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4830 * This function calculates amount of memory required for all hbq entries
4831 * to be configured and returns the total memory required.
4834 lpfc_sli_hbq_size(void)
4836 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4840 * lpfc_sli_hbq_setup - configure and initialize HBQs
4841 * @phba: Pointer to HBA context object.
4843 * This function is called during the SLI initialization to configure
4844 * all the HBQs and post buffers to the HBQ. The caller is not
4845 * required to hold any locks. This function will return zero if successful
4846 * else it will return negative error code.
4848 static int
4849 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4851 int hbq_count = lpfc_sli_hbq_count();
4852 LPFC_MBOXQ_t *pmb;
4853 MAILBOX_t *pmbox;
4854 uint32_t hbqno;
4855 uint32_t hbq_entry_index;
4857 /* Get a Mailbox buffer to setup mailbox
4858 * commands for HBA initialization
4860 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4862 if (!pmb)
4863 return -ENOMEM;
4865 pmbox = &pmb->u.mb;
4867 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4868 phba->link_state = LPFC_INIT_MBX_CMDS;
4869 phba->hbq_in_use = 1;
4871 hbq_entry_index = 0;
4872 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4873 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4874 phba->hbqs[hbqno].hbqPutIdx = 0;
4875 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4876 phba->hbqs[hbqno].entry_count =
4877 lpfc_hbq_defs[hbqno]->entry_count;
4878 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4879 hbq_entry_index, pmb);
4880 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4882 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4883 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4884 mbxStatus <status>, ring <num> */
4886 lpfc_printf_log(phba, KERN_ERR,
4887 LOG_SLI | LOG_VPORT,
4888 "1805 Adapter failed to init. "
4889 "Data: x%x x%x x%x\n",
4890 pmbox->mbxCommand,
4891 pmbox->mbxStatus, hbqno);
4893 phba->link_state = LPFC_HBA_ERROR;
4894 mempool_free(pmb, phba->mbox_mem_pool);
4895 return -ENXIO;
4898 phba->hbq_count = hbq_count;
4900 mempool_free(pmb, phba->mbox_mem_pool);
4902 /* Initially populate or replenish the HBQs */
4903 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4904 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4905 return 0;
4909 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4910 * @phba: Pointer to HBA context object.
4912 * This function is called during the SLI initialization to configure
4913 * all the HBQs and post buffers to the HBQ. The caller is not
4914 * required to hold any locks. This function will return zero if successful
4915 * else it will return negative error code.
4917 static int
4918 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4920 phba->hbq_in_use = 1;
4922 * Specific case when the MDS diagnostics is enabled and supported.
4923 * The receive buffer count is truncated to manage the incoming
4924 * traffic.
4926 if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
4927 phba->hbqs[LPFC_ELS_HBQ].entry_count =
4928 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
4929 else
4930 phba->hbqs[LPFC_ELS_HBQ].entry_count =
4931 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4932 phba->hbq_count = 1;
4933 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4934 /* Initially populate or replenish the HBQs */
4935 return 0;
4939 * lpfc_sli_config_port - Issue config port mailbox command
4940 * @phba: Pointer to HBA context object.
4941 * @sli_mode: sli mode - 2/3
4943 * This function is called by the sli initialization code path
4944 * to issue config_port mailbox command. This function restarts the
4945 * HBA firmware and issues a config_port mailbox command to configure
4946 * the SLI interface in the sli mode specified by sli_mode
4947 * variable. The caller is not required to hold any locks.
4948 * The function returns 0 if successful, else returns negative error
4949 * code.
4952 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4954 LPFC_MBOXQ_t *pmb;
4955 uint32_t resetcount = 0, rc = 0, done = 0;
4957 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4958 if (!pmb) {
4959 phba->link_state = LPFC_HBA_ERROR;
4960 return -ENOMEM;
4963 phba->sli_rev = sli_mode;
4964 while (resetcount < 2 && !done) {
4965 spin_lock_irq(&phba->hbalock);
4966 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4967 spin_unlock_irq(&phba->hbalock);
4968 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4969 lpfc_sli_brdrestart(phba);
4970 rc = lpfc_sli_chipset_init(phba);
4971 if (rc)
4972 break;
4974 spin_lock_irq(&phba->hbalock);
4975 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4976 spin_unlock_irq(&phba->hbalock);
4977 resetcount++;
4979 /* Call pre CONFIG_PORT mailbox command initialization. A
4980 * value of 0 means the call was successful. Any other
4981 * nonzero value is a failure, but if ERESTART is returned,
4982 * the driver may reset the HBA and try again.
4984 rc = lpfc_config_port_prep(phba);
4985 if (rc == -ERESTART) {
4986 phba->link_state = LPFC_LINK_UNKNOWN;
4987 continue;
4988 } else if (rc)
4989 break;
4991 phba->link_state = LPFC_INIT_MBX_CMDS;
4992 lpfc_config_port(phba, pmb);
4993 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4994 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4995 LPFC_SLI3_HBQ_ENABLED |
4996 LPFC_SLI3_CRP_ENABLED |
4997 LPFC_SLI3_DSS_ENABLED);
4998 if (rc != MBX_SUCCESS) {
4999 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5000 "0442 Adapter failed to init, mbxCmd x%x "
5001 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5002 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5003 spin_lock_irq(&phba->hbalock);
5004 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5005 spin_unlock_irq(&phba->hbalock);
5006 rc = -ENXIO;
5007 } else {
5008 /* Allow asynchronous mailbox command to go through */
5009 spin_lock_irq(&phba->hbalock);
5010 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5011 spin_unlock_irq(&phba->hbalock);
5012 done = 1;
5014 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5015 (pmb->u.mb.un.varCfgPort.gasabt == 0))
5016 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5017 "3110 Port did not grant ASABT\n");
5020 if (!done) {
5021 rc = -EINVAL;
5022 goto do_prep_failed;
5024 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5025 if (!pmb->u.mb.un.varCfgPort.cMA) {
5026 rc = -ENXIO;
5027 goto do_prep_failed;
5029 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5030 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5031 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5032 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5033 phba->max_vpi : phba->max_vports;
5035 } else
5036 phba->max_vpi = 0;
5037 phba->fips_level = 0;
5038 phba->fips_spec_rev = 0;
5039 if (pmb->u.mb.un.varCfgPort.gdss) {
5040 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5041 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5042 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5043 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5044 "2850 Security Crypto Active. FIPS x%d "
5045 "(Spec Rev: x%d)",
5046 phba->fips_level, phba->fips_spec_rev);
5048 if (pmb->u.mb.un.varCfgPort.sec_err) {
5049 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5050 "2856 Config Port Security Crypto "
5051 "Error: x%x ",
5052 pmb->u.mb.un.varCfgPort.sec_err);
5054 if (pmb->u.mb.un.varCfgPort.gerbm)
5055 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5056 if (pmb->u.mb.un.varCfgPort.gcrp)
5057 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5059 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5060 phba->port_gp = phba->mbox->us.s3_pgp.port;
5062 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5063 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5064 phba->cfg_enable_bg = 0;
5065 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5066 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5067 "0443 Adapter did not grant "
5068 "BlockGuard\n");
5071 } else {
5072 phba->hbq_get = NULL;
5073 phba->port_gp = phba->mbox->us.s2.port;
5074 phba->max_vpi = 0;
5076 do_prep_failed:
5077 mempool_free(pmb, phba->mbox_mem_pool);
5078 return rc;
5083 * lpfc_sli_hba_setup - SLI initialization function
5084 * @phba: Pointer to HBA context object.
5086 * This function is the main SLI initialization function. This function
5087 * is called by the HBA initialization code, HBA reset code and HBA
5088 * error attention handler code. Caller is not required to hold any
5089 * locks. This function issues config_port mailbox command to configure
5090 * the SLI, setup iocb rings and HBQ rings. In the end the function
5091 * calls the config_port_post function to issue init_link mailbox
5092 * command and to start the discovery. The function will return zero
5093 * if successful, else it will return negative error code.
5096 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5098 uint32_t rc;
5099 int mode = 3, i;
5100 int longs;
5102 switch (phba->cfg_sli_mode) {
5103 case 2:
5104 if (phba->cfg_enable_npiv) {
5105 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5106 "1824 NPIV enabled: Override sli_mode "
5107 "parameter (%d) to auto (0).\n",
5108 phba->cfg_sli_mode);
5109 break;
5111 mode = 2;
5112 break;
5113 case 0:
5114 case 3:
5115 break;
5116 default:
5117 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5118 "1819 Unrecognized sli_mode parameter: %d.\n",
5119 phba->cfg_sli_mode);
5121 break;
5123 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5125 rc = lpfc_sli_config_port(phba, mode);
5127 if (rc && phba->cfg_sli_mode == 3)
5128 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5129 "1820 Unable to select SLI-3. "
5130 "Not supported by adapter.\n");
5131 if (rc && mode != 2)
5132 rc = lpfc_sli_config_port(phba, 2);
5133 else if (rc && mode == 2)
5134 rc = lpfc_sli_config_port(phba, 3);
5135 if (rc)
5136 goto lpfc_sli_hba_setup_error;
5138 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
5139 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5140 rc = pci_enable_pcie_error_reporting(phba->pcidev);
5141 if (!rc) {
5142 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5143 "2709 This device supports "
5144 "Advanced Error Reporting (AER)\n");
5145 spin_lock_irq(&phba->hbalock);
5146 phba->hba_flag |= HBA_AER_ENABLED;
5147 spin_unlock_irq(&phba->hbalock);
5148 } else {
5149 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5150 "2708 This device does not support "
5151 "Advanced Error Reporting (AER): %d\n",
5152 rc);
5153 phba->cfg_aer_support = 0;
5157 if (phba->sli_rev == 3) {
5158 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5159 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5160 } else {
5161 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5162 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5163 phba->sli3_options = 0;
5166 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5167 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5168 phba->sli_rev, phba->max_vpi);
5169 rc = lpfc_sli_ring_map(phba);
5171 if (rc)
5172 goto lpfc_sli_hba_setup_error;
5174 /* Initialize VPIs. */
5175 if (phba->sli_rev == LPFC_SLI_REV3) {
5177 * The VPI bitmask and physical ID array are allocated
5178 * and initialized once only - at driver load. A port
5179 * reset doesn't need to reinitialize this memory.
5181 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5182 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5183 phba->vpi_bmask = kcalloc(longs,
5184 sizeof(unsigned long),
5185 GFP_KERNEL);
5186 if (!phba->vpi_bmask) {
5187 rc = -ENOMEM;
5188 goto lpfc_sli_hba_setup_error;
5191 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5192 sizeof(uint16_t),
5193 GFP_KERNEL);
5194 if (!phba->vpi_ids) {
5195 kfree(phba->vpi_bmask);
5196 rc = -ENOMEM;
5197 goto lpfc_sli_hba_setup_error;
5199 for (i = 0; i < phba->max_vpi; i++)
5200 phba->vpi_ids[i] = i;
5204 /* Init HBQs */
5205 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5206 rc = lpfc_sli_hbq_setup(phba);
5207 if (rc)
5208 goto lpfc_sli_hba_setup_error;
5210 spin_lock_irq(&phba->hbalock);
5211 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5212 spin_unlock_irq(&phba->hbalock);
5214 rc = lpfc_config_port_post(phba);
5215 if (rc)
5216 goto lpfc_sli_hba_setup_error;
5218 return rc;
5220 lpfc_sli_hba_setup_error:
5221 phba->link_state = LPFC_HBA_ERROR;
5222 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5223 "0445 Firmware initialization failed\n");
5224 return rc;
5228 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5229 * @phba: Pointer to HBA context object.
5230 * @mboxq: mailbox pointer.
5231 * This function issue a dump mailbox command to read config region
5232 * 23 and parse the records in the region and populate driver
5233 * data structure.
5235 static int
5236 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5238 LPFC_MBOXQ_t *mboxq;
5239 struct lpfc_dmabuf *mp;
5240 struct lpfc_mqe *mqe;
5241 uint32_t data_length;
5242 int rc;
5244 /* Program the default value of vlan_id and fc_map */
5245 phba->valid_vlan = 0;
5246 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5247 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5248 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5250 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5251 if (!mboxq)
5252 return -ENOMEM;
5254 mqe = &mboxq->u.mqe;
5255 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5256 rc = -ENOMEM;
5257 goto out_free_mboxq;
5260 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5261 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5263 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5264 "(%d):2571 Mailbox cmd x%x Status x%x "
5265 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5266 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5267 "CQ: x%x x%x x%x x%x\n",
5268 mboxq->vport ? mboxq->vport->vpi : 0,
5269 bf_get(lpfc_mqe_command, mqe),
5270 bf_get(lpfc_mqe_status, mqe),
5271 mqe->un.mb_words[0], mqe->un.mb_words[1],
5272 mqe->un.mb_words[2], mqe->un.mb_words[3],
5273 mqe->un.mb_words[4], mqe->un.mb_words[5],
5274 mqe->un.mb_words[6], mqe->un.mb_words[7],
5275 mqe->un.mb_words[8], mqe->un.mb_words[9],
5276 mqe->un.mb_words[10], mqe->un.mb_words[11],
5277 mqe->un.mb_words[12], mqe->un.mb_words[13],
5278 mqe->un.mb_words[14], mqe->un.mb_words[15],
5279 mqe->un.mb_words[16], mqe->un.mb_words[50],
5280 mboxq->mcqe.word0,
5281 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5282 mboxq->mcqe.trailer);
5284 if (rc) {
5285 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5286 kfree(mp);
5287 rc = -EIO;
5288 goto out_free_mboxq;
5290 data_length = mqe->un.mb_words[5];
5291 if (data_length > DMP_RGN23_SIZE) {
5292 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5293 kfree(mp);
5294 rc = -EIO;
5295 goto out_free_mboxq;
5298 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5299 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5300 kfree(mp);
5301 rc = 0;
5303 out_free_mboxq:
5304 mempool_free(mboxq, phba->mbox_mem_pool);
5305 return rc;
5309 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5310 * @phba: pointer to lpfc hba data structure.
5311 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5312 * @vpd: pointer to the memory to hold resulting port vpd data.
5313 * @vpd_size: On input, the number of bytes allocated to @vpd.
5314 * On output, the number of data bytes in @vpd.
5316 * This routine executes a READ_REV SLI4 mailbox command. In
5317 * addition, this routine gets the port vpd data.
5319 * Return codes
5320 * 0 - successful
5321 * -ENOMEM - could not allocated memory.
5323 static int
5324 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5325 uint8_t *vpd, uint32_t *vpd_size)
5327 int rc = 0;
5328 uint32_t dma_size;
5329 struct lpfc_dmabuf *dmabuf;
5330 struct lpfc_mqe *mqe;
5332 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5333 if (!dmabuf)
5334 return -ENOMEM;
5337 * Get a DMA buffer for the vpd data resulting from the READ_REV
5338 * mailbox command.
5340 dma_size = *vpd_size;
5341 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5342 &dmabuf->phys, GFP_KERNEL);
5343 if (!dmabuf->virt) {
5344 kfree(dmabuf);
5345 return -ENOMEM;
5349 * The SLI4 implementation of READ_REV conflicts at word1,
5350 * bits 31:16 and SLI4 adds vpd functionality not present
5351 * in SLI3. This code corrects the conflicts.
5353 lpfc_read_rev(phba, mboxq);
5354 mqe = &mboxq->u.mqe;
5355 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5356 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5357 mqe->un.read_rev.word1 &= 0x0000FFFF;
5358 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5359 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5361 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5362 if (rc) {
5363 dma_free_coherent(&phba->pcidev->dev, dma_size,
5364 dmabuf->virt, dmabuf->phys);
5365 kfree(dmabuf);
5366 return -EIO;
5370 * The available vpd length cannot be bigger than the
5371 * DMA buffer passed to the port. Catch the less than
5372 * case and update the caller's size.
5374 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5375 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5377 memcpy(vpd, dmabuf->virt, *vpd_size);
5379 dma_free_coherent(&phba->pcidev->dev, dma_size,
5380 dmabuf->virt, dmabuf->phys);
5381 kfree(dmabuf);
5382 return 0;
5386 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5387 * @phba: pointer to lpfc hba data structure.
5389 * This routine retrieves SLI4 device physical port name this PCI function
5390 * is attached to.
5392 * Return codes
5393 * 0 - successful
5394 * otherwise - failed to retrieve controller attributes
5396 static int
5397 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5399 LPFC_MBOXQ_t *mboxq;
5400 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5401 struct lpfc_controller_attribute *cntl_attr;
5402 void *virtaddr = NULL;
5403 uint32_t alloclen, reqlen;
5404 uint32_t shdr_status, shdr_add_status;
5405 union lpfc_sli4_cfg_shdr *shdr;
5406 int rc;
5408 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5409 if (!mboxq)
5410 return -ENOMEM;
5412 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5413 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5414 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5415 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5416 LPFC_SLI4_MBX_NEMBED);
5418 if (alloclen < reqlen) {
5419 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5420 "3084 Allocated DMA memory size (%d) is "
5421 "less than the requested DMA memory size "
5422 "(%d)\n", alloclen, reqlen);
5423 rc = -ENOMEM;
5424 goto out_free_mboxq;
5426 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5427 virtaddr = mboxq->sge_array->addr[0];
5428 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5429 shdr = &mbx_cntl_attr->cfg_shdr;
5430 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5431 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5432 if (shdr_status || shdr_add_status || rc) {
5433 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5434 "3085 Mailbox x%x (x%x/x%x) failed, "
5435 "rc:x%x, status:x%x, add_status:x%x\n",
5436 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5437 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5438 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5439 rc, shdr_status, shdr_add_status);
5440 rc = -ENXIO;
5441 goto out_free_mboxq;
5444 cntl_attr = &mbx_cntl_attr->cntl_attr;
5445 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5446 phba->sli4_hba.lnk_info.lnk_tp =
5447 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5448 phba->sli4_hba.lnk_info.lnk_no =
5449 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5451 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5452 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5453 sizeof(phba->BIOSVersion));
5455 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5456 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5457 phba->sli4_hba.lnk_info.lnk_tp,
5458 phba->sli4_hba.lnk_info.lnk_no,
5459 phba->BIOSVersion);
5460 out_free_mboxq:
5461 if (rc != MBX_TIMEOUT) {
5462 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5463 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5464 else
5465 mempool_free(mboxq, phba->mbox_mem_pool);
5467 return rc;
5471 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5472 * @phba: pointer to lpfc hba data structure.
5474 * This routine retrieves SLI4 device physical port name this PCI function
5475 * is attached to.
5477 * Return codes
5478 * 0 - successful
5479 * otherwise - failed to retrieve physical port name
5481 static int
5482 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5484 LPFC_MBOXQ_t *mboxq;
5485 struct lpfc_mbx_get_port_name *get_port_name;
5486 uint32_t shdr_status, shdr_add_status;
5487 union lpfc_sli4_cfg_shdr *shdr;
5488 char cport_name = 0;
5489 int rc;
5491 /* We assume nothing at this point */
5492 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5493 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5495 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5496 if (!mboxq)
5497 return -ENOMEM;
5498 /* obtain link type and link number via READ_CONFIG */
5499 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5500 lpfc_sli4_read_config(phba);
5501 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5502 goto retrieve_ppname;
5504 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5505 rc = lpfc_sli4_get_ctl_attr(phba);
5506 if (rc)
5507 goto out_free_mboxq;
5509 retrieve_ppname:
5510 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5511 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5512 sizeof(struct lpfc_mbx_get_port_name) -
5513 sizeof(struct lpfc_sli4_cfg_mhdr),
5514 LPFC_SLI4_MBX_EMBED);
5515 get_port_name = &mboxq->u.mqe.un.get_port_name;
5516 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5517 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5518 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5519 phba->sli4_hba.lnk_info.lnk_tp);
5520 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5521 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5522 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5523 if (shdr_status || shdr_add_status || rc) {
5524 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5525 "3087 Mailbox x%x (x%x/x%x) failed: "
5526 "rc:x%x, status:x%x, add_status:x%x\n",
5527 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5528 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5529 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5530 rc, shdr_status, shdr_add_status);
5531 rc = -ENXIO;
5532 goto out_free_mboxq;
5534 switch (phba->sli4_hba.lnk_info.lnk_no) {
5535 case LPFC_LINK_NUMBER_0:
5536 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5537 &get_port_name->u.response);
5538 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5539 break;
5540 case LPFC_LINK_NUMBER_1:
5541 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5542 &get_port_name->u.response);
5543 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5544 break;
5545 case LPFC_LINK_NUMBER_2:
5546 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5547 &get_port_name->u.response);
5548 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5549 break;
5550 case LPFC_LINK_NUMBER_3:
5551 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5552 &get_port_name->u.response);
5553 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5554 break;
5555 default:
5556 break;
5559 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5560 phba->Port[0] = cport_name;
5561 phba->Port[1] = '\0';
5562 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5563 "3091 SLI get port name: %s\n", phba->Port);
5566 out_free_mboxq:
5567 if (rc != MBX_TIMEOUT) {
5568 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5569 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5570 else
5571 mempool_free(mboxq, phba->mbox_mem_pool);
5573 return rc;
5577 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5578 * @phba: pointer to lpfc hba data structure.
5580 * This routine is called to explicitly arm the SLI4 device's completion and
5581 * event queues
5583 static void
5584 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5586 int qidx;
5587 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5588 struct lpfc_sli4_hdw_queue *qp;
5589 struct lpfc_queue *eq;
5591 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5592 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5593 if (sli4_hba->nvmels_cq)
5594 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5595 LPFC_QUEUE_REARM);
5597 if (sli4_hba->hdwq) {
5598 /* Loop thru all Hardware Queues */
5599 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5600 qp = &sli4_hba->hdwq[qidx];
5601 /* ARM the corresponding CQ */
5602 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5603 LPFC_QUEUE_REARM);
5606 /* Loop thru all IRQ vectors */
5607 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5608 eq = sli4_hba->hba_eq_hdl[qidx].eq;
5609 /* ARM the corresponding EQ */
5610 sli4_hba->sli4_write_eq_db(phba, eq,
5611 0, LPFC_QUEUE_REARM);
5615 if (phba->nvmet_support) {
5616 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5617 sli4_hba->sli4_write_cq_db(phba,
5618 sli4_hba->nvmet_cqset[qidx], 0,
5619 LPFC_QUEUE_REARM);
5625 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5626 * @phba: Pointer to HBA context object.
5627 * @type: The resource extent type.
5628 * @extnt_count: buffer to hold port available extent count.
5629 * @extnt_size: buffer to hold element count per extent.
5631 * This function calls the port and retrievs the number of available
5632 * extents and their size for a particular extent type.
5634 * Returns: 0 if successful. Nonzero otherwise.
5637 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5638 uint16_t *extnt_count, uint16_t *extnt_size)
5640 int rc = 0;
5641 uint32_t length;
5642 uint32_t mbox_tmo;
5643 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5644 LPFC_MBOXQ_t *mbox;
5646 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5647 if (!mbox)
5648 return -ENOMEM;
5650 /* Find out how many extents are available for this resource type */
5651 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5652 sizeof(struct lpfc_sli4_cfg_mhdr));
5653 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5654 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5655 length, LPFC_SLI4_MBX_EMBED);
5657 /* Send an extents count of 0 - the GET doesn't use it. */
5658 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5659 LPFC_SLI4_MBX_EMBED);
5660 if (unlikely(rc)) {
5661 rc = -EIO;
5662 goto err_exit;
5665 if (!phba->sli4_hba.intr_enable)
5666 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5667 else {
5668 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5669 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5671 if (unlikely(rc)) {
5672 rc = -EIO;
5673 goto err_exit;
5676 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5677 if (bf_get(lpfc_mbox_hdr_status,
5678 &rsrc_info->header.cfg_shdr.response)) {
5679 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5680 "2930 Failed to get resource extents "
5681 "Status 0x%x Add'l Status 0x%x\n",
5682 bf_get(lpfc_mbox_hdr_status,
5683 &rsrc_info->header.cfg_shdr.response),
5684 bf_get(lpfc_mbox_hdr_add_status,
5685 &rsrc_info->header.cfg_shdr.response));
5686 rc = -EIO;
5687 goto err_exit;
5690 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5691 &rsrc_info->u.rsp);
5692 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5693 &rsrc_info->u.rsp);
5695 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5696 "3162 Retrieved extents type-%d from port: count:%d, "
5697 "size:%d\n", type, *extnt_count, *extnt_size);
5699 err_exit:
5700 mempool_free(mbox, phba->mbox_mem_pool);
5701 return rc;
5705 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5706 * @phba: Pointer to HBA context object.
5707 * @type: The extent type to check.
5709 * This function reads the current available extents from the port and checks
5710 * if the extent count or extent size has changed since the last access.
5711 * Callers use this routine post port reset to understand if there is a
5712 * extent reprovisioning requirement.
5714 * Returns:
5715 * -Error: error indicates problem.
5716 * 1: Extent count or size has changed.
5717 * 0: No changes.
5719 static int
5720 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5722 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5723 uint16_t size_diff, rsrc_ext_size;
5724 int rc = 0;
5725 struct lpfc_rsrc_blks *rsrc_entry;
5726 struct list_head *rsrc_blk_list = NULL;
5728 size_diff = 0;
5729 curr_ext_cnt = 0;
5730 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5731 &rsrc_ext_cnt,
5732 &rsrc_ext_size);
5733 if (unlikely(rc))
5734 return -EIO;
5736 switch (type) {
5737 case LPFC_RSC_TYPE_FCOE_RPI:
5738 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5739 break;
5740 case LPFC_RSC_TYPE_FCOE_VPI:
5741 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5742 break;
5743 case LPFC_RSC_TYPE_FCOE_XRI:
5744 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5745 break;
5746 case LPFC_RSC_TYPE_FCOE_VFI:
5747 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5748 break;
5749 default:
5750 break;
5753 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5754 curr_ext_cnt++;
5755 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5756 size_diff++;
5759 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5760 rc = 1;
5762 return rc;
5766 * lpfc_sli4_cfg_post_extnts -
5767 * @phba: Pointer to HBA context object.
5768 * @extnt_cnt - number of available extents.
5769 * @type - the extent type (rpi, xri, vfi, vpi).
5770 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5771 * @mbox - pointer to the caller's allocated mailbox structure.
5773 * This function executes the extents allocation request. It also
5774 * takes care of the amount of memory needed to allocate or get the
5775 * allocated extents. It is the caller's responsibility to evaluate
5776 * the response.
5778 * Returns:
5779 * -Error: Error value describes the condition found.
5780 * 0: if successful
5782 static int
5783 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5784 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5786 int rc = 0;
5787 uint32_t req_len;
5788 uint32_t emb_len;
5789 uint32_t alloc_len, mbox_tmo;
5791 /* Calculate the total requested length of the dma memory */
5792 req_len = extnt_cnt * sizeof(uint16_t);
5795 * Calculate the size of an embedded mailbox. The uint32_t
5796 * accounts for extents-specific word.
5798 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5799 sizeof(uint32_t);
5802 * Presume the allocation and response will fit into an embedded
5803 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5805 *emb = LPFC_SLI4_MBX_EMBED;
5806 if (req_len > emb_len) {
5807 req_len = extnt_cnt * sizeof(uint16_t) +
5808 sizeof(union lpfc_sli4_cfg_shdr) +
5809 sizeof(uint32_t);
5810 *emb = LPFC_SLI4_MBX_NEMBED;
5813 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5814 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5815 req_len, *emb);
5816 if (alloc_len < req_len) {
5817 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5818 "2982 Allocated DMA memory size (x%x) is "
5819 "less than the requested DMA memory "
5820 "size (x%x)\n", alloc_len, req_len);
5821 return -ENOMEM;
5823 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5824 if (unlikely(rc))
5825 return -EIO;
5827 if (!phba->sli4_hba.intr_enable)
5828 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5829 else {
5830 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5831 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5834 if (unlikely(rc))
5835 rc = -EIO;
5836 return rc;
5840 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5841 * @phba: Pointer to HBA context object.
5842 * @type: The resource extent type to allocate.
5844 * This function allocates the number of elements for the specified
5845 * resource type.
5847 static int
5848 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5850 bool emb = false;
5851 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5852 uint16_t rsrc_id, rsrc_start, j, k;
5853 uint16_t *ids;
5854 int i, rc;
5855 unsigned long longs;
5856 unsigned long *bmask;
5857 struct lpfc_rsrc_blks *rsrc_blks;
5858 LPFC_MBOXQ_t *mbox;
5859 uint32_t length;
5860 struct lpfc_id_range *id_array = NULL;
5861 void *virtaddr = NULL;
5862 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5863 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5864 struct list_head *ext_blk_list;
5866 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5867 &rsrc_cnt,
5868 &rsrc_size);
5869 if (unlikely(rc))
5870 return -EIO;
5872 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5873 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5874 "3009 No available Resource Extents "
5875 "for resource type 0x%x: Count: 0x%x, "
5876 "Size 0x%x\n", type, rsrc_cnt,
5877 rsrc_size);
5878 return -ENOMEM;
5881 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5882 "2903 Post resource extents type-0x%x: "
5883 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5885 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5886 if (!mbox)
5887 return -ENOMEM;
5889 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5890 if (unlikely(rc)) {
5891 rc = -EIO;
5892 goto err_exit;
5896 * Figure out where the response is located. Then get local pointers
5897 * to the response data. The port does not guarantee to respond to
5898 * all extents counts request so update the local variable with the
5899 * allocated count from the port.
5901 if (emb == LPFC_SLI4_MBX_EMBED) {
5902 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5903 id_array = &rsrc_ext->u.rsp.id[0];
5904 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5905 } else {
5906 virtaddr = mbox->sge_array->addr[0];
5907 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5908 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5909 id_array = &n_rsrc->id;
5912 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5913 rsrc_id_cnt = rsrc_cnt * rsrc_size;
5916 * Based on the resource size and count, correct the base and max
5917 * resource values.
5919 length = sizeof(struct lpfc_rsrc_blks);
5920 switch (type) {
5921 case LPFC_RSC_TYPE_FCOE_RPI:
5922 phba->sli4_hba.rpi_bmask = kcalloc(longs,
5923 sizeof(unsigned long),
5924 GFP_KERNEL);
5925 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5926 rc = -ENOMEM;
5927 goto err_exit;
5929 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5930 sizeof(uint16_t),
5931 GFP_KERNEL);
5932 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5933 kfree(phba->sli4_hba.rpi_bmask);
5934 rc = -ENOMEM;
5935 goto err_exit;
5939 * The next_rpi was initialized with the maximum available
5940 * count but the port may allocate a smaller number. Catch
5941 * that case and update the next_rpi.
5943 phba->sli4_hba.next_rpi = rsrc_id_cnt;
5945 /* Initialize local ptrs for common extent processing later. */
5946 bmask = phba->sli4_hba.rpi_bmask;
5947 ids = phba->sli4_hba.rpi_ids;
5948 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5949 break;
5950 case LPFC_RSC_TYPE_FCOE_VPI:
5951 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5952 GFP_KERNEL);
5953 if (unlikely(!phba->vpi_bmask)) {
5954 rc = -ENOMEM;
5955 goto err_exit;
5957 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5958 GFP_KERNEL);
5959 if (unlikely(!phba->vpi_ids)) {
5960 kfree(phba->vpi_bmask);
5961 rc = -ENOMEM;
5962 goto err_exit;
5965 /* Initialize local ptrs for common extent processing later. */
5966 bmask = phba->vpi_bmask;
5967 ids = phba->vpi_ids;
5968 ext_blk_list = &phba->lpfc_vpi_blk_list;
5969 break;
5970 case LPFC_RSC_TYPE_FCOE_XRI:
5971 phba->sli4_hba.xri_bmask = kcalloc(longs,
5972 sizeof(unsigned long),
5973 GFP_KERNEL);
5974 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5975 rc = -ENOMEM;
5976 goto err_exit;
5978 phba->sli4_hba.max_cfg_param.xri_used = 0;
5979 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5980 sizeof(uint16_t),
5981 GFP_KERNEL);
5982 if (unlikely(!phba->sli4_hba.xri_ids)) {
5983 kfree(phba->sli4_hba.xri_bmask);
5984 rc = -ENOMEM;
5985 goto err_exit;
5988 /* Initialize local ptrs for common extent processing later. */
5989 bmask = phba->sli4_hba.xri_bmask;
5990 ids = phba->sli4_hba.xri_ids;
5991 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5992 break;
5993 case LPFC_RSC_TYPE_FCOE_VFI:
5994 phba->sli4_hba.vfi_bmask = kcalloc(longs,
5995 sizeof(unsigned long),
5996 GFP_KERNEL);
5997 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5998 rc = -ENOMEM;
5999 goto err_exit;
6001 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6002 sizeof(uint16_t),
6003 GFP_KERNEL);
6004 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6005 kfree(phba->sli4_hba.vfi_bmask);
6006 rc = -ENOMEM;
6007 goto err_exit;
6010 /* Initialize local ptrs for common extent processing later. */
6011 bmask = phba->sli4_hba.vfi_bmask;
6012 ids = phba->sli4_hba.vfi_ids;
6013 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6014 break;
6015 default:
6016 /* Unsupported Opcode. Fail call. */
6017 id_array = NULL;
6018 bmask = NULL;
6019 ids = NULL;
6020 ext_blk_list = NULL;
6021 goto err_exit;
6025 * Complete initializing the extent configuration with the
6026 * allocated ids assigned to this function. The bitmask serves
6027 * as an index into the array and manages the available ids. The
6028 * array just stores the ids communicated to the port via the wqes.
6030 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6031 if ((i % 2) == 0)
6032 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6033 &id_array[k]);
6034 else
6035 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6036 &id_array[k]);
6038 rsrc_blks = kzalloc(length, GFP_KERNEL);
6039 if (unlikely(!rsrc_blks)) {
6040 rc = -ENOMEM;
6041 kfree(bmask);
6042 kfree(ids);
6043 goto err_exit;
6045 rsrc_blks->rsrc_start = rsrc_id;
6046 rsrc_blks->rsrc_size = rsrc_size;
6047 list_add_tail(&rsrc_blks->list, ext_blk_list);
6048 rsrc_start = rsrc_id;
6049 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6050 phba->sli4_hba.io_xri_start = rsrc_start +
6051 lpfc_sli4_get_iocb_cnt(phba);
6054 while (rsrc_id < (rsrc_start + rsrc_size)) {
6055 ids[j] = rsrc_id;
6056 rsrc_id++;
6057 j++;
6059 /* Entire word processed. Get next word.*/
6060 if ((i % 2) == 1)
6061 k++;
6063 err_exit:
6064 lpfc_sli4_mbox_cmd_free(phba, mbox);
6065 return rc;
6071 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6072 * @phba: Pointer to HBA context object.
6073 * @type: the extent's type.
6075 * This function deallocates all extents of a particular resource type.
6076 * SLI4 does not allow for deallocating a particular extent range. It
6077 * is the caller's responsibility to release all kernel memory resources.
6079 static int
6080 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6082 int rc;
6083 uint32_t length, mbox_tmo = 0;
6084 LPFC_MBOXQ_t *mbox;
6085 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6086 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6088 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6089 if (!mbox)
6090 return -ENOMEM;
6093 * This function sends an embedded mailbox because it only sends the
6094 * the resource type. All extents of this type are released by the
6095 * port.
6097 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6098 sizeof(struct lpfc_sli4_cfg_mhdr));
6099 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6100 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6101 length, LPFC_SLI4_MBX_EMBED);
6103 /* Send an extents count of 0 - the dealloc doesn't use it. */
6104 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6105 LPFC_SLI4_MBX_EMBED);
6106 if (unlikely(rc)) {
6107 rc = -EIO;
6108 goto out_free_mbox;
6110 if (!phba->sli4_hba.intr_enable)
6111 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6112 else {
6113 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6114 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6116 if (unlikely(rc)) {
6117 rc = -EIO;
6118 goto out_free_mbox;
6121 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6122 if (bf_get(lpfc_mbox_hdr_status,
6123 &dealloc_rsrc->header.cfg_shdr.response)) {
6124 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6125 "2919 Failed to release resource extents "
6126 "for type %d - Status 0x%x Add'l Status 0x%x. "
6127 "Resource memory not released.\n",
6128 type,
6129 bf_get(lpfc_mbox_hdr_status,
6130 &dealloc_rsrc->header.cfg_shdr.response),
6131 bf_get(lpfc_mbox_hdr_add_status,
6132 &dealloc_rsrc->header.cfg_shdr.response));
6133 rc = -EIO;
6134 goto out_free_mbox;
6137 /* Release kernel memory resources for the specific type. */
6138 switch (type) {
6139 case LPFC_RSC_TYPE_FCOE_VPI:
6140 kfree(phba->vpi_bmask);
6141 kfree(phba->vpi_ids);
6142 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6143 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6144 &phba->lpfc_vpi_blk_list, list) {
6145 list_del_init(&rsrc_blk->list);
6146 kfree(rsrc_blk);
6148 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6149 break;
6150 case LPFC_RSC_TYPE_FCOE_XRI:
6151 kfree(phba->sli4_hba.xri_bmask);
6152 kfree(phba->sli4_hba.xri_ids);
6153 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6154 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6155 list_del_init(&rsrc_blk->list);
6156 kfree(rsrc_blk);
6158 break;
6159 case LPFC_RSC_TYPE_FCOE_VFI:
6160 kfree(phba->sli4_hba.vfi_bmask);
6161 kfree(phba->sli4_hba.vfi_ids);
6162 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6163 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6164 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6165 list_del_init(&rsrc_blk->list);
6166 kfree(rsrc_blk);
6168 break;
6169 case LPFC_RSC_TYPE_FCOE_RPI:
6170 /* RPI bitmask and physical id array are cleaned up earlier. */
6171 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6172 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6173 list_del_init(&rsrc_blk->list);
6174 kfree(rsrc_blk);
6176 break;
6177 default:
6178 break;
6181 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6183 out_free_mbox:
6184 mempool_free(mbox, phba->mbox_mem_pool);
6185 return rc;
6188 static void
6189 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6190 uint32_t feature)
6192 uint32_t len;
6194 len = sizeof(struct lpfc_mbx_set_feature) -
6195 sizeof(struct lpfc_sli4_cfg_mhdr);
6196 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6197 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6198 LPFC_SLI4_MBX_EMBED);
6200 switch (feature) {
6201 case LPFC_SET_UE_RECOVERY:
6202 bf_set(lpfc_mbx_set_feature_UER,
6203 &mbox->u.mqe.un.set_feature, 1);
6204 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6205 mbox->u.mqe.un.set_feature.param_len = 8;
6206 break;
6207 case LPFC_SET_MDS_DIAGS:
6208 bf_set(lpfc_mbx_set_feature_mds,
6209 &mbox->u.mqe.un.set_feature, 1);
6210 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6211 &mbox->u.mqe.un.set_feature, 1);
6212 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6213 mbox->u.mqe.un.set_feature.param_len = 8;
6214 break;
6215 case LPFC_SET_DUAL_DUMP:
6216 bf_set(lpfc_mbx_set_feature_dd,
6217 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6218 bf_set(lpfc_mbx_set_feature_ddquery,
6219 &mbox->u.mqe.un.set_feature, 0);
6220 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6221 mbox->u.mqe.un.set_feature.param_len = 4;
6222 break;
6225 return;
6229 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6230 * @phba: Pointer to HBA context object.
6232 * Disable FW logging into host memory on the adapter. To
6233 * be done before reading logs from the host memory.
6235 void
6236 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6238 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6240 spin_lock_irq(&phba->hbalock);
6241 ras_fwlog->state = INACTIVE;
6242 spin_unlock_irq(&phba->hbalock);
6244 /* Disable FW logging to host memory */
6245 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6246 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6248 /* Wait 10ms for firmware to stop using DMA buffer */
6249 usleep_range(10 * 1000, 20 * 1000);
6253 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6254 * @phba: Pointer to HBA context object.
6256 * This function is called to free memory allocated for RAS FW logging
6257 * support in the driver.
6259 void
6260 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6262 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6263 struct lpfc_dmabuf *dmabuf, *next;
6265 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6266 list_for_each_entry_safe(dmabuf, next,
6267 &ras_fwlog->fwlog_buff_list,
6268 list) {
6269 list_del(&dmabuf->list);
6270 dma_free_coherent(&phba->pcidev->dev,
6271 LPFC_RAS_MAX_ENTRY_SIZE,
6272 dmabuf->virt, dmabuf->phys);
6273 kfree(dmabuf);
6277 if (ras_fwlog->lwpd.virt) {
6278 dma_free_coherent(&phba->pcidev->dev,
6279 sizeof(uint32_t) * 2,
6280 ras_fwlog->lwpd.virt,
6281 ras_fwlog->lwpd.phys);
6282 ras_fwlog->lwpd.virt = NULL;
6285 spin_lock_irq(&phba->hbalock);
6286 ras_fwlog->state = INACTIVE;
6287 spin_unlock_irq(&phba->hbalock);
6291 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6292 * @phba: Pointer to HBA context object.
6293 * @fwlog_buff_count: Count of buffers to be created.
6295 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6296 * to update FW log is posted to the adapter.
6297 * Buffer count is calculated based on module param ras_fwlog_buffsize
6298 * Size of each buffer posted to FW is 64K.
6301 static int
6302 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6303 uint32_t fwlog_buff_count)
6305 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6306 struct lpfc_dmabuf *dmabuf;
6307 int rc = 0, i = 0;
6309 /* Initialize List */
6310 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6312 /* Allocate memory for the LWPD */
6313 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6314 sizeof(uint32_t) * 2,
6315 &ras_fwlog->lwpd.phys,
6316 GFP_KERNEL);
6317 if (!ras_fwlog->lwpd.virt) {
6318 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6319 "6185 LWPD Memory Alloc Failed\n");
6321 return -ENOMEM;
6324 ras_fwlog->fw_buffcount = fwlog_buff_count;
6325 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6326 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6327 GFP_KERNEL);
6328 if (!dmabuf) {
6329 rc = -ENOMEM;
6330 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6331 "6186 Memory Alloc failed FW logging");
6332 goto free_mem;
6335 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6336 LPFC_RAS_MAX_ENTRY_SIZE,
6337 &dmabuf->phys, GFP_KERNEL);
6338 if (!dmabuf->virt) {
6339 kfree(dmabuf);
6340 rc = -ENOMEM;
6341 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6342 "6187 DMA Alloc Failed FW logging");
6343 goto free_mem;
6345 dmabuf->buffer_tag = i;
6346 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6349 free_mem:
6350 if (rc)
6351 lpfc_sli4_ras_dma_free(phba);
6353 return rc;
6357 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6358 * @phba: pointer to lpfc hba data structure.
6359 * @pmboxq: pointer to the driver internal queue element for mailbox command.
6361 * Completion handler for driver's RAS MBX command to the device.
6363 static void
6364 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6366 MAILBOX_t *mb;
6367 union lpfc_sli4_cfg_shdr *shdr;
6368 uint32_t shdr_status, shdr_add_status;
6369 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6371 mb = &pmb->u.mb;
6373 shdr = (union lpfc_sli4_cfg_shdr *)
6374 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6375 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6376 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6378 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6379 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6380 "6188 FW LOG mailbox "
6381 "completed with status x%x add_status x%x,"
6382 " mbx status x%x\n",
6383 shdr_status, shdr_add_status, mb->mbxStatus);
6385 ras_fwlog->ras_hwsupport = false;
6386 goto disable_ras;
6389 spin_lock_irq(&phba->hbalock);
6390 ras_fwlog->state = ACTIVE;
6391 spin_unlock_irq(&phba->hbalock);
6392 mempool_free(pmb, phba->mbox_mem_pool);
6394 return;
6396 disable_ras:
6397 /* Free RAS DMA memory */
6398 lpfc_sli4_ras_dma_free(phba);
6399 mempool_free(pmb, phba->mbox_mem_pool);
6403 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6404 * @phba: pointer to lpfc hba data structure.
6405 * @fwlog_level: Logging verbosity level.
6406 * @fwlog_enable: Enable/Disable logging.
6408 * Initialize memory and post mailbox command to enable FW logging in host
6409 * memory.
6412 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6413 uint32_t fwlog_level,
6414 uint32_t fwlog_enable)
6416 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6417 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6418 struct lpfc_dmabuf *dmabuf;
6419 LPFC_MBOXQ_t *mbox;
6420 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6421 int rc = 0;
6423 spin_lock_irq(&phba->hbalock);
6424 ras_fwlog->state = INACTIVE;
6425 spin_unlock_irq(&phba->hbalock);
6427 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6428 phba->cfg_ras_fwlog_buffsize);
6429 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6432 * If re-enabling FW logging support use earlier allocated
6433 * DMA buffers while posting MBX command.
6435 if (!ras_fwlog->lwpd.virt) {
6436 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6437 if (rc) {
6438 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6439 "6189 FW Log Memory Allocation Failed");
6440 return rc;
6444 /* Setup Mailbox command */
6445 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6446 if (!mbox) {
6447 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6448 "6190 RAS MBX Alloc Failed");
6449 rc = -ENOMEM;
6450 goto mem_free;
6453 ras_fwlog->fw_loglevel = fwlog_level;
6454 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6455 sizeof(struct lpfc_sli4_cfg_mhdr));
6457 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6458 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6459 len, LPFC_SLI4_MBX_EMBED);
6461 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6462 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6463 fwlog_enable);
6464 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6465 ras_fwlog->fw_loglevel);
6466 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6467 ras_fwlog->fw_buffcount);
6468 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6469 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6471 /* Update DMA buffer address */
6472 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6473 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6475 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6476 putPaddrLow(dmabuf->phys);
6478 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6479 putPaddrHigh(dmabuf->phys);
6482 /* Update LPWD address */
6483 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6484 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6486 spin_lock_irq(&phba->hbalock);
6487 ras_fwlog->state = REG_INPROGRESS;
6488 spin_unlock_irq(&phba->hbalock);
6489 mbox->vport = phba->pport;
6490 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6492 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6494 if (rc == MBX_NOT_FINISHED) {
6495 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6496 "6191 FW-Log Mailbox failed. "
6497 "status %d mbxStatus : x%x", rc,
6498 bf_get(lpfc_mqe_status, &mbox->u.mqe));
6499 mempool_free(mbox, phba->mbox_mem_pool);
6500 rc = -EIO;
6501 goto mem_free;
6502 } else
6503 rc = 0;
6504 mem_free:
6505 if (rc)
6506 lpfc_sli4_ras_dma_free(phba);
6508 return rc;
6512 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6513 * @phba: Pointer to HBA context object.
6515 * Check if RAS is supported on the adapter and initialize it.
6517 void
6518 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6520 /* Check RAS FW Log needs to be enabled or not */
6521 if (lpfc_check_fwlog_support(phba))
6522 return;
6524 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6525 LPFC_RAS_ENABLE_LOGGING);
6529 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6530 * @phba: Pointer to HBA context object.
6532 * This function allocates all SLI4 resource identifiers.
6535 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6537 int i, rc, error = 0;
6538 uint16_t count, base;
6539 unsigned long longs;
6541 if (!phba->sli4_hba.rpi_hdrs_in_use)
6542 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6543 if (phba->sli4_hba.extents_in_use) {
6545 * The port supports resource extents. The XRI, VPI, VFI, RPI
6546 * resource extent count must be read and allocated before
6547 * provisioning the resource id arrays.
6549 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6550 LPFC_IDX_RSRC_RDY) {
6552 * Extent-based resources are set - the driver could
6553 * be in a port reset. Figure out if any corrective
6554 * actions need to be taken.
6556 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6557 LPFC_RSC_TYPE_FCOE_VFI);
6558 if (rc != 0)
6559 error++;
6560 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6561 LPFC_RSC_TYPE_FCOE_VPI);
6562 if (rc != 0)
6563 error++;
6564 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6565 LPFC_RSC_TYPE_FCOE_XRI);
6566 if (rc != 0)
6567 error++;
6568 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6569 LPFC_RSC_TYPE_FCOE_RPI);
6570 if (rc != 0)
6571 error++;
6574 * It's possible that the number of resources
6575 * provided to this port instance changed between
6576 * resets. Detect this condition and reallocate
6577 * resources. Otherwise, there is no action.
6579 if (error) {
6580 lpfc_printf_log(phba, KERN_INFO,
6581 LOG_MBOX | LOG_INIT,
6582 "2931 Detected extent resource "
6583 "change. Reallocating all "
6584 "extents.\n");
6585 rc = lpfc_sli4_dealloc_extent(phba,
6586 LPFC_RSC_TYPE_FCOE_VFI);
6587 rc = lpfc_sli4_dealloc_extent(phba,
6588 LPFC_RSC_TYPE_FCOE_VPI);
6589 rc = lpfc_sli4_dealloc_extent(phba,
6590 LPFC_RSC_TYPE_FCOE_XRI);
6591 rc = lpfc_sli4_dealloc_extent(phba,
6592 LPFC_RSC_TYPE_FCOE_RPI);
6593 } else
6594 return 0;
6597 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6598 if (unlikely(rc))
6599 goto err_exit;
6601 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6602 if (unlikely(rc))
6603 goto err_exit;
6605 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6606 if (unlikely(rc))
6607 goto err_exit;
6609 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6610 if (unlikely(rc))
6611 goto err_exit;
6612 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6613 LPFC_IDX_RSRC_RDY);
6614 return rc;
6615 } else {
6617 * The port does not support resource extents. The XRI, VPI,
6618 * VFI, RPI resource ids were determined from READ_CONFIG.
6619 * Just allocate the bitmasks and provision the resource id
6620 * arrays. If a port reset is active, the resources don't
6621 * need any action - just exit.
6623 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6624 LPFC_IDX_RSRC_RDY) {
6625 lpfc_sli4_dealloc_resource_identifiers(phba);
6626 lpfc_sli4_remove_rpis(phba);
6628 /* RPIs. */
6629 count = phba->sli4_hba.max_cfg_param.max_rpi;
6630 if (count <= 0) {
6631 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6632 "3279 Invalid provisioning of "
6633 "rpi:%d\n", count);
6634 rc = -EINVAL;
6635 goto err_exit;
6637 base = phba->sli4_hba.max_cfg_param.rpi_base;
6638 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6639 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6640 sizeof(unsigned long),
6641 GFP_KERNEL);
6642 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6643 rc = -ENOMEM;
6644 goto err_exit;
6646 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6647 GFP_KERNEL);
6648 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6649 rc = -ENOMEM;
6650 goto free_rpi_bmask;
6653 for (i = 0; i < count; i++)
6654 phba->sli4_hba.rpi_ids[i] = base + i;
6656 /* VPIs. */
6657 count = phba->sli4_hba.max_cfg_param.max_vpi;
6658 if (count <= 0) {
6659 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6660 "3280 Invalid provisioning of "
6661 "vpi:%d\n", count);
6662 rc = -EINVAL;
6663 goto free_rpi_ids;
6665 base = phba->sli4_hba.max_cfg_param.vpi_base;
6666 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6667 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6668 GFP_KERNEL);
6669 if (unlikely(!phba->vpi_bmask)) {
6670 rc = -ENOMEM;
6671 goto free_rpi_ids;
6673 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6674 GFP_KERNEL);
6675 if (unlikely(!phba->vpi_ids)) {
6676 rc = -ENOMEM;
6677 goto free_vpi_bmask;
6680 for (i = 0; i < count; i++)
6681 phba->vpi_ids[i] = base + i;
6683 /* XRIs. */
6684 count = phba->sli4_hba.max_cfg_param.max_xri;
6685 if (count <= 0) {
6686 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6687 "3281 Invalid provisioning of "
6688 "xri:%d\n", count);
6689 rc = -EINVAL;
6690 goto free_vpi_ids;
6692 base = phba->sli4_hba.max_cfg_param.xri_base;
6693 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6694 phba->sli4_hba.xri_bmask = kcalloc(longs,
6695 sizeof(unsigned long),
6696 GFP_KERNEL);
6697 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6698 rc = -ENOMEM;
6699 goto free_vpi_ids;
6701 phba->sli4_hba.max_cfg_param.xri_used = 0;
6702 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6703 GFP_KERNEL);
6704 if (unlikely(!phba->sli4_hba.xri_ids)) {
6705 rc = -ENOMEM;
6706 goto free_xri_bmask;
6709 for (i = 0; i < count; i++)
6710 phba->sli4_hba.xri_ids[i] = base + i;
6712 /* VFIs. */
6713 count = phba->sli4_hba.max_cfg_param.max_vfi;
6714 if (count <= 0) {
6715 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6716 "3282 Invalid provisioning of "
6717 "vfi:%d\n", count);
6718 rc = -EINVAL;
6719 goto free_xri_ids;
6721 base = phba->sli4_hba.max_cfg_param.vfi_base;
6722 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6723 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6724 sizeof(unsigned long),
6725 GFP_KERNEL);
6726 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6727 rc = -ENOMEM;
6728 goto free_xri_ids;
6730 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6731 GFP_KERNEL);
6732 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6733 rc = -ENOMEM;
6734 goto free_vfi_bmask;
6737 for (i = 0; i < count; i++)
6738 phba->sli4_hba.vfi_ids[i] = base + i;
6741 * Mark all resources ready. An HBA reset doesn't need
6742 * to reset the initialization.
6744 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6745 LPFC_IDX_RSRC_RDY);
6746 return 0;
6749 free_vfi_bmask:
6750 kfree(phba->sli4_hba.vfi_bmask);
6751 phba->sli4_hba.vfi_bmask = NULL;
6752 free_xri_ids:
6753 kfree(phba->sli4_hba.xri_ids);
6754 phba->sli4_hba.xri_ids = NULL;
6755 free_xri_bmask:
6756 kfree(phba->sli4_hba.xri_bmask);
6757 phba->sli4_hba.xri_bmask = NULL;
6758 free_vpi_ids:
6759 kfree(phba->vpi_ids);
6760 phba->vpi_ids = NULL;
6761 free_vpi_bmask:
6762 kfree(phba->vpi_bmask);
6763 phba->vpi_bmask = NULL;
6764 free_rpi_ids:
6765 kfree(phba->sli4_hba.rpi_ids);
6766 phba->sli4_hba.rpi_ids = NULL;
6767 free_rpi_bmask:
6768 kfree(phba->sli4_hba.rpi_bmask);
6769 phba->sli4_hba.rpi_bmask = NULL;
6770 err_exit:
6771 return rc;
6775 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6776 * @phba: Pointer to HBA context object.
6778 * This function allocates the number of elements for the specified
6779 * resource type.
6782 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6784 if (phba->sli4_hba.extents_in_use) {
6785 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6786 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6787 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6788 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6789 } else {
6790 kfree(phba->vpi_bmask);
6791 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6792 kfree(phba->vpi_ids);
6793 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6794 kfree(phba->sli4_hba.xri_bmask);
6795 kfree(phba->sli4_hba.xri_ids);
6796 kfree(phba->sli4_hba.vfi_bmask);
6797 kfree(phba->sli4_hba.vfi_ids);
6798 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6799 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6802 return 0;
6806 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6807 * @phba: Pointer to HBA context object.
6808 * @type: The resource extent type.
6809 * @extnt_count: buffer to hold port extent count response
6810 * @extnt_size: buffer to hold port extent size response.
6812 * This function calls the port to read the host allocated extents
6813 * for a particular type.
6816 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6817 uint16_t *extnt_cnt, uint16_t *extnt_size)
6819 bool emb;
6820 int rc = 0;
6821 uint16_t curr_blks = 0;
6822 uint32_t req_len, emb_len;
6823 uint32_t alloc_len, mbox_tmo;
6824 struct list_head *blk_list_head;
6825 struct lpfc_rsrc_blks *rsrc_blk;
6826 LPFC_MBOXQ_t *mbox;
6827 void *virtaddr = NULL;
6828 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6829 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6830 union lpfc_sli4_cfg_shdr *shdr;
6832 switch (type) {
6833 case LPFC_RSC_TYPE_FCOE_VPI:
6834 blk_list_head = &phba->lpfc_vpi_blk_list;
6835 break;
6836 case LPFC_RSC_TYPE_FCOE_XRI:
6837 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6838 break;
6839 case LPFC_RSC_TYPE_FCOE_VFI:
6840 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6841 break;
6842 case LPFC_RSC_TYPE_FCOE_RPI:
6843 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6844 break;
6845 default:
6846 return -EIO;
6849 /* Count the number of extents currently allocatd for this type. */
6850 list_for_each_entry(rsrc_blk, blk_list_head, list) {
6851 if (curr_blks == 0) {
6853 * The GET_ALLOCATED mailbox does not return the size,
6854 * just the count. The size should be just the size
6855 * stored in the current allocated block and all sizes
6856 * for an extent type are the same so set the return
6857 * value now.
6859 *extnt_size = rsrc_blk->rsrc_size;
6861 curr_blks++;
6865 * Calculate the size of an embedded mailbox. The uint32_t
6866 * accounts for extents-specific word.
6868 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6869 sizeof(uint32_t);
6872 * Presume the allocation and response will fit into an embedded
6873 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6875 emb = LPFC_SLI4_MBX_EMBED;
6876 req_len = emb_len;
6877 if (req_len > emb_len) {
6878 req_len = curr_blks * sizeof(uint16_t) +
6879 sizeof(union lpfc_sli4_cfg_shdr) +
6880 sizeof(uint32_t);
6881 emb = LPFC_SLI4_MBX_NEMBED;
6884 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6885 if (!mbox)
6886 return -ENOMEM;
6887 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6889 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6890 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6891 req_len, emb);
6892 if (alloc_len < req_len) {
6893 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6894 "2983 Allocated DMA memory size (x%x) is "
6895 "less than the requested DMA memory "
6896 "size (x%x)\n", alloc_len, req_len);
6897 rc = -ENOMEM;
6898 goto err_exit;
6900 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6901 if (unlikely(rc)) {
6902 rc = -EIO;
6903 goto err_exit;
6906 if (!phba->sli4_hba.intr_enable)
6907 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6908 else {
6909 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6910 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6913 if (unlikely(rc)) {
6914 rc = -EIO;
6915 goto err_exit;
6919 * Figure out where the response is located. Then get local pointers
6920 * to the response data. The port does not guarantee to respond to
6921 * all extents counts request so update the local variable with the
6922 * allocated count from the port.
6924 if (emb == LPFC_SLI4_MBX_EMBED) {
6925 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6926 shdr = &rsrc_ext->header.cfg_shdr;
6927 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6928 } else {
6929 virtaddr = mbox->sge_array->addr[0];
6930 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6931 shdr = &n_rsrc->cfg_shdr;
6932 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6935 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6936 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6937 "2984 Failed to read allocated resources "
6938 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
6939 type,
6940 bf_get(lpfc_mbox_hdr_status, &shdr->response),
6941 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6942 rc = -EIO;
6943 goto err_exit;
6945 err_exit:
6946 lpfc_sli4_mbox_cmd_free(phba, mbox);
6947 return rc;
6951 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6952 * @phba: pointer to lpfc hba data structure.
6953 * @pring: Pointer to driver SLI ring object.
6954 * @sgl_list: linked link of sgl buffers to post
6955 * @cnt: number of linked list buffers
6957 * This routine walks the list of buffers that have been allocated and
6958 * repost them to the port by using SGL block post. This is needed after a
6959 * pci_function_reset/warm_start or start. It attempts to construct blocks
6960 * of buffer sgls which contains contiguous xris and uses the non-embedded
6961 * SGL block post mailbox commands to post them to the port. For single
6962 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6963 * mailbox command for posting.
6965 * Returns: 0 = success, non-zero failure.
6967 static int
6968 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6969 struct list_head *sgl_list, int cnt)
6971 struct lpfc_sglq *sglq_entry = NULL;
6972 struct lpfc_sglq *sglq_entry_next = NULL;
6973 struct lpfc_sglq *sglq_entry_first = NULL;
6974 int status, total_cnt;
6975 int post_cnt = 0, num_posted = 0, block_cnt = 0;
6976 int last_xritag = NO_XRI;
6977 LIST_HEAD(prep_sgl_list);
6978 LIST_HEAD(blck_sgl_list);
6979 LIST_HEAD(allc_sgl_list);
6980 LIST_HEAD(post_sgl_list);
6981 LIST_HEAD(free_sgl_list);
6983 spin_lock_irq(&phba->hbalock);
6984 spin_lock(&phba->sli4_hba.sgl_list_lock);
6985 list_splice_init(sgl_list, &allc_sgl_list);
6986 spin_unlock(&phba->sli4_hba.sgl_list_lock);
6987 spin_unlock_irq(&phba->hbalock);
6989 total_cnt = cnt;
6990 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6991 &allc_sgl_list, list) {
6992 list_del_init(&sglq_entry->list);
6993 block_cnt++;
6994 if ((last_xritag != NO_XRI) &&
6995 (sglq_entry->sli4_xritag != last_xritag + 1)) {
6996 /* a hole in xri block, form a sgl posting block */
6997 list_splice_init(&prep_sgl_list, &blck_sgl_list);
6998 post_cnt = block_cnt - 1;
6999 /* prepare list for next posting block */
7000 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7001 block_cnt = 1;
7002 } else {
7003 /* prepare list for next posting block */
7004 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7005 /* enough sgls for non-embed sgl mbox command */
7006 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7007 list_splice_init(&prep_sgl_list,
7008 &blck_sgl_list);
7009 post_cnt = block_cnt;
7010 block_cnt = 0;
7013 num_posted++;
7015 /* keep track of last sgl's xritag */
7016 last_xritag = sglq_entry->sli4_xritag;
7018 /* end of repost sgl list condition for buffers */
7019 if (num_posted == total_cnt) {
7020 if (post_cnt == 0) {
7021 list_splice_init(&prep_sgl_list,
7022 &blck_sgl_list);
7023 post_cnt = block_cnt;
7024 } else if (block_cnt == 1) {
7025 status = lpfc_sli4_post_sgl(phba,
7026 sglq_entry->phys, 0,
7027 sglq_entry->sli4_xritag);
7028 if (!status) {
7029 /* successful, put sgl to posted list */
7030 list_add_tail(&sglq_entry->list,
7031 &post_sgl_list);
7032 } else {
7033 /* Failure, put sgl to free list */
7034 lpfc_printf_log(phba, KERN_WARNING,
7035 LOG_SLI,
7036 "3159 Failed to post "
7037 "sgl, xritag:x%x\n",
7038 sglq_entry->sli4_xritag);
7039 list_add_tail(&sglq_entry->list,
7040 &free_sgl_list);
7041 total_cnt--;
7046 /* continue until a nembed page worth of sgls */
7047 if (post_cnt == 0)
7048 continue;
7050 /* post the buffer list sgls as a block */
7051 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7052 post_cnt);
7054 if (!status) {
7055 /* success, put sgl list to posted sgl list */
7056 list_splice_init(&blck_sgl_list, &post_sgl_list);
7057 } else {
7058 /* Failure, put sgl list to free sgl list */
7059 sglq_entry_first = list_first_entry(&blck_sgl_list,
7060 struct lpfc_sglq,
7061 list);
7062 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7063 "3160 Failed to post sgl-list, "
7064 "xritag:x%x-x%x\n",
7065 sglq_entry_first->sli4_xritag,
7066 (sglq_entry_first->sli4_xritag +
7067 post_cnt - 1));
7068 list_splice_init(&blck_sgl_list, &free_sgl_list);
7069 total_cnt -= post_cnt;
7072 /* don't reset xirtag due to hole in xri block */
7073 if (block_cnt == 0)
7074 last_xritag = NO_XRI;
7076 /* reset sgl post count for next round of posting */
7077 post_cnt = 0;
7080 /* free the sgls failed to post */
7081 lpfc_free_sgl_list(phba, &free_sgl_list);
7083 /* push sgls posted to the available list */
7084 if (!list_empty(&post_sgl_list)) {
7085 spin_lock_irq(&phba->hbalock);
7086 spin_lock(&phba->sli4_hba.sgl_list_lock);
7087 list_splice_init(&post_sgl_list, sgl_list);
7088 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7089 spin_unlock_irq(&phba->hbalock);
7090 } else {
7091 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7092 "3161 Failure to post sgl to port.\n");
7093 return -EIO;
7096 /* return the number of XRIs actually posted */
7097 return total_cnt;
7101 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7102 * @phba: pointer to lpfc hba data structure.
7104 * This routine walks the list of nvme buffers that have been allocated and
7105 * repost them to the port by using SGL block post. This is needed after a
7106 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7107 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7108 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7110 * Returns: 0 = success, non-zero failure.
7112 static int
7113 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7115 LIST_HEAD(post_nblist);
7116 int num_posted, rc = 0;
7118 /* get all NVME buffers need to repost to a local list */
7119 lpfc_io_buf_flush(phba, &post_nblist);
7121 /* post the list of nvme buffer sgls to port if available */
7122 if (!list_empty(&post_nblist)) {
7123 num_posted = lpfc_sli4_post_io_sgl_list(
7124 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7125 /* failed to post any nvme buffer, return error */
7126 if (num_posted == 0)
7127 rc = -EIO;
7129 return rc;
7132 static void
7133 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7135 uint32_t len;
7137 len = sizeof(struct lpfc_mbx_set_host_data) -
7138 sizeof(struct lpfc_sli4_cfg_mhdr);
7139 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7140 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7141 LPFC_SLI4_MBX_EMBED);
7143 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7144 mbox->u.mqe.un.set_host_data.param_len =
7145 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7146 snprintf(mbox->u.mqe.un.set_host_data.data,
7147 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7148 "Linux %s v"LPFC_DRIVER_VERSION,
7149 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7153 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7154 struct lpfc_queue *drq, int count, int idx)
7156 int rc, i;
7157 struct lpfc_rqe hrqe;
7158 struct lpfc_rqe drqe;
7159 struct lpfc_rqb *rqbp;
7160 unsigned long flags;
7161 struct rqb_dmabuf *rqb_buffer;
7162 LIST_HEAD(rqb_buf_list);
7164 spin_lock_irqsave(&phba->hbalock, flags);
7165 rqbp = hrq->rqbp;
7166 for (i = 0; i < count; i++) {
7167 /* IF RQ is already full, don't bother */
7168 if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7169 break;
7170 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7171 if (!rqb_buffer)
7172 break;
7173 rqb_buffer->hrq = hrq;
7174 rqb_buffer->drq = drq;
7175 rqb_buffer->idx = idx;
7176 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7178 while (!list_empty(&rqb_buf_list)) {
7179 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7180 hbuf.list);
7182 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7183 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7184 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7185 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7186 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7187 if (rc < 0) {
7188 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7189 "6421 Cannot post to HRQ %d: %x %x %x "
7190 "DRQ %x %x\n",
7191 hrq->queue_id,
7192 hrq->host_index,
7193 hrq->hba_index,
7194 hrq->entry_count,
7195 drq->host_index,
7196 drq->hba_index);
7197 rqbp->rqb_free_buffer(phba, rqb_buffer);
7198 } else {
7199 list_add_tail(&rqb_buffer->hbuf.list,
7200 &rqbp->rqb_buffer_list);
7201 rqbp->buffer_count++;
7204 spin_unlock_irqrestore(&phba->hbalock, flags);
7205 return 1;
7209 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7210 * @phba: Pointer to HBA context object.
7212 * This function is the main SLI4 device initialization PCI function. This
7213 * function is called by the HBA initialization code, HBA reset code and
7214 * HBA error attention handler code. Caller is not required to hold any
7215 * locks.
7218 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7220 int rc, i, cnt, len, dd;
7221 LPFC_MBOXQ_t *mboxq;
7222 struct lpfc_mqe *mqe;
7223 uint8_t *vpd;
7224 uint32_t vpd_size;
7225 uint32_t ftr_rsp = 0;
7226 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7227 struct lpfc_vport *vport = phba->pport;
7228 struct lpfc_dmabuf *mp;
7229 struct lpfc_rqb *rqbp;
7231 /* Perform a PCI function reset to start from clean */
7232 rc = lpfc_pci_function_reset(phba);
7233 if (unlikely(rc))
7234 return -ENODEV;
7236 /* Check the HBA Host Status Register for readyness */
7237 rc = lpfc_sli4_post_status_check(phba);
7238 if (unlikely(rc))
7239 return -ENODEV;
7240 else {
7241 spin_lock_irq(&phba->hbalock);
7242 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7243 spin_unlock_irq(&phba->hbalock);
7247 * Allocate a single mailbox container for initializing the
7248 * port.
7250 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7251 if (!mboxq)
7252 return -ENOMEM;
7254 /* Issue READ_REV to collect vpd and FW information. */
7255 vpd_size = SLI4_PAGE_SIZE;
7256 vpd = kzalloc(vpd_size, GFP_KERNEL);
7257 if (!vpd) {
7258 rc = -ENOMEM;
7259 goto out_free_mbox;
7262 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7263 if (unlikely(rc)) {
7264 kfree(vpd);
7265 goto out_free_mbox;
7268 mqe = &mboxq->u.mqe;
7269 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7270 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7271 phba->hba_flag |= HBA_FCOE_MODE;
7272 phba->fcp_embed_io = 0; /* SLI4 FC support only */
7273 } else {
7274 phba->hba_flag &= ~HBA_FCOE_MODE;
7277 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7278 LPFC_DCBX_CEE_MODE)
7279 phba->hba_flag |= HBA_FIP_SUPPORT;
7280 else
7281 phba->hba_flag &= ~HBA_FIP_SUPPORT;
7283 phba->hba_flag &= ~HBA_IOQ_FLUSH;
7285 if (phba->sli_rev != LPFC_SLI_REV4) {
7286 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7287 "0376 READ_REV Error. SLI Level %d "
7288 "FCoE enabled %d\n",
7289 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7290 rc = -EIO;
7291 kfree(vpd);
7292 goto out_free_mbox;
7296 * Continue initialization with default values even if driver failed
7297 * to read FCoE param config regions, only read parameters if the
7298 * board is FCoE
7300 if (phba->hba_flag & HBA_FCOE_MODE &&
7301 lpfc_sli4_read_fcoe_params(phba))
7302 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7303 "2570 Failed to read FCoE parameters\n");
7306 * Retrieve sli4 device physical port name, failure of doing it
7307 * is considered as non-fatal.
7309 rc = lpfc_sli4_retrieve_pport_name(phba);
7310 if (!rc)
7311 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7312 "3080 Successful retrieving SLI4 device "
7313 "physical port name: %s.\n", phba->Port);
7315 rc = lpfc_sli4_get_ctl_attr(phba);
7316 if (!rc)
7317 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7318 "8351 Successful retrieving SLI4 device "
7319 "CTL ATTR\n");
7322 * Evaluate the read rev and vpd data. Populate the driver
7323 * state with the results. If this routine fails, the failure
7324 * is not fatal as the driver will use generic values.
7326 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7327 if (unlikely(!rc)) {
7328 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7329 "0377 Error %d parsing vpd. "
7330 "Using defaults.\n", rc);
7331 rc = 0;
7333 kfree(vpd);
7335 /* Save information as VPD data */
7336 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7337 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7340 * This is because first G7 ASIC doesn't support the standard
7341 * 0x5a NVME cmd descriptor type/subtype
7343 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7344 LPFC_SLI_INTF_IF_TYPE_6) &&
7345 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7346 (phba->vpd.rev.smRev == 0) &&
7347 (phba->cfg_nvme_embed_cmd == 1))
7348 phba->cfg_nvme_embed_cmd = 0;
7350 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7351 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7352 &mqe->un.read_rev);
7353 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7354 &mqe->un.read_rev);
7355 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7356 &mqe->un.read_rev);
7357 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7358 &mqe->un.read_rev);
7359 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7360 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7361 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7362 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7363 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7364 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7365 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7366 "(%d):0380 READ_REV Status x%x "
7367 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7368 mboxq->vport ? mboxq->vport->vpi : 0,
7369 bf_get(lpfc_mqe_status, mqe),
7370 phba->vpd.rev.opFwName,
7371 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7372 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7374 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
7375 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7376 if (phba->pport->cfg_lun_queue_depth > rc) {
7377 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7378 "3362 LUN queue depth changed from %d to %d\n",
7379 phba->pport->cfg_lun_queue_depth, rc);
7380 phba->pport->cfg_lun_queue_depth = rc;
7383 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7384 LPFC_SLI_INTF_IF_TYPE_0) {
7385 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7386 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7387 if (rc == MBX_SUCCESS) {
7388 phba->hba_flag |= HBA_RECOVERABLE_UE;
7389 /* Set 1Sec interval to detect UE */
7390 phba->eratt_poll_interval = 1;
7391 phba->sli4_hba.ue_to_sr = bf_get(
7392 lpfc_mbx_set_feature_UESR,
7393 &mboxq->u.mqe.un.set_feature);
7394 phba->sli4_hba.ue_to_rp = bf_get(
7395 lpfc_mbx_set_feature_UERP,
7396 &mboxq->u.mqe.un.set_feature);
7400 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7401 /* Enable MDS Diagnostics only if the SLI Port supports it */
7402 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7403 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7404 if (rc != MBX_SUCCESS)
7405 phba->mds_diags_support = 0;
7409 * Discover the port's supported feature set and match it against the
7410 * hosts requests.
7412 lpfc_request_features(phba, mboxq);
7413 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7414 if (unlikely(rc)) {
7415 rc = -EIO;
7416 goto out_free_mbox;
7420 * The port must support FCP initiator mode as this is the
7421 * only mode running in the host.
7423 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7424 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7425 "0378 No support for fcpi mode.\n");
7426 ftr_rsp++;
7429 /* Performance Hints are ONLY for FCoE */
7430 if (phba->hba_flag & HBA_FCOE_MODE) {
7431 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7432 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7433 else
7434 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7438 * If the port cannot support the host's requested features
7439 * then turn off the global config parameters to disable the
7440 * feature in the driver. This is not a fatal error.
7442 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7443 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7444 phba->cfg_enable_bg = 0;
7445 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7446 ftr_rsp++;
7450 if (phba->max_vpi && phba->cfg_enable_npiv &&
7451 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7452 ftr_rsp++;
7454 if (ftr_rsp) {
7455 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7456 "0379 Feature Mismatch Data: x%08x %08x "
7457 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7458 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7459 phba->cfg_enable_npiv, phba->max_vpi);
7460 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7461 phba->cfg_enable_bg = 0;
7462 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7463 phba->cfg_enable_npiv = 0;
7466 /* These SLI3 features are assumed in SLI4 */
7467 spin_lock_irq(&phba->hbalock);
7468 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7469 spin_unlock_irq(&phba->hbalock);
7471 /* Always try to enable dual dump feature if we can */
7472 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7473 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7474 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7475 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7476 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_INIT,
7477 "6448 Dual Dump is enabled\n");
7478 else
7479 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7480 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7481 "rc:x%x dd:x%x\n",
7482 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7483 lpfc_sli_config_mbox_subsys_get(
7484 phba, mboxq),
7485 lpfc_sli_config_mbox_opcode_get(
7486 phba, mboxq),
7487 rc, dd);
7489 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
7490 * calls depends on these resources to complete port setup.
7492 rc = lpfc_sli4_alloc_resource_identifiers(phba);
7493 if (rc) {
7494 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7495 "2920 Failed to alloc Resource IDs "
7496 "rc = x%x\n", rc);
7497 goto out_free_mbox;
7500 lpfc_set_host_data(phba, mboxq);
7502 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7503 if (rc) {
7504 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7505 "2134 Failed to set host os driver version %x",
7506 rc);
7509 /* Read the port's service parameters. */
7510 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7511 if (rc) {
7512 phba->link_state = LPFC_HBA_ERROR;
7513 rc = -ENOMEM;
7514 goto out_free_mbox;
7517 mboxq->vport = vport;
7518 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7519 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7520 if (rc == MBX_SUCCESS) {
7521 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7522 rc = 0;
7526 * This memory was allocated by the lpfc_read_sparam routine. Release
7527 * it to the mbuf pool.
7529 lpfc_mbuf_free(phba, mp->virt, mp->phys);
7530 kfree(mp);
7531 mboxq->ctx_buf = NULL;
7532 if (unlikely(rc)) {
7533 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7534 "0382 READ_SPARAM command failed "
7535 "status %d, mbxStatus x%x\n",
7536 rc, bf_get(lpfc_mqe_status, mqe));
7537 phba->link_state = LPFC_HBA_ERROR;
7538 rc = -EIO;
7539 goto out_free_mbox;
7542 lpfc_update_vport_wwn(vport);
7544 /* Update the fc_host data structures with new wwn. */
7545 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7546 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7548 /* Create all the SLI4 queues */
7549 rc = lpfc_sli4_queue_create(phba);
7550 if (rc) {
7551 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7552 "3089 Failed to allocate queues\n");
7553 rc = -ENODEV;
7554 goto out_free_mbox;
7556 /* Set up all the queues to the device */
7557 rc = lpfc_sli4_queue_setup(phba);
7558 if (unlikely(rc)) {
7559 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7560 "0381 Error %d during queue setup.\n ", rc);
7561 goto out_stop_timers;
7563 /* Initialize the driver internal SLI layer lists. */
7564 lpfc_sli4_setup(phba);
7565 lpfc_sli4_queue_init(phba);
7567 /* update host els xri-sgl sizes and mappings */
7568 rc = lpfc_sli4_els_sgl_update(phba);
7569 if (unlikely(rc)) {
7570 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7571 "1400 Failed to update xri-sgl size and "
7572 "mapping: %d\n", rc);
7573 goto out_destroy_queue;
7576 /* register the els sgl pool to the port */
7577 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7578 phba->sli4_hba.els_xri_cnt);
7579 if (unlikely(rc < 0)) {
7580 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7581 "0582 Error %d during els sgl post "
7582 "operation\n", rc);
7583 rc = -ENODEV;
7584 goto out_destroy_queue;
7586 phba->sli4_hba.els_xri_cnt = rc;
7588 if (phba->nvmet_support) {
7589 /* update host nvmet xri-sgl sizes and mappings */
7590 rc = lpfc_sli4_nvmet_sgl_update(phba);
7591 if (unlikely(rc)) {
7592 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7593 "6308 Failed to update nvmet-sgl size "
7594 "and mapping: %d\n", rc);
7595 goto out_destroy_queue;
7598 /* register the nvmet sgl pool to the port */
7599 rc = lpfc_sli4_repost_sgl_list(
7600 phba,
7601 &phba->sli4_hba.lpfc_nvmet_sgl_list,
7602 phba->sli4_hba.nvmet_xri_cnt);
7603 if (unlikely(rc < 0)) {
7604 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7605 "3117 Error %d during nvmet "
7606 "sgl post\n", rc);
7607 rc = -ENODEV;
7608 goto out_destroy_queue;
7610 phba->sli4_hba.nvmet_xri_cnt = rc;
7612 /* We allocate an iocbq for every receive context SGL.
7613 * The additional allocation is for abort and ls handling.
7615 cnt = phba->sli4_hba.nvmet_xri_cnt +
7616 phba->sli4_hba.max_cfg_param.max_xri;
7617 } else {
7618 /* update host common xri-sgl sizes and mappings */
7619 rc = lpfc_sli4_io_sgl_update(phba);
7620 if (unlikely(rc)) {
7621 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7622 "6082 Failed to update nvme-sgl size "
7623 "and mapping: %d\n", rc);
7624 goto out_destroy_queue;
7627 /* register the allocated common sgl pool to the port */
7628 rc = lpfc_sli4_repost_io_sgl_list(phba);
7629 if (unlikely(rc)) {
7630 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7631 "6116 Error %d during nvme sgl post "
7632 "operation\n", rc);
7633 /* Some NVME buffers were moved to abort nvme list */
7634 /* A pci function reset will repost them */
7635 rc = -ENODEV;
7636 goto out_destroy_queue;
7638 /* Each lpfc_io_buf job structure has an iocbq element.
7639 * This cnt provides for abort, els, ct and ls requests.
7641 cnt = phba->sli4_hba.max_cfg_param.max_xri;
7644 if (!phba->sli.iocbq_lookup) {
7645 /* Initialize and populate the iocb list per host */
7646 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7647 "2821 initialize iocb list with %d entries\n",
7648 cnt);
7649 rc = lpfc_init_iocb_list(phba, cnt);
7650 if (rc) {
7651 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7652 "1413 Failed to init iocb list.\n");
7653 goto out_destroy_queue;
7657 if (phba->nvmet_support)
7658 lpfc_nvmet_create_targetport(phba);
7660 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7661 /* Post initial buffers to all RQs created */
7662 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7663 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7664 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7665 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7666 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7667 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7668 rqbp->buffer_count = 0;
7670 lpfc_post_rq_buffer(
7671 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7672 phba->sli4_hba.nvmet_mrq_data[i],
7673 phba->cfg_nvmet_mrq_post, i);
7677 /* Post the rpi header region to the device. */
7678 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7679 if (unlikely(rc)) {
7680 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7681 "0393 Error %d during rpi post operation\n",
7682 rc);
7683 rc = -ENODEV;
7684 goto out_destroy_queue;
7686 lpfc_sli4_node_prep(phba);
7688 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7689 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7691 * The FC Port needs to register FCFI (index 0)
7693 lpfc_reg_fcfi(phba, mboxq);
7694 mboxq->vport = phba->pport;
7695 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7696 if (rc != MBX_SUCCESS)
7697 goto out_unset_queue;
7698 rc = 0;
7699 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7700 &mboxq->u.mqe.un.reg_fcfi);
7701 } else {
7702 /* We are a NVME Target mode with MRQ > 1 */
7704 /* First register the FCFI */
7705 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7706 mboxq->vport = phba->pport;
7707 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7708 if (rc != MBX_SUCCESS)
7709 goto out_unset_queue;
7710 rc = 0;
7711 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7712 &mboxq->u.mqe.un.reg_fcfi_mrq);
7714 /* Next register the MRQs */
7715 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7716 mboxq->vport = phba->pport;
7717 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7718 if (rc != MBX_SUCCESS)
7719 goto out_unset_queue;
7720 rc = 0;
7722 /* Check if the port is configured to be disabled */
7723 lpfc_sli_read_link_ste(phba);
7726 /* Don't post more new bufs if repost already recovered
7727 * the nvme sgls.
7729 if (phba->nvmet_support == 0) {
7730 if (phba->sli4_hba.io_xri_cnt == 0) {
7731 len = lpfc_new_io_buf(
7732 phba, phba->sli4_hba.io_xri_max);
7733 if (len == 0) {
7734 rc = -ENOMEM;
7735 goto out_unset_queue;
7738 if (phba->cfg_xri_rebalancing)
7739 lpfc_create_multixri_pools(phba);
7741 } else {
7742 phba->cfg_xri_rebalancing = 0;
7745 /* Allow asynchronous mailbox command to go through */
7746 spin_lock_irq(&phba->hbalock);
7747 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7748 spin_unlock_irq(&phba->hbalock);
7750 /* Post receive buffers to the device */
7751 lpfc_sli4_rb_setup(phba);
7753 /* Reset HBA FCF states after HBA reset */
7754 phba->fcf.fcf_flag = 0;
7755 phba->fcf.current_rec.flag = 0;
7757 /* Start the ELS watchdog timer */
7758 mod_timer(&vport->els_tmofunc,
7759 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7761 /* Start heart beat timer */
7762 mod_timer(&phba->hb_tmofunc,
7763 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7764 phba->hb_outstanding = 0;
7765 phba->last_completion_time = jiffies;
7767 /* start eq_delay heartbeat */
7768 if (phba->cfg_auto_imax)
7769 queue_delayed_work(phba->wq, &phba->eq_delay_work,
7770 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7772 /* Start error attention (ERATT) polling timer */
7773 mod_timer(&phba->eratt_poll,
7774 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7776 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
7777 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7778 rc = pci_enable_pcie_error_reporting(phba->pcidev);
7779 if (!rc) {
7780 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7781 "2829 This device supports "
7782 "Advanced Error Reporting (AER)\n");
7783 spin_lock_irq(&phba->hbalock);
7784 phba->hba_flag |= HBA_AER_ENABLED;
7785 spin_unlock_irq(&phba->hbalock);
7786 } else {
7787 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7788 "2830 This device does not support "
7789 "Advanced Error Reporting (AER)\n");
7790 phba->cfg_aer_support = 0;
7792 rc = 0;
7796 * The port is ready, set the host's link state to LINK_DOWN
7797 * in preparation for link interrupts.
7799 spin_lock_irq(&phba->hbalock);
7800 phba->link_state = LPFC_LINK_DOWN;
7802 /* Check if physical ports are trunked */
7803 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7804 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7805 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7806 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7807 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7808 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7809 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7810 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7811 spin_unlock_irq(&phba->hbalock);
7813 /* Arm the CQs and then EQs on device */
7814 lpfc_sli4_arm_cqeq_intr(phba);
7816 /* Indicate device interrupt mode */
7817 phba->sli4_hba.intr_enable = 1;
7819 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7820 (phba->hba_flag & LINK_DISABLED)) {
7821 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7822 "3103 Adapter Link is disabled.\n");
7823 lpfc_down_link(phba, mboxq);
7824 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7825 if (rc != MBX_SUCCESS) {
7826 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7827 "3104 Adapter failed to issue "
7828 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
7829 goto out_io_buff_free;
7831 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7832 /* don't perform init_link on SLI4 FC port loopback test */
7833 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7834 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7835 if (rc)
7836 goto out_io_buff_free;
7839 mempool_free(mboxq, phba->mbox_mem_pool);
7840 return rc;
7841 out_io_buff_free:
7842 /* Free allocated IO Buffers */
7843 lpfc_io_free(phba);
7844 out_unset_queue:
7845 /* Unset all the queues set up in this routine when error out */
7846 lpfc_sli4_queue_unset(phba);
7847 out_destroy_queue:
7848 lpfc_free_iocb_list(phba);
7849 lpfc_sli4_queue_destroy(phba);
7850 out_stop_timers:
7851 lpfc_stop_hba_timers(phba);
7852 out_free_mbox:
7853 mempool_free(mboxq, phba->mbox_mem_pool);
7854 return rc;
7858 * lpfc_mbox_timeout - Timeout call back function for mbox timer
7859 * @ptr: context object - pointer to hba structure.
7861 * This is the callback function for mailbox timer. The mailbox
7862 * timer is armed when a new mailbox command is issued and the timer
7863 * is deleted when the mailbox complete. The function is called by
7864 * the kernel timer code when a mailbox does not complete within
7865 * expected time. This function wakes up the worker thread to
7866 * process the mailbox timeout and returns. All the processing is
7867 * done by the worker thread function lpfc_mbox_timeout_handler.
7869 void
7870 lpfc_mbox_timeout(struct timer_list *t)
7872 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo);
7873 unsigned long iflag;
7874 uint32_t tmo_posted;
7876 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7877 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7878 if (!tmo_posted)
7879 phba->pport->work_port_events |= WORKER_MBOX_TMO;
7880 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7882 if (!tmo_posted)
7883 lpfc_worker_wake_up(phba);
7884 return;
7888 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7889 * are pending
7890 * @phba: Pointer to HBA context object.
7892 * This function checks if any mailbox completions are present on the mailbox
7893 * completion queue.
7895 static bool
7896 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7899 uint32_t idx;
7900 struct lpfc_queue *mcq;
7901 struct lpfc_mcqe *mcqe;
7902 bool pending_completions = false;
7903 uint8_t qe_valid;
7905 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7906 return false;
7908 /* Check for completions on mailbox completion queue */
7910 mcq = phba->sli4_hba.mbx_cq;
7911 idx = mcq->hba_index;
7912 qe_valid = mcq->qe_valid;
7913 while (bf_get_le32(lpfc_cqe_valid,
7914 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7915 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
7916 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7917 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7918 pending_completions = true;
7919 break;
7921 idx = (idx + 1) % mcq->entry_count;
7922 if (mcq->hba_index == idx)
7923 break;
7925 /* if the index wrapped around, toggle the valid bit */
7926 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7927 qe_valid = (qe_valid) ? 0 : 1;
7929 return pending_completions;
7934 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7935 * that were missed.
7936 * @phba: Pointer to HBA context object.
7938 * For sli4, it is possible to miss an interrupt. As such mbox completions
7939 * maybe missed causing erroneous mailbox timeouts to occur. This function
7940 * checks to see if mbox completions are on the mailbox completion queue
7941 * and will process all the completions associated with the eq for the
7942 * mailbox completion queue.
7944 static bool
7945 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7947 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7948 uint32_t eqidx;
7949 struct lpfc_queue *fpeq = NULL;
7950 struct lpfc_queue *eq;
7951 bool mbox_pending;
7953 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7954 return false;
7956 /* Find the EQ associated with the mbox CQ */
7957 if (sli4_hba->hdwq) {
7958 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
7959 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
7960 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
7961 fpeq = eq;
7962 break;
7966 if (!fpeq)
7967 return false;
7969 /* Turn off interrupts from this EQ */
7971 sli4_hba->sli4_eq_clr_intr(fpeq);
7973 /* Check to see if a mbox completion is pending */
7975 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7978 * If a mbox completion is pending, process all the events on EQ
7979 * associated with the mbox completion queue (this could include
7980 * mailbox commands, async events, els commands, receive queue data
7981 * and fcp commands)
7984 if (mbox_pending)
7985 /* process and rearm the EQ */
7986 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
7987 else
7988 /* Always clear and re-arm the EQ */
7989 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7991 return mbox_pending;
7996 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7997 * @phba: Pointer to HBA context object.
7999 * This function is called from worker thread when a mailbox command times out.
8000 * The caller is not required to hold any locks. This function will reset the
8001 * HBA and recover all the pending commands.
8003 void
8004 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8006 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8007 MAILBOX_t *mb = NULL;
8009 struct lpfc_sli *psli = &phba->sli;
8011 /* If the mailbox completed, process the completion and return */
8012 if (lpfc_sli4_process_missed_mbox_completions(phba))
8013 return;
8015 if (pmbox != NULL)
8016 mb = &pmbox->u.mb;
8017 /* Check the pmbox pointer first. There is a race condition
8018 * between the mbox timeout handler getting executed in the
8019 * worklist and the mailbox actually completing. When this
8020 * race condition occurs, the mbox_active will be NULL.
8022 spin_lock_irq(&phba->hbalock);
8023 if (pmbox == NULL) {
8024 lpfc_printf_log(phba, KERN_WARNING,
8025 LOG_MBOX | LOG_SLI,
8026 "0353 Active Mailbox cleared - mailbox timeout "
8027 "exiting\n");
8028 spin_unlock_irq(&phba->hbalock);
8029 return;
8032 /* Mbox cmd <mbxCommand> timeout */
8033 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8034 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8035 mb->mbxCommand,
8036 phba->pport->port_state,
8037 phba->sli.sli_flag,
8038 phba->sli.mbox_active);
8039 spin_unlock_irq(&phba->hbalock);
8041 /* Setting state unknown so lpfc_sli_abort_iocb_ring
8042 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8043 * it to fail all outstanding SCSI IO.
8045 spin_lock_irq(&phba->pport->work_port_lock);
8046 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8047 spin_unlock_irq(&phba->pport->work_port_lock);
8048 spin_lock_irq(&phba->hbalock);
8049 phba->link_state = LPFC_LINK_UNKNOWN;
8050 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8051 spin_unlock_irq(&phba->hbalock);
8053 lpfc_sli_abort_fcp_rings(phba);
8055 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8056 "0345 Resetting board due to mailbox timeout\n");
8058 /* Reset the HBA device */
8059 lpfc_reset_hba(phba);
8063 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8064 * @phba: Pointer to HBA context object.
8065 * @pmbox: Pointer to mailbox object.
8066 * @flag: Flag indicating how the mailbox need to be processed.
8068 * This function is called by discovery code and HBA management code
8069 * to submit a mailbox command to firmware with SLI-3 interface spec. This
8070 * function gets the hbalock to protect the data structures.
8071 * The mailbox command can be submitted in polling mode, in which case
8072 * this function will wait in a polling loop for the completion of the
8073 * mailbox.
8074 * If the mailbox is submitted in no_wait mode (not polling) the
8075 * function will submit the command and returns immediately without waiting
8076 * for the mailbox completion. The no_wait is supported only when HBA
8077 * is in SLI2/SLI3 mode - interrupts are enabled.
8078 * The SLI interface allows only one mailbox pending at a time. If the
8079 * mailbox is issued in polling mode and there is already a mailbox
8080 * pending, then the function will return an error. If the mailbox is issued
8081 * in NO_WAIT mode and there is a mailbox pending already, the function
8082 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8083 * The sli layer owns the mailbox object until the completion of mailbox
8084 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8085 * return codes the caller owns the mailbox command after the return of
8086 * the function.
8088 static int
8089 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8090 uint32_t flag)
8092 MAILBOX_t *mbx;
8093 struct lpfc_sli *psli = &phba->sli;
8094 uint32_t status, evtctr;
8095 uint32_t ha_copy, hc_copy;
8096 int i;
8097 unsigned long timeout;
8098 unsigned long drvr_flag = 0;
8099 uint32_t word0, ldata;
8100 void __iomem *to_slim;
8101 int processing_queue = 0;
8103 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8104 if (!pmbox) {
8105 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8106 /* processing mbox queue from intr_handler */
8107 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8108 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8109 return MBX_SUCCESS;
8111 processing_queue = 1;
8112 pmbox = lpfc_mbox_get(phba);
8113 if (!pmbox) {
8114 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8115 return MBX_SUCCESS;
8119 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8120 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8121 if(!pmbox->vport) {
8122 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8123 lpfc_printf_log(phba, KERN_ERR,
8124 LOG_MBOX | LOG_VPORT,
8125 "1806 Mbox x%x failed. No vport\n",
8126 pmbox->u.mb.mbxCommand);
8127 dump_stack();
8128 goto out_not_finished;
8132 /* If the PCI channel is in offline state, do not post mbox. */
8133 if (unlikely(pci_channel_offline(phba->pcidev))) {
8134 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8135 goto out_not_finished;
8138 /* If HBA has a deferred error attention, fail the iocb. */
8139 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8140 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8141 goto out_not_finished;
8144 psli = &phba->sli;
8146 mbx = &pmbox->u.mb;
8147 status = MBX_SUCCESS;
8149 if (phba->link_state == LPFC_HBA_ERROR) {
8150 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8152 /* Mbox command <mbxCommand> cannot issue */
8153 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8154 "(%d):0311 Mailbox command x%x cannot "
8155 "issue Data: x%x x%x\n",
8156 pmbox->vport ? pmbox->vport->vpi : 0,
8157 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8158 goto out_not_finished;
8161 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8162 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8163 !(hc_copy & HC_MBINT_ENA)) {
8164 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8165 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8166 "(%d):2528 Mailbox command x%x cannot "
8167 "issue Data: x%x x%x\n",
8168 pmbox->vport ? pmbox->vport->vpi : 0,
8169 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8170 goto out_not_finished;
8174 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8175 /* Polling for a mbox command when another one is already active
8176 * is not allowed in SLI. Also, the driver must have established
8177 * SLI2 mode to queue and process multiple mbox commands.
8180 if (flag & MBX_POLL) {
8181 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8183 /* Mbox command <mbxCommand> cannot issue */
8184 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8185 "(%d):2529 Mailbox command x%x "
8186 "cannot issue Data: x%x x%x\n",
8187 pmbox->vport ? pmbox->vport->vpi : 0,
8188 pmbox->u.mb.mbxCommand,
8189 psli->sli_flag, flag);
8190 goto out_not_finished;
8193 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8194 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8195 /* Mbox command <mbxCommand> cannot issue */
8196 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8197 "(%d):2530 Mailbox command x%x "
8198 "cannot issue Data: x%x x%x\n",
8199 pmbox->vport ? pmbox->vport->vpi : 0,
8200 pmbox->u.mb.mbxCommand,
8201 psli->sli_flag, flag);
8202 goto out_not_finished;
8205 /* Another mailbox command is still being processed, queue this
8206 * command to be processed later.
8208 lpfc_mbox_put(phba, pmbox);
8210 /* Mbox cmd issue - BUSY */
8211 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8212 "(%d):0308 Mbox cmd issue - BUSY Data: "
8213 "x%x x%x x%x x%x\n",
8214 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8215 mbx->mbxCommand,
8216 phba->pport ? phba->pport->port_state : 0xff,
8217 psli->sli_flag, flag);
8219 psli->slistat.mbox_busy++;
8220 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8222 if (pmbox->vport) {
8223 lpfc_debugfs_disc_trc(pmbox->vport,
8224 LPFC_DISC_TRC_MBOX_VPORT,
8225 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
8226 (uint32_t)mbx->mbxCommand,
8227 mbx->un.varWords[0], mbx->un.varWords[1]);
8229 else {
8230 lpfc_debugfs_disc_trc(phba->pport,
8231 LPFC_DISC_TRC_MBOX,
8232 "MBOX Bsy: cmd:x%x mb:x%x x%x",
8233 (uint32_t)mbx->mbxCommand,
8234 mbx->un.varWords[0], mbx->un.varWords[1]);
8237 return MBX_BUSY;
8240 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8242 /* If we are not polling, we MUST be in SLI2 mode */
8243 if (flag != MBX_POLL) {
8244 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8245 (mbx->mbxCommand != MBX_KILL_BOARD)) {
8246 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8247 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8248 /* Mbox command <mbxCommand> cannot issue */
8249 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8250 "(%d):2531 Mailbox command x%x "
8251 "cannot issue Data: x%x x%x\n",
8252 pmbox->vport ? pmbox->vport->vpi : 0,
8253 pmbox->u.mb.mbxCommand,
8254 psli->sli_flag, flag);
8255 goto out_not_finished;
8257 /* timeout active mbox command */
8258 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8259 1000);
8260 mod_timer(&psli->mbox_tmo, jiffies + timeout);
8263 /* Mailbox cmd <cmd> issue */
8264 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8265 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8266 "x%x\n",
8267 pmbox->vport ? pmbox->vport->vpi : 0,
8268 mbx->mbxCommand,
8269 phba->pport ? phba->pport->port_state : 0xff,
8270 psli->sli_flag, flag);
8272 if (mbx->mbxCommand != MBX_HEARTBEAT) {
8273 if (pmbox->vport) {
8274 lpfc_debugfs_disc_trc(pmbox->vport,
8275 LPFC_DISC_TRC_MBOX_VPORT,
8276 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8277 (uint32_t)mbx->mbxCommand,
8278 mbx->un.varWords[0], mbx->un.varWords[1]);
8280 else {
8281 lpfc_debugfs_disc_trc(phba->pport,
8282 LPFC_DISC_TRC_MBOX,
8283 "MBOX Send: cmd:x%x mb:x%x x%x",
8284 (uint32_t)mbx->mbxCommand,
8285 mbx->un.varWords[0], mbx->un.varWords[1]);
8289 psli->slistat.mbox_cmd++;
8290 evtctr = psli->slistat.mbox_event;
8292 /* next set own bit for the adapter and copy over command word */
8293 mbx->mbxOwner = OWN_CHIP;
8295 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8296 /* Populate mbox extension offset word. */
8297 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8298 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8299 = (uint8_t *)phba->mbox_ext
8300 - (uint8_t *)phba->mbox;
8303 /* Copy the mailbox extension data */
8304 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8305 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8306 (uint8_t *)phba->mbox_ext,
8307 pmbox->in_ext_byte_len);
8309 /* Copy command data to host SLIM area */
8310 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8311 } else {
8312 /* Populate mbox extension offset word. */
8313 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8314 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8315 = MAILBOX_HBA_EXT_OFFSET;
8317 /* Copy the mailbox extension data */
8318 if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8319 lpfc_memcpy_to_slim(phba->MBslimaddr +
8320 MAILBOX_HBA_EXT_OFFSET,
8321 pmbox->ctx_buf, pmbox->in_ext_byte_len);
8323 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8324 /* copy command data into host mbox for cmpl */
8325 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8326 MAILBOX_CMD_SIZE);
8328 /* First copy mbox command data to HBA SLIM, skip past first
8329 word */
8330 to_slim = phba->MBslimaddr + sizeof (uint32_t);
8331 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8332 MAILBOX_CMD_SIZE - sizeof (uint32_t));
8334 /* Next copy over first word, with mbxOwner set */
8335 ldata = *((uint32_t *)mbx);
8336 to_slim = phba->MBslimaddr;
8337 writel(ldata, to_slim);
8338 readl(to_slim); /* flush */
8340 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8341 /* switch over to host mailbox */
8342 psli->sli_flag |= LPFC_SLI_ACTIVE;
8345 wmb();
8347 switch (flag) {
8348 case MBX_NOWAIT:
8349 /* Set up reference to mailbox command */
8350 psli->mbox_active = pmbox;
8351 /* Interrupt board to do it */
8352 writel(CA_MBATT, phba->CAregaddr);
8353 readl(phba->CAregaddr); /* flush */
8354 /* Don't wait for it to finish, just return */
8355 break;
8357 case MBX_POLL:
8358 /* Set up null reference to mailbox command */
8359 psli->mbox_active = NULL;
8360 /* Interrupt board to do it */
8361 writel(CA_MBATT, phba->CAregaddr);
8362 readl(phba->CAregaddr); /* flush */
8364 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8365 /* First read mbox status word */
8366 word0 = *((uint32_t *)phba->mbox);
8367 word0 = le32_to_cpu(word0);
8368 } else {
8369 /* First read mbox status word */
8370 if (lpfc_readl(phba->MBslimaddr, &word0)) {
8371 spin_unlock_irqrestore(&phba->hbalock,
8372 drvr_flag);
8373 goto out_not_finished;
8377 /* Read the HBA Host Attention Register */
8378 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8379 spin_unlock_irqrestore(&phba->hbalock,
8380 drvr_flag);
8381 goto out_not_finished;
8383 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8384 1000) + jiffies;
8385 i = 0;
8386 /* Wait for command to complete */
8387 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8388 (!(ha_copy & HA_MBATT) &&
8389 (phba->link_state > LPFC_WARM_START))) {
8390 if (time_after(jiffies, timeout)) {
8391 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8392 spin_unlock_irqrestore(&phba->hbalock,
8393 drvr_flag);
8394 goto out_not_finished;
8397 /* Check if we took a mbox interrupt while we were
8398 polling */
8399 if (((word0 & OWN_CHIP) != OWN_CHIP)
8400 && (evtctr != psli->slistat.mbox_event))
8401 break;
8403 if (i++ > 10) {
8404 spin_unlock_irqrestore(&phba->hbalock,
8405 drvr_flag);
8406 msleep(1);
8407 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8410 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8411 /* First copy command data */
8412 word0 = *((uint32_t *)phba->mbox);
8413 word0 = le32_to_cpu(word0);
8414 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8415 MAILBOX_t *slimmb;
8416 uint32_t slimword0;
8417 /* Check real SLIM for any errors */
8418 slimword0 = readl(phba->MBslimaddr);
8419 slimmb = (MAILBOX_t *) & slimword0;
8420 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8421 && slimmb->mbxStatus) {
8422 psli->sli_flag &=
8423 ~LPFC_SLI_ACTIVE;
8424 word0 = slimword0;
8427 } else {
8428 /* First copy command data */
8429 word0 = readl(phba->MBslimaddr);
8431 /* Read the HBA Host Attention Register */
8432 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8433 spin_unlock_irqrestore(&phba->hbalock,
8434 drvr_flag);
8435 goto out_not_finished;
8439 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8440 /* copy results back to user */
8441 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8442 MAILBOX_CMD_SIZE);
8443 /* Copy the mailbox extension data */
8444 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8445 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8446 pmbox->ctx_buf,
8447 pmbox->out_ext_byte_len);
8449 } else {
8450 /* First copy command data */
8451 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8452 MAILBOX_CMD_SIZE);
8453 /* Copy the mailbox extension data */
8454 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8455 lpfc_memcpy_from_slim(
8456 pmbox->ctx_buf,
8457 phba->MBslimaddr +
8458 MAILBOX_HBA_EXT_OFFSET,
8459 pmbox->out_ext_byte_len);
8463 writel(HA_MBATT, phba->HAregaddr);
8464 readl(phba->HAregaddr); /* flush */
8466 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8467 status = mbx->mbxStatus;
8470 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8471 return status;
8473 out_not_finished:
8474 if (processing_queue) {
8475 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8476 lpfc_mbox_cmpl_put(phba, pmbox);
8478 return MBX_NOT_FINISHED;
8482 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8483 * @phba: Pointer to HBA context object.
8485 * The function blocks the posting of SLI4 asynchronous mailbox commands from
8486 * the driver internal pending mailbox queue. It will then try to wait out the
8487 * possible outstanding mailbox command before return.
8489 * Returns:
8490 * 0 - the outstanding mailbox command completed; otherwise, the wait for
8491 * the outstanding mailbox command timed out.
8493 static int
8494 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8496 struct lpfc_sli *psli = &phba->sli;
8497 int rc = 0;
8498 unsigned long timeout = 0;
8500 /* Mark the asynchronous mailbox command posting as blocked */
8501 spin_lock_irq(&phba->hbalock);
8502 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8503 /* Determine how long we might wait for the active mailbox
8504 * command to be gracefully completed by firmware.
8506 if (phba->sli.mbox_active)
8507 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8508 phba->sli.mbox_active) *
8509 1000) + jiffies;
8510 spin_unlock_irq(&phba->hbalock);
8512 /* Make sure the mailbox is really active */
8513 if (timeout)
8514 lpfc_sli4_process_missed_mbox_completions(phba);
8516 /* Wait for the outstnading mailbox command to complete */
8517 while (phba->sli.mbox_active) {
8518 /* Check active mailbox complete status every 2ms */
8519 msleep(2);
8520 if (time_after(jiffies, timeout)) {
8521 /* Timeout, marked the outstanding cmd not complete */
8522 rc = 1;
8523 break;
8527 /* Can not cleanly block async mailbox command, fails it */
8528 if (rc) {
8529 spin_lock_irq(&phba->hbalock);
8530 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8531 spin_unlock_irq(&phba->hbalock);
8533 return rc;
8537 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8538 * @phba: Pointer to HBA context object.
8540 * The function unblocks and resume posting of SLI4 asynchronous mailbox
8541 * commands from the driver internal pending mailbox queue. It makes sure
8542 * that there is no outstanding mailbox command before resuming posting
8543 * asynchronous mailbox commands. If, for any reason, there is outstanding
8544 * mailbox command, it will try to wait it out before resuming asynchronous
8545 * mailbox command posting.
8547 static void
8548 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8550 struct lpfc_sli *psli = &phba->sli;
8552 spin_lock_irq(&phba->hbalock);
8553 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8554 /* Asynchronous mailbox posting is not blocked, do nothing */
8555 spin_unlock_irq(&phba->hbalock);
8556 return;
8559 /* Outstanding synchronous mailbox command is guaranteed to be done,
8560 * successful or timeout, after timing-out the outstanding mailbox
8561 * command shall always be removed, so just unblock posting async
8562 * mailbox command and resume
8564 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8565 spin_unlock_irq(&phba->hbalock);
8567 /* wake up worker thread to post asynchronous mailbox command */
8568 lpfc_worker_wake_up(phba);
8572 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8573 * @phba: Pointer to HBA context object.
8574 * @mboxq: Pointer to mailbox object.
8576 * The function waits for the bootstrap mailbox register ready bit from
8577 * port for twice the regular mailbox command timeout value.
8579 * 0 - no timeout on waiting for bootstrap mailbox register ready.
8580 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8582 static int
8583 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8585 uint32_t db_ready;
8586 unsigned long timeout;
8587 struct lpfc_register bmbx_reg;
8589 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8590 * 1000) + jiffies;
8592 do {
8593 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8594 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8595 if (!db_ready)
8596 mdelay(2);
8598 if (time_after(jiffies, timeout))
8599 return MBXERR_ERROR;
8600 } while (!db_ready);
8602 return 0;
8606 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8607 * @phba: Pointer to HBA context object.
8608 * @mboxq: Pointer to mailbox object.
8610 * The function posts a mailbox to the port. The mailbox is expected
8611 * to be comletely filled in and ready for the port to operate on it.
8612 * This routine executes a synchronous completion operation on the
8613 * mailbox by polling for its completion.
8615 * The caller must not be holding any locks when calling this routine.
8617 * Returns:
8618 * MBX_SUCCESS - mailbox posted successfully
8619 * Any of the MBX error values.
8621 static int
8622 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8624 int rc = MBX_SUCCESS;
8625 unsigned long iflag;
8626 uint32_t mcqe_status;
8627 uint32_t mbx_cmnd;
8628 struct lpfc_sli *psli = &phba->sli;
8629 struct lpfc_mqe *mb = &mboxq->u.mqe;
8630 struct lpfc_bmbx_create *mbox_rgn;
8631 struct dma_address *dma_address;
8634 * Only one mailbox can be active to the bootstrap mailbox region
8635 * at a time and there is no queueing provided.
8637 spin_lock_irqsave(&phba->hbalock, iflag);
8638 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8639 spin_unlock_irqrestore(&phba->hbalock, iflag);
8640 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8641 "(%d):2532 Mailbox command x%x (x%x/x%x) "
8642 "cannot issue Data: x%x x%x\n",
8643 mboxq->vport ? mboxq->vport->vpi : 0,
8644 mboxq->u.mb.mbxCommand,
8645 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8646 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8647 psli->sli_flag, MBX_POLL);
8648 return MBXERR_ERROR;
8650 /* The server grabs the token and owns it until release */
8651 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8652 phba->sli.mbox_active = mboxq;
8653 spin_unlock_irqrestore(&phba->hbalock, iflag);
8655 /* wait for bootstrap mbox register for readyness */
8656 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8657 if (rc)
8658 goto exit;
8660 * Initialize the bootstrap memory region to avoid stale data areas
8661 * in the mailbox post. Then copy the caller's mailbox contents to
8662 * the bmbx mailbox region.
8664 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8665 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8666 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8667 sizeof(struct lpfc_mqe));
8669 /* Post the high mailbox dma address to the port and wait for ready. */
8670 dma_address = &phba->sli4_hba.bmbx.dma_address;
8671 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8673 /* wait for bootstrap mbox register for hi-address write done */
8674 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8675 if (rc)
8676 goto exit;
8678 /* Post the low mailbox dma address to the port. */
8679 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8681 /* wait for bootstrap mbox register for low address write done */
8682 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8683 if (rc)
8684 goto exit;
8687 * Read the CQ to ensure the mailbox has completed.
8688 * If so, update the mailbox status so that the upper layers
8689 * can complete the request normally.
8691 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8692 sizeof(struct lpfc_mqe));
8693 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8694 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8695 sizeof(struct lpfc_mcqe));
8696 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8698 * When the CQE status indicates a failure and the mailbox status
8699 * indicates success then copy the CQE status into the mailbox status
8700 * (and prefix it with x4000).
8702 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8703 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8704 bf_set(lpfc_mqe_status, mb,
8705 (LPFC_MBX_ERROR_RANGE | mcqe_status));
8706 rc = MBXERR_ERROR;
8707 } else
8708 lpfc_sli4_swap_str(phba, mboxq);
8710 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8711 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8712 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8713 " x%x x%x CQ: x%x x%x x%x x%x\n",
8714 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8715 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8716 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8717 bf_get(lpfc_mqe_status, mb),
8718 mb->un.mb_words[0], mb->un.mb_words[1],
8719 mb->un.mb_words[2], mb->un.mb_words[3],
8720 mb->un.mb_words[4], mb->un.mb_words[5],
8721 mb->un.mb_words[6], mb->un.mb_words[7],
8722 mb->un.mb_words[8], mb->un.mb_words[9],
8723 mb->un.mb_words[10], mb->un.mb_words[11],
8724 mb->un.mb_words[12], mboxq->mcqe.word0,
8725 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
8726 mboxq->mcqe.trailer);
8727 exit:
8728 /* We are holding the token, no needed for lock when release */
8729 spin_lock_irqsave(&phba->hbalock, iflag);
8730 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8731 phba->sli.mbox_active = NULL;
8732 spin_unlock_irqrestore(&phba->hbalock, iflag);
8733 return rc;
8737 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8738 * @phba: Pointer to HBA context object.
8739 * @pmbox: Pointer to mailbox object.
8740 * @flag: Flag indicating how the mailbox need to be processed.
8742 * This function is called by discovery code and HBA management code to submit
8743 * a mailbox command to firmware with SLI-4 interface spec.
8745 * Return codes the caller owns the mailbox command after the return of the
8746 * function.
8748 static int
8749 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8750 uint32_t flag)
8752 struct lpfc_sli *psli = &phba->sli;
8753 unsigned long iflags;
8754 int rc;
8756 /* dump from issue mailbox command if setup */
8757 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8759 rc = lpfc_mbox_dev_check(phba);
8760 if (unlikely(rc)) {
8761 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8762 "(%d):2544 Mailbox command x%x (x%x/x%x) "
8763 "cannot issue Data: x%x x%x\n",
8764 mboxq->vport ? mboxq->vport->vpi : 0,
8765 mboxq->u.mb.mbxCommand,
8766 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8767 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8768 psli->sli_flag, flag);
8769 goto out_not_finished;
8772 /* Detect polling mode and jump to a handler */
8773 if (!phba->sli4_hba.intr_enable) {
8774 if (flag == MBX_POLL)
8775 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8776 else
8777 rc = -EIO;
8778 if (rc != MBX_SUCCESS)
8779 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8780 "(%d):2541 Mailbox command x%x "
8781 "(x%x/x%x) failure: "
8782 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8783 "Data: x%x x%x\n,",
8784 mboxq->vport ? mboxq->vport->vpi : 0,
8785 mboxq->u.mb.mbxCommand,
8786 lpfc_sli_config_mbox_subsys_get(phba,
8787 mboxq),
8788 lpfc_sli_config_mbox_opcode_get(phba,
8789 mboxq),
8790 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8791 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8792 bf_get(lpfc_mcqe_ext_status,
8793 &mboxq->mcqe),
8794 psli->sli_flag, flag);
8795 return rc;
8796 } else if (flag == MBX_POLL) {
8797 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8798 "(%d):2542 Try to issue mailbox command "
8799 "x%x (x%x/x%x) synchronously ahead of async "
8800 "mailbox command queue: x%x x%x\n",
8801 mboxq->vport ? mboxq->vport->vpi : 0,
8802 mboxq->u.mb.mbxCommand,
8803 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8804 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8805 psli->sli_flag, flag);
8806 /* Try to block the asynchronous mailbox posting */
8807 rc = lpfc_sli4_async_mbox_block(phba);
8808 if (!rc) {
8809 /* Successfully blocked, now issue sync mbox cmd */
8810 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8811 if (rc != MBX_SUCCESS)
8812 lpfc_printf_log(phba, KERN_WARNING,
8813 LOG_MBOX | LOG_SLI,
8814 "(%d):2597 Sync Mailbox command "
8815 "x%x (x%x/x%x) failure: "
8816 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8817 "Data: x%x x%x\n,",
8818 mboxq->vport ? mboxq->vport->vpi : 0,
8819 mboxq->u.mb.mbxCommand,
8820 lpfc_sli_config_mbox_subsys_get(phba,
8821 mboxq),
8822 lpfc_sli_config_mbox_opcode_get(phba,
8823 mboxq),
8824 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8825 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8826 bf_get(lpfc_mcqe_ext_status,
8827 &mboxq->mcqe),
8828 psli->sli_flag, flag);
8829 /* Unblock the async mailbox posting afterward */
8830 lpfc_sli4_async_mbox_unblock(phba);
8832 return rc;
8835 /* Now, interrupt mode asynchronous mailbox command */
8836 rc = lpfc_mbox_cmd_check(phba, mboxq);
8837 if (rc) {
8838 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8839 "(%d):2543 Mailbox command x%x (x%x/x%x) "
8840 "cannot issue Data: x%x x%x\n",
8841 mboxq->vport ? mboxq->vport->vpi : 0,
8842 mboxq->u.mb.mbxCommand,
8843 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8844 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8845 psli->sli_flag, flag);
8846 goto out_not_finished;
8849 /* Put the mailbox command to the driver internal FIFO */
8850 psli->slistat.mbox_busy++;
8851 spin_lock_irqsave(&phba->hbalock, iflags);
8852 lpfc_mbox_put(phba, mboxq);
8853 spin_unlock_irqrestore(&phba->hbalock, iflags);
8854 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8855 "(%d):0354 Mbox cmd issue - Enqueue Data: "
8856 "x%x (x%x/x%x) x%x x%x x%x\n",
8857 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8858 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8859 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8860 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8861 phba->pport->port_state,
8862 psli->sli_flag, MBX_NOWAIT);
8863 /* Wake up worker thread to transport mailbox command from head */
8864 lpfc_worker_wake_up(phba);
8866 return MBX_BUSY;
8868 out_not_finished:
8869 return MBX_NOT_FINISHED;
8873 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8874 * @phba: Pointer to HBA context object.
8876 * This function is called by worker thread to send a mailbox command to
8877 * SLI4 HBA firmware.
8881 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8883 struct lpfc_sli *psli = &phba->sli;
8884 LPFC_MBOXQ_t *mboxq;
8885 int rc = MBX_SUCCESS;
8886 unsigned long iflags;
8887 struct lpfc_mqe *mqe;
8888 uint32_t mbx_cmnd;
8890 /* Check interrupt mode before post async mailbox command */
8891 if (unlikely(!phba->sli4_hba.intr_enable))
8892 return MBX_NOT_FINISHED;
8894 /* Check for mailbox command service token */
8895 spin_lock_irqsave(&phba->hbalock, iflags);
8896 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8897 spin_unlock_irqrestore(&phba->hbalock, iflags);
8898 return MBX_NOT_FINISHED;
8900 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8901 spin_unlock_irqrestore(&phba->hbalock, iflags);
8902 return MBX_NOT_FINISHED;
8904 if (unlikely(phba->sli.mbox_active)) {
8905 spin_unlock_irqrestore(&phba->hbalock, iflags);
8906 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8907 "0384 There is pending active mailbox cmd\n");
8908 return MBX_NOT_FINISHED;
8910 /* Take the mailbox command service token */
8911 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8913 /* Get the next mailbox command from head of queue */
8914 mboxq = lpfc_mbox_get(phba);
8916 /* If no more mailbox command waiting for post, we're done */
8917 if (!mboxq) {
8918 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8919 spin_unlock_irqrestore(&phba->hbalock, iflags);
8920 return MBX_SUCCESS;
8922 phba->sli.mbox_active = mboxq;
8923 spin_unlock_irqrestore(&phba->hbalock, iflags);
8925 /* Check device readiness for posting mailbox command */
8926 rc = lpfc_mbox_dev_check(phba);
8927 if (unlikely(rc))
8928 /* Driver clean routine will clean up pending mailbox */
8929 goto out_not_finished;
8931 /* Prepare the mbox command to be posted */
8932 mqe = &mboxq->u.mqe;
8933 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8935 /* Start timer for the mbox_tmo and log some mailbox post messages */
8936 mod_timer(&psli->mbox_tmo, (jiffies +
8937 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8939 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8940 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8941 "x%x x%x\n",
8942 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8943 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8944 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8945 phba->pport->port_state, psli->sli_flag);
8947 if (mbx_cmnd != MBX_HEARTBEAT) {
8948 if (mboxq->vport) {
8949 lpfc_debugfs_disc_trc(mboxq->vport,
8950 LPFC_DISC_TRC_MBOX_VPORT,
8951 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8952 mbx_cmnd, mqe->un.mb_words[0],
8953 mqe->un.mb_words[1]);
8954 } else {
8955 lpfc_debugfs_disc_trc(phba->pport,
8956 LPFC_DISC_TRC_MBOX,
8957 "MBOX Send: cmd:x%x mb:x%x x%x",
8958 mbx_cmnd, mqe->un.mb_words[0],
8959 mqe->un.mb_words[1]);
8962 psli->slistat.mbox_cmd++;
8964 /* Post the mailbox command to the port */
8965 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8966 if (rc != MBX_SUCCESS) {
8967 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8968 "(%d):2533 Mailbox command x%x (x%x/x%x) "
8969 "cannot issue Data: x%x x%x\n",
8970 mboxq->vport ? mboxq->vport->vpi : 0,
8971 mboxq->u.mb.mbxCommand,
8972 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8973 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8974 psli->sli_flag, MBX_NOWAIT);
8975 goto out_not_finished;
8978 return rc;
8980 out_not_finished:
8981 spin_lock_irqsave(&phba->hbalock, iflags);
8982 if (phba->sli.mbox_active) {
8983 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8984 __lpfc_mbox_cmpl_put(phba, mboxq);
8985 /* Release the token */
8986 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8987 phba->sli.mbox_active = NULL;
8989 spin_unlock_irqrestore(&phba->hbalock, iflags);
8991 return MBX_NOT_FINISHED;
8995 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8996 * @phba: Pointer to HBA context object.
8997 * @pmbox: Pointer to mailbox object.
8998 * @flag: Flag indicating how the mailbox need to be processed.
9000 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9001 * the API jump table function pointer from the lpfc_hba struct.
9003 * Return codes the caller owns the mailbox command after the return of the
9004 * function.
9007 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9009 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9013 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9014 * @phba: The hba struct for which this call is being executed.
9015 * @dev_grp: The HBA PCI-Device group number.
9017 * This routine sets up the mbox interface API function jump table in @phba
9018 * struct.
9019 * Returns: 0 - success, -ENODEV - failure.
9022 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9025 switch (dev_grp) {
9026 case LPFC_PCI_DEV_LP:
9027 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9028 phba->lpfc_sli_handle_slow_ring_event =
9029 lpfc_sli_handle_slow_ring_event_s3;
9030 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9031 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9032 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9033 break;
9034 case LPFC_PCI_DEV_OC:
9035 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9036 phba->lpfc_sli_handle_slow_ring_event =
9037 lpfc_sli_handle_slow_ring_event_s4;
9038 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9039 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9040 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9041 break;
9042 default:
9043 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9044 "1420 Invalid HBA PCI-device group: 0x%x\n",
9045 dev_grp);
9046 return -ENODEV;
9047 break;
9049 return 0;
9053 * __lpfc_sli_ringtx_put - Add an iocb to the txq
9054 * @phba: Pointer to HBA context object.
9055 * @pring: Pointer to driver SLI ring object.
9056 * @piocb: Pointer to address of newly added command iocb.
9058 * This function is called with hbalock held for SLI3 ports or
9059 * the ring lock held for SLI4 ports to add a command
9060 * iocb to the txq when SLI layer cannot submit the command iocb
9061 * to the ring.
9063 void
9064 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9065 struct lpfc_iocbq *piocb)
9067 if (phba->sli_rev == LPFC_SLI_REV4)
9068 lockdep_assert_held(&pring->ring_lock);
9069 else
9070 lockdep_assert_held(&phba->hbalock);
9071 /* Insert the caller's iocb in the txq tail for later processing. */
9072 list_add_tail(&piocb->list, &pring->txq);
9076 * lpfc_sli_next_iocb - Get the next iocb in the txq
9077 * @phba: Pointer to HBA context object.
9078 * @pring: Pointer to driver SLI ring object.
9079 * @piocb: Pointer to address of newly added command iocb.
9081 * This function is called with hbalock held before a new
9082 * iocb is submitted to the firmware. This function checks
9083 * txq to flush the iocbs in txq to Firmware before
9084 * submitting new iocbs to the Firmware.
9085 * If there are iocbs in the txq which need to be submitted
9086 * to firmware, lpfc_sli_next_iocb returns the first element
9087 * of the txq after dequeuing it from txq.
9088 * If there is no iocb in the txq then the function will return
9089 * *piocb and *piocb is set to NULL. Caller needs to check
9090 * *piocb to find if there are more commands in the txq.
9092 static struct lpfc_iocbq *
9093 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9094 struct lpfc_iocbq **piocb)
9096 struct lpfc_iocbq * nextiocb;
9098 lockdep_assert_held(&phba->hbalock);
9100 nextiocb = lpfc_sli_ringtx_get(phba, pring);
9101 if (!nextiocb) {
9102 nextiocb = *piocb;
9103 *piocb = NULL;
9106 return nextiocb;
9110 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9111 * @phba: Pointer to HBA context object.
9112 * @ring_number: SLI ring number to issue iocb on.
9113 * @piocb: Pointer to command iocb.
9114 * @flag: Flag indicating if this command can be put into txq.
9116 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9117 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9118 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9119 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9120 * this function allows only iocbs for posting buffers. This function finds
9121 * next available slot in the command ring and posts the command to the
9122 * available slot and writes the port attention register to request HBA start
9123 * processing new iocb. If there is no slot available in the ring and
9124 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9125 * the function returns IOCB_BUSY.
9127 * This function is called with hbalock held. The function will return success
9128 * after it successfully submit the iocb to firmware or after adding to the
9129 * txq.
9131 static int
9132 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9133 struct lpfc_iocbq *piocb, uint32_t flag)
9135 struct lpfc_iocbq *nextiocb;
9136 IOCB_t *iocb;
9137 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9139 lockdep_assert_held(&phba->hbalock);
9141 if (piocb->iocb_cmpl && (!piocb->vport) &&
9142 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9143 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9144 lpfc_printf_log(phba, KERN_ERR,
9145 LOG_SLI | LOG_VPORT,
9146 "1807 IOCB x%x failed. No vport\n",
9147 piocb->iocb.ulpCommand);
9148 dump_stack();
9149 return IOCB_ERROR;
9153 /* If the PCI channel is in offline state, do not post iocbs. */
9154 if (unlikely(pci_channel_offline(phba->pcidev)))
9155 return IOCB_ERROR;
9157 /* If HBA has a deferred error attention, fail the iocb. */
9158 if (unlikely(phba->hba_flag & DEFER_ERATT))
9159 return IOCB_ERROR;
9162 * We should never get an IOCB if we are in a < LINK_DOWN state
9164 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9165 return IOCB_ERROR;
9168 * Check to see if we are blocking IOCB processing because of a
9169 * outstanding event.
9171 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9172 goto iocb_busy;
9174 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9176 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9177 * can be issued if the link is not up.
9179 switch (piocb->iocb.ulpCommand) {
9180 case CMD_GEN_REQUEST64_CR:
9181 case CMD_GEN_REQUEST64_CX:
9182 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9183 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9184 FC_RCTL_DD_UNSOL_CMD) ||
9185 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
9186 MENLO_TRANSPORT_TYPE))
9188 goto iocb_busy;
9189 break;
9190 case CMD_QUE_RING_BUF_CN:
9191 case CMD_QUE_RING_BUF64_CN:
9193 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9194 * completion, iocb_cmpl MUST be 0.
9196 if (piocb->iocb_cmpl)
9197 piocb->iocb_cmpl = NULL;
9198 /*FALLTHROUGH*/
9199 case CMD_CREATE_XRI_CR:
9200 case CMD_CLOSE_XRI_CN:
9201 case CMD_CLOSE_XRI_CX:
9202 break;
9203 default:
9204 goto iocb_busy;
9208 * For FCP commands, we must be in a state where we can process link
9209 * attention events.
9211 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9212 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9213 goto iocb_busy;
9216 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9217 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9218 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9220 if (iocb)
9221 lpfc_sli_update_ring(phba, pring);
9222 else
9223 lpfc_sli_update_full_ring(phba, pring);
9225 if (!piocb)
9226 return IOCB_SUCCESS;
9228 goto out_busy;
9230 iocb_busy:
9231 pring->stats.iocb_cmd_delay++;
9233 out_busy:
9235 if (!(flag & SLI_IOCB_RET_IOCB)) {
9236 __lpfc_sli_ringtx_put(phba, pring, piocb);
9237 return IOCB_SUCCESS;
9240 return IOCB_BUSY;
9244 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9245 * @phba: Pointer to HBA context object.
9246 * @piocb: Pointer to command iocb.
9247 * @sglq: Pointer to the scatter gather queue object.
9249 * This routine converts the bpl or bde that is in the IOCB
9250 * to a sgl list for the sli4 hardware. The physical address
9251 * of the bpl/bde is converted back to a virtual address.
9252 * If the IOCB contains a BPL then the list of BDE's is
9253 * converted to sli4_sge's. If the IOCB contains a single
9254 * BDE then it is converted to a single sli_sge.
9255 * The IOCB is still in cpu endianess so the contents of
9256 * the bpl can be used without byte swapping.
9258 * Returns valid XRI = Success, NO_XRI = Failure.
9260 static uint16_t
9261 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9262 struct lpfc_sglq *sglq)
9264 uint16_t xritag = NO_XRI;
9265 struct ulp_bde64 *bpl = NULL;
9266 struct ulp_bde64 bde;
9267 struct sli4_sge *sgl = NULL;
9268 struct lpfc_dmabuf *dmabuf;
9269 IOCB_t *icmd;
9270 int numBdes = 0;
9271 int i = 0;
9272 uint32_t offset = 0; /* accumulated offset in the sg request list */
9273 int inbound = 0; /* number of sg reply entries inbound from firmware */
9275 if (!piocbq || !sglq)
9276 return xritag;
9278 sgl = (struct sli4_sge *)sglq->sgl;
9279 icmd = &piocbq->iocb;
9280 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9281 return sglq->sli4_xritag;
9282 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9283 numBdes = icmd->un.genreq64.bdl.bdeSize /
9284 sizeof(struct ulp_bde64);
9285 /* The addrHigh and addrLow fields within the IOCB
9286 * have not been byteswapped yet so there is no
9287 * need to swap them back.
9289 if (piocbq->context3)
9290 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9291 else
9292 return xritag;
9294 bpl = (struct ulp_bde64 *)dmabuf->virt;
9295 if (!bpl)
9296 return xritag;
9298 for (i = 0; i < numBdes; i++) {
9299 /* Should already be byte swapped. */
9300 sgl->addr_hi = bpl->addrHigh;
9301 sgl->addr_lo = bpl->addrLow;
9303 sgl->word2 = le32_to_cpu(sgl->word2);
9304 if ((i+1) == numBdes)
9305 bf_set(lpfc_sli4_sge_last, sgl, 1);
9306 else
9307 bf_set(lpfc_sli4_sge_last, sgl, 0);
9308 /* swap the size field back to the cpu so we
9309 * can assign it to the sgl.
9311 bde.tus.w = le32_to_cpu(bpl->tus.w);
9312 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9313 /* The offsets in the sgl need to be accumulated
9314 * separately for the request and reply lists.
9315 * The request is always first, the reply follows.
9317 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9318 /* add up the reply sg entries */
9319 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9320 inbound++;
9321 /* first inbound? reset the offset */
9322 if (inbound == 1)
9323 offset = 0;
9324 bf_set(lpfc_sli4_sge_offset, sgl, offset);
9325 bf_set(lpfc_sli4_sge_type, sgl,
9326 LPFC_SGE_TYPE_DATA);
9327 offset += bde.tus.f.bdeSize;
9329 sgl->word2 = cpu_to_le32(sgl->word2);
9330 bpl++;
9331 sgl++;
9333 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9334 /* The addrHigh and addrLow fields of the BDE have not
9335 * been byteswapped yet so they need to be swapped
9336 * before putting them in the sgl.
9338 sgl->addr_hi =
9339 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9340 sgl->addr_lo =
9341 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9342 sgl->word2 = le32_to_cpu(sgl->word2);
9343 bf_set(lpfc_sli4_sge_last, sgl, 1);
9344 sgl->word2 = cpu_to_le32(sgl->word2);
9345 sgl->sge_len =
9346 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9348 return sglq->sli4_xritag;
9352 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9353 * @phba: Pointer to HBA context object.
9354 * @piocb: Pointer to command iocb.
9355 * @wqe: Pointer to the work queue entry.
9357 * This routine converts the iocb command to its Work Queue Entry
9358 * equivalent. The wqe pointer should not have any fields set when
9359 * this routine is called because it will memcpy over them.
9360 * This routine does not set the CQ_ID or the WQEC bits in the
9361 * wqe.
9363 * Returns: 0 = Success, IOCB_ERROR = Failure.
9365 static int
9366 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9367 union lpfc_wqe128 *wqe)
9369 uint32_t xmit_len = 0, total_len = 0;
9370 uint8_t ct = 0;
9371 uint32_t fip;
9372 uint32_t abort_tag;
9373 uint8_t command_type = ELS_COMMAND_NON_FIP;
9374 uint8_t cmnd;
9375 uint16_t xritag;
9376 uint16_t abrt_iotag;
9377 struct lpfc_iocbq *abrtiocbq;
9378 struct ulp_bde64 *bpl = NULL;
9379 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9380 int numBdes, i;
9381 struct ulp_bde64 bde;
9382 struct lpfc_nodelist *ndlp;
9383 uint32_t *pcmd;
9384 uint32_t if_type;
9386 fip = phba->hba_flag & HBA_FIP_SUPPORT;
9387 /* The fcp commands will set command type */
9388 if (iocbq->iocb_flag & LPFC_IO_FCP)
9389 command_type = FCP_COMMAND;
9390 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9391 command_type = ELS_COMMAND_FIP;
9392 else
9393 command_type = ELS_COMMAND_NON_FIP;
9395 if (phba->fcp_embed_io)
9396 memset(wqe, 0, sizeof(union lpfc_wqe128));
9397 /* Some of the fields are in the right position already */
9398 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9399 /* The ct field has moved so reset */
9400 wqe->generic.wqe_com.word7 = 0;
9401 wqe->generic.wqe_com.word10 = 0;
9403 abort_tag = (uint32_t) iocbq->iotag;
9404 xritag = iocbq->sli4_xritag;
9405 /* words0-2 bpl convert bde */
9406 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9407 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9408 sizeof(struct ulp_bde64);
9409 bpl = (struct ulp_bde64 *)
9410 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
9411 if (!bpl)
9412 return IOCB_ERROR;
9414 /* Should already be byte swapped. */
9415 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
9416 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
9417 /* swap the size field back to the cpu so we
9418 * can assign it to the sgl.
9420 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
9421 xmit_len = wqe->generic.bde.tus.f.bdeSize;
9422 total_len = 0;
9423 for (i = 0; i < numBdes; i++) {
9424 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9425 total_len += bde.tus.f.bdeSize;
9427 } else
9428 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9430 iocbq->iocb.ulpIoTag = iocbq->iotag;
9431 cmnd = iocbq->iocb.ulpCommand;
9433 switch (iocbq->iocb.ulpCommand) {
9434 case CMD_ELS_REQUEST64_CR:
9435 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9436 ndlp = iocbq->context_un.ndlp;
9437 else
9438 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9439 if (!iocbq->iocb.ulpLe) {
9440 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9441 "2007 Only Limited Edition cmd Format"
9442 " supported 0x%x\n",
9443 iocbq->iocb.ulpCommand);
9444 return IOCB_ERROR;
9447 wqe->els_req.payload_len = xmit_len;
9448 /* Els_reguest64 has a TMO */
9449 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9450 iocbq->iocb.ulpTimeout);
9451 /* Need a VF for word 4 set the vf bit*/
9452 bf_set(els_req64_vf, &wqe->els_req, 0);
9453 /* And a VFID for word 12 */
9454 bf_set(els_req64_vfid, &wqe->els_req, 0);
9455 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9456 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9457 iocbq->iocb.ulpContext);
9458 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9459 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9460 /* CCP CCPE PV PRI in word10 were set in the memcpy */
9461 if (command_type == ELS_COMMAND_FIP)
9462 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9463 >> LPFC_FIP_ELS_ID_SHIFT);
9464 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9465 iocbq->context2)->virt);
9466 if_type = bf_get(lpfc_sli_intf_if_type,
9467 &phba->sli4_hba.sli_intf);
9468 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9469 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9470 *pcmd == ELS_CMD_SCR ||
9471 *pcmd == ELS_CMD_RSCN_XMT ||
9472 *pcmd == ELS_CMD_FDISC ||
9473 *pcmd == ELS_CMD_LOGO ||
9474 *pcmd == ELS_CMD_PLOGI)) {
9475 bf_set(els_req64_sp, &wqe->els_req, 1);
9476 bf_set(els_req64_sid, &wqe->els_req,
9477 iocbq->vport->fc_myDID);
9478 if ((*pcmd == ELS_CMD_FLOGI) &&
9479 !(phba->fc_topology ==
9480 LPFC_TOPOLOGY_LOOP))
9481 bf_set(els_req64_sid, &wqe->els_req, 0);
9482 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9483 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9484 phba->vpi_ids[iocbq->vport->vpi]);
9485 } else if (pcmd && iocbq->context1) {
9486 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9487 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9488 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9491 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9492 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9493 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9494 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9495 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9496 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9497 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9498 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9499 wqe->els_req.max_response_payload_len = total_len - xmit_len;
9500 break;
9501 case CMD_XMIT_SEQUENCE64_CX:
9502 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9503 iocbq->iocb.un.ulpWord[3]);
9504 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9505 iocbq->iocb.unsli3.rcvsli3.ox_id);
9506 /* The entire sequence is transmitted for this IOCB */
9507 xmit_len = total_len;
9508 cmnd = CMD_XMIT_SEQUENCE64_CR;
9509 if (phba->link_flag & LS_LOOPBACK_MODE)
9510 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9511 /* fall through */
9512 case CMD_XMIT_SEQUENCE64_CR:
9513 /* word3 iocb=io_tag32 wqe=reserved */
9514 wqe->xmit_sequence.rsvd3 = 0;
9515 /* word4 relative_offset memcpy */
9516 /* word5 r_ctl/df_ctl memcpy */
9517 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9518 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9519 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9520 LPFC_WQE_IOD_WRITE);
9521 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9522 LPFC_WQE_LENLOC_WORD12);
9523 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9524 wqe->xmit_sequence.xmit_len = xmit_len;
9525 command_type = OTHER_COMMAND;
9526 break;
9527 case CMD_XMIT_BCAST64_CN:
9528 /* word3 iocb=iotag32 wqe=seq_payload_len */
9529 wqe->xmit_bcast64.seq_payload_len = xmit_len;
9530 /* word4 iocb=rsvd wqe=rsvd */
9531 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9532 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9533 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9534 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9535 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9536 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9537 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9538 LPFC_WQE_LENLOC_WORD3);
9539 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9540 break;
9541 case CMD_FCP_IWRITE64_CR:
9542 command_type = FCP_COMMAND_DATA_OUT;
9543 /* word3 iocb=iotag wqe=payload_offset_len */
9544 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9545 bf_set(payload_offset_len, &wqe->fcp_iwrite,
9546 xmit_len + sizeof(struct fcp_rsp));
9547 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9549 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9550 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9551 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9552 iocbq->iocb.ulpFCP2Rcvy);
9553 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9554 /* Always open the exchange */
9555 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9556 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9557 LPFC_WQE_LENLOC_WORD4);
9558 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9559 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9560 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9561 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9562 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9563 if (iocbq->priority) {
9564 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9565 (iocbq->priority << 1));
9566 } else {
9567 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9568 (phba->cfg_XLanePriority << 1));
9571 /* Note, word 10 is already initialized to 0 */
9573 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9574 if (phba->cfg_enable_pbde)
9575 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9576 else
9577 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9579 if (phba->fcp_embed_io) {
9580 struct lpfc_io_buf *lpfc_cmd;
9581 struct sli4_sge *sgl;
9582 struct fcp_cmnd *fcp_cmnd;
9583 uint32_t *ptr;
9585 /* 128 byte wqe support here */
9587 lpfc_cmd = iocbq->context1;
9588 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9589 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9591 /* Word 0-2 - FCP_CMND */
9592 wqe->generic.bde.tus.f.bdeFlags =
9593 BUFF_TYPE_BDE_IMMED;
9594 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9595 wqe->generic.bde.addrHigh = 0;
9596 wqe->generic.bde.addrLow = 88; /* Word 22 */
9598 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9599 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9601 /* Word 22-29 FCP CMND Payload */
9602 ptr = &wqe->words[22];
9603 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9605 break;
9606 case CMD_FCP_IREAD64_CR:
9607 /* word3 iocb=iotag wqe=payload_offset_len */
9608 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9609 bf_set(payload_offset_len, &wqe->fcp_iread,
9610 xmit_len + sizeof(struct fcp_rsp));
9611 bf_set(cmd_buff_len, &wqe->fcp_iread,
9613 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9614 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9615 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9616 iocbq->iocb.ulpFCP2Rcvy);
9617 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9618 /* Always open the exchange */
9619 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9620 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9621 LPFC_WQE_LENLOC_WORD4);
9622 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9623 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9624 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9625 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9626 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9627 if (iocbq->priority) {
9628 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9629 (iocbq->priority << 1));
9630 } else {
9631 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9632 (phba->cfg_XLanePriority << 1));
9635 /* Note, word 10 is already initialized to 0 */
9637 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9638 if (phba->cfg_enable_pbde)
9639 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9640 else
9641 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9643 if (phba->fcp_embed_io) {
9644 struct lpfc_io_buf *lpfc_cmd;
9645 struct sli4_sge *sgl;
9646 struct fcp_cmnd *fcp_cmnd;
9647 uint32_t *ptr;
9649 /* 128 byte wqe support here */
9651 lpfc_cmd = iocbq->context1;
9652 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9653 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9655 /* Word 0-2 - FCP_CMND */
9656 wqe->generic.bde.tus.f.bdeFlags =
9657 BUFF_TYPE_BDE_IMMED;
9658 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9659 wqe->generic.bde.addrHigh = 0;
9660 wqe->generic.bde.addrLow = 88; /* Word 22 */
9662 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9663 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9665 /* Word 22-29 FCP CMND Payload */
9666 ptr = &wqe->words[22];
9667 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9669 break;
9670 case CMD_FCP_ICMND64_CR:
9671 /* word3 iocb=iotag wqe=payload_offset_len */
9672 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9673 bf_set(payload_offset_len, &wqe->fcp_icmd,
9674 xmit_len + sizeof(struct fcp_rsp));
9675 bf_set(cmd_buff_len, &wqe->fcp_icmd,
9677 /* word3 iocb=IO_TAG wqe=reserved */
9678 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9679 /* Always open the exchange */
9680 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9681 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9682 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9683 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9684 LPFC_WQE_LENLOC_NONE);
9685 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9686 iocbq->iocb.ulpFCP2Rcvy);
9687 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9688 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9689 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9690 if (iocbq->priority) {
9691 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9692 (iocbq->priority << 1));
9693 } else {
9694 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9695 (phba->cfg_XLanePriority << 1));
9698 /* Note, word 10 is already initialized to 0 */
9700 if (phba->fcp_embed_io) {
9701 struct lpfc_io_buf *lpfc_cmd;
9702 struct sli4_sge *sgl;
9703 struct fcp_cmnd *fcp_cmnd;
9704 uint32_t *ptr;
9706 /* 128 byte wqe support here */
9708 lpfc_cmd = iocbq->context1;
9709 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9710 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9712 /* Word 0-2 - FCP_CMND */
9713 wqe->generic.bde.tus.f.bdeFlags =
9714 BUFF_TYPE_BDE_IMMED;
9715 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9716 wqe->generic.bde.addrHigh = 0;
9717 wqe->generic.bde.addrLow = 88; /* Word 22 */
9719 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9720 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9722 /* Word 22-29 FCP CMND Payload */
9723 ptr = &wqe->words[22];
9724 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9726 break;
9727 case CMD_GEN_REQUEST64_CR:
9728 /* For this command calculate the xmit length of the
9729 * request bde.
9731 xmit_len = 0;
9732 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9733 sizeof(struct ulp_bde64);
9734 for (i = 0; i < numBdes; i++) {
9735 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9736 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9737 break;
9738 xmit_len += bde.tus.f.bdeSize;
9740 /* word3 iocb=IO_TAG wqe=request_payload_len */
9741 wqe->gen_req.request_payload_len = xmit_len;
9742 /* word4 iocb=parameter wqe=relative_offset memcpy */
9743 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
9744 /* word6 context tag copied in memcpy */
9745 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
9746 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9747 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9748 "2015 Invalid CT %x command 0x%x\n",
9749 ct, iocbq->iocb.ulpCommand);
9750 return IOCB_ERROR;
9752 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9753 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9754 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9755 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9756 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9757 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9758 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9759 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9760 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9761 command_type = OTHER_COMMAND;
9762 break;
9763 case CMD_XMIT_ELS_RSP64_CX:
9764 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9765 /* words0-2 BDE memcpy */
9766 /* word3 iocb=iotag32 wqe=response_payload_len */
9767 wqe->xmit_els_rsp.response_payload_len = xmit_len;
9768 /* word4 */
9769 wqe->xmit_els_rsp.word4 = 0;
9770 /* word5 iocb=rsvd wge=did */
9771 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9772 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9774 if_type = bf_get(lpfc_sli_intf_if_type,
9775 &phba->sli4_hba.sli_intf);
9776 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9777 if (iocbq->vport->fc_flag & FC_PT2PT) {
9778 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9779 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9780 iocbq->vport->fc_myDID);
9781 if (iocbq->vport->fc_myDID == Fabric_DID) {
9782 bf_set(wqe_els_did,
9783 &wqe->xmit_els_rsp.wqe_dest, 0);
9787 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9788 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9789 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9790 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9791 iocbq->iocb.unsli3.rcvsli3.ox_id);
9792 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9793 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9794 phba->vpi_ids[iocbq->vport->vpi]);
9795 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9796 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9797 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9798 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9799 LPFC_WQE_LENLOC_WORD3);
9800 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9801 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9802 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9803 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9804 iocbq->context2)->virt);
9805 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9806 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9807 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9808 iocbq->vport->fc_myDID);
9809 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9810 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9811 phba->vpi_ids[phba->pport->vpi]);
9813 command_type = OTHER_COMMAND;
9814 break;
9815 case CMD_CLOSE_XRI_CN:
9816 case CMD_ABORT_XRI_CN:
9817 case CMD_ABORT_XRI_CX:
9818 /* words 0-2 memcpy should be 0 rserved */
9819 /* port will send abts */
9820 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9821 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9822 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9823 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9824 } else
9825 fip = 0;
9827 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9829 * The link is down, or the command was ELS_FIP
9830 * so the fw does not need to send abts
9831 * on the wire.
9833 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9834 else
9835 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9836 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9837 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9838 wqe->abort_cmd.rsrvd5 = 0;
9839 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9840 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9841 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9843 * The abort handler will send us CMD_ABORT_XRI_CN or
9844 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9846 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9847 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9848 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9849 LPFC_WQE_LENLOC_NONE);
9850 cmnd = CMD_ABORT_XRI_CX;
9851 command_type = OTHER_COMMAND;
9852 xritag = 0;
9853 break;
9854 case CMD_XMIT_BLS_RSP64_CX:
9855 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9856 /* As BLS ABTS RSP WQE is very different from other WQEs,
9857 * we re-construct this WQE here based on information in
9858 * iocbq from scratch.
9860 memset(wqe, 0, sizeof(*wqe));
9861 /* OX_ID is invariable to who sent ABTS to CT exchange */
9862 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9863 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9864 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9865 LPFC_ABTS_UNSOL_INT) {
9866 /* ABTS sent by initiator to CT exchange, the
9867 * RX_ID field will be filled with the newly
9868 * allocated responder XRI.
9870 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9871 iocbq->sli4_xritag);
9872 } else {
9873 /* ABTS sent by responder to CT exchange, the
9874 * RX_ID field will be filled with the responder
9875 * RX_ID from ABTS.
9877 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9878 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9880 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9881 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9883 /* Use CT=VPI */
9884 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9885 ndlp->nlp_DID);
9886 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9887 iocbq->iocb.ulpContext);
9888 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9889 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9890 phba->vpi_ids[phba->pport->vpi]);
9891 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9892 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9893 LPFC_WQE_LENLOC_NONE);
9894 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
9895 command_type = OTHER_COMMAND;
9896 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9897 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9898 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9899 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9900 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9901 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9902 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9905 break;
9906 case CMD_SEND_FRAME:
9907 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
9908 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
9909 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
9910 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
9911 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
9912 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
9913 bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
9914 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
9915 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9916 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9917 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9918 return 0;
9919 case CMD_XRI_ABORTED_CX:
9920 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9921 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9922 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9923 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9924 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9925 default:
9926 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9927 "2014 Invalid command 0x%x\n",
9928 iocbq->iocb.ulpCommand);
9929 return IOCB_ERROR;
9930 break;
9933 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9934 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9935 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9936 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9937 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9938 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9939 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9940 LPFC_IO_DIF_INSERT);
9941 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9942 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9943 wqe->generic.wqe_com.abort_tag = abort_tag;
9944 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9945 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9946 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9947 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9948 return 0;
9952 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9953 * @phba: Pointer to HBA context object.
9954 * @ring_number: SLI ring number to issue iocb on.
9955 * @piocb: Pointer to command iocb.
9956 * @flag: Flag indicating if this command can be put into txq.
9958 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9959 * an iocb command to an HBA with SLI-4 interface spec.
9961 * This function is called with ringlock held. The function will return success
9962 * after it successfully submit the iocb to firmware or after adding to the
9963 * txq.
9965 static int
9966 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9967 struct lpfc_iocbq *piocb, uint32_t flag)
9969 struct lpfc_sglq *sglq;
9970 union lpfc_wqe128 wqe;
9971 struct lpfc_queue *wq;
9972 struct lpfc_sli_ring *pring;
9974 /* Get the WQ */
9975 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9976 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9977 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
9978 } else {
9979 wq = phba->sli4_hba.els_wq;
9982 /* Get corresponding ring */
9983 pring = wq->pring;
9986 * The WQE can be either 64 or 128 bytes,
9989 lockdep_assert_held(&pring->ring_lock);
9991 if (piocb->sli4_xritag == NO_XRI) {
9992 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9993 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9994 sglq = NULL;
9995 else {
9996 if (!list_empty(&pring->txq)) {
9997 if (!(flag & SLI_IOCB_RET_IOCB)) {
9998 __lpfc_sli_ringtx_put(phba,
9999 pring, piocb);
10000 return IOCB_SUCCESS;
10001 } else {
10002 return IOCB_BUSY;
10004 } else {
10005 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10006 if (!sglq) {
10007 if (!(flag & SLI_IOCB_RET_IOCB)) {
10008 __lpfc_sli_ringtx_put(phba,
10009 pring,
10010 piocb);
10011 return IOCB_SUCCESS;
10012 } else
10013 return IOCB_BUSY;
10017 } else if (piocb->iocb_flag & LPFC_IO_FCP)
10018 /* These IO's already have an XRI and a mapped sgl. */
10019 sglq = NULL;
10020 else {
10022 * This is a continuation of a commandi,(CX) so this
10023 * sglq is on the active list
10025 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10026 if (!sglq)
10027 return IOCB_ERROR;
10030 if (sglq) {
10031 piocb->sli4_lxritag = sglq->sli4_lxritag;
10032 piocb->sli4_xritag = sglq->sli4_xritag;
10033 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10034 return IOCB_ERROR;
10037 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10038 return IOCB_ERROR;
10040 if (lpfc_sli4_wq_put(wq, &wqe))
10041 return IOCB_ERROR;
10042 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10044 return 0;
10048 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10050 * This routine wraps the actual lockless version for issusing IOCB function
10051 * pointer from the lpfc_hba struct.
10053 * Return codes:
10054 * IOCB_ERROR - Error
10055 * IOCB_SUCCESS - Success
10056 * IOCB_BUSY - Busy
10059 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10060 struct lpfc_iocbq *piocb, uint32_t flag)
10062 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10066 * lpfc_sli_api_table_setup - Set up sli api function jump table
10067 * @phba: The hba struct for which this call is being executed.
10068 * @dev_grp: The HBA PCI-Device group number.
10070 * This routine sets up the SLI interface API function jump table in @phba
10071 * struct.
10072 * Returns: 0 - success, -ENODEV - failure.
10075 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10078 switch (dev_grp) {
10079 case LPFC_PCI_DEV_LP:
10080 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10081 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10082 break;
10083 case LPFC_PCI_DEV_OC:
10084 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10085 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10086 break;
10087 default:
10088 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10089 "1419 Invalid HBA PCI-device group: 0x%x\n",
10090 dev_grp);
10091 return -ENODEV;
10092 break;
10094 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10095 return 0;
10099 * lpfc_sli4_calc_ring - Calculates which ring to use
10100 * @phba: Pointer to HBA context object.
10101 * @piocb: Pointer to command iocb.
10103 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10104 * hba_wqidx, thus we need to calculate the corresponding ring.
10105 * Since ABORTS must go on the same WQ of the command they are
10106 * aborting, we use command's hba_wqidx.
10108 struct lpfc_sli_ring *
10109 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10111 struct lpfc_io_buf *lpfc_cmd;
10113 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10114 if (unlikely(!phba->sli4_hba.hdwq))
10115 return NULL;
10117 * for abort iocb hba_wqidx should already
10118 * be setup based on what work queue we used.
10120 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10121 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10122 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10124 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10125 } else {
10126 if (unlikely(!phba->sli4_hba.els_wq))
10127 return NULL;
10128 piocb->hba_wqidx = 0;
10129 return phba->sli4_hba.els_wq->pring;
10134 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10135 * @phba: Pointer to HBA context object.
10136 * @pring: Pointer to driver SLI ring object.
10137 * @piocb: Pointer to command iocb.
10138 * @flag: Flag indicating if this command can be put into txq.
10140 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10141 * function. This function gets the hbalock and calls
10142 * __lpfc_sli_issue_iocb function and will return the error returned
10143 * by __lpfc_sli_issue_iocb function. This wrapper is used by
10144 * functions which do not hold hbalock.
10147 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10148 struct lpfc_iocbq *piocb, uint32_t flag)
10150 struct lpfc_sli_ring *pring;
10151 struct lpfc_queue *eq;
10152 unsigned long iflags;
10153 int rc;
10155 if (phba->sli_rev == LPFC_SLI_REV4) {
10156 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10158 pring = lpfc_sli4_calc_ring(phba, piocb);
10159 if (unlikely(pring == NULL))
10160 return IOCB_ERROR;
10162 spin_lock_irqsave(&pring->ring_lock, iflags);
10163 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10164 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10166 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10167 } else {
10168 /* For now, SLI2/3 will still use hbalock */
10169 spin_lock_irqsave(&phba->hbalock, iflags);
10170 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10171 spin_unlock_irqrestore(&phba->hbalock, iflags);
10173 return rc;
10177 * lpfc_extra_ring_setup - Extra ring setup function
10178 * @phba: Pointer to HBA context object.
10180 * This function is called while driver attaches with the
10181 * HBA to setup the extra ring. The extra ring is used
10182 * only when driver needs to support target mode functionality
10183 * or IP over FC functionalities.
10185 * This function is called with no lock held. SLI3 only.
10187 static int
10188 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10190 struct lpfc_sli *psli;
10191 struct lpfc_sli_ring *pring;
10193 psli = &phba->sli;
10195 /* Adjust cmd/rsp ring iocb entries more evenly */
10197 /* Take some away from the FCP ring */
10198 pring = &psli->sli3_ring[LPFC_FCP_RING];
10199 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10200 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10201 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10202 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10204 /* and give them to the extra ring */
10205 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10207 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10208 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10209 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10210 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10212 /* Setup default profile for this ring */
10213 pring->iotag_max = 4096;
10214 pring->num_mask = 1;
10215 pring->prt[0].profile = 0; /* Mask 0 */
10216 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10217 pring->prt[0].type = phba->cfg_multi_ring_type;
10218 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10219 return 0;
10222 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10223 * @phba: Pointer to HBA context object.
10224 * @iocbq: Pointer to iocb object.
10226 * The async_event handler calls this routine when it receives
10227 * an ASYNC_STATUS_CN event from the port. The port generates
10228 * this event when an Abort Sequence request to an rport fails
10229 * twice in succession. The abort could be originated by the
10230 * driver or by the port. The ABTS could have been for an ELS
10231 * or FCP IO. The port only generates this event when an ABTS
10232 * fails to complete after one retry.
10234 static void
10235 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10236 struct lpfc_iocbq *iocbq)
10238 struct lpfc_nodelist *ndlp = NULL;
10239 uint16_t rpi = 0, vpi = 0;
10240 struct lpfc_vport *vport = NULL;
10242 /* The rpi in the ulpContext is vport-sensitive. */
10243 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10244 rpi = iocbq->iocb.ulpContext;
10246 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10247 "3092 Port generated ABTS async event "
10248 "on vpi %d rpi %d status 0x%x\n",
10249 vpi, rpi, iocbq->iocb.ulpStatus);
10251 vport = lpfc_find_vport_by_vpid(phba, vpi);
10252 if (!vport)
10253 goto err_exit;
10254 ndlp = lpfc_findnode_rpi(vport, rpi);
10255 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10256 goto err_exit;
10258 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10259 lpfc_sli_abts_recover_port(vport, ndlp);
10260 return;
10262 err_exit:
10263 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10264 "3095 Event Context not found, no "
10265 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10266 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10267 vpi, rpi);
10270 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10271 * @phba: pointer to HBA context object.
10272 * @ndlp: nodelist pointer for the impacted rport.
10273 * @axri: pointer to the wcqe containing the failed exchange.
10275 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10276 * port. The port generates this event when an abort exchange request to an
10277 * rport fails twice in succession with no reply. The abort could be originated
10278 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
10280 void
10281 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10282 struct lpfc_nodelist *ndlp,
10283 struct sli4_wcqe_xri_aborted *axri)
10285 struct lpfc_vport *vport;
10286 uint32_t ext_status = 0;
10288 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10289 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10290 "3115 Node Context not found, driver "
10291 "ignoring abts err event\n");
10292 return;
10295 vport = ndlp->vport;
10296 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10297 "3116 Port generated FCP XRI ABORT event on "
10298 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10299 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10300 bf_get(lpfc_wcqe_xa_xri, axri),
10301 bf_get(lpfc_wcqe_xa_status, axri),
10302 axri->parameter);
10305 * Catch the ABTS protocol failure case. Older OCe FW releases returned
10306 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10307 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10309 ext_status = axri->parameter & IOERR_PARAM_MASK;
10310 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10311 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10312 lpfc_sli_abts_recover_port(vport, ndlp);
10316 * lpfc_sli_async_event_handler - ASYNC iocb handler function
10317 * @phba: Pointer to HBA context object.
10318 * @pring: Pointer to driver SLI ring object.
10319 * @iocbq: Pointer to iocb object.
10321 * This function is called by the slow ring event handler
10322 * function when there is an ASYNC event iocb in the ring.
10323 * This function is called with no lock held.
10324 * Currently this function handles only temperature related
10325 * ASYNC events. The function decodes the temperature sensor
10326 * event message and posts events for the management applications.
10328 static void
10329 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10330 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10332 IOCB_t *icmd;
10333 uint16_t evt_code;
10334 struct temp_event temp_event_data;
10335 struct Scsi_Host *shost;
10336 uint32_t *iocb_w;
10338 icmd = &iocbq->iocb;
10339 evt_code = icmd->un.asyncstat.evt_code;
10341 switch (evt_code) {
10342 case ASYNC_TEMP_WARN:
10343 case ASYNC_TEMP_SAFE:
10344 temp_event_data.data = (uint32_t) icmd->ulpContext;
10345 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10346 if (evt_code == ASYNC_TEMP_WARN) {
10347 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10348 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10349 "0347 Adapter is very hot, please take "
10350 "corrective action. temperature : %d Celsius\n",
10351 (uint32_t) icmd->ulpContext);
10352 } else {
10353 temp_event_data.event_code = LPFC_NORMAL_TEMP;
10354 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10355 "0340 Adapter temperature is OK now. "
10356 "temperature : %d Celsius\n",
10357 (uint32_t) icmd->ulpContext);
10360 /* Send temperature change event to applications */
10361 shost = lpfc_shost_from_vport(phba->pport);
10362 fc_host_post_vendor_event(shost, fc_get_event_number(),
10363 sizeof(temp_event_data), (char *) &temp_event_data,
10364 LPFC_NL_VENDOR_ID);
10365 break;
10366 case ASYNC_STATUS_CN:
10367 lpfc_sli_abts_err_handler(phba, iocbq);
10368 break;
10369 default:
10370 iocb_w = (uint32_t *) icmd;
10371 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10372 "0346 Ring %d handler: unexpected ASYNC_STATUS"
10373 " evt_code 0x%x\n"
10374 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
10375 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
10376 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
10377 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10378 pring->ringno, icmd->un.asyncstat.evt_code,
10379 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10380 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10381 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10382 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10384 break;
10390 * lpfc_sli4_setup - SLI ring setup function
10391 * @phba: Pointer to HBA context object.
10393 * lpfc_sli_setup sets up rings of the SLI interface with
10394 * number of iocbs per ring and iotags. This function is
10395 * called while driver attach to the HBA and before the
10396 * interrupts are enabled. So there is no need for locking.
10398 * This function always returns 0.
10401 lpfc_sli4_setup(struct lpfc_hba *phba)
10403 struct lpfc_sli_ring *pring;
10405 pring = phba->sli4_hba.els_wq->pring;
10406 pring->num_mask = LPFC_MAX_RING_MASK;
10407 pring->prt[0].profile = 0; /* Mask 0 */
10408 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10409 pring->prt[0].type = FC_TYPE_ELS;
10410 pring->prt[0].lpfc_sli_rcv_unsol_event =
10411 lpfc_els_unsol_event;
10412 pring->prt[1].profile = 0; /* Mask 1 */
10413 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10414 pring->prt[1].type = FC_TYPE_ELS;
10415 pring->prt[1].lpfc_sli_rcv_unsol_event =
10416 lpfc_els_unsol_event;
10417 pring->prt[2].profile = 0; /* Mask 2 */
10418 /* NameServer Inquiry */
10419 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10420 /* NameServer */
10421 pring->prt[2].type = FC_TYPE_CT;
10422 pring->prt[2].lpfc_sli_rcv_unsol_event =
10423 lpfc_ct_unsol_event;
10424 pring->prt[3].profile = 0; /* Mask 3 */
10425 /* NameServer response */
10426 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10427 /* NameServer */
10428 pring->prt[3].type = FC_TYPE_CT;
10429 pring->prt[3].lpfc_sli_rcv_unsol_event =
10430 lpfc_ct_unsol_event;
10431 return 0;
10435 * lpfc_sli_setup - SLI ring setup function
10436 * @phba: Pointer to HBA context object.
10438 * lpfc_sli_setup sets up rings of the SLI interface with
10439 * number of iocbs per ring and iotags. This function is
10440 * called while driver attach to the HBA and before the
10441 * interrupts are enabled. So there is no need for locking.
10443 * This function always returns 0. SLI3 only.
10446 lpfc_sli_setup(struct lpfc_hba *phba)
10448 int i, totiocbsize = 0;
10449 struct lpfc_sli *psli = &phba->sli;
10450 struct lpfc_sli_ring *pring;
10452 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10453 psli->sli_flag = 0;
10455 psli->iocbq_lookup = NULL;
10456 psli->iocbq_lookup_len = 0;
10457 psli->last_iotag = 0;
10459 for (i = 0; i < psli->num_rings; i++) {
10460 pring = &psli->sli3_ring[i];
10461 switch (i) {
10462 case LPFC_FCP_RING: /* ring 0 - FCP */
10463 /* numCiocb and numRiocb are used in config_port */
10464 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10465 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10466 pring->sli.sli3.numCiocb +=
10467 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10468 pring->sli.sli3.numRiocb +=
10469 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10470 pring->sli.sli3.numCiocb +=
10471 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10472 pring->sli.sli3.numRiocb +=
10473 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10474 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10475 SLI3_IOCB_CMD_SIZE :
10476 SLI2_IOCB_CMD_SIZE;
10477 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10478 SLI3_IOCB_RSP_SIZE :
10479 SLI2_IOCB_RSP_SIZE;
10480 pring->iotag_ctr = 0;
10481 pring->iotag_max =
10482 (phba->cfg_hba_queue_depth * 2);
10483 pring->fast_iotag = pring->iotag_max;
10484 pring->num_mask = 0;
10485 break;
10486 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
10487 /* numCiocb and numRiocb are used in config_port */
10488 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10489 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10490 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10491 SLI3_IOCB_CMD_SIZE :
10492 SLI2_IOCB_CMD_SIZE;
10493 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10494 SLI3_IOCB_RSP_SIZE :
10495 SLI2_IOCB_RSP_SIZE;
10496 pring->iotag_max = phba->cfg_hba_queue_depth;
10497 pring->num_mask = 0;
10498 break;
10499 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
10500 /* numCiocb and numRiocb are used in config_port */
10501 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10502 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10503 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10504 SLI3_IOCB_CMD_SIZE :
10505 SLI2_IOCB_CMD_SIZE;
10506 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10507 SLI3_IOCB_RSP_SIZE :
10508 SLI2_IOCB_RSP_SIZE;
10509 pring->fast_iotag = 0;
10510 pring->iotag_ctr = 0;
10511 pring->iotag_max = 4096;
10512 pring->lpfc_sli_rcv_async_status =
10513 lpfc_sli_async_event_handler;
10514 pring->num_mask = LPFC_MAX_RING_MASK;
10515 pring->prt[0].profile = 0; /* Mask 0 */
10516 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10517 pring->prt[0].type = FC_TYPE_ELS;
10518 pring->prt[0].lpfc_sli_rcv_unsol_event =
10519 lpfc_els_unsol_event;
10520 pring->prt[1].profile = 0; /* Mask 1 */
10521 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10522 pring->prt[1].type = FC_TYPE_ELS;
10523 pring->prt[1].lpfc_sli_rcv_unsol_event =
10524 lpfc_els_unsol_event;
10525 pring->prt[2].profile = 0; /* Mask 2 */
10526 /* NameServer Inquiry */
10527 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10528 /* NameServer */
10529 pring->prt[2].type = FC_TYPE_CT;
10530 pring->prt[2].lpfc_sli_rcv_unsol_event =
10531 lpfc_ct_unsol_event;
10532 pring->prt[3].profile = 0; /* Mask 3 */
10533 /* NameServer response */
10534 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10535 /* NameServer */
10536 pring->prt[3].type = FC_TYPE_CT;
10537 pring->prt[3].lpfc_sli_rcv_unsol_event =
10538 lpfc_ct_unsol_event;
10539 break;
10541 totiocbsize += (pring->sli.sli3.numCiocb *
10542 pring->sli.sli3.sizeCiocb) +
10543 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10545 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10546 /* Too many cmd / rsp ring entries in SLI2 SLIM */
10547 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10548 "SLI2 SLIM Data: x%x x%lx\n",
10549 phba->brd_no, totiocbsize,
10550 (unsigned long) MAX_SLIM_IOCB_SIZE);
10552 if (phba->cfg_multi_ring_support == 2)
10553 lpfc_extra_ring_setup(phba);
10555 return 0;
10559 * lpfc_sli4_queue_init - Queue initialization function
10560 * @phba: Pointer to HBA context object.
10562 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10563 * ring. This function also initializes ring indices of each ring.
10564 * This function is called during the initialization of the SLI
10565 * interface of an HBA.
10566 * This function is called with no lock held and always returns
10567 * 1.
10569 void
10570 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10572 struct lpfc_sli *psli;
10573 struct lpfc_sli_ring *pring;
10574 int i;
10576 psli = &phba->sli;
10577 spin_lock_irq(&phba->hbalock);
10578 INIT_LIST_HEAD(&psli->mboxq);
10579 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10580 /* Initialize list headers for txq and txcmplq as double linked lists */
10581 for (i = 0; i < phba->cfg_hdw_queue; i++) {
10582 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10583 pring->flag = 0;
10584 pring->ringno = LPFC_FCP_RING;
10585 pring->txcmplq_cnt = 0;
10586 INIT_LIST_HEAD(&pring->txq);
10587 INIT_LIST_HEAD(&pring->txcmplq);
10588 INIT_LIST_HEAD(&pring->iocb_continueq);
10589 spin_lock_init(&pring->ring_lock);
10591 pring = phba->sli4_hba.els_wq->pring;
10592 pring->flag = 0;
10593 pring->ringno = LPFC_ELS_RING;
10594 pring->txcmplq_cnt = 0;
10595 INIT_LIST_HEAD(&pring->txq);
10596 INIT_LIST_HEAD(&pring->txcmplq);
10597 INIT_LIST_HEAD(&pring->iocb_continueq);
10598 spin_lock_init(&pring->ring_lock);
10600 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10601 pring = phba->sli4_hba.nvmels_wq->pring;
10602 pring->flag = 0;
10603 pring->ringno = LPFC_ELS_RING;
10604 pring->txcmplq_cnt = 0;
10605 INIT_LIST_HEAD(&pring->txq);
10606 INIT_LIST_HEAD(&pring->txcmplq);
10607 INIT_LIST_HEAD(&pring->iocb_continueq);
10608 spin_lock_init(&pring->ring_lock);
10611 spin_unlock_irq(&phba->hbalock);
10615 * lpfc_sli_queue_init - Queue initialization function
10616 * @phba: Pointer to HBA context object.
10618 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10619 * ring. This function also initializes ring indices of each ring.
10620 * This function is called during the initialization of the SLI
10621 * interface of an HBA.
10622 * This function is called with no lock held and always returns
10623 * 1.
10625 void
10626 lpfc_sli_queue_init(struct lpfc_hba *phba)
10628 struct lpfc_sli *psli;
10629 struct lpfc_sli_ring *pring;
10630 int i;
10632 psli = &phba->sli;
10633 spin_lock_irq(&phba->hbalock);
10634 INIT_LIST_HEAD(&psli->mboxq);
10635 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10636 /* Initialize list headers for txq and txcmplq as double linked lists */
10637 for (i = 0; i < psli->num_rings; i++) {
10638 pring = &psli->sli3_ring[i];
10639 pring->ringno = i;
10640 pring->sli.sli3.next_cmdidx = 0;
10641 pring->sli.sli3.local_getidx = 0;
10642 pring->sli.sli3.cmdidx = 0;
10643 INIT_LIST_HEAD(&pring->iocb_continueq);
10644 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10645 INIT_LIST_HEAD(&pring->postbufq);
10646 pring->flag = 0;
10647 INIT_LIST_HEAD(&pring->txq);
10648 INIT_LIST_HEAD(&pring->txcmplq);
10649 spin_lock_init(&pring->ring_lock);
10651 spin_unlock_irq(&phba->hbalock);
10655 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10656 * @phba: Pointer to HBA context object.
10658 * This routine flushes the mailbox command subsystem. It will unconditionally
10659 * flush all the mailbox commands in the three possible stages in the mailbox
10660 * command sub-system: pending mailbox command queue; the outstanding mailbox
10661 * command; and completed mailbox command queue. It is caller's responsibility
10662 * to make sure that the driver is in the proper state to flush the mailbox
10663 * command sub-system. Namely, the posting of mailbox commands into the
10664 * pending mailbox command queue from the various clients must be stopped;
10665 * either the HBA is in a state that it will never works on the outstanding
10666 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10667 * mailbox command has been completed.
10669 static void
10670 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10672 LIST_HEAD(completions);
10673 struct lpfc_sli *psli = &phba->sli;
10674 LPFC_MBOXQ_t *pmb;
10675 unsigned long iflag;
10677 /* Disable softirqs, including timers from obtaining phba->hbalock */
10678 local_bh_disable();
10680 /* Flush all the mailbox commands in the mbox system */
10681 spin_lock_irqsave(&phba->hbalock, iflag);
10683 /* The pending mailbox command queue */
10684 list_splice_init(&phba->sli.mboxq, &completions);
10685 /* The outstanding active mailbox command */
10686 if (psli->mbox_active) {
10687 list_add_tail(&psli->mbox_active->list, &completions);
10688 psli->mbox_active = NULL;
10689 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10691 /* The completed mailbox command queue */
10692 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10693 spin_unlock_irqrestore(&phba->hbalock, iflag);
10695 /* Enable softirqs again, done with phba->hbalock */
10696 local_bh_enable();
10698 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10699 while (!list_empty(&completions)) {
10700 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10701 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10702 if (pmb->mbox_cmpl)
10703 pmb->mbox_cmpl(phba, pmb);
10708 * lpfc_sli_host_down - Vport cleanup function
10709 * @vport: Pointer to virtual port object.
10711 * lpfc_sli_host_down is called to clean up the resources
10712 * associated with a vport before destroying virtual
10713 * port data structures.
10714 * This function does following operations:
10715 * - Free discovery resources associated with this virtual
10716 * port.
10717 * - Free iocbs associated with this virtual port in
10718 * the txq.
10719 * - Send abort for all iocb commands associated with this
10720 * vport in txcmplq.
10722 * This function is called with no lock held and always returns 1.
10725 lpfc_sli_host_down(struct lpfc_vport *vport)
10727 LIST_HEAD(completions);
10728 struct lpfc_hba *phba = vport->phba;
10729 struct lpfc_sli *psli = &phba->sli;
10730 struct lpfc_queue *qp = NULL;
10731 struct lpfc_sli_ring *pring;
10732 struct lpfc_iocbq *iocb, *next_iocb;
10733 int i;
10734 unsigned long flags = 0;
10735 uint16_t prev_pring_flag;
10737 lpfc_cleanup_discovery_resources(vport);
10739 spin_lock_irqsave(&phba->hbalock, flags);
10742 * Error everything on the txq since these iocbs
10743 * have not been given to the FW yet.
10744 * Also issue ABTS for everything on the txcmplq
10746 if (phba->sli_rev != LPFC_SLI_REV4) {
10747 for (i = 0; i < psli->num_rings; i++) {
10748 pring = &psli->sli3_ring[i];
10749 prev_pring_flag = pring->flag;
10750 /* Only slow rings */
10751 if (pring->ringno == LPFC_ELS_RING) {
10752 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10753 /* Set the lpfc data pending flag */
10754 set_bit(LPFC_DATA_READY, &phba->data_flags);
10756 list_for_each_entry_safe(iocb, next_iocb,
10757 &pring->txq, list) {
10758 if (iocb->vport != vport)
10759 continue;
10760 list_move_tail(&iocb->list, &completions);
10762 list_for_each_entry_safe(iocb, next_iocb,
10763 &pring->txcmplq, list) {
10764 if (iocb->vport != vport)
10765 continue;
10766 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10768 pring->flag = prev_pring_flag;
10770 } else {
10771 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10772 pring = qp->pring;
10773 if (!pring)
10774 continue;
10775 if (pring == phba->sli4_hba.els_wq->pring) {
10776 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10777 /* Set the lpfc data pending flag */
10778 set_bit(LPFC_DATA_READY, &phba->data_flags);
10780 prev_pring_flag = pring->flag;
10781 spin_lock(&pring->ring_lock);
10782 list_for_each_entry_safe(iocb, next_iocb,
10783 &pring->txq, list) {
10784 if (iocb->vport != vport)
10785 continue;
10786 list_move_tail(&iocb->list, &completions);
10788 spin_unlock(&pring->ring_lock);
10789 list_for_each_entry_safe(iocb, next_iocb,
10790 &pring->txcmplq, list) {
10791 if (iocb->vport != vport)
10792 continue;
10793 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10795 pring->flag = prev_pring_flag;
10798 spin_unlock_irqrestore(&phba->hbalock, flags);
10800 /* Cancel all the IOCBs from the completions list */
10801 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10802 IOERR_SLI_DOWN);
10803 return 1;
10807 * lpfc_sli_hba_down - Resource cleanup function for the HBA
10808 * @phba: Pointer to HBA context object.
10810 * This function cleans up all iocb, buffers, mailbox commands
10811 * while shutting down the HBA. This function is called with no
10812 * lock held and always returns 1.
10813 * This function does the following to cleanup driver resources:
10814 * - Free discovery resources for each virtual port
10815 * - Cleanup any pending fabric iocbs
10816 * - Iterate through the iocb txq and free each entry
10817 * in the list.
10818 * - Free up any buffer posted to the HBA
10819 * - Free mailbox commands in the mailbox queue.
10822 lpfc_sli_hba_down(struct lpfc_hba *phba)
10824 LIST_HEAD(completions);
10825 struct lpfc_sli *psli = &phba->sli;
10826 struct lpfc_queue *qp = NULL;
10827 struct lpfc_sli_ring *pring;
10828 struct lpfc_dmabuf *buf_ptr;
10829 unsigned long flags = 0;
10830 int i;
10832 /* Shutdown the mailbox command sub-system */
10833 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10835 lpfc_hba_down_prep(phba);
10837 /* Disable softirqs, including timers from obtaining phba->hbalock */
10838 local_bh_disable();
10840 lpfc_fabric_abort_hba(phba);
10842 spin_lock_irqsave(&phba->hbalock, flags);
10845 * Error everything on the txq since these iocbs
10846 * have not been given to the FW yet.
10848 if (phba->sli_rev != LPFC_SLI_REV4) {
10849 for (i = 0; i < psli->num_rings; i++) {
10850 pring = &psli->sli3_ring[i];
10851 /* Only slow rings */
10852 if (pring->ringno == LPFC_ELS_RING) {
10853 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10854 /* Set the lpfc data pending flag */
10855 set_bit(LPFC_DATA_READY, &phba->data_flags);
10857 list_splice_init(&pring->txq, &completions);
10859 } else {
10860 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10861 pring = qp->pring;
10862 if (!pring)
10863 continue;
10864 spin_lock(&pring->ring_lock);
10865 list_splice_init(&pring->txq, &completions);
10866 spin_unlock(&pring->ring_lock);
10867 if (pring == phba->sli4_hba.els_wq->pring) {
10868 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10869 /* Set the lpfc data pending flag */
10870 set_bit(LPFC_DATA_READY, &phba->data_flags);
10874 spin_unlock_irqrestore(&phba->hbalock, flags);
10876 /* Cancel all the IOCBs from the completions list */
10877 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10878 IOERR_SLI_DOWN);
10880 spin_lock_irqsave(&phba->hbalock, flags);
10881 list_splice_init(&phba->elsbuf, &completions);
10882 phba->elsbuf_cnt = 0;
10883 phba->elsbuf_prev_cnt = 0;
10884 spin_unlock_irqrestore(&phba->hbalock, flags);
10886 while (!list_empty(&completions)) {
10887 list_remove_head(&completions, buf_ptr,
10888 struct lpfc_dmabuf, list);
10889 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10890 kfree(buf_ptr);
10893 /* Enable softirqs again, done with phba->hbalock */
10894 local_bh_enable();
10896 /* Return any active mbox cmds */
10897 del_timer_sync(&psli->mbox_tmo);
10899 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10900 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10901 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10903 return 1;
10907 * lpfc_sli_pcimem_bcopy - SLI memory copy function
10908 * @srcp: Source memory pointer.
10909 * @destp: Destination memory pointer.
10910 * @cnt: Number of words required to be copied.
10912 * This function is used for copying data between driver memory
10913 * and the SLI memory. This function also changes the endianness
10914 * of each word if native endianness is different from SLI
10915 * endianness. This function can be called with or without
10916 * lock.
10918 void
10919 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10921 uint32_t *src = srcp;
10922 uint32_t *dest = destp;
10923 uint32_t ldata;
10924 int i;
10926 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10927 ldata = *src;
10928 ldata = le32_to_cpu(ldata);
10929 *dest = ldata;
10930 src++;
10931 dest++;
10937 * lpfc_sli_bemem_bcopy - SLI memory copy function
10938 * @srcp: Source memory pointer.
10939 * @destp: Destination memory pointer.
10940 * @cnt: Number of words required to be copied.
10942 * This function is used for copying data between a data structure
10943 * with big endian representation to local endianness.
10944 * This function can be called with or without lock.
10946 void
10947 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10949 uint32_t *src = srcp;
10950 uint32_t *dest = destp;
10951 uint32_t ldata;
10952 int i;
10954 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10955 ldata = *src;
10956 ldata = be32_to_cpu(ldata);
10957 *dest = ldata;
10958 src++;
10959 dest++;
10964 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10965 * @phba: Pointer to HBA context object.
10966 * @pring: Pointer to driver SLI ring object.
10967 * @mp: Pointer to driver buffer object.
10969 * This function is called with no lock held.
10970 * It always return zero after adding the buffer to the postbufq
10971 * buffer list.
10974 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10975 struct lpfc_dmabuf *mp)
10977 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10978 later */
10979 spin_lock_irq(&phba->hbalock);
10980 list_add_tail(&mp->list, &pring->postbufq);
10981 pring->postbufq_cnt++;
10982 spin_unlock_irq(&phba->hbalock);
10983 return 0;
10987 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10988 * @phba: Pointer to HBA context object.
10990 * When HBQ is enabled, buffers are searched based on tags. This function
10991 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10992 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10993 * does not conflict with tags of buffer posted for unsolicited events.
10994 * The function returns the allocated tag. The function is called with
10995 * no locks held.
10997 uint32_t
10998 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
11000 spin_lock_irq(&phba->hbalock);
11001 phba->buffer_tag_count++;
11003 * Always set the QUE_BUFTAG_BIT to distiguish between
11004 * a tag assigned by HBQ.
11006 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11007 spin_unlock_irq(&phba->hbalock);
11008 return phba->buffer_tag_count;
11012 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11013 * @phba: Pointer to HBA context object.
11014 * @pring: Pointer to driver SLI ring object.
11015 * @tag: Buffer tag.
11017 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11018 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11019 * iocb is posted to the response ring with the tag of the buffer.
11020 * This function searches the pring->postbufq list using the tag
11021 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11022 * iocb. If the buffer is found then lpfc_dmabuf object of the
11023 * buffer is returned to the caller else NULL is returned.
11024 * This function is called with no lock held.
11026 struct lpfc_dmabuf *
11027 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11028 uint32_t tag)
11030 struct lpfc_dmabuf *mp, *next_mp;
11031 struct list_head *slp = &pring->postbufq;
11033 /* Search postbufq, from the beginning, looking for a match on tag */
11034 spin_lock_irq(&phba->hbalock);
11035 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11036 if (mp->buffer_tag == tag) {
11037 list_del_init(&mp->list);
11038 pring->postbufq_cnt--;
11039 spin_unlock_irq(&phba->hbalock);
11040 return mp;
11044 spin_unlock_irq(&phba->hbalock);
11045 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11046 "0402 Cannot find virtual addr for buffer tag on "
11047 "ring %d Data x%lx x%px x%px x%x\n",
11048 pring->ringno, (unsigned long) tag,
11049 slp->next, slp->prev, pring->postbufq_cnt);
11051 return NULL;
11055 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11056 * @phba: Pointer to HBA context object.
11057 * @pring: Pointer to driver SLI ring object.
11058 * @phys: DMA address of the buffer.
11060 * This function searches the buffer list using the dma_address
11061 * of unsolicited event to find the driver's lpfc_dmabuf object
11062 * corresponding to the dma_address. The function returns the
11063 * lpfc_dmabuf object if a buffer is found else it returns NULL.
11064 * This function is called by the ct and els unsolicited event
11065 * handlers to get the buffer associated with the unsolicited
11066 * event.
11068 * This function is called with no lock held.
11070 struct lpfc_dmabuf *
11071 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11072 dma_addr_t phys)
11074 struct lpfc_dmabuf *mp, *next_mp;
11075 struct list_head *slp = &pring->postbufq;
11077 /* Search postbufq, from the beginning, looking for a match on phys */
11078 spin_lock_irq(&phba->hbalock);
11079 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11080 if (mp->phys == phys) {
11081 list_del_init(&mp->list);
11082 pring->postbufq_cnt--;
11083 spin_unlock_irq(&phba->hbalock);
11084 return mp;
11088 spin_unlock_irq(&phba->hbalock);
11089 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11090 "0410 Cannot find virtual addr for mapped buf on "
11091 "ring %d Data x%llx x%px x%px x%x\n",
11092 pring->ringno, (unsigned long long)phys,
11093 slp->next, slp->prev, pring->postbufq_cnt);
11094 return NULL;
11098 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11099 * @phba: Pointer to HBA context object.
11100 * @cmdiocb: Pointer to driver command iocb object.
11101 * @rspiocb: Pointer to driver response iocb object.
11103 * This function is the completion handler for the abort iocbs for
11104 * ELS commands. This function is called from the ELS ring event
11105 * handler with no lock held. This function frees memory resources
11106 * associated with the abort iocb.
11108 static void
11109 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11110 struct lpfc_iocbq *rspiocb)
11112 IOCB_t *irsp = &rspiocb->iocb;
11113 uint16_t abort_iotag, abort_context;
11114 struct lpfc_iocbq *abort_iocb = NULL;
11116 if (irsp->ulpStatus) {
11119 * Assume that the port already completed and returned, or
11120 * will return the iocb. Just Log the message.
11122 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11123 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11125 spin_lock_irq(&phba->hbalock);
11126 if (phba->sli_rev < LPFC_SLI_REV4) {
11127 if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11128 irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11129 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11130 spin_unlock_irq(&phba->hbalock);
11131 goto release_iocb;
11133 if (abort_iotag != 0 &&
11134 abort_iotag <= phba->sli.last_iotag)
11135 abort_iocb =
11136 phba->sli.iocbq_lookup[abort_iotag];
11137 } else
11138 /* For sli4 the abort_tag is the XRI,
11139 * so the abort routine puts the iotag of the iocb
11140 * being aborted in the context field of the abort
11141 * IOCB.
11143 abort_iocb = phba->sli.iocbq_lookup[abort_context];
11145 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11146 "0327 Cannot abort els iocb x%px "
11147 "with tag %x context %x, abort status %x, "
11148 "abort code %x\n",
11149 abort_iocb, abort_iotag, abort_context,
11150 irsp->ulpStatus, irsp->un.ulpWord[4]);
11152 spin_unlock_irq(&phba->hbalock);
11154 release_iocb:
11155 lpfc_sli_release_iocbq(phba, cmdiocb);
11156 return;
11160 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11161 * @phba: Pointer to HBA context object.
11162 * @cmdiocb: Pointer to driver command iocb object.
11163 * @rspiocb: Pointer to driver response iocb object.
11165 * The function is called from SLI ring event handler with no
11166 * lock held. This function is the completion handler for ELS commands
11167 * which are aborted. The function frees memory resources used for
11168 * the aborted ELS commands.
11170 static void
11171 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11172 struct lpfc_iocbq *rspiocb)
11174 IOCB_t *irsp = &rspiocb->iocb;
11176 /* ELS cmd tag <ulpIoTag> completes */
11177 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11178 "0139 Ignoring ELS cmd tag x%x completion Data: "
11179 "x%x x%x x%x\n",
11180 irsp->ulpIoTag, irsp->ulpStatus,
11181 irsp->un.ulpWord[4], irsp->ulpTimeout);
11182 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11183 lpfc_ct_free_iocb(phba, cmdiocb);
11184 else
11185 lpfc_els_free_iocb(phba, cmdiocb);
11186 return;
11190 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11191 * @phba: Pointer to HBA context object.
11192 * @pring: Pointer to driver SLI ring object.
11193 * @cmdiocb: Pointer to driver command iocb object.
11195 * This function issues an abort iocb for the provided command iocb down to
11196 * the port. Other than the case the outstanding command iocb is an abort
11197 * request, this function issues abort out unconditionally. This function is
11198 * called with hbalock held. The function returns 0 when it fails due to
11199 * memory allocation failure or when the command iocb is an abort request.
11201 static int
11202 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11203 struct lpfc_iocbq *cmdiocb)
11205 struct lpfc_vport *vport = cmdiocb->vport;
11206 struct lpfc_iocbq *abtsiocbp;
11207 IOCB_t *icmd = NULL;
11208 IOCB_t *iabt = NULL;
11209 int retval;
11210 unsigned long iflags;
11211 struct lpfc_nodelist *ndlp;
11213 lockdep_assert_held(&phba->hbalock);
11216 * There are certain command types we don't want to abort. And we
11217 * don't want to abort commands that are already in the process of
11218 * being aborted.
11220 icmd = &cmdiocb->iocb;
11221 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11222 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11223 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11224 return 0;
11226 /* issue ABTS for this IOCB based on iotag */
11227 abtsiocbp = __lpfc_sli_get_iocbq(phba);
11228 if (abtsiocbp == NULL)
11229 return 0;
11231 /* This signals the response to set the correct status
11232 * before calling the completion handler
11234 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11236 iabt = &abtsiocbp->iocb;
11237 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11238 iabt->un.acxri.abortContextTag = icmd->ulpContext;
11239 if (phba->sli_rev == LPFC_SLI_REV4) {
11240 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11241 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11242 } else {
11243 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11244 if (pring->ringno == LPFC_ELS_RING) {
11245 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11246 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11249 iabt->ulpLe = 1;
11250 iabt->ulpClass = icmd->ulpClass;
11252 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11253 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11254 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11255 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11256 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11257 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11259 if (phba->link_state >= LPFC_LINK_UP)
11260 iabt->ulpCommand = CMD_ABORT_XRI_CN;
11261 else
11262 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11264 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11265 abtsiocbp->vport = vport;
11267 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11268 "0339 Abort xri x%x, original iotag x%x, "
11269 "abort cmd iotag x%x\n",
11270 iabt->un.acxri.abortIoTag,
11271 iabt->un.acxri.abortContextTag,
11272 abtsiocbp->iotag);
11274 if (phba->sli_rev == LPFC_SLI_REV4) {
11275 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11276 if (unlikely(pring == NULL))
11277 return 0;
11278 /* Note: both hbalock and ring_lock need to be set here */
11279 spin_lock_irqsave(&pring->ring_lock, iflags);
11280 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11281 abtsiocbp, 0);
11282 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11283 } else {
11284 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11285 abtsiocbp, 0);
11288 if (retval)
11289 __lpfc_sli_release_iocbq(phba, abtsiocbp);
11292 * Caller to this routine should check for IOCB_ERROR
11293 * and handle it properly. This routine no longer removes
11294 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11296 return retval;
11300 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11301 * @phba: Pointer to HBA context object.
11302 * @pring: Pointer to driver SLI ring object.
11303 * @cmdiocb: Pointer to driver command iocb object.
11305 * This function issues an abort iocb for the provided command iocb. In case
11306 * of unloading, the abort iocb will not be issued to commands on the ELS
11307 * ring. Instead, the callback function shall be changed to those commands
11308 * so that nothing happens when them finishes. This function is called with
11309 * hbalock held. The function returns 0 when the command iocb is an abort
11310 * request.
11313 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11314 struct lpfc_iocbq *cmdiocb)
11316 struct lpfc_vport *vport = cmdiocb->vport;
11317 int retval = IOCB_ERROR;
11318 IOCB_t *icmd = NULL;
11320 lockdep_assert_held(&phba->hbalock);
11323 * There are certain command types we don't want to abort. And we
11324 * don't want to abort commands that are already in the process of
11325 * being aborted.
11327 icmd = &cmdiocb->iocb;
11328 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11329 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11330 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11331 return 0;
11333 if (!pring) {
11334 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11335 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11336 else
11337 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11338 goto abort_iotag_exit;
11342 * If we're unloading, don't abort iocb on the ELS ring, but change
11343 * the callback so that nothing happens when it finishes.
11345 if ((vport->load_flag & FC_UNLOADING) &&
11346 (pring->ringno == LPFC_ELS_RING)) {
11347 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11348 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11349 else
11350 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11351 goto abort_iotag_exit;
11354 /* Now, we try to issue the abort to the cmdiocb out */
11355 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11357 abort_iotag_exit:
11359 * Caller to this routine should check for IOCB_ERROR
11360 * and handle it properly. This routine no longer removes
11361 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11363 return retval;
11367 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11368 * @phba: pointer to lpfc HBA data structure.
11370 * This routine will abort all pending and outstanding iocbs to an HBA.
11372 void
11373 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11375 struct lpfc_sli *psli = &phba->sli;
11376 struct lpfc_sli_ring *pring;
11377 struct lpfc_queue *qp = NULL;
11378 int i;
11380 if (phba->sli_rev != LPFC_SLI_REV4) {
11381 for (i = 0; i < psli->num_rings; i++) {
11382 pring = &psli->sli3_ring[i];
11383 lpfc_sli_abort_iocb_ring(phba, pring);
11385 return;
11387 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11388 pring = qp->pring;
11389 if (!pring)
11390 continue;
11391 lpfc_sli_abort_iocb_ring(phba, pring);
11396 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11397 * @iocbq: Pointer to driver iocb object.
11398 * @vport: Pointer to driver virtual port object.
11399 * @tgt_id: SCSI ID of the target.
11400 * @lun_id: LUN ID of the scsi device.
11401 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11403 * This function acts as an iocb filter for functions which abort or count
11404 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11405 * 0 if the filtering criteria is met for the given iocb and will return
11406 * 1 if the filtering criteria is not met.
11407 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11408 * given iocb is for the SCSI device specified by vport, tgt_id and
11409 * lun_id parameter.
11410 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
11411 * given iocb is for the SCSI target specified by vport and tgt_id
11412 * parameters.
11413 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11414 * given iocb is for the SCSI host associated with the given vport.
11415 * This function is called with no locks held.
11417 static int
11418 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11419 uint16_t tgt_id, uint64_t lun_id,
11420 lpfc_ctx_cmd ctx_cmd)
11422 struct lpfc_io_buf *lpfc_cmd;
11423 int rc = 1;
11425 if (iocbq->vport != vport)
11426 return rc;
11428 if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
11429 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11430 return rc;
11432 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11434 if (lpfc_cmd->pCmd == NULL)
11435 return rc;
11437 switch (ctx_cmd) {
11438 case LPFC_CTX_LUN:
11439 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11440 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11441 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11442 rc = 0;
11443 break;
11444 case LPFC_CTX_TGT:
11445 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11446 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11447 rc = 0;
11448 break;
11449 case LPFC_CTX_HOST:
11450 rc = 0;
11451 break;
11452 default:
11453 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11454 __func__, ctx_cmd);
11455 break;
11458 return rc;
11462 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11463 * @vport: Pointer to virtual port.
11464 * @tgt_id: SCSI ID of the target.
11465 * @lun_id: LUN ID of the scsi device.
11466 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11468 * This function returns number of FCP commands pending for the vport.
11469 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11470 * commands pending on the vport associated with SCSI device specified
11471 * by tgt_id and lun_id parameters.
11472 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11473 * commands pending on the vport associated with SCSI target specified
11474 * by tgt_id parameter.
11475 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11476 * commands pending on the vport.
11477 * This function returns the number of iocbs which satisfy the filter.
11478 * This function is called without any lock held.
11481 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11482 lpfc_ctx_cmd ctx_cmd)
11484 struct lpfc_hba *phba = vport->phba;
11485 struct lpfc_iocbq *iocbq;
11486 int sum, i;
11488 spin_lock_irq(&phba->hbalock);
11489 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11490 iocbq = phba->sli.iocbq_lookup[i];
11492 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11493 ctx_cmd) == 0)
11494 sum++;
11496 spin_unlock_irq(&phba->hbalock);
11498 return sum;
11502 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11503 * @phba: Pointer to HBA context object
11504 * @cmdiocb: Pointer to command iocb object.
11505 * @rspiocb: Pointer to response iocb object.
11507 * This function is called when an aborted FCP iocb completes. This
11508 * function is called by the ring event handler with no lock held.
11509 * This function frees the iocb.
11511 void
11512 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11513 struct lpfc_iocbq *rspiocb)
11515 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11516 "3096 ABORT_XRI_CN completing on rpi x%x "
11517 "original iotag x%x, abort cmd iotag x%x "
11518 "status 0x%x, reason 0x%x\n",
11519 cmdiocb->iocb.un.acxri.abortContextTag,
11520 cmdiocb->iocb.un.acxri.abortIoTag,
11521 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11522 rspiocb->iocb.un.ulpWord[4]);
11523 lpfc_sli_release_iocbq(phba, cmdiocb);
11524 return;
11528 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11529 * @vport: Pointer to virtual port.
11530 * @pring: Pointer to driver SLI ring object.
11531 * @tgt_id: SCSI ID of the target.
11532 * @lun_id: LUN ID of the scsi device.
11533 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11535 * This function sends an abort command for every SCSI command
11536 * associated with the given virtual port pending on the ring
11537 * filtered by lpfc_sli_validate_fcp_iocb function.
11538 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11539 * FCP iocbs associated with lun specified by tgt_id and lun_id
11540 * parameters
11541 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11542 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11543 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11544 * FCP iocbs associated with virtual port.
11545 * This function returns number of iocbs it failed to abort.
11546 * This function is called with no locks held.
11549 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11550 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11552 struct lpfc_hba *phba = vport->phba;
11553 struct lpfc_iocbq *iocbq;
11554 struct lpfc_iocbq *abtsiocb;
11555 struct lpfc_sli_ring *pring_s4;
11556 IOCB_t *cmd = NULL;
11557 int errcnt = 0, ret_val = 0;
11558 int i;
11560 /* all I/Os are in process of being flushed */
11561 if (phba->hba_flag & HBA_IOQ_FLUSH)
11562 return errcnt;
11564 for (i = 1; i <= phba->sli.last_iotag; i++) {
11565 iocbq = phba->sli.iocbq_lookup[i];
11567 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11568 abort_cmd) != 0)
11569 continue;
11572 * If the iocbq is already being aborted, don't take a second
11573 * action, but do count it.
11575 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11576 continue;
11578 /* issue ABTS for this IOCB based on iotag */
11579 abtsiocb = lpfc_sli_get_iocbq(phba);
11580 if (abtsiocb == NULL) {
11581 errcnt++;
11582 continue;
11585 /* indicate the IO is being aborted by the driver. */
11586 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11588 cmd = &iocbq->iocb;
11589 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11590 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11591 if (phba->sli_rev == LPFC_SLI_REV4)
11592 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11593 else
11594 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11595 abtsiocb->iocb.ulpLe = 1;
11596 abtsiocb->iocb.ulpClass = cmd->ulpClass;
11597 abtsiocb->vport = vport;
11599 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11600 abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11601 if (iocbq->iocb_flag & LPFC_IO_FCP)
11602 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11603 if (iocbq->iocb_flag & LPFC_IO_FOF)
11604 abtsiocb->iocb_flag |= LPFC_IO_FOF;
11606 if (lpfc_is_link_up(phba))
11607 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11608 else
11609 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11611 /* Setup callback routine and issue the command. */
11612 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11613 if (phba->sli_rev == LPFC_SLI_REV4) {
11614 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11615 if (!pring_s4)
11616 continue;
11617 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11618 abtsiocb, 0);
11619 } else
11620 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11621 abtsiocb, 0);
11622 if (ret_val == IOCB_ERROR) {
11623 lpfc_sli_release_iocbq(phba, abtsiocb);
11624 errcnt++;
11625 continue;
11629 return errcnt;
11633 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11634 * @vport: Pointer to virtual port.
11635 * @pring: Pointer to driver SLI ring object.
11636 * @tgt_id: SCSI ID of the target.
11637 * @lun_id: LUN ID of the scsi device.
11638 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11640 * This function sends an abort command for every SCSI command
11641 * associated with the given virtual port pending on the ring
11642 * filtered by lpfc_sli_validate_fcp_iocb function.
11643 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11644 * FCP iocbs associated with lun specified by tgt_id and lun_id
11645 * parameters
11646 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11647 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11648 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11649 * FCP iocbs associated with virtual port.
11650 * This function returns number of iocbs it aborted .
11651 * This function is called with no locks held right after a taskmgmt
11652 * command is sent.
11655 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11656 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11658 struct lpfc_hba *phba = vport->phba;
11659 struct lpfc_io_buf *lpfc_cmd;
11660 struct lpfc_iocbq *abtsiocbq;
11661 struct lpfc_nodelist *ndlp;
11662 struct lpfc_iocbq *iocbq;
11663 IOCB_t *icmd;
11664 int sum, i, ret_val;
11665 unsigned long iflags;
11666 struct lpfc_sli_ring *pring_s4 = NULL;
11668 spin_lock_irqsave(&phba->hbalock, iflags);
11670 /* all I/Os are in process of being flushed */
11671 if (phba->hba_flag & HBA_IOQ_FLUSH) {
11672 spin_unlock_irqrestore(&phba->hbalock, iflags);
11673 return 0;
11675 sum = 0;
11677 for (i = 1; i <= phba->sli.last_iotag; i++) {
11678 iocbq = phba->sli.iocbq_lookup[i];
11680 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11681 cmd) != 0)
11682 continue;
11684 /* Guard against IO completion being called at same time */
11685 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11686 spin_lock(&lpfc_cmd->buf_lock);
11688 if (!lpfc_cmd->pCmd) {
11689 spin_unlock(&lpfc_cmd->buf_lock);
11690 continue;
11693 if (phba->sli_rev == LPFC_SLI_REV4) {
11694 pring_s4 =
11695 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
11696 if (!pring_s4) {
11697 spin_unlock(&lpfc_cmd->buf_lock);
11698 continue;
11700 /* Note: both hbalock and ring_lock must be set here */
11701 spin_lock(&pring_s4->ring_lock);
11705 * If the iocbq is already being aborted, don't take a second
11706 * action, but do count it.
11708 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11709 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11710 if (phba->sli_rev == LPFC_SLI_REV4)
11711 spin_unlock(&pring_s4->ring_lock);
11712 spin_unlock(&lpfc_cmd->buf_lock);
11713 continue;
11716 /* issue ABTS for this IOCB based on iotag */
11717 abtsiocbq = __lpfc_sli_get_iocbq(phba);
11718 if (!abtsiocbq) {
11719 if (phba->sli_rev == LPFC_SLI_REV4)
11720 spin_unlock(&pring_s4->ring_lock);
11721 spin_unlock(&lpfc_cmd->buf_lock);
11722 continue;
11725 icmd = &iocbq->iocb;
11726 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11727 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11728 if (phba->sli_rev == LPFC_SLI_REV4)
11729 abtsiocbq->iocb.un.acxri.abortIoTag =
11730 iocbq->sli4_xritag;
11731 else
11732 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11733 abtsiocbq->iocb.ulpLe = 1;
11734 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11735 abtsiocbq->vport = vport;
11737 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11738 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11739 if (iocbq->iocb_flag & LPFC_IO_FCP)
11740 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11741 if (iocbq->iocb_flag & LPFC_IO_FOF)
11742 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11744 ndlp = lpfc_cmd->rdata->pnode;
11746 if (lpfc_is_link_up(phba) &&
11747 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11748 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11749 else
11750 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11752 /* Setup callback routine and issue the command. */
11753 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11756 * Indicate the IO is being aborted by the driver and set
11757 * the caller's flag into the aborted IO.
11759 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11761 if (phba->sli_rev == LPFC_SLI_REV4) {
11762 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11763 abtsiocbq, 0);
11764 spin_unlock(&pring_s4->ring_lock);
11765 } else {
11766 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11767 abtsiocbq, 0);
11770 spin_unlock(&lpfc_cmd->buf_lock);
11772 if (ret_val == IOCB_ERROR)
11773 __lpfc_sli_release_iocbq(phba, abtsiocbq);
11774 else
11775 sum++;
11777 spin_unlock_irqrestore(&phba->hbalock, iflags);
11778 return sum;
11782 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11783 * @phba: Pointer to HBA context object.
11784 * @cmdiocbq: Pointer to command iocb.
11785 * @rspiocbq: Pointer to response iocb.
11787 * This function is the completion handler for iocbs issued using
11788 * lpfc_sli_issue_iocb_wait function. This function is called by the
11789 * ring event handler function without any lock held. This function
11790 * can be called from both worker thread context and interrupt
11791 * context. This function also can be called from other thread which
11792 * cleans up the SLI layer objects.
11793 * This function copy the contents of the response iocb to the
11794 * response iocb memory object provided by the caller of
11795 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11796 * sleeps for the iocb completion.
11798 static void
11799 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11800 struct lpfc_iocbq *cmdiocbq,
11801 struct lpfc_iocbq *rspiocbq)
11803 wait_queue_head_t *pdone_q;
11804 unsigned long iflags;
11805 struct lpfc_io_buf *lpfc_cmd;
11807 spin_lock_irqsave(&phba->hbalock, iflags);
11808 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11811 * A time out has occurred for the iocb. If a time out
11812 * completion handler has been supplied, call it. Otherwise,
11813 * just free the iocbq.
11816 spin_unlock_irqrestore(&phba->hbalock, iflags);
11817 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11818 cmdiocbq->wait_iocb_cmpl = NULL;
11819 if (cmdiocbq->iocb_cmpl)
11820 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11821 else
11822 lpfc_sli_release_iocbq(phba, cmdiocbq);
11823 return;
11826 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11827 if (cmdiocbq->context2 && rspiocbq)
11828 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11829 &rspiocbq->iocb, sizeof(IOCB_t));
11831 /* Set the exchange busy flag for task management commands */
11832 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11833 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11834 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11835 cur_iocbq);
11836 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
11837 lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
11838 else
11839 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
11842 pdone_q = cmdiocbq->context_un.wait_queue;
11843 if (pdone_q)
11844 wake_up(pdone_q);
11845 spin_unlock_irqrestore(&phba->hbalock, iflags);
11846 return;
11850 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11851 * @phba: Pointer to HBA context object..
11852 * @piocbq: Pointer to command iocb.
11853 * @flag: Flag to test.
11855 * This routine grabs the hbalock and then test the iocb_flag to
11856 * see if the passed in flag is set.
11857 * Returns:
11858 * 1 if flag is set.
11859 * 0 if flag is not set.
11861 static int
11862 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11863 struct lpfc_iocbq *piocbq, uint32_t flag)
11865 unsigned long iflags;
11866 int ret;
11868 spin_lock_irqsave(&phba->hbalock, iflags);
11869 ret = piocbq->iocb_flag & flag;
11870 spin_unlock_irqrestore(&phba->hbalock, iflags);
11871 return ret;
11876 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11877 * @phba: Pointer to HBA context object..
11878 * @pring: Pointer to sli ring.
11879 * @piocb: Pointer to command iocb.
11880 * @prspiocbq: Pointer to response iocb.
11881 * @timeout: Timeout in number of seconds.
11883 * This function issues the iocb to firmware and waits for the
11884 * iocb to complete. The iocb_cmpl field of the shall be used
11885 * to handle iocbs which time out. If the field is NULL, the
11886 * function shall free the iocbq structure. If more clean up is
11887 * needed, the caller is expected to provide a completion function
11888 * that will provide the needed clean up. If the iocb command is
11889 * not completed within timeout seconds, the function will either
11890 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11891 * completion function set in the iocb_cmpl field and then return
11892 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
11893 * resources if this function returns IOCB_TIMEDOUT.
11894 * The function waits for the iocb completion using an
11895 * non-interruptible wait.
11896 * This function will sleep while waiting for iocb completion.
11897 * So, this function should not be called from any context which
11898 * does not allow sleeping. Due to the same reason, this function
11899 * cannot be called with interrupt disabled.
11900 * This function assumes that the iocb completions occur while
11901 * this function sleep. So, this function cannot be called from
11902 * the thread which process iocb completion for this ring.
11903 * This function clears the iocb_flag of the iocb object before
11904 * issuing the iocb and the iocb completion handler sets this
11905 * flag and wakes this thread when the iocb completes.
11906 * The contents of the response iocb will be copied to prspiocbq
11907 * by the completion handler when the command completes.
11908 * This function returns IOCB_SUCCESS when success.
11909 * This function is called with no lock held.
11912 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11913 uint32_t ring_number,
11914 struct lpfc_iocbq *piocb,
11915 struct lpfc_iocbq *prspiocbq,
11916 uint32_t timeout)
11918 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11919 long timeleft, timeout_req = 0;
11920 int retval = IOCB_SUCCESS;
11921 uint32_t creg_val;
11922 struct lpfc_iocbq *iocb;
11923 int txq_cnt = 0;
11924 int txcmplq_cnt = 0;
11925 struct lpfc_sli_ring *pring;
11926 unsigned long iflags;
11927 bool iocb_completed = true;
11929 if (phba->sli_rev >= LPFC_SLI_REV4)
11930 pring = lpfc_sli4_calc_ring(phba, piocb);
11931 else
11932 pring = &phba->sli.sli3_ring[ring_number];
11934 * If the caller has provided a response iocbq buffer, then context2
11935 * is NULL or its an error.
11937 if (prspiocbq) {
11938 if (piocb->context2)
11939 return IOCB_ERROR;
11940 piocb->context2 = prspiocbq;
11943 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11944 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11945 piocb->context_un.wait_queue = &done_q;
11946 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11948 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11949 if (lpfc_readl(phba->HCregaddr, &creg_val))
11950 return IOCB_ERROR;
11951 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11952 writel(creg_val, phba->HCregaddr);
11953 readl(phba->HCregaddr); /* flush */
11956 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11957 SLI_IOCB_RET_IOCB);
11958 if (retval == IOCB_SUCCESS) {
11959 timeout_req = msecs_to_jiffies(timeout * 1000);
11960 timeleft = wait_event_timeout(done_q,
11961 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11962 timeout_req);
11963 spin_lock_irqsave(&phba->hbalock, iflags);
11964 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11967 * IOCB timed out. Inform the wake iocb wait
11968 * completion function and set local status
11971 iocb_completed = false;
11972 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11974 spin_unlock_irqrestore(&phba->hbalock, iflags);
11975 if (iocb_completed) {
11976 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11977 "0331 IOCB wake signaled\n");
11978 /* Note: we are not indicating if the IOCB has a success
11979 * status or not - that's for the caller to check.
11980 * IOCB_SUCCESS means just that the command was sent and
11981 * completed. Not that it completed successfully.
11982 * */
11983 } else if (timeleft == 0) {
11984 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11985 "0338 IOCB wait timeout error - no "
11986 "wake response Data x%x\n", timeout);
11987 retval = IOCB_TIMEDOUT;
11988 } else {
11989 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11990 "0330 IOCB wake NOT set, "
11991 "Data x%x x%lx\n",
11992 timeout, (timeleft / jiffies));
11993 retval = IOCB_TIMEDOUT;
11995 } else if (retval == IOCB_BUSY) {
11996 if (phba->cfg_log_verbose & LOG_SLI) {
11997 list_for_each_entry(iocb, &pring->txq, list) {
11998 txq_cnt++;
12000 list_for_each_entry(iocb, &pring->txcmplq, list) {
12001 txcmplq_cnt++;
12003 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12004 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12005 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12007 return retval;
12008 } else {
12009 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12010 "0332 IOCB wait issue failed, Data x%x\n",
12011 retval);
12012 retval = IOCB_ERROR;
12015 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12016 if (lpfc_readl(phba->HCregaddr, &creg_val))
12017 return IOCB_ERROR;
12018 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12019 writel(creg_val, phba->HCregaddr);
12020 readl(phba->HCregaddr); /* flush */
12023 if (prspiocbq)
12024 piocb->context2 = NULL;
12026 piocb->context_un.wait_queue = NULL;
12027 piocb->iocb_cmpl = NULL;
12028 return retval;
12032 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12033 * @phba: Pointer to HBA context object.
12034 * @pmboxq: Pointer to driver mailbox object.
12035 * @timeout: Timeout in number of seconds.
12037 * This function issues the mailbox to firmware and waits for the
12038 * mailbox command to complete. If the mailbox command is not
12039 * completed within timeout seconds, it returns MBX_TIMEOUT.
12040 * The function waits for the mailbox completion using an
12041 * interruptible wait. If the thread is woken up due to a
12042 * signal, MBX_TIMEOUT error is returned to the caller. Caller
12043 * should not free the mailbox resources, if this function returns
12044 * MBX_TIMEOUT.
12045 * This function will sleep while waiting for mailbox completion.
12046 * So, this function should not be called from any context which
12047 * does not allow sleeping. Due to the same reason, this function
12048 * cannot be called with interrupt disabled.
12049 * This function assumes that the mailbox completion occurs while
12050 * this function sleep. So, this function cannot be called from
12051 * the worker thread which processes mailbox completion.
12052 * This function is called in the context of HBA management
12053 * applications.
12054 * This function returns MBX_SUCCESS when successful.
12055 * This function is called with no lock held.
12058 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12059 uint32_t timeout)
12061 struct completion mbox_done;
12062 int retval;
12063 unsigned long flag;
12065 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12066 /* setup wake call as IOCB callback */
12067 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12069 /* setup context3 field to pass wait_queue pointer to wake function */
12070 init_completion(&mbox_done);
12071 pmboxq->context3 = &mbox_done;
12072 /* now issue the command */
12073 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12074 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12075 wait_for_completion_timeout(&mbox_done,
12076 msecs_to_jiffies(timeout * 1000));
12078 spin_lock_irqsave(&phba->hbalock, flag);
12079 pmboxq->context3 = NULL;
12081 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12082 * else do not free the resources.
12084 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12085 retval = MBX_SUCCESS;
12086 } else {
12087 retval = MBX_TIMEOUT;
12088 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12090 spin_unlock_irqrestore(&phba->hbalock, flag);
12092 return retval;
12096 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12097 * @phba: Pointer to HBA context.
12099 * This function is called to shutdown the driver's mailbox sub-system.
12100 * It first marks the mailbox sub-system is in a block state to prevent
12101 * the asynchronous mailbox command from issued off the pending mailbox
12102 * command queue. If the mailbox command sub-system shutdown is due to
12103 * HBA error conditions such as EEH or ERATT, this routine shall invoke
12104 * the mailbox sub-system flush routine to forcefully bring down the
12105 * mailbox sub-system. Otherwise, if it is due to normal condition (such
12106 * as with offline or HBA function reset), this routine will wait for the
12107 * outstanding mailbox command to complete before invoking the mailbox
12108 * sub-system flush routine to gracefully bring down mailbox sub-system.
12110 void
12111 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12113 struct lpfc_sli *psli = &phba->sli;
12114 unsigned long timeout;
12116 if (mbx_action == LPFC_MBX_NO_WAIT) {
12117 /* delay 100ms for port state */
12118 msleep(100);
12119 lpfc_sli_mbox_sys_flush(phba);
12120 return;
12122 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12124 /* Disable softirqs, including timers from obtaining phba->hbalock */
12125 local_bh_disable();
12127 spin_lock_irq(&phba->hbalock);
12128 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12130 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12131 /* Determine how long we might wait for the active mailbox
12132 * command to be gracefully completed by firmware.
12134 if (phba->sli.mbox_active)
12135 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12136 phba->sli.mbox_active) *
12137 1000) + jiffies;
12138 spin_unlock_irq(&phba->hbalock);
12140 /* Enable softirqs again, done with phba->hbalock */
12141 local_bh_enable();
12143 while (phba->sli.mbox_active) {
12144 /* Check active mailbox complete status every 2ms */
12145 msleep(2);
12146 if (time_after(jiffies, timeout))
12147 /* Timeout, let the mailbox flush routine to
12148 * forcefully release active mailbox command
12150 break;
12152 } else {
12153 spin_unlock_irq(&phba->hbalock);
12155 /* Enable softirqs again, done with phba->hbalock */
12156 local_bh_enable();
12159 lpfc_sli_mbox_sys_flush(phba);
12163 * lpfc_sli_eratt_read - read sli-3 error attention events
12164 * @phba: Pointer to HBA context.
12166 * This function is called to read the SLI3 device error attention registers
12167 * for possible error attention events. The caller must hold the hostlock
12168 * with spin_lock_irq().
12170 * This function returns 1 when there is Error Attention in the Host Attention
12171 * Register and returns 0 otherwise.
12173 static int
12174 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12176 uint32_t ha_copy;
12178 /* Read chip Host Attention (HA) register */
12179 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12180 goto unplug_err;
12182 if (ha_copy & HA_ERATT) {
12183 /* Read host status register to retrieve error event */
12184 if (lpfc_sli_read_hs(phba))
12185 goto unplug_err;
12187 /* Check if there is a deferred error condition is active */
12188 if ((HS_FFER1 & phba->work_hs) &&
12189 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12190 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12191 phba->hba_flag |= DEFER_ERATT;
12192 /* Clear all interrupt enable conditions */
12193 writel(0, phba->HCregaddr);
12194 readl(phba->HCregaddr);
12197 /* Set the driver HA work bitmap */
12198 phba->work_ha |= HA_ERATT;
12199 /* Indicate polling handles this ERATT */
12200 phba->hba_flag |= HBA_ERATT_HANDLED;
12201 return 1;
12203 return 0;
12205 unplug_err:
12206 /* Set the driver HS work bitmap */
12207 phba->work_hs |= UNPLUG_ERR;
12208 /* Set the driver HA work bitmap */
12209 phba->work_ha |= HA_ERATT;
12210 /* Indicate polling handles this ERATT */
12211 phba->hba_flag |= HBA_ERATT_HANDLED;
12212 return 1;
12216 * lpfc_sli4_eratt_read - read sli-4 error attention events
12217 * @phba: Pointer to HBA context.
12219 * This function is called to read the SLI4 device error attention registers
12220 * for possible error attention events. The caller must hold the hostlock
12221 * with spin_lock_irq().
12223 * This function returns 1 when there is Error Attention in the Host Attention
12224 * Register and returns 0 otherwise.
12226 static int
12227 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12229 uint32_t uerr_sta_hi, uerr_sta_lo;
12230 uint32_t if_type, portsmphr;
12231 struct lpfc_register portstat_reg;
12234 * For now, use the SLI4 device internal unrecoverable error
12235 * registers for error attention. This can be changed later.
12237 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12238 switch (if_type) {
12239 case LPFC_SLI_INTF_IF_TYPE_0:
12240 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12241 &uerr_sta_lo) ||
12242 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12243 &uerr_sta_hi)) {
12244 phba->work_hs |= UNPLUG_ERR;
12245 phba->work_ha |= HA_ERATT;
12246 phba->hba_flag |= HBA_ERATT_HANDLED;
12247 return 1;
12249 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12250 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12251 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12252 "1423 HBA Unrecoverable error: "
12253 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12254 "ue_mask_lo_reg=0x%x, "
12255 "ue_mask_hi_reg=0x%x\n",
12256 uerr_sta_lo, uerr_sta_hi,
12257 phba->sli4_hba.ue_mask_lo,
12258 phba->sli4_hba.ue_mask_hi);
12259 phba->work_status[0] = uerr_sta_lo;
12260 phba->work_status[1] = uerr_sta_hi;
12261 phba->work_ha |= HA_ERATT;
12262 phba->hba_flag |= HBA_ERATT_HANDLED;
12263 return 1;
12265 break;
12266 case LPFC_SLI_INTF_IF_TYPE_2:
12267 case LPFC_SLI_INTF_IF_TYPE_6:
12268 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12269 &portstat_reg.word0) ||
12270 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12271 &portsmphr)){
12272 phba->work_hs |= UNPLUG_ERR;
12273 phba->work_ha |= HA_ERATT;
12274 phba->hba_flag |= HBA_ERATT_HANDLED;
12275 return 1;
12277 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12278 phba->work_status[0] =
12279 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12280 phba->work_status[1] =
12281 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12282 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12283 "2885 Port Status Event: "
12284 "port status reg 0x%x, "
12285 "port smphr reg 0x%x, "
12286 "error 1=0x%x, error 2=0x%x\n",
12287 portstat_reg.word0,
12288 portsmphr,
12289 phba->work_status[0],
12290 phba->work_status[1]);
12291 phba->work_ha |= HA_ERATT;
12292 phba->hba_flag |= HBA_ERATT_HANDLED;
12293 return 1;
12295 break;
12296 case LPFC_SLI_INTF_IF_TYPE_1:
12297 default:
12298 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12299 "2886 HBA Error Attention on unsupported "
12300 "if type %d.", if_type);
12301 return 1;
12304 return 0;
12308 * lpfc_sli_check_eratt - check error attention events
12309 * @phba: Pointer to HBA context.
12311 * This function is called from timer soft interrupt context to check HBA's
12312 * error attention register bit for error attention events.
12314 * This function returns 1 when there is Error Attention in the Host Attention
12315 * Register and returns 0 otherwise.
12318 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12320 uint32_t ha_copy;
12322 /* If somebody is waiting to handle an eratt, don't process it
12323 * here. The brdkill function will do this.
12325 if (phba->link_flag & LS_IGNORE_ERATT)
12326 return 0;
12328 /* Check if interrupt handler handles this ERATT */
12329 spin_lock_irq(&phba->hbalock);
12330 if (phba->hba_flag & HBA_ERATT_HANDLED) {
12331 /* Interrupt handler has handled ERATT */
12332 spin_unlock_irq(&phba->hbalock);
12333 return 0;
12337 * If there is deferred error attention, do not check for error
12338 * attention
12340 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12341 spin_unlock_irq(&phba->hbalock);
12342 return 0;
12345 /* If PCI channel is offline, don't process it */
12346 if (unlikely(pci_channel_offline(phba->pcidev))) {
12347 spin_unlock_irq(&phba->hbalock);
12348 return 0;
12351 switch (phba->sli_rev) {
12352 case LPFC_SLI_REV2:
12353 case LPFC_SLI_REV3:
12354 /* Read chip Host Attention (HA) register */
12355 ha_copy = lpfc_sli_eratt_read(phba);
12356 break;
12357 case LPFC_SLI_REV4:
12358 /* Read device Uncoverable Error (UERR) registers */
12359 ha_copy = lpfc_sli4_eratt_read(phba);
12360 break;
12361 default:
12362 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12363 "0299 Invalid SLI revision (%d)\n",
12364 phba->sli_rev);
12365 ha_copy = 0;
12366 break;
12368 spin_unlock_irq(&phba->hbalock);
12370 return ha_copy;
12374 * lpfc_intr_state_check - Check device state for interrupt handling
12375 * @phba: Pointer to HBA context.
12377 * This inline routine checks whether a device or its PCI slot is in a state
12378 * that the interrupt should be handled.
12380 * This function returns 0 if the device or the PCI slot is in a state that
12381 * interrupt should be handled, otherwise -EIO.
12383 static inline int
12384 lpfc_intr_state_check(struct lpfc_hba *phba)
12386 /* If the pci channel is offline, ignore all the interrupts */
12387 if (unlikely(pci_channel_offline(phba->pcidev)))
12388 return -EIO;
12390 /* Update device level interrupt statistics */
12391 phba->sli.slistat.sli_intr++;
12393 /* Ignore all interrupts during initialization. */
12394 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12395 return -EIO;
12397 return 0;
12401 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12402 * @irq: Interrupt number.
12403 * @dev_id: The device context pointer.
12405 * This function is directly called from the PCI layer as an interrupt
12406 * service routine when device with SLI-3 interface spec is enabled with
12407 * MSI-X multi-message interrupt mode and there are slow-path events in
12408 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12409 * interrupt mode, this function is called as part of the device-level
12410 * interrupt handler. When the PCI slot is in error recovery or the HBA
12411 * is undergoing initialization, the interrupt handler will not process
12412 * the interrupt. The link attention and ELS ring attention events are
12413 * handled by the worker thread. The interrupt handler signals the worker
12414 * thread and returns for these events. This function is called without
12415 * any lock held. It gets the hbalock to access and update SLI data
12416 * structures.
12418 * This function returns IRQ_HANDLED when interrupt is handled else it
12419 * returns IRQ_NONE.
12421 irqreturn_t
12422 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12424 struct lpfc_hba *phba;
12425 uint32_t ha_copy, hc_copy;
12426 uint32_t work_ha_copy;
12427 unsigned long status;
12428 unsigned long iflag;
12429 uint32_t control;
12431 MAILBOX_t *mbox, *pmbox;
12432 struct lpfc_vport *vport;
12433 struct lpfc_nodelist *ndlp;
12434 struct lpfc_dmabuf *mp;
12435 LPFC_MBOXQ_t *pmb;
12436 int rc;
12439 * Get the driver's phba structure from the dev_id and
12440 * assume the HBA is not interrupting.
12442 phba = (struct lpfc_hba *)dev_id;
12444 if (unlikely(!phba))
12445 return IRQ_NONE;
12448 * Stuff needs to be attented to when this function is invoked as an
12449 * individual interrupt handler in MSI-X multi-message interrupt mode
12451 if (phba->intr_type == MSIX) {
12452 /* Check device state for handling interrupt */
12453 if (lpfc_intr_state_check(phba))
12454 return IRQ_NONE;
12455 /* Need to read HA REG for slow-path events */
12456 spin_lock_irqsave(&phba->hbalock, iflag);
12457 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12458 goto unplug_error;
12459 /* If somebody is waiting to handle an eratt don't process it
12460 * here. The brdkill function will do this.
12462 if (phba->link_flag & LS_IGNORE_ERATT)
12463 ha_copy &= ~HA_ERATT;
12464 /* Check the need for handling ERATT in interrupt handler */
12465 if (ha_copy & HA_ERATT) {
12466 if (phba->hba_flag & HBA_ERATT_HANDLED)
12467 /* ERATT polling has handled ERATT */
12468 ha_copy &= ~HA_ERATT;
12469 else
12470 /* Indicate interrupt handler handles ERATT */
12471 phba->hba_flag |= HBA_ERATT_HANDLED;
12475 * If there is deferred error attention, do not check for any
12476 * interrupt.
12478 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12479 spin_unlock_irqrestore(&phba->hbalock, iflag);
12480 return IRQ_NONE;
12483 /* Clear up only attention source related to slow-path */
12484 if (lpfc_readl(phba->HCregaddr, &hc_copy))
12485 goto unplug_error;
12487 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12488 HC_LAINT_ENA | HC_ERINT_ENA),
12489 phba->HCregaddr);
12490 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12491 phba->HAregaddr);
12492 writel(hc_copy, phba->HCregaddr);
12493 readl(phba->HAregaddr); /* flush */
12494 spin_unlock_irqrestore(&phba->hbalock, iflag);
12495 } else
12496 ha_copy = phba->ha_copy;
12498 work_ha_copy = ha_copy & phba->work_ha_mask;
12500 if (work_ha_copy) {
12501 if (work_ha_copy & HA_LATT) {
12502 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12504 * Turn off Link Attention interrupts
12505 * until CLEAR_LA done
12507 spin_lock_irqsave(&phba->hbalock, iflag);
12508 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12509 if (lpfc_readl(phba->HCregaddr, &control))
12510 goto unplug_error;
12511 control &= ~HC_LAINT_ENA;
12512 writel(control, phba->HCregaddr);
12513 readl(phba->HCregaddr); /* flush */
12514 spin_unlock_irqrestore(&phba->hbalock, iflag);
12516 else
12517 work_ha_copy &= ~HA_LATT;
12520 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12522 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12523 * the only slow ring.
12525 status = (work_ha_copy &
12526 (HA_RXMASK << (4*LPFC_ELS_RING)));
12527 status >>= (4*LPFC_ELS_RING);
12528 if (status & HA_RXMASK) {
12529 spin_lock_irqsave(&phba->hbalock, iflag);
12530 if (lpfc_readl(phba->HCregaddr, &control))
12531 goto unplug_error;
12533 lpfc_debugfs_slow_ring_trc(phba,
12534 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
12535 control, status,
12536 (uint32_t)phba->sli.slistat.sli_intr);
12538 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12539 lpfc_debugfs_slow_ring_trc(phba,
12540 "ISR Disable ring:"
12541 "pwork:x%x hawork:x%x wait:x%x",
12542 phba->work_ha, work_ha_copy,
12543 (uint32_t)((unsigned long)
12544 &phba->work_waitq));
12546 control &=
12547 ~(HC_R0INT_ENA << LPFC_ELS_RING);
12548 writel(control, phba->HCregaddr);
12549 readl(phba->HCregaddr); /* flush */
12551 else {
12552 lpfc_debugfs_slow_ring_trc(phba,
12553 "ISR slow ring: pwork:"
12554 "x%x hawork:x%x wait:x%x",
12555 phba->work_ha, work_ha_copy,
12556 (uint32_t)((unsigned long)
12557 &phba->work_waitq));
12559 spin_unlock_irqrestore(&phba->hbalock, iflag);
12562 spin_lock_irqsave(&phba->hbalock, iflag);
12563 if (work_ha_copy & HA_ERATT) {
12564 if (lpfc_sli_read_hs(phba))
12565 goto unplug_error;
12567 * Check if there is a deferred error condition
12568 * is active
12570 if ((HS_FFER1 & phba->work_hs) &&
12571 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12572 HS_FFER6 | HS_FFER7 | HS_FFER8) &
12573 phba->work_hs)) {
12574 phba->hba_flag |= DEFER_ERATT;
12575 /* Clear all interrupt enable conditions */
12576 writel(0, phba->HCregaddr);
12577 readl(phba->HCregaddr);
12581 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12582 pmb = phba->sli.mbox_active;
12583 pmbox = &pmb->u.mb;
12584 mbox = phba->mbox;
12585 vport = pmb->vport;
12587 /* First check out the status word */
12588 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12589 if (pmbox->mbxOwner != OWN_HOST) {
12590 spin_unlock_irqrestore(&phba->hbalock, iflag);
12592 * Stray Mailbox Interrupt, mbxCommand <cmd>
12593 * mbxStatus <status>
12595 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12596 LOG_SLI,
12597 "(%d):0304 Stray Mailbox "
12598 "Interrupt mbxCommand x%x "
12599 "mbxStatus x%x\n",
12600 (vport ? vport->vpi : 0),
12601 pmbox->mbxCommand,
12602 pmbox->mbxStatus);
12603 /* clear mailbox attention bit */
12604 work_ha_copy &= ~HA_MBATT;
12605 } else {
12606 phba->sli.mbox_active = NULL;
12607 spin_unlock_irqrestore(&phba->hbalock, iflag);
12608 phba->last_completion_time = jiffies;
12609 del_timer(&phba->sli.mbox_tmo);
12610 if (pmb->mbox_cmpl) {
12611 lpfc_sli_pcimem_bcopy(mbox, pmbox,
12612 MAILBOX_CMD_SIZE);
12613 if (pmb->out_ext_byte_len &&
12614 pmb->ctx_buf)
12615 lpfc_sli_pcimem_bcopy(
12616 phba->mbox_ext,
12617 pmb->ctx_buf,
12618 pmb->out_ext_byte_len);
12620 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12621 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12623 lpfc_debugfs_disc_trc(vport,
12624 LPFC_DISC_TRC_MBOX_VPORT,
12625 "MBOX dflt rpi: : "
12626 "status:x%x rpi:x%x",
12627 (uint32_t)pmbox->mbxStatus,
12628 pmbox->un.varWords[0], 0);
12630 if (!pmbox->mbxStatus) {
12631 mp = (struct lpfc_dmabuf *)
12632 (pmb->ctx_buf);
12633 ndlp = (struct lpfc_nodelist *)
12634 pmb->ctx_ndlp;
12636 /* Reg_LOGIN of dflt RPI was
12637 * successful. new lets get
12638 * rid of the RPI using the
12639 * same mbox buffer.
12641 lpfc_unreg_login(phba,
12642 vport->vpi,
12643 pmbox->un.varWords[0],
12644 pmb);
12645 pmb->mbox_cmpl =
12646 lpfc_mbx_cmpl_dflt_rpi;
12647 pmb->ctx_buf = mp;
12648 pmb->ctx_ndlp = ndlp;
12649 pmb->vport = vport;
12650 rc = lpfc_sli_issue_mbox(phba,
12651 pmb,
12652 MBX_NOWAIT);
12653 if (rc != MBX_BUSY)
12654 lpfc_printf_log(phba,
12655 KERN_ERR,
12656 LOG_MBOX | LOG_SLI,
12657 "0350 rc should have"
12658 "been MBX_BUSY\n");
12659 if (rc != MBX_NOT_FINISHED)
12660 goto send_current_mbox;
12663 spin_lock_irqsave(
12664 &phba->pport->work_port_lock,
12665 iflag);
12666 phba->pport->work_port_events &=
12667 ~WORKER_MBOX_TMO;
12668 spin_unlock_irqrestore(
12669 &phba->pport->work_port_lock,
12670 iflag);
12671 lpfc_mbox_cmpl_put(phba, pmb);
12673 } else
12674 spin_unlock_irqrestore(&phba->hbalock, iflag);
12676 if ((work_ha_copy & HA_MBATT) &&
12677 (phba->sli.mbox_active == NULL)) {
12678 send_current_mbox:
12679 /* Process next mailbox command if there is one */
12680 do {
12681 rc = lpfc_sli_issue_mbox(phba, NULL,
12682 MBX_NOWAIT);
12683 } while (rc == MBX_NOT_FINISHED);
12684 if (rc != MBX_SUCCESS)
12685 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12686 LOG_SLI, "0349 rc should be "
12687 "MBX_SUCCESS\n");
12690 spin_lock_irqsave(&phba->hbalock, iflag);
12691 phba->work_ha |= work_ha_copy;
12692 spin_unlock_irqrestore(&phba->hbalock, iflag);
12693 lpfc_worker_wake_up(phba);
12695 return IRQ_HANDLED;
12696 unplug_error:
12697 spin_unlock_irqrestore(&phba->hbalock, iflag);
12698 return IRQ_HANDLED;
12700 } /* lpfc_sli_sp_intr_handler */
12703 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12704 * @irq: Interrupt number.
12705 * @dev_id: The device context pointer.
12707 * This function is directly called from the PCI layer as an interrupt
12708 * service routine when device with SLI-3 interface spec is enabled with
12709 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12710 * ring event in the HBA. However, when the device is enabled with either
12711 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12712 * device-level interrupt handler. When the PCI slot is in error recovery
12713 * or the HBA is undergoing initialization, the interrupt handler will not
12714 * process the interrupt. The SCSI FCP fast-path ring event are handled in
12715 * the intrrupt context. This function is called without any lock held.
12716 * It gets the hbalock to access and update SLI data structures.
12718 * This function returns IRQ_HANDLED when interrupt is handled else it
12719 * returns IRQ_NONE.
12721 irqreturn_t
12722 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12724 struct lpfc_hba *phba;
12725 uint32_t ha_copy;
12726 unsigned long status;
12727 unsigned long iflag;
12728 struct lpfc_sli_ring *pring;
12730 /* Get the driver's phba structure from the dev_id and
12731 * assume the HBA is not interrupting.
12733 phba = (struct lpfc_hba *) dev_id;
12735 if (unlikely(!phba))
12736 return IRQ_NONE;
12739 * Stuff needs to be attented to when this function is invoked as an
12740 * individual interrupt handler in MSI-X multi-message interrupt mode
12742 if (phba->intr_type == MSIX) {
12743 /* Check device state for handling interrupt */
12744 if (lpfc_intr_state_check(phba))
12745 return IRQ_NONE;
12746 /* Need to read HA REG for FCP ring and other ring events */
12747 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12748 return IRQ_HANDLED;
12749 /* Clear up only attention source related to fast-path */
12750 spin_lock_irqsave(&phba->hbalock, iflag);
12752 * If there is deferred error attention, do not check for
12753 * any interrupt.
12755 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12756 spin_unlock_irqrestore(&phba->hbalock, iflag);
12757 return IRQ_NONE;
12759 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12760 phba->HAregaddr);
12761 readl(phba->HAregaddr); /* flush */
12762 spin_unlock_irqrestore(&phba->hbalock, iflag);
12763 } else
12764 ha_copy = phba->ha_copy;
12767 * Process all events on FCP ring. Take the optimized path for FCP IO.
12769 ha_copy &= ~(phba->work_ha_mask);
12771 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12772 status >>= (4*LPFC_FCP_RING);
12773 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12774 if (status & HA_RXMASK)
12775 lpfc_sli_handle_fast_ring_event(phba, pring, status);
12777 if (phba->cfg_multi_ring_support == 2) {
12779 * Process all events on extra ring. Take the optimized path
12780 * for extra ring IO.
12782 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12783 status >>= (4*LPFC_EXTRA_RING);
12784 if (status & HA_RXMASK) {
12785 lpfc_sli_handle_fast_ring_event(phba,
12786 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
12787 status);
12790 return IRQ_HANDLED;
12791 } /* lpfc_sli_fp_intr_handler */
12794 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12795 * @irq: Interrupt number.
12796 * @dev_id: The device context pointer.
12798 * This function is the HBA device-level interrupt handler to device with
12799 * SLI-3 interface spec, called from the PCI layer when either MSI or
12800 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12801 * requires driver attention. This function invokes the slow-path interrupt
12802 * attention handling function and fast-path interrupt attention handling
12803 * function in turn to process the relevant HBA attention events. This
12804 * function is called without any lock held. It gets the hbalock to access
12805 * and update SLI data structures.
12807 * This function returns IRQ_HANDLED when interrupt is handled, else it
12808 * returns IRQ_NONE.
12810 irqreturn_t
12811 lpfc_sli_intr_handler(int irq, void *dev_id)
12813 struct lpfc_hba *phba;
12814 irqreturn_t sp_irq_rc, fp_irq_rc;
12815 unsigned long status1, status2;
12816 uint32_t hc_copy;
12819 * Get the driver's phba structure from the dev_id and
12820 * assume the HBA is not interrupting.
12822 phba = (struct lpfc_hba *) dev_id;
12824 if (unlikely(!phba))
12825 return IRQ_NONE;
12827 /* Check device state for handling interrupt */
12828 if (lpfc_intr_state_check(phba))
12829 return IRQ_NONE;
12831 spin_lock(&phba->hbalock);
12832 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12833 spin_unlock(&phba->hbalock);
12834 return IRQ_HANDLED;
12837 if (unlikely(!phba->ha_copy)) {
12838 spin_unlock(&phba->hbalock);
12839 return IRQ_NONE;
12840 } else if (phba->ha_copy & HA_ERATT) {
12841 if (phba->hba_flag & HBA_ERATT_HANDLED)
12842 /* ERATT polling has handled ERATT */
12843 phba->ha_copy &= ~HA_ERATT;
12844 else
12845 /* Indicate interrupt handler handles ERATT */
12846 phba->hba_flag |= HBA_ERATT_HANDLED;
12850 * If there is deferred error attention, do not check for any interrupt.
12852 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12853 spin_unlock(&phba->hbalock);
12854 return IRQ_NONE;
12857 /* Clear attention sources except link and error attentions */
12858 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12859 spin_unlock(&phba->hbalock);
12860 return IRQ_HANDLED;
12862 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12863 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12864 phba->HCregaddr);
12865 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12866 writel(hc_copy, phba->HCregaddr);
12867 readl(phba->HAregaddr); /* flush */
12868 spin_unlock(&phba->hbalock);
12871 * Invokes slow-path host attention interrupt handling as appropriate.
12874 /* status of events with mailbox and link attention */
12875 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12877 /* status of events with ELS ring */
12878 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
12879 status2 >>= (4*LPFC_ELS_RING);
12881 if (status1 || (status2 & HA_RXMASK))
12882 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12883 else
12884 sp_irq_rc = IRQ_NONE;
12887 * Invoke fast-path host attention interrupt handling as appropriate.
12890 /* status of events with FCP ring */
12891 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12892 status1 >>= (4*LPFC_FCP_RING);
12894 /* status of events with extra ring */
12895 if (phba->cfg_multi_ring_support == 2) {
12896 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12897 status2 >>= (4*LPFC_EXTRA_RING);
12898 } else
12899 status2 = 0;
12901 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12902 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12903 else
12904 fp_irq_rc = IRQ_NONE;
12906 /* Return device-level interrupt handling status */
12907 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12908 } /* lpfc_sli_intr_handler */
12911 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12912 * @phba: pointer to lpfc hba data structure.
12914 * This routine is invoked by the worker thread to process all the pending
12915 * SLI4 els abort xri events.
12917 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12919 struct lpfc_cq_event *cq_event;
12921 /* First, declare the els xri abort event has been handled */
12922 spin_lock_irq(&phba->hbalock);
12923 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12924 spin_unlock_irq(&phba->hbalock);
12925 /* Now, handle all the els xri abort events */
12926 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12927 /* Get the first event from the head of the event queue */
12928 spin_lock_irq(&phba->hbalock);
12929 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12930 cq_event, struct lpfc_cq_event, list);
12931 spin_unlock_irq(&phba->hbalock);
12932 /* Notify aborted XRI for ELS work queue */
12933 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12934 /* Free the event processed back to the free pool */
12935 lpfc_sli4_cq_event_release(phba, cq_event);
12940 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12941 * @phba: pointer to lpfc hba data structure
12942 * @pIocbIn: pointer to the rspiocbq
12943 * @pIocbOut: pointer to the cmdiocbq
12944 * @wcqe: pointer to the complete wcqe
12946 * This routine transfers the fields of a command iocbq to a response iocbq
12947 * by copying all the IOCB fields from command iocbq and transferring the
12948 * completion status information from the complete wcqe.
12950 static void
12951 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12952 struct lpfc_iocbq *pIocbIn,
12953 struct lpfc_iocbq *pIocbOut,
12954 struct lpfc_wcqe_complete *wcqe)
12956 int numBdes, i;
12957 unsigned long iflags;
12958 uint32_t status, max_response;
12959 struct lpfc_dmabuf *dmabuf;
12960 struct ulp_bde64 *bpl, bde;
12961 size_t offset = offsetof(struct lpfc_iocbq, iocb);
12963 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12964 sizeof(struct lpfc_iocbq) - offset);
12965 /* Map WCQE parameters into irspiocb parameters */
12966 status = bf_get(lpfc_wcqe_c_status, wcqe);
12967 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12968 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12969 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12970 pIocbIn->iocb.un.fcpi.fcpi_parm =
12971 pIocbOut->iocb.un.fcpi.fcpi_parm -
12972 wcqe->total_data_placed;
12973 else
12974 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12975 else {
12976 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12977 switch (pIocbOut->iocb.ulpCommand) {
12978 case CMD_ELS_REQUEST64_CR:
12979 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12980 bpl = (struct ulp_bde64 *)dmabuf->virt;
12981 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12982 max_response = bde.tus.f.bdeSize;
12983 break;
12984 case CMD_GEN_REQUEST64_CR:
12985 max_response = 0;
12986 if (!pIocbOut->context3)
12987 break;
12988 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12989 sizeof(struct ulp_bde64);
12990 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12991 bpl = (struct ulp_bde64 *)dmabuf->virt;
12992 for (i = 0; i < numBdes; i++) {
12993 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12994 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12995 max_response += bde.tus.f.bdeSize;
12997 break;
12998 default:
12999 max_response = wcqe->total_data_placed;
13000 break;
13002 if (max_response < wcqe->total_data_placed)
13003 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13004 else
13005 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13006 wcqe->total_data_placed;
13009 /* Convert BG errors for completion status */
13010 if (status == CQE_STATUS_DI_ERROR) {
13011 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13013 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13014 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13015 else
13016 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13018 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13019 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13020 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13021 BGS_GUARD_ERR_MASK;
13022 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13023 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13024 BGS_APPTAG_ERR_MASK;
13025 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13026 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13027 BGS_REFTAG_ERR_MASK;
13029 /* Check to see if there was any good data before the error */
13030 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13031 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13032 BGS_HI_WATER_MARK_PRESENT_MASK;
13033 pIocbIn->iocb.unsli3.sli3_bg.bghm =
13034 wcqe->total_data_placed;
13038 * Set ALL the error bits to indicate we don't know what
13039 * type of error it is.
13041 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13042 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13043 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13044 BGS_GUARD_ERR_MASK);
13047 /* Pick up HBA exchange busy condition */
13048 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13049 spin_lock_irqsave(&phba->hbalock, iflags);
13050 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13051 spin_unlock_irqrestore(&phba->hbalock, iflags);
13056 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13057 * @phba: Pointer to HBA context object.
13058 * @wcqe: Pointer to work-queue completion queue entry.
13060 * This routine handles an ELS work-queue completion event and construct
13061 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13062 * discovery engine to handle.
13064 * Return: Pointer to the receive IOCBQ, NULL otherwise.
13066 static struct lpfc_iocbq *
13067 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13068 struct lpfc_iocbq *irspiocbq)
13070 struct lpfc_sli_ring *pring;
13071 struct lpfc_iocbq *cmdiocbq;
13072 struct lpfc_wcqe_complete *wcqe;
13073 unsigned long iflags;
13075 pring = lpfc_phba_elsring(phba);
13076 if (unlikely(!pring))
13077 return NULL;
13079 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13080 pring->stats.iocb_event++;
13081 /* Look up the ELS command IOCB and create pseudo response IOCB */
13082 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13083 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13084 if (unlikely(!cmdiocbq)) {
13085 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13086 "0386 ELS complete with no corresponding "
13087 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13088 wcqe->word0, wcqe->total_data_placed,
13089 wcqe->parameter, wcqe->word3);
13090 lpfc_sli_release_iocbq(phba, irspiocbq);
13091 return NULL;
13094 spin_lock_irqsave(&pring->ring_lock, iflags);
13095 /* Put the iocb back on the txcmplq */
13096 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13097 spin_unlock_irqrestore(&pring->ring_lock, iflags);
13099 /* Fake the irspiocbq and copy necessary response information */
13100 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13102 return irspiocbq;
13105 inline struct lpfc_cq_event *
13106 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13108 struct lpfc_cq_event *cq_event;
13110 /* Allocate a new internal CQ_EVENT entry */
13111 cq_event = lpfc_sli4_cq_event_alloc(phba);
13112 if (!cq_event) {
13113 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13114 "0602 Failed to alloc CQ_EVENT entry\n");
13115 return NULL;
13118 /* Move the CQE into the event */
13119 memcpy(&cq_event->cqe, entry, size);
13120 return cq_event;
13124 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13125 * @phba: Pointer to HBA context object.
13126 * @cqe: Pointer to mailbox completion queue entry.
13128 * This routine process a mailbox completion queue entry with asynchronous
13129 * event.
13131 * Return: true if work posted to worker thread, otherwise false.
13133 static bool
13134 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13136 struct lpfc_cq_event *cq_event;
13137 unsigned long iflags;
13139 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13140 "0392 Async Event: word0:x%x, word1:x%x, "
13141 "word2:x%x, word3:x%x\n", mcqe->word0,
13142 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13144 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13145 if (!cq_event)
13146 return false;
13147 spin_lock_irqsave(&phba->hbalock, iflags);
13148 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13149 /* Set the async event flag */
13150 phba->hba_flag |= ASYNC_EVENT;
13151 spin_unlock_irqrestore(&phba->hbalock, iflags);
13153 return true;
13157 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13158 * @phba: Pointer to HBA context object.
13159 * @cqe: Pointer to mailbox completion queue entry.
13161 * This routine process a mailbox completion queue entry with mailbox
13162 * completion event.
13164 * Return: true if work posted to worker thread, otherwise false.
13166 static bool
13167 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13169 uint32_t mcqe_status;
13170 MAILBOX_t *mbox, *pmbox;
13171 struct lpfc_mqe *mqe;
13172 struct lpfc_vport *vport;
13173 struct lpfc_nodelist *ndlp;
13174 struct lpfc_dmabuf *mp;
13175 unsigned long iflags;
13176 LPFC_MBOXQ_t *pmb;
13177 bool workposted = false;
13178 int rc;
13180 /* If not a mailbox complete MCQE, out by checking mailbox consume */
13181 if (!bf_get(lpfc_trailer_completed, mcqe))
13182 goto out_no_mqe_complete;
13184 /* Get the reference to the active mbox command */
13185 spin_lock_irqsave(&phba->hbalock, iflags);
13186 pmb = phba->sli.mbox_active;
13187 if (unlikely(!pmb)) {
13188 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13189 "1832 No pending MBOX command to handle\n");
13190 spin_unlock_irqrestore(&phba->hbalock, iflags);
13191 goto out_no_mqe_complete;
13193 spin_unlock_irqrestore(&phba->hbalock, iflags);
13194 mqe = &pmb->u.mqe;
13195 pmbox = (MAILBOX_t *)&pmb->u.mqe;
13196 mbox = phba->mbox;
13197 vport = pmb->vport;
13199 /* Reset heartbeat timer */
13200 phba->last_completion_time = jiffies;
13201 del_timer(&phba->sli.mbox_tmo);
13203 /* Move mbox data to caller's mailbox region, do endian swapping */
13204 if (pmb->mbox_cmpl && mbox)
13205 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13208 * For mcqe errors, conditionally move a modified error code to
13209 * the mbox so that the error will not be missed.
13211 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13212 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13213 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13214 bf_set(lpfc_mqe_status, mqe,
13215 (LPFC_MBX_ERROR_RANGE | mcqe_status));
13217 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13218 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13219 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13220 "MBOX dflt rpi: status:x%x rpi:x%x",
13221 mcqe_status,
13222 pmbox->un.varWords[0], 0);
13223 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13224 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13225 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13226 /* Reg_LOGIN of dflt RPI was successful. Now lets get
13227 * RID of the PPI using the same mbox buffer.
13229 lpfc_unreg_login(phba, vport->vpi,
13230 pmbox->un.varWords[0], pmb);
13231 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13232 pmb->ctx_buf = mp;
13233 pmb->ctx_ndlp = ndlp;
13234 pmb->vport = vport;
13235 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13236 if (rc != MBX_BUSY)
13237 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13238 LOG_SLI, "0385 rc should "
13239 "have been MBX_BUSY\n");
13240 if (rc != MBX_NOT_FINISHED)
13241 goto send_current_mbox;
13244 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13245 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13246 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13248 /* There is mailbox completion work to do */
13249 spin_lock_irqsave(&phba->hbalock, iflags);
13250 __lpfc_mbox_cmpl_put(phba, pmb);
13251 phba->work_ha |= HA_MBATT;
13252 spin_unlock_irqrestore(&phba->hbalock, iflags);
13253 workposted = true;
13255 send_current_mbox:
13256 spin_lock_irqsave(&phba->hbalock, iflags);
13257 /* Release the mailbox command posting token */
13258 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13259 /* Setting active mailbox pointer need to be in sync to flag clear */
13260 phba->sli.mbox_active = NULL;
13261 if (bf_get(lpfc_trailer_consumed, mcqe))
13262 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13263 spin_unlock_irqrestore(&phba->hbalock, iflags);
13264 /* Wake up worker thread to post the next pending mailbox command */
13265 lpfc_worker_wake_up(phba);
13266 return workposted;
13268 out_no_mqe_complete:
13269 spin_lock_irqsave(&phba->hbalock, iflags);
13270 if (bf_get(lpfc_trailer_consumed, mcqe))
13271 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13272 spin_unlock_irqrestore(&phba->hbalock, iflags);
13273 return false;
13277 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13278 * @phba: Pointer to HBA context object.
13279 * @cqe: Pointer to mailbox completion queue entry.
13281 * This routine process a mailbox completion queue entry, it invokes the
13282 * proper mailbox complete handling or asynchronous event handling routine
13283 * according to the MCQE's async bit.
13285 * Return: true if work posted to worker thread, otherwise false.
13287 static bool
13288 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13289 struct lpfc_cqe *cqe)
13291 struct lpfc_mcqe mcqe;
13292 bool workposted;
13294 cq->CQ_mbox++;
13296 /* Copy the mailbox MCQE and convert endian order as needed */
13297 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13299 /* Invoke the proper event handling routine */
13300 if (!bf_get(lpfc_trailer_async, &mcqe))
13301 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13302 else
13303 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13304 return workposted;
13308 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13309 * @phba: Pointer to HBA context object.
13310 * @cq: Pointer to associated CQ
13311 * @wcqe: Pointer to work-queue completion queue entry.
13313 * This routine handles an ELS work-queue completion event.
13315 * Return: true if work posted to worker thread, otherwise false.
13317 static bool
13318 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13319 struct lpfc_wcqe_complete *wcqe)
13321 struct lpfc_iocbq *irspiocbq;
13322 unsigned long iflags;
13323 struct lpfc_sli_ring *pring = cq->pring;
13324 int txq_cnt = 0;
13325 int txcmplq_cnt = 0;
13327 /* Check for response status */
13328 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13329 /* Log the error status */
13330 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13331 "0357 ELS CQE error: status=x%x: "
13332 "CQE: %08x %08x %08x %08x\n",
13333 bf_get(lpfc_wcqe_c_status, wcqe),
13334 wcqe->word0, wcqe->total_data_placed,
13335 wcqe->parameter, wcqe->word3);
13338 /* Get an irspiocbq for later ELS response processing use */
13339 irspiocbq = lpfc_sli_get_iocbq(phba);
13340 if (!irspiocbq) {
13341 if (!list_empty(&pring->txq))
13342 txq_cnt++;
13343 if (!list_empty(&pring->txcmplq))
13344 txcmplq_cnt++;
13345 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13346 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13347 "els_txcmplq_cnt=%d\n",
13348 txq_cnt, phba->iocb_cnt,
13349 txcmplq_cnt);
13350 return false;
13353 /* Save off the slow-path queue event for work thread to process */
13354 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13355 spin_lock_irqsave(&phba->hbalock, iflags);
13356 list_add_tail(&irspiocbq->cq_event.list,
13357 &phba->sli4_hba.sp_queue_event);
13358 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13359 spin_unlock_irqrestore(&phba->hbalock, iflags);
13361 return true;
13365 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13366 * @phba: Pointer to HBA context object.
13367 * @wcqe: Pointer to work-queue completion queue entry.
13369 * This routine handles slow-path WQ entry consumed event by invoking the
13370 * proper WQ release routine to the slow-path WQ.
13372 static void
13373 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13374 struct lpfc_wcqe_release *wcqe)
13376 /* sanity check on queue memory */
13377 if (unlikely(!phba->sli4_hba.els_wq))
13378 return;
13379 /* Check for the slow-path ELS work queue */
13380 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13381 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13382 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13383 else
13384 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13385 "2579 Slow-path wqe consume event carries "
13386 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13387 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13388 phba->sli4_hba.els_wq->queue_id);
13392 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13393 * @phba: Pointer to HBA context object.
13394 * @cq: Pointer to a WQ completion queue.
13395 * @wcqe: Pointer to work-queue completion queue entry.
13397 * This routine handles an XRI abort event.
13399 * Return: true if work posted to worker thread, otherwise false.
13401 static bool
13402 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13403 struct lpfc_queue *cq,
13404 struct sli4_wcqe_xri_aborted *wcqe)
13406 bool workposted = false;
13407 struct lpfc_cq_event *cq_event;
13408 unsigned long iflags;
13410 switch (cq->subtype) {
13411 case LPFC_IO:
13412 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13413 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13414 /* Notify aborted XRI for NVME work queue */
13415 if (phba->nvmet_support)
13416 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13418 workposted = false;
13419 break;
13420 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13421 case LPFC_ELS:
13422 cq_event = lpfc_cq_event_setup(
13423 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13424 if (!cq_event)
13425 return false;
13426 cq_event->hdwq = cq->hdwq;
13427 spin_lock_irqsave(&phba->hbalock, iflags);
13428 list_add_tail(&cq_event->list,
13429 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13430 /* Set the els xri abort event flag */
13431 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13432 spin_unlock_irqrestore(&phba->hbalock, iflags);
13433 workposted = true;
13434 break;
13435 default:
13436 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13437 "0603 Invalid CQ subtype %d: "
13438 "%08x %08x %08x %08x\n",
13439 cq->subtype, wcqe->word0, wcqe->parameter,
13440 wcqe->word2, wcqe->word3);
13441 workposted = false;
13442 break;
13444 return workposted;
13447 #define FC_RCTL_MDS_DIAGS 0xF4
13450 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13451 * @phba: Pointer to HBA context object.
13452 * @rcqe: Pointer to receive-queue completion queue entry.
13454 * This routine process a receive-queue completion queue entry.
13456 * Return: true if work posted to worker thread, otherwise false.
13458 static bool
13459 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13461 bool workposted = false;
13462 struct fc_frame_header *fc_hdr;
13463 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13464 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13465 struct lpfc_nvmet_tgtport *tgtp;
13466 struct hbq_dmabuf *dma_buf;
13467 uint32_t status, rq_id;
13468 unsigned long iflags;
13470 /* sanity check on queue memory */
13471 if (unlikely(!hrq) || unlikely(!drq))
13472 return workposted;
13474 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13475 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13476 else
13477 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13478 if (rq_id != hrq->queue_id)
13479 goto out;
13481 status = bf_get(lpfc_rcqe_status, rcqe);
13482 switch (status) {
13483 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13484 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13485 "2537 Receive Frame Truncated!!\n");
13486 /* fall through */
13487 case FC_STATUS_RQ_SUCCESS:
13488 spin_lock_irqsave(&phba->hbalock, iflags);
13489 lpfc_sli4_rq_release(hrq, drq);
13490 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13491 if (!dma_buf) {
13492 hrq->RQ_no_buf_found++;
13493 spin_unlock_irqrestore(&phba->hbalock, iflags);
13494 goto out;
13496 hrq->RQ_rcv_buf++;
13497 hrq->RQ_buf_posted--;
13498 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13500 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13502 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13503 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13504 spin_unlock_irqrestore(&phba->hbalock, iflags);
13505 /* Handle MDS Loopback frames */
13506 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13507 break;
13510 /* save off the frame for the work thread to process */
13511 list_add_tail(&dma_buf->cq_event.list,
13512 &phba->sli4_hba.sp_queue_event);
13513 /* Frame received */
13514 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13515 spin_unlock_irqrestore(&phba->hbalock, iflags);
13516 workposted = true;
13517 break;
13518 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13519 if (phba->nvmet_support) {
13520 tgtp = phba->targetport->private;
13521 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13522 "6402 RQE Error x%x, posted %d err_cnt "
13523 "%d: %x %x %x\n",
13524 status, hrq->RQ_buf_posted,
13525 hrq->RQ_no_posted_buf,
13526 atomic_read(&tgtp->rcv_fcp_cmd_in),
13527 atomic_read(&tgtp->rcv_fcp_cmd_out),
13528 atomic_read(&tgtp->xmt_fcp_release));
13530 /* fallthrough */
13532 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13533 hrq->RQ_no_posted_buf++;
13534 /* Post more buffers if possible */
13535 spin_lock_irqsave(&phba->hbalock, iflags);
13536 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13537 spin_unlock_irqrestore(&phba->hbalock, iflags);
13538 workposted = true;
13539 break;
13541 out:
13542 return workposted;
13546 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13547 * @phba: Pointer to HBA context object.
13548 * @cq: Pointer to the completion queue.
13549 * @cqe: Pointer to a completion queue entry.
13551 * This routine process a slow-path work-queue or receive queue completion queue
13552 * entry.
13554 * Return: true if work posted to worker thread, otherwise false.
13556 static bool
13557 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13558 struct lpfc_cqe *cqe)
13560 struct lpfc_cqe cqevt;
13561 bool workposted = false;
13563 /* Copy the work queue CQE and convert endian order if needed */
13564 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13566 /* Check and process for different type of WCQE and dispatch */
13567 switch (bf_get(lpfc_cqe_code, &cqevt)) {
13568 case CQE_CODE_COMPL_WQE:
13569 /* Process the WQ/RQ complete event */
13570 phba->last_completion_time = jiffies;
13571 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13572 (struct lpfc_wcqe_complete *)&cqevt);
13573 break;
13574 case CQE_CODE_RELEASE_WQE:
13575 /* Process the WQ release event */
13576 lpfc_sli4_sp_handle_rel_wcqe(phba,
13577 (struct lpfc_wcqe_release *)&cqevt);
13578 break;
13579 case CQE_CODE_XRI_ABORTED:
13580 /* Process the WQ XRI abort event */
13581 phba->last_completion_time = jiffies;
13582 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13583 (struct sli4_wcqe_xri_aborted *)&cqevt);
13584 break;
13585 case CQE_CODE_RECEIVE:
13586 case CQE_CODE_RECEIVE_V1:
13587 /* Process the RQ event */
13588 phba->last_completion_time = jiffies;
13589 workposted = lpfc_sli4_sp_handle_rcqe(phba,
13590 (struct lpfc_rcqe *)&cqevt);
13591 break;
13592 default:
13593 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13594 "0388 Not a valid WCQE code: x%x\n",
13595 bf_get(lpfc_cqe_code, &cqevt));
13596 break;
13598 return workposted;
13602 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13603 * @phba: Pointer to HBA context object.
13604 * @eqe: Pointer to fast-path event queue entry.
13606 * This routine process a event queue entry from the slow-path event queue.
13607 * It will check the MajorCode and MinorCode to determine this is for a
13608 * completion event on a completion queue, if not, an error shall be logged
13609 * and just return. Otherwise, it will get to the corresponding completion
13610 * queue and process all the entries on that completion queue, rearm the
13611 * completion queue, and then return.
13614 static void
13615 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13616 struct lpfc_queue *speq)
13618 struct lpfc_queue *cq = NULL, *childq;
13619 uint16_t cqid;
13621 /* Get the reference to the corresponding CQ */
13622 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13624 list_for_each_entry(childq, &speq->child_list, list) {
13625 if (childq->queue_id == cqid) {
13626 cq = childq;
13627 break;
13630 if (unlikely(!cq)) {
13631 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13632 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13633 "0365 Slow-path CQ identifier "
13634 "(%d) does not exist\n", cqid);
13635 return;
13638 /* Save EQ associated with this CQ */
13639 cq->assoc_qp = speq;
13641 if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13642 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13643 "0390 Cannot schedule soft IRQ "
13644 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13645 cqid, cq->queue_id, raw_smp_processor_id());
13649 * __lpfc_sli4_process_cq - Process elements of a CQ
13650 * @phba: Pointer to HBA context object.
13651 * @cq: Pointer to CQ to be processed
13652 * @handler: Routine to process each cqe
13653 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13655 * This routine processes completion queue entries in a CQ. While a valid
13656 * queue element is found, the handler is called. During processing checks
13657 * are made for periodic doorbell writes to let the hardware know of
13658 * element consumption.
13660 * If the max limit on cqes to process is hit, or there are no more valid
13661 * entries, the loop stops. If we processed a sufficient number of elements,
13662 * meaning there is sufficient load, rather than rearming and generating
13663 * another interrupt, a cq rescheduling delay will be set. A delay of 0
13664 * indicates no rescheduling.
13666 * Returns True if work scheduled, False otherwise.
13668 static bool
13669 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13670 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13671 struct lpfc_cqe *), unsigned long *delay)
13673 struct lpfc_cqe *cqe;
13674 bool workposted = false;
13675 int count = 0, consumed = 0;
13676 bool arm = true;
13678 /* default - no reschedule */
13679 *delay = 0;
13681 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13682 goto rearm_and_exit;
13684 /* Process all the entries to the CQ */
13685 cq->q_flag = 0;
13686 cqe = lpfc_sli4_cq_get(cq);
13687 while (cqe) {
13688 workposted |= handler(phba, cq, cqe);
13689 __lpfc_sli4_consume_cqe(phba, cq, cqe);
13691 consumed++;
13692 if (!(++count % cq->max_proc_limit))
13693 break;
13695 if (!(count % cq->notify_interval)) {
13696 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13697 LPFC_QUEUE_NOARM);
13698 consumed = 0;
13699 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
13702 if (count == LPFC_NVMET_CQ_NOTIFY)
13703 cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13705 cqe = lpfc_sli4_cq_get(cq);
13707 if (count >= phba->cfg_cq_poll_threshold) {
13708 *delay = 1;
13709 arm = false;
13712 /* Track the max number of CQEs processed in 1 EQ */
13713 if (count > cq->CQ_max_cqe)
13714 cq->CQ_max_cqe = count;
13716 cq->assoc_qp->EQ_cqe_cnt += count;
13718 /* Catch the no cq entry condition */
13719 if (unlikely(count == 0))
13720 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13721 "0369 No entry from completion queue "
13722 "qid=%d\n", cq->queue_id);
13724 cq->queue_claimed = 0;
13726 rearm_and_exit:
13727 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13728 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13730 return workposted;
13734 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13735 * @cq: pointer to CQ to process
13737 * This routine calls the cq processing routine with a handler specific
13738 * to the type of queue bound to it.
13740 * The CQ routine returns two values: the first is the calling status,
13741 * which indicates whether work was queued to the background discovery
13742 * thread. If true, the routine should wakeup the discovery thread;
13743 * the second is the delay parameter. If non-zero, rather than rearming
13744 * the CQ and yet another interrupt, the CQ handler should be queued so
13745 * that it is processed in a subsequent polling action. The value of
13746 * the delay indicates when to reschedule it.
13748 static void
13749 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13751 struct lpfc_hba *phba = cq->phba;
13752 unsigned long delay;
13753 bool workposted = false;
13755 /* Process and rearm the CQ */
13756 switch (cq->type) {
13757 case LPFC_MCQ:
13758 workposted |= __lpfc_sli4_process_cq(phba, cq,
13759 lpfc_sli4_sp_handle_mcqe,
13760 &delay);
13761 break;
13762 case LPFC_WCQ:
13763 if (cq->subtype == LPFC_IO)
13764 workposted |= __lpfc_sli4_process_cq(phba, cq,
13765 lpfc_sli4_fp_handle_cqe,
13766 &delay);
13767 else
13768 workposted |= __lpfc_sli4_process_cq(phba, cq,
13769 lpfc_sli4_sp_handle_cqe,
13770 &delay);
13771 break;
13772 default:
13773 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13774 "0370 Invalid completion queue type (%d)\n",
13775 cq->type);
13776 return;
13779 if (delay) {
13780 if (!queue_delayed_work_on(cq->chann, phba->wq,
13781 &cq->sched_spwork, delay))
13782 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13783 "0394 Cannot schedule soft IRQ "
13784 "for cqid=%d on CPU %d\n",
13785 cq->queue_id, cq->chann);
13788 /* wake up worker thread if there are works to be done */
13789 if (workposted)
13790 lpfc_worker_wake_up(phba);
13794 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13795 * interrupt
13796 * @work: pointer to work element
13798 * translates from the work handler and calls the slow-path handler.
13800 static void
13801 lpfc_sli4_sp_process_cq(struct work_struct *work)
13803 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13805 __lpfc_sli4_sp_process_cq(cq);
13809 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13810 * @work: pointer to work element
13812 * translates from the work handler and calls the slow-path handler.
13814 static void
13815 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13817 struct lpfc_queue *cq = container_of(to_delayed_work(work),
13818 struct lpfc_queue, sched_spwork);
13820 __lpfc_sli4_sp_process_cq(cq);
13824 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13825 * @phba: Pointer to HBA context object.
13826 * @cq: Pointer to associated CQ
13827 * @wcqe: Pointer to work-queue completion queue entry.
13829 * This routine process a fast-path work queue completion entry from fast-path
13830 * event queue for FCP command response completion.
13832 static void
13833 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13834 struct lpfc_wcqe_complete *wcqe)
13836 struct lpfc_sli_ring *pring = cq->pring;
13837 struct lpfc_iocbq *cmdiocbq;
13838 struct lpfc_iocbq irspiocbq;
13839 unsigned long iflags;
13841 /* Check for response status */
13842 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13843 /* If resource errors reported from HBA, reduce queue
13844 * depth of the SCSI device.
13846 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13847 IOSTAT_LOCAL_REJECT)) &&
13848 ((wcqe->parameter & IOERR_PARAM_MASK) ==
13849 IOERR_NO_RESOURCES))
13850 phba->lpfc_rampdown_queue_depth(phba);
13852 /* Log the error status */
13853 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13854 "0373 FCP CQE error: status=x%x: "
13855 "CQE: %08x %08x %08x %08x\n",
13856 bf_get(lpfc_wcqe_c_status, wcqe),
13857 wcqe->word0, wcqe->total_data_placed,
13858 wcqe->parameter, wcqe->word3);
13861 /* Look up the FCP command IOCB and create pseudo response IOCB */
13862 spin_lock_irqsave(&pring->ring_lock, iflags);
13863 pring->stats.iocb_event++;
13864 spin_unlock_irqrestore(&pring->ring_lock, iflags);
13865 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13866 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13867 if (unlikely(!cmdiocbq)) {
13868 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13869 "0374 FCP complete with no corresponding "
13870 "cmdiocb: iotag (%d)\n",
13871 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13872 return;
13874 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13875 cmdiocbq->isr_timestamp = cq->isr_timestamp;
13876 #endif
13877 if (cmdiocbq->iocb_cmpl == NULL) {
13878 if (cmdiocbq->wqe_cmpl) {
13879 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13880 spin_lock_irqsave(&phba->hbalock, iflags);
13881 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13882 spin_unlock_irqrestore(&phba->hbalock, iflags);
13885 /* Pass the cmd_iocb and the wcqe to the upper layer */
13886 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13887 return;
13889 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13890 "0375 FCP cmdiocb not callback function "
13891 "iotag: (%d)\n",
13892 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13893 return;
13896 /* Fake the irspiocb and copy necessary response information */
13897 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13899 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13900 spin_lock_irqsave(&phba->hbalock, iflags);
13901 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13902 spin_unlock_irqrestore(&phba->hbalock, iflags);
13905 /* Pass the cmd_iocb and the rsp state to the upper layer */
13906 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13910 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13911 * @phba: Pointer to HBA context object.
13912 * @cq: Pointer to completion queue.
13913 * @wcqe: Pointer to work-queue completion queue entry.
13915 * This routine handles an fast-path WQ entry consumed event by invoking the
13916 * proper WQ release routine to the slow-path WQ.
13918 static void
13919 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13920 struct lpfc_wcqe_release *wcqe)
13922 struct lpfc_queue *childwq;
13923 bool wqid_matched = false;
13924 uint16_t hba_wqid;
13926 /* Check for fast-path FCP work queue release */
13927 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13928 list_for_each_entry(childwq, &cq->child_list, list) {
13929 if (childwq->queue_id == hba_wqid) {
13930 lpfc_sli4_wq_release(childwq,
13931 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13932 if (childwq->q_flag & HBA_NVMET_WQFULL)
13933 lpfc_nvmet_wqfull_process(phba, childwq);
13934 wqid_matched = true;
13935 break;
13938 /* Report warning log message if no match found */
13939 if (wqid_matched != true)
13940 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13941 "2580 Fast-path wqe consume event carries "
13942 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13946 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13947 * @phba: Pointer to HBA context object.
13948 * @rcqe: Pointer to receive-queue completion queue entry.
13950 * This routine process a receive-queue completion queue entry.
13952 * Return: true if work posted to worker thread, otherwise false.
13954 static bool
13955 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13956 struct lpfc_rcqe *rcqe)
13958 bool workposted = false;
13959 struct lpfc_queue *hrq;
13960 struct lpfc_queue *drq;
13961 struct rqb_dmabuf *dma_buf;
13962 struct fc_frame_header *fc_hdr;
13963 struct lpfc_nvmet_tgtport *tgtp;
13964 uint32_t status, rq_id;
13965 unsigned long iflags;
13966 uint32_t fctl, idx;
13968 if ((phba->nvmet_support == 0) ||
13969 (phba->sli4_hba.nvmet_cqset == NULL))
13970 return workposted;
13972 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13973 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13974 drq = phba->sli4_hba.nvmet_mrq_data[idx];
13976 /* sanity check on queue memory */
13977 if (unlikely(!hrq) || unlikely(!drq))
13978 return workposted;
13980 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13981 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13982 else
13983 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13985 if ((phba->nvmet_support == 0) ||
13986 (rq_id != hrq->queue_id))
13987 return workposted;
13989 status = bf_get(lpfc_rcqe_status, rcqe);
13990 switch (status) {
13991 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13992 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13993 "6126 Receive Frame Truncated!!\n");
13994 /* fall through */
13995 case FC_STATUS_RQ_SUCCESS:
13996 spin_lock_irqsave(&phba->hbalock, iflags);
13997 lpfc_sli4_rq_release(hrq, drq);
13998 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13999 if (!dma_buf) {
14000 hrq->RQ_no_buf_found++;
14001 spin_unlock_irqrestore(&phba->hbalock, iflags);
14002 goto out;
14004 spin_unlock_irqrestore(&phba->hbalock, iflags);
14005 hrq->RQ_rcv_buf++;
14006 hrq->RQ_buf_posted--;
14007 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14009 /* Just some basic sanity checks on FCP Command frame */
14010 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14011 fc_hdr->fh_f_ctl[1] << 8 |
14012 fc_hdr->fh_f_ctl[2]);
14013 if (((fctl &
14014 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14015 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14016 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14017 goto drop;
14019 if (fc_hdr->fh_type == FC_TYPE_FCP) {
14020 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14021 lpfc_nvmet_unsol_fcp_event(
14022 phba, idx, dma_buf, cq->isr_timestamp,
14023 cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14024 return false;
14026 drop:
14027 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14028 break;
14029 case FC_STATUS_INSUFF_BUF_FRM_DISC:
14030 if (phba->nvmet_support) {
14031 tgtp = phba->targetport->private;
14032 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
14033 "6401 RQE Error x%x, posted %d err_cnt "
14034 "%d: %x %x %x\n",
14035 status, hrq->RQ_buf_posted,
14036 hrq->RQ_no_posted_buf,
14037 atomic_read(&tgtp->rcv_fcp_cmd_in),
14038 atomic_read(&tgtp->rcv_fcp_cmd_out),
14039 atomic_read(&tgtp->xmt_fcp_release));
14041 /* fallthrough */
14043 case FC_STATUS_INSUFF_BUF_NEED_BUF:
14044 hrq->RQ_no_posted_buf++;
14045 /* Post more buffers if possible */
14046 break;
14048 out:
14049 return workposted;
14053 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14054 * @phba: adapter with cq
14055 * @cq: Pointer to the completion queue.
14056 * @eqe: Pointer to fast-path completion queue entry.
14058 * This routine process a fast-path work queue completion entry from fast-path
14059 * event queue for FCP command response completion.
14061 * Return: true if work posted to worker thread, otherwise false.
14063 static bool
14064 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14065 struct lpfc_cqe *cqe)
14067 struct lpfc_wcqe_release wcqe;
14068 bool workposted = false;
14070 /* Copy the work queue CQE and convert endian order if needed */
14071 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14073 /* Check and process for different type of WCQE and dispatch */
14074 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14075 case CQE_CODE_COMPL_WQE:
14076 case CQE_CODE_NVME_ERSP:
14077 cq->CQ_wq++;
14078 /* Process the WQ complete event */
14079 phba->last_completion_time = jiffies;
14080 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14081 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14082 (struct lpfc_wcqe_complete *)&wcqe);
14083 break;
14084 case CQE_CODE_RELEASE_WQE:
14085 cq->CQ_release_wqe++;
14086 /* Process the WQ release event */
14087 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14088 (struct lpfc_wcqe_release *)&wcqe);
14089 break;
14090 case CQE_CODE_XRI_ABORTED:
14091 cq->CQ_xri_aborted++;
14092 /* Process the WQ XRI abort event */
14093 phba->last_completion_time = jiffies;
14094 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14095 (struct sli4_wcqe_xri_aborted *)&wcqe);
14096 break;
14097 case CQE_CODE_RECEIVE_V1:
14098 case CQE_CODE_RECEIVE:
14099 phba->last_completion_time = jiffies;
14100 if (cq->subtype == LPFC_NVMET) {
14101 workposted = lpfc_sli4_nvmet_handle_rcqe(
14102 phba, cq, (struct lpfc_rcqe *)&wcqe);
14104 break;
14105 default:
14106 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14107 "0144 Not a valid CQE code: x%x\n",
14108 bf_get(lpfc_wcqe_c_code, &wcqe));
14109 break;
14111 return workposted;
14115 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14116 * @phba: Pointer to HBA context object.
14117 * @eqe: Pointer to fast-path event queue entry.
14119 * This routine process a event queue entry from the fast-path event queue.
14120 * It will check the MajorCode and MinorCode to determine this is for a
14121 * completion event on a completion queue, if not, an error shall be logged
14122 * and just return. Otherwise, it will get to the corresponding completion
14123 * queue and process all the entries on the completion queue, rearm the
14124 * completion queue, and then return.
14126 static void
14127 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14128 struct lpfc_eqe *eqe)
14130 struct lpfc_queue *cq = NULL;
14131 uint32_t qidx = eq->hdwq;
14132 uint16_t cqid, id;
14134 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14135 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14136 "0366 Not a valid completion "
14137 "event: majorcode=x%x, minorcode=x%x\n",
14138 bf_get_le32(lpfc_eqe_major_code, eqe),
14139 bf_get_le32(lpfc_eqe_minor_code, eqe));
14140 return;
14143 /* Get the reference to the corresponding CQ */
14144 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14146 /* Use the fast lookup method first */
14147 if (cqid <= phba->sli4_hba.cq_max) {
14148 cq = phba->sli4_hba.cq_lookup[cqid];
14149 if (cq)
14150 goto work_cq;
14153 /* Next check for NVMET completion */
14154 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14155 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14156 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14157 /* Process NVMET unsol rcv */
14158 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14159 goto process_cq;
14163 if (phba->sli4_hba.nvmels_cq &&
14164 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14165 /* Process NVME unsol rcv */
14166 cq = phba->sli4_hba.nvmels_cq;
14169 /* Otherwise this is a Slow path event */
14170 if (cq == NULL) {
14171 lpfc_sli4_sp_handle_eqe(phba, eqe,
14172 phba->sli4_hba.hdwq[qidx].hba_eq);
14173 return;
14176 process_cq:
14177 if (unlikely(cqid != cq->queue_id)) {
14178 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14179 "0368 Miss-matched fast-path completion "
14180 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
14181 cqid, cq->queue_id);
14182 return;
14185 work_cq:
14186 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14187 if (phba->ktime_on)
14188 cq->isr_timestamp = ktime_get_ns();
14189 else
14190 cq->isr_timestamp = 0;
14191 #endif
14192 if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14193 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14194 "0363 Cannot schedule soft IRQ "
14195 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14196 cqid, cq->queue_id, raw_smp_processor_id());
14200 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14201 * @cq: Pointer to CQ to be processed
14203 * This routine calls the cq processing routine with the handler for
14204 * fast path CQEs.
14206 * The CQ routine returns two values: the first is the calling status,
14207 * which indicates whether work was queued to the background discovery
14208 * thread. If true, the routine should wakeup the discovery thread;
14209 * the second is the delay parameter. If non-zero, rather than rearming
14210 * the CQ and yet another interrupt, the CQ handler should be queued so
14211 * that it is processed in a subsequent polling action. The value of
14212 * the delay indicates when to reschedule it.
14214 static void
14215 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14217 struct lpfc_hba *phba = cq->phba;
14218 unsigned long delay;
14219 bool workposted = false;
14221 /* process and rearm the CQ */
14222 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14223 &delay);
14225 if (delay) {
14226 if (!queue_delayed_work_on(cq->chann, phba->wq,
14227 &cq->sched_irqwork, delay))
14228 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14229 "0367 Cannot schedule soft IRQ "
14230 "for cqid=%d on CPU %d\n",
14231 cq->queue_id, cq->chann);
14234 /* wake up worker thread if there are works to be done */
14235 if (workposted)
14236 lpfc_worker_wake_up(phba);
14240 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14241 * interrupt
14242 * @work: pointer to work element
14244 * translates from the work handler and calls the fast-path handler.
14246 static void
14247 lpfc_sli4_hba_process_cq(struct work_struct *work)
14249 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14251 __lpfc_sli4_hba_process_cq(cq);
14255 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14256 * @work: pointer to work element
14258 * translates from the work handler and calls the fast-path handler.
14260 static void
14261 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14263 struct lpfc_queue *cq = container_of(to_delayed_work(work),
14264 struct lpfc_queue, sched_irqwork);
14266 __lpfc_sli4_hba_process_cq(cq);
14270 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14271 * @irq: Interrupt number.
14272 * @dev_id: The device context pointer.
14274 * This function is directly called from the PCI layer as an interrupt
14275 * service routine when device with SLI-4 interface spec is enabled with
14276 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14277 * ring event in the HBA. However, when the device is enabled with either
14278 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14279 * device-level interrupt handler. When the PCI slot is in error recovery
14280 * or the HBA is undergoing initialization, the interrupt handler will not
14281 * process the interrupt. The SCSI FCP fast-path ring event are handled in
14282 * the intrrupt context. This function is called without any lock held.
14283 * It gets the hbalock to access and update SLI data structures. Note that,
14284 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14285 * equal to that of FCP CQ index.
14287 * The link attention and ELS ring attention events are handled
14288 * by the worker thread. The interrupt handler signals the worker thread
14289 * and returns for these events. This function is called without any lock
14290 * held. It gets the hbalock to access and update SLI data structures.
14292 * This function returns IRQ_HANDLED when interrupt is handled else it
14293 * returns IRQ_NONE.
14295 irqreturn_t
14296 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14298 struct lpfc_hba *phba;
14299 struct lpfc_hba_eq_hdl *hba_eq_hdl;
14300 struct lpfc_queue *fpeq;
14301 unsigned long iflag;
14302 int ecount = 0;
14303 int hba_eqidx;
14304 struct lpfc_eq_intr_info *eqi;
14305 uint32_t icnt;
14307 /* Get the driver's phba structure from the dev_id */
14308 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14309 phba = hba_eq_hdl->phba;
14310 hba_eqidx = hba_eq_hdl->idx;
14312 if (unlikely(!phba))
14313 return IRQ_NONE;
14314 if (unlikely(!phba->sli4_hba.hdwq))
14315 return IRQ_NONE;
14317 /* Get to the EQ struct associated with this vector */
14318 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14319 if (unlikely(!fpeq))
14320 return IRQ_NONE;
14322 /* Check device state for handling interrupt */
14323 if (unlikely(lpfc_intr_state_check(phba))) {
14324 /* Check again for link_state with lock held */
14325 spin_lock_irqsave(&phba->hbalock, iflag);
14326 if (phba->link_state < LPFC_LINK_DOWN)
14327 /* Flush, clear interrupt, and rearm the EQ */
14328 lpfc_sli4_eqcq_flush(phba, fpeq);
14329 spin_unlock_irqrestore(&phba->hbalock, iflag);
14330 return IRQ_NONE;
14333 eqi = phba->sli4_hba.eq_info;
14334 icnt = this_cpu_inc_return(eqi->icnt);
14335 fpeq->last_cpu = raw_smp_processor_id();
14337 if (icnt > LPFC_EQD_ISR_TRIGGER &&
14338 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14339 phba->cfg_auto_imax &&
14340 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14341 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14342 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14344 /* process and rearm the EQ */
14345 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14347 if (unlikely(ecount == 0)) {
14348 fpeq->EQ_no_entry++;
14349 if (phba->intr_type == MSIX)
14350 /* MSI-X treated interrupt served as no EQ share INT */
14351 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14352 "0358 MSI-X interrupt with no EQE\n");
14353 else
14354 /* Non MSI-X treated on interrupt as EQ share INT */
14355 return IRQ_NONE;
14358 return IRQ_HANDLED;
14359 } /* lpfc_sli4_fp_intr_handler */
14362 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14363 * @irq: Interrupt number.
14364 * @dev_id: The device context pointer.
14366 * This function is the device-level interrupt handler to device with SLI-4
14367 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14368 * interrupt mode is enabled and there is an event in the HBA which requires
14369 * driver attention. This function invokes the slow-path interrupt attention
14370 * handling function and fast-path interrupt attention handling function in
14371 * turn to process the relevant HBA attention events. This function is called
14372 * without any lock held. It gets the hbalock to access and update SLI data
14373 * structures.
14375 * This function returns IRQ_HANDLED when interrupt is handled, else it
14376 * returns IRQ_NONE.
14378 irqreturn_t
14379 lpfc_sli4_intr_handler(int irq, void *dev_id)
14381 struct lpfc_hba *phba;
14382 irqreturn_t hba_irq_rc;
14383 bool hba_handled = false;
14384 int qidx;
14386 /* Get the driver's phba structure from the dev_id */
14387 phba = (struct lpfc_hba *)dev_id;
14389 if (unlikely(!phba))
14390 return IRQ_NONE;
14393 * Invoke fast-path host attention interrupt handling as appropriate.
14395 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14396 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14397 &phba->sli4_hba.hba_eq_hdl[qidx]);
14398 if (hba_irq_rc == IRQ_HANDLED)
14399 hba_handled |= true;
14402 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14403 } /* lpfc_sli4_intr_handler */
14405 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14407 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14408 struct lpfc_queue *eq;
14409 int i = 0;
14411 rcu_read_lock();
14413 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14414 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14415 if (!list_empty(&phba->poll_list))
14416 mod_timer(&phba->cpuhp_poll_timer,
14417 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14419 rcu_read_unlock();
14422 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14424 struct lpfc_hba *phba = eq->phba;
14425 int i = 0;
14428 * Unlocking an irq is one of the entry point to check
14429 * for re-schedule, but we are good for io submission
14430 * path as midlayer does a get_cpu to glue us in. Flush
14431 * out the invalidate queue so we can see the updated
14432 * value for flag.
14434 smp_rmb();
14436 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14437 /* We will not likely get the completion for the caller
14438 * during this iteration but i guess that's fine.
14439 * Future io's coming on this eq should be able to
14440 * pick it up. As for the case of single io's, they
14441 * will be handled through a sched from polling timer
14442 * function which is currently triggered every 1msec.
14444 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14446 return i;
14449 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14451 struct lpfc_hba *phba = eq->phba;
14453 if (list_empty(&phba->poll_list)) {
14454 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14455 /* kickstart slowpath processing for this eq */
14456 mod_timer(&phba->cpuhp_poll_timer,
14457 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14460 list_add_rcu(&eq->_poll_list, &phba->poll_list);
14461 synchronize_rcu();
14464 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
14466 struct lpfc_hba *phba = eq->phba;
14468 /* Disable slowpath processing for this eq. Kick start the eq
14469 * by RE-ARMING the eq's ASAP
14471 list_del_rcu(&eq->_poll_list);
14472 synchronize_rcu();
14474 if (list_empty(&phba->poll_list))
14475 del_timer_sync(&phba->cpuhp_poll_timer);
14478 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
14480 struct lpfc_queue *eq, *next;
14482 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
14483 list_del(&eq->_poll_list);
14485 INIT_LIST_HEAD(&phba->poll_list);
14486 synchronize_rcu();
14489 static inline void
14490 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
14492 if (mode == eq->mode)
14493 return;
14495 * currently this function is only called during a hotplug
14496 * event and the cpu on which this function is executing
14497 * is going offline. By now the hotplug has instructed
14498 * the scheduler to remove this cpu from cpu active mask.
14499 * So we don't need to work about being put aside by the
14500 * scheduler for a high priority process. Yes, the inte-
14501 * rrupts could come but they are known to retire ASAP.
14504 /* Disable polling in the fastpath */
14505 WRITE_ONCE(eq->mode, mode);
14506 /* flush out the store buffer */
14507 smp_wmb();
14510 * Add this eq to the polling list and start polling. For
14511 * a grace period both interrupt handler and poller will
14512 * try to process the eq _but_ that's fine. We have a
14513 * synchronization mechanism in place (queue_claimed) to
14514 * deal with it. This is just a draining phase for int-
14515 * errupt handler (not eq's) as we have guranteed through
14516 * barrier that all the CPUs have seen the new CQ_POLLED
14517 * state. which will effectively disable the REARMING of
14518 * the EQ. The whole idea is eq's die off eventually as
14519 * we are not rearming EQ's anymore.
14521 mode ? lpfc_sli4_add_to_poll_list(eq) :
14522 lpfc_sli4_remove_from_poll_list(eq);
14525 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
14527 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
14530 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
14532 struct lpfc_hba *phba = eq->phba;
14534 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
14536 /* Kick start for the pending io's in h/w.
14537 * Once we switch back to interrupt processing on a eq
14538 * the io path completion will only arm eq's when it
14539 * receives a completion. But since eq's are in disa-
14540 * rmed state it doesn't receive a completion. This
14541 * creates a deadlock scenaro.
14543 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
14547 * lpfc_sli4_queue_free - free a queue structure and associated memory
14548 * @queue: The queue structure to free.
14550 * This function frees a queue structure and the DMAable memory used for
14551 * the host resident queue. This function must be called after destroying the
14552 * queue on the HBA.
14554 void
14555 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14557 struct lpfc_dmabuf *dmabuf;
14559 if (!queue)
14560 return;
14562 if (!list_empty(&queue->wq_list))
14563 list_del(&queue->wq_list);
14565 while (!list_empty(&queue->page_list)) {
14566 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14567 list);
14568 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14569 dmabuf->virt, dmabuf->phys);
14570 kfree(dmabuf);
14572 if (queue->rqbp) {
14573 lpfc_free_rq_buffer(queue->phba, queue);
14574 kfree(queue->rqbp);
14577 if (!list_empty(&queue->cpu_list))
14578 list_del(&queue->cpu_list);
14580 kfree(queue);
14581 return;
14585 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14586 * @phba: The HBA that this queue is being created on.
14587 * @page_size: The size of a queue page
14588 * @entry_size: The size of each queue entry for this queue.
14589 * @entry count: The number of entries that this queue will handle.
14590 * @cpu: The cpu that will primarily utilize this queue.
14592 * This function allocates a queue structure and the DMAable memory used for
14593 * the host resident queue. This function must be called before creating the
14594 * queue on the HBA.
14596 struct lpfc_queue *
14597 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14598 uint32_t entry_size, uint32_t entry_count, int cpu)
14600 struct lpfc_queue *queue;
14601 struct lpfc_dmabuf *dmabuf;
14602 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14603 uint16_t x, pgcnt;
14605 if (!phba->sli4_hba.pc_sli4_params.supported)
14606 hw_page_size = page_size;
14608 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14610 /* If needed, Adjust page count to match the max the adapter supports */
14611 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14612 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14614 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14615 GFP_KERNEL, cpu_to_node(cpu));
14616 if (!queue)
14617 return NULL;
14619 INIT_LIST_HEAD(&queue->list);
14620 INIT_LIST_HEAD(&queue->_poll_list);
14621 INIT_LIST_HEAD(&queue->wq_list);
14622 INIT_LIST_HEAD(&queue->wqfull_list);
14623 INIT_LIST_HEAD(&queue->page_list);
14624 INIT_LIST_HEAD(&queue->child_list);
14625 INIT_LIST_HEAD(&queue->cpu_list);
14627 /* Set queue parameters now. If the system cannot provide memory
14628 * resources, the free routine needs to know what was allocated.
14630 queue->page_count = pgcnt;
14631 queue->q_pgs = (void **)&queue[1];
14632 queue->entry_cnt_per_pg = hw_page_size / entry_size;
14633 queue->entry_size = entry_size;
14634 queue->entry_count = entry_count;
14635 queue->page_size = hw_page_size;
14636 queue->phba = phba;
14638 for (x = 0; x < queue->page_count; x++) {
14639 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14640 dev_to_node(&phba->pcidev->dev));
14641 if (!dmabuf)
14642 goto out_fail;
14643 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14644 hw_page_size, &dmabuf->phys,
14645 GFP_KERNEL);
14646 if (!dmabuf->virt) {
14647 kfree(dmabuf);
14648 goto out_fail;
14650 dmabuf->buffer_tag = x;
14651 list_add_tail(&dmabuf->list, &queue->page_list);
14652 /* use lpfc_sli4_qe to index a paritcular entry in this page */
14653 queue->q_pgs[x] = dmabuf->virt;
14655 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14656 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14657 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14658 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14660 /* notify_interval will be set during q creation */
14662 return queue;
14663 out_fail:
14664 lpfc_sli4_queue_free(queue);
14665 return NULL;
14669 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14670 * @phba: HBA structure that indicates port to create a queue on.
14671 * @pci_barset: PCI BAR set flag.
14673 * This function shall perform iomap of the specified PCI BAR address to host
14674 * memory address if not already done so and return it. The returned host
14675 * memory address can be NULL.
14677 static void __iomem *
14678 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14680 if (!phba->pcidev)
14681 return NULL;
14683 switch (pci_barset) {
14684 case WQ_PCI_BAR_0_AND_1:
14685 return phba->pci_bar0_memmap_p;
14686 case WQ_PCI_BAR_2_AND_3:
14687 return phba->pci_bar2_memmap_p;
14688 case WQ_PCI_BAR_4_AND_5:
14689 return phba->pci_bar4_memmap_p;
14690 default:
14691 break;
14693 return NULL;
14697 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14698 * @phba: HBA structure that EQs are on.
14699 * @startq: The starting EQ index to modify
14700 * @numq: The number of EQs (consecutive indexes) to modify
14701 * @usdelay: amount of delay
14703 * This function revises the EQ delay on 1 or more EQs. The EQ delay
14704 * is set either by writing to a register (if supported by the SLI Port)
14705 * or by mailbox command. The mailbox command allows several EQs to be
14706 * updated at once.
14708 * The @phba struct is used to send a mailbox command to HBA. The @startq
14709 * is used to get the starting EQ index to change. The @numq value is
14710 * used to specify how many consecutive EQ indexes, starting at EQ index,
14711 * are to be changed. This function is asynchronous and will wait for any
14712 * mailbox commands to finish before returning.
14714 * On success this function will return a zero. If unable to allocate
14715 * enough memory this function will return -ENOMEM. If a mailbox command
14716 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14717 * have had their delay multipler changed.
14719 void
14720 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14721 uint32_t numq, uint32_t usdelay)
14723 struct lpfc_mbx_modify_eq_delay *eq_delay;
14724 LPFC_MBOXQ_t *mbox;
14725 struct lpfc_queue *eq;
14726 int cnt = 0, rc, length;
14727 uint32_t shdr_status, shdr_add_status;
14728 uint32_t dmult;
14729 int qidx;
14730 union lpfc_sli4_cfg_shdr *shdr;
14732 if (startq >= phba->cfg_irq_chann)
14733 return;
14735 if (usdelay > 0xFFFF) {
14736 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14737 "6429 usdelay %d too large. Scaled down to "
14738 "0xFFFF.\n", usdelay);
14739 usdelay = 0xFFFF;
14742 /* set values by EQ_DELAY register if supported */
14743 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14744 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14745 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14746 if (!eq)
14747 continue;
14749 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14751 if (++cnt >= numq)
14752 break;
14754 return;
14757 /* Otherwise, set values by mailbox cmd */
14759 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14760 if (!mbox) {
14761 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14762 "6428 Failed allocating mailbox cmd buffer."
14763 " EQ delay was not set.\n");
14764 return;
14766 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14767 sizeof(struct lpfc_sli4_cfg_mhdr));
14768 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14769 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14770 length, LPFC_SLI4_MBX_EMBED);
14771 eq_delay = &mbox->u.mqe.un.eq_delay;
14773 /* Calculate delay multiper from maximum interrupt per second */
14774 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14775 if (dmult)
14776 dmult--;
14777 if (dmult > LPFC_DMULT_MAX)
14778 dmult = LPFC_DMULT_MAX;
14780 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14781 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14782 if (!eq)
14783 continue;
14784 eq->q_mode = usdelay;
14785 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14786 eq_delay->u.request.eq[cnt].phase = 0;
14787 eq_delay->u.request.eq[cnt].delay_multi = dmult;
14789 if (++cnt >= numq)
14790 break;
14792 eq_delay->u.request.num_eq = cnt;
14794 mbox->vport = phba->pport;
14795 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14796 mbox->ctx_buf = NULL;
14797 mbox->ctx_ndlp = NULL;
14798 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14799 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14800 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14801 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14802 if (shdr_status || shdr_add_status || rc) {
14803 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14804 "2512 MODIFY_EQ_DELAY mailbox failed with "
14805 "status x%x add_status x%x, mbx status x%x\n",
14806 shdr_status, shdr_add_status, rc);
14808 mempool_free(mbox, phba->mbox_mem_pool);
14809 return;
14813 * lpfc_eq_create - Create an Event Queue on the HBA
14814 * @phba: HBA structure that indicates port to create a queue on.
14815 * @eq: The queue structure to use to create the event queue.
14816 * @imax: The maximum interrupt per second limit.
14818 * This function creates an event queue, as detailed in @eq, on a port,
14819 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14821 * The @phba struct is used to send mailbox command to HBA. The @eq struct
14822 * is used to get the entry count and entry size that are necessary to
14823 * determine the number of pages to allocate and use for this queue. This
14824 * function will send the EQ_CREATE mailbox command to the HBA to setup the
14825 * event queue. This function is asynchronous and will wait for the mailbox
14826 * command to finish before continuing.
14828 * On success this function will return a zero. If unable to allocate enough
14829 * memory this function will return -ENOMEM. If the queue create mailbox command
14830 * fails this function will return -ENXIO.
14833 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14835 struct lpfc_mbx_eq_create *eq_create;
14836 LPFC_MBOXQ_t *mbox;
14837 int rc, length, status = 0;
14838 struct lpfc_dmabuf *dmabuf;
14839 uint32_t shdr_status, shdr_add_status;
14840 union lpfc_sli4_cfg_shdr *shdr;
14841 uint16_t dmult;
14842 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14844 /* sanity check on queue memory */
14845 if (!eq)
14846 return -ENODEV;
14847 if (!phba->sli4_hba.pc_sli4_params.supported)
14848 hw_page_size = SLI4_PAGE_SIZE;
14850 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14851 if (!mbox)
14852 return -ENOMEM;
14853 length = (sizeof(struct lpfc_mbx_eq_create) -
14854 sizeof(struct lpfc_sli4_cfg_mhdr));
14855 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14856 LPFC_MBOX_OPCODE_EQ_CREATE,
14857 length, LPFC_SLI4_MBX_EMBED);
14858 eq_create = &mbox->u.mqe.un.eq_create;
14859 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14860 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14861 eq->page_count);
14862 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14863 LPFC_EQE_SIZE);
14864 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14866 /* Use version 2 of CREATE_EQ if eqav is set */
14867 if (phba->sli4_hba.pc_sli4_params.eqav) {
14868 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14869 LPFC_Q_CREATE_VERSION_2);
14870 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14871 phba->sli4_hba.pc_sli4_params.eqav);
14874 /* don't setup delay multiplier using EQ_CREATE */
14875 dmult = 0;
14876 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14877 dmult);
14878 switch (eq->entry_count) {
14879 default:
14880 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14881 "0360 Unsupported EQ count. (%d)\n",
14882 eq->entry_count);
14883 if (eq->entry_count < 256) {
14884 status = -EINVAL;
14885 goto out;
14887 /* fall through - otherwise default to smallest count */
14888 case 256:
14889 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14890 LPFC_EQ_CNT_256);
14891 break;
14892 case 512:
14893 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14894 LPFC_EQ_CNT_512);
14895 break;
14896 case 1024:
14897 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14898 LPFC_EQ_CNT_1024);
14899 break;
14900 case 2048:
14901 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14902 LPFC_EQ_CNT_2048);
14903 break;
14904 case 4096:
14905 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14906 LPFC_EQ_CNT_4096);
14907 break;
14909 list_for_each_entry(dmabuf, &eq->page_list, list) {
14910 memset(dmabuf->virt, 0, hw_page_size);
14911 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14912 putPaddrLow(dmabuf->phys);
14913 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14914 putPaddrHigh(dmabuf->phys);
14916 mbox->vport = phba->pport;
14917 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14918 mbox->ctx_buf = NULL;
14919 mbox->ctx_ndlp = NULL;
14920 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14921 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14922 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14923 if (shdr_status || shdr_add_status || rc) {
14924 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14925 "2500 EQ_CREATE mailbox failed with "
14926 "status x%x add_status x%x, mbx status x%x\n",
14927 shdr_status, shdr_add_status, rc);
14928 status = -ENXIO;
14930 eq->type = LPFC_EQ;
14931 eq->subtype = LPFC_NONE;
14932 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14933 if (eq->queue_id == 0xFFFF)
14934 status = -ENXIO;
14935 eq->host_index = 0;
14936 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14937 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14938 out:
14939 mempool_free(mbox, phba->mbox_mem_pool);
14940 return status;
14944 * lpfc_cq_create - Create a Completion Queue on the HBA
14945 * @phba: HBA structure that indicates port to create a queue on.
14946 * @cq: The queue structure to use to create the completion queue.
14947 * @eq: The event queue to bind this completion queue to.
14949 * This function creates a completion queue, as detailed in @wq, on a port,
14950 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14952 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14953 * is used to get the entry count and entry size that are necessary to
14954 * determine the number of pages to allocate and use for this queue. The @eq
14955 * is used to indicate which event queue to bind this completion queue to. This
14956 * function will send the CQ_CREATE mailbox command to the HBA to setup the
14957 * completion queue. This function is asynchronous and will wait for the mailbox
14958 * command to finish before continuing.
14960 * On success this function will return a zero. If unable to allocate enough
14961 * memory this function will return -ENOMEM. If the queue create mailbox command
14962 * fails this function will return -ENXIO.
14965 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14966 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14968 struct lpfc_mbx_cq_create *cq_create;
14969 struct lpfc_dmabuf *dmabuf;
14970 LPFC_MBOXQ_t *mbox;
14971 int rc, length, status = 0;
14972 uint32_t shdr_status, shdr_add_status;
14973 union lpfc_sli4_cfg_shdr *shdr;
14975 /* sanity check on queue memory */
14976 if (!cq || !eq)
14977 return -ENODEV;
14979 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14980 if (!mbox)
14981 return -ENOMEM;
14982 length = (sizeof(struct lpfc_mbx_cq_create) -
14983 sizeof(struct lpfc_sli4_cfg_mhdr));
14984 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14985 LPFC_MBOX_OPCODE_CQ_CREATE,
14986 length, LPFC_SLI4_MBX_EMBED);
14987 cq_create = &mbox->u.mqe.un.cq_create;
14988 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14989 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14990 cq->page_count);
14991 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14992 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14993 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14994 phba->sli4_hba.pc_sli4_params.cqv);
14995 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14996 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14997 (cq->page_size / SLI4_PAGE_SIZE));
14998 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14999 eq->queue_id);
15000 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15001 phba->sli4_hba.pc_sli4_params.cqav);
15002 } else {
15003 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15004 eq->queue_id);
15006 switch (cq->entry_count) {
15007 case 2048:
15008 case 4096:
15009 if (phba->sli4_hba.pc_sli4_params.cqv ==
15010 LPFC_Q_CREATE_VERSION_2) {
15011 cq_create->u.request.context.lpfc_cq_context_count =
15012 cq->entry_count;
15013 bf_set(lpfc_cq_context_count,
15014 &cq_create->u.request.context,
15015 LPFC_CQ_CNT_WORD7);
15016 break;
15018 /* fall through */
15019 default:
15020 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15021 "0361 Unsupported CQ count: "
15022 "entry cnt %d sz %d pg cnt %d\n",
15023 cq->entry_count, cq->entry_size,
15024 cq->page_count);
15025 if (cq->entry_count < 256) {
15026 status = -EINVAL;
15027 goto out;
15029 /* fall through - otherwise default to smallest count */
15030 case 256:
15031 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15032 LPFC_CQ_CNT_256);
15033 break;
15034 case 512:
15035 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15036 LPFC_CQ_CNT_512);
15037 break;
15038 case 1024:
15039 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15040 LPFC_CQ_CNT_1024);
15041 break;
15043 list_for_each_entry(dmabuf, &cq->page_list, list) {
15044 memset(dmabuf->virt, 0, cq->page_size);
15045 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15046 putPaddrLow(dmabuf->phys);
15047 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15048 putPaddrHigh(dmabuf->phys);
15050 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15052 /* The IOCTL status is embedded in the mailbox subheader. */
15053 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15054 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15055 if (shdr_status || shdr_add_status || rc) {
15056 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15057 "2501 CQ_CREATE mailbox failed with "
15058 "status x%x add_status x%x, mbx status x%x\n",
15059 shdr_status, shdr_add_status, rc);
15060 status = -ENXIO;
15061 goto out;
15063 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15064 if (cq->queue_id == 0xFFFF) {
15065 status = -ENXIO;
15066 goto out;
15068 /* link the cq onto the parent eq child list */
15069 list_add_tail(&cq->list, &eq->child_list);
15070 /* Set up completion queue's type and subtype */
15071 cq->type = type;
15072 cq->subtype = subtype;
15073 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15074 cq->assoc_qid = eq->queue_id;
15075 cq->assoc_qp = eq;
15076 cq->host_index = 0;
15077 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15078 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15080 if (cq->queue_id > phba->sli4_hba.cq_max)
15081 phba->sli4_hba.cq_max = cq->queue_id;
15082 out:
15083 mempool_free(mbox, phba->mbox_mem_pool);
15084 return status;
15088 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15089 * @phba: HBA structure that indicates port to create a queue on.
15090 * @cqp: The queue structure array to use to create the completion queues.
15091 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
15093 * This function creates a set of completion queue, s to support MRQ
15094 * as detailed in @cqp, on a port,
15095 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15097 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15098 * is used to get the entry count and entry size that are necessary to
15099 * determine the number of pages to allocate and use for this queue. The @eq
15100 * is used to indicate which event queue to bind this completion queue to. This
15101 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15102 * completion queue. This function is asynchronous and will wait for the mailbox
15103 * command to finish before continuing.
15105 * On success this function will return a zero. If unable to allocate enough
15106 * memory this function will return -ENOMEM. If the queue create mailbox command
15107 * fails this function will return -ENXIO.
15110 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15111 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15112 uint32_t subtype)
15114 struct lpfc_queue *cq;
15115 struct lpfc_queue *eq;
15116 struct lpfc_mbx_cq_create_set *cq_set;
15117 struct lpfc_dmabuf *dmabuf;
15118 LPFC_MBOXQ_t *mbox;
15119 int rc, length, alloclen, status = 0;
15120 int cnt, idx, numcq, page_idx = 0;
15121 uint32_t shdr_status, shdr_add_status;
15122 union lpfc_sli4_cfg_shdr *shdr;
15123 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15125 /* sanity check on queue memory */
15126 numcq = phba->cfg_nvmet_mrq;
15127 if (!cqp || !hdwq || !numcq)
15128 return -ENODEV;
15130 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15131 if (!mbox)
15132 return -ENOMEM;
15134 length = sizeof(struct lpfc_mbx_cq_create_set);
15135 length += ((numcq * cqp[0]->page_count) *
15136 sizeof(struct dma_address));
15137 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15138 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15139 LPFC_SLI4_MBX_NEMBED);
15140 if (alloclen < length) {
15141 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15142 "3098 Allocated DMA memory size (%d) is "
15143 "less than the requested DMA memory size "
15144 "(%d)\n", alloclen, length);
15145 status = -ENOMEM;
15146 goto out;
15148 cq_set = mbox->sge_array->addr[0];
15149 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15150 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15152 for (idx = 0; idx < numcq; idx++) {
15153 cq = cqp[idx];
15154 eq = hdwq[idx].hba_eq;
15155 if (!cq || !eq) {
15156 status = -ENOMEM;
15157 goto out;
15159 if (!phba->sli4_hba.pc_sli4_params.supported)
15160 hw_page_size = cq->page_size;
15162 switch (idx) {
15163 case 0:
15164 bf_set(lpfc_mbx_cq_create_set_page_size,
15165 &cq_set->u.request,
15166 (hw_page_size / SLI4_PAGE_SIZE));
15167 bf_set(lpfc_mbx_cq_create_set_num_pages,
15168 &cq_set->u.request, cq->page_count);
15169 bf_set(lpfc_mbx_cq_create_set_evt,
15170 &cq_set->u.request, 1);
15171 bf_set(lpfc_mbx_cq_create_set_valid,
15172 &cq_set->u.request, 1);
15173 bf_set(lpfc_mbx_cq_create_set_cqe_size,
15174 &cq_set->u.request, 0);
15175 bf_set(lpfc_mbx_cq_create_set_num_cq,
15176 &cq_set->u.request, numcq);
15177 bf_set(lpfc_mbx_cq_create_set_autovalid,
15178 &cq_set->u.request,
15179 phba->sli4_hba.pc_sli4_params.cqav);
15180 switch (cq->entry_count) {
15181 case 2048:
15182 case 4096:
15183 if (phba->sli4_hba.pc_sli4_params.cqv ==
15184 LPFC_Q_CREATE_VERSION_2) {
15185 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15186 &cq_set->u.request,
15187 cq->entry_count);
15188 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15189 &cq_set->u.request,
15190 LPFC_CQ_CNT_WORD7);
15191 break;
15193 /* fall through */
15194 default:
15195 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15196 "3118 Bad CQ count. (%d)\n",
15197 cq->entry_count);
15198 if (cq->entry_count < 256) {
15199 status = -EINVAL;
15200 goto out;
15202 /* fall through - otherwise default to smallest */
15203 case 256:
15204 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15205 &cq_set->u.request, LPFC_CQ_CNT_256);
15206 break;
15207 case 512:
15208 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15209 &cq_set->u.request, LPFC_CQ_CNT_512);
15210 break;
15211 case 1024:
15212 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15213 &cq_set->u.request, LPFC_CQ_CNT_1024);
15214 break;
15216 bf_set(lpfc_mbx_cq_create_set_eq_id0,
15217 &cq_set->u.request, eq->queue_id);
15218 break;
15219 case 1:
15220 bf_set(lpfc_mbx_cq_create_set_eq_id1,
15221 &cq_set->u.request, eq->queue_id);
15222 break;
15223 case 2:
15224 bf_set(lpfc_mbx_cq_create_set_eq_id2,
15225 &cq_set->u.request, eq->queue_id);
15226 break;
15227 case 3:
15228 bf_set(lpfc_mbx_cq_create_set_eq_id3,
15229 &cq_set->u.request, eq->queue_id);
15230 break;
15231 case 4:
15232 bf_set(lpfc_mbx_cq_create_set_eq_id4,
15233 &cq_set->u.request, eq->queue_id);
15234 break;
15235 case 5:
15236 bf_set(lpfc_mbx_cq_create_set_eq_id5,
15237 &cq_set->u.request, eq->queue_id);
15238 break;
15239 case 6:
15240 bf_set(lpfc_mbx_cq_create_set_eq_id6,
15241 &cq_set->u.request, eq->queue_id);
15242 break;
15243 case 7:
15244 bf_set(lpfc_mbx_cq_create_set_eq_id7,
15245 &cq_set->u.request, eq->queue_id);
15246 break;
15247 case 8:
15248 bf_set(lpfc_mbx_cq_create_set_eq_id8,
15249 &cq_set->u.request, eq->queue_id);
15250 break;
15251 case 9:
15252 bf_set(lpfc_mbx_cq_create_set_eq_id9,
15253 &cq_set->u.request, eq->queue_id);
15254 break;
15255 case 10:
15256 bf_set(lpfc_mbx_cq_create_set_eq_id10,
15257 &cq_set->u.request, eq->queue_id);
15258 break;
15259 case 11:
15260 bf_set(lpfc_mbx_cq_create_set_eq_id11,
15261 &cq_set->u.request, eq->queue_id);
15262 break;
15263 case 12:
15264 bf_set(lpfc_mbx_cq_create_set_eq_id12,
15265 &cq_set->u.request, eq->queue_id);
15266 break;
15267 case 13:
15268 bf_set(lpfc_mbx_cq_create_set_eq_id13,
15269 &cq_set->u.request, eq->queue_id);
15270 break;
15271 case 14:
15272 bf_set(lpfc_mbx_cq_create_set_eq_id14,
15273 &cq_set->u.request, eq->queue_id);
15274 break;
15275 case 15:
15276 bf_set(lpfc_mbx_cq_create_set_eq_id15,
15277 &cq_set->u.request, eq->queue_id);
15278 break;
15281 /* link the cq onto the parent eq child list */
15282 list_add_tail(&cq->list, &eq->child_list);
15283 /* Set up completion queue's type and subtype */
15284 cq->type = type;
15285 cq->subtype = subtype;
15286 cq->assoc_qid = eq->queue_id;
15287 cq->assoc_qp = eq;
15288 cq->host_index = 0;
15289 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15290 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15291 cq->entry_count);
15292 cq->chann = idx;
15294 rc = 0;
15295 list_for_each_entry(dmabuf, &cq->page_list, list) {
15296 memset(dmabuf->virt, 0, hw_page_size);
15297 cnt = page_idx + dmabuf->buffer_tag;
15298 cq_set->u.request.page[cnt].addr_lo =
15299 putPaddrLow(dmabuf->phys);
15300 cq_set->u.request.page[cnt].addr_hi =
15301 putPaddrHigh(dmabuf->phys);
15302 rc++;
15304 page_idx += rc;
15307 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15309 /* The IOCTL status is embedded in the mailbox subheader. */
15310 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15311 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15312 if (shdr_status || shdr_add_status || rc) {
15313 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15314 "3119 CQ_CREATE_SET mailbox failed with "
15315 "status x%x add_status x%x, mbx status x%x\n",
15316 shdr_status, shdr_add_status, rc);
15317 status = -ENXIO;
15318 goto out;
15320 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15321 if (rc == 0xFFFF) {
15322 status = -ENXIO;
15323 goto out;
15326 for (idx = 0; idx < numcq; idx++) {
15327 cq = cqp[idx];
15328 cq->queue_id = rc + idx;
15329 if (cq->queue_id > phba->sli4_hba.cq_max)
15330 phba->sli4_hba.cq_max = cq->queue_id;
15333 out:
15334 lpfc_sli4_mbox_cmd_free(phba, mbox);
15335 return status;
15339 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15340 * @phba: HBA structure that indicates port to create a queue on.
15341 * @mq: The queue structure to use to create the mailbox queue.
15342 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15343 * @cq: The completion queue to associate with this cq.
15345 * This function provides failback (fb) functionality when the
15346 * mq_create_ext fails on older FW generations. It's purpose is identical
15347 * to mq_create_ext otherwise.
15349 * This routine cannot fail as all attributes were previously accessed and
15350 * initialized in mq_create_ext.
15352 static void
15353 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15354 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15356 struct lpfc_mbx_mq_create *mq_create;
15357 struct lpfc_dmabuf *dmabuf;
15358 int length;
15360 length = (sizeof(struct lpfc_mbx_mq_create) -
15361 sizeof(struct lpfc_sli4_cfg_mhdr));
15362 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15363 LPFC_MBOX_OPCODE_MQ_CREATE,
15364 length, LPFC_SLI4_MBX_EMBED);
15365 mq_create = &mbox->u.mqe.un.mq_create;
15366 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15367 mq->page_count);
15368 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15369 cq->queue_id);
15370 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15371 switch (mq->entry_count) {
15372 case 16:
15373 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15374 LPFC_MQ_RING_SIZE_16);
15375 break;
15376 case 32:
15377 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15378 LPFC_MQ_RING_SIZE_32);
15379 break;
15380 case 64:
15381 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15382 LPFC_MQ_RING_SIZE_64);
15383 break;
15384 case 128:
15385 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15386 LPFC_MQ_RING_SIZE_128);
15387 break;
15389 list_for_each_entry(dmabuf, &mq->page_list, list) {
15390 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15391 putPaddrLow(dmabuf->phys);
15392 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15393 putPaddrHigh(dmabuf->phys);
15398 * lpfc_mq_create - Create a mailbox Queue on the HBA
15399 * @phba: HBA structure that indicates port to create a queue on.
15400 * @mq: The queue structure to use to create the mailbox queue.
15401 * @cq: The completion queue to associate with this cq.
15402 * @subtype: The queue's subtype.
15404 * This function creates a mailbox queue, as detailed in @mq, on a port,
15405 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15407 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15408 * is used to get the entry count and entry size that are necessary to
15409 * determine the number of pages to allocate and use for this queue. This
15410 * function will send the MQ_CREATE mailbox command to the HBA to setup the
15411 * mailbox queue. This function is asynchronous and will wait for the mailbox
15412 * command to finish before continuing.
15414 * On success this function will return a zero. If unable to allocate enough
15415 * memory this function will return -ENOMEM. If the queue create mailbox command
15416 * fails this function will return -ENXIO.
15418 int32_t
15419 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15420 struct lpfc_queue *cq, uint32_t subtype)
15422 struct lpfc_mbx_mq_create *mq_create;
15423 struct lpfc_mbx_mq_create_ext *mq_create_ext;
15424 struct lpfc_dmabuf *dmabuf;
15425 LPFC_MBOXQ_t *mbox;
15426 int rc, length, status = 0;
15427 uint32_t shdr_status, shdr_add_status;
15428 union lpfc_sli4_cfg_shdr *shdr;
15429 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15431 /* sanity check on queue memory */
15432 if (!mq || !cq)
15433 return -ENODEV;
15434 if (!phba->sli4_hba.pc_sli4_params.supported)
15435 hw_page_size = SLI4_PAGE_SIZE;
15437 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15438 if (!mbox)
15439 return -ENOMEM;
15440 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15441 sizeof(struct lpfc_sli4_cfg_mhdr));
15442 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15443 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15444 length, LPFC_SLI4_MBX_EMBED);
15446 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15447 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15448 bf_set(lpfc_mbx_mq_create_ext_num_pages,
15449 &mq_create_ext->u.request, mq->page_count);
15450 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15451 &mq_create_ext->u.request, 1);
15452 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15453 &mq_create_ext->u.request, 1);
15454 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15455 &mq_create_ext->u.request, 1);
15456 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15457 &mq_create_ext->u.request, 1);
15458 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15459 &mq_create_ext->u.request, 1);
15460 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15461 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15462 phba->sli4_hba.pc_sli4_params.mqv);
15463 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15464 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15465 cq->queue_id);
15466 else
15467 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15468 cq->queue_id);
15469 switch (mq->entry_count) {
15470 default:
15471 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15472 "0362 Unsupported MQ count. (%d)\n",
15473 mq->entry_count);
15474 if (mq->entry_count < 16) {
15475 status = -EINVAL;
15476 goto out;
15478 /* fall through - otherwise default to smallest count */
15479 case 16:
15480 bf_set(lpfc_mq_context_ring_size,
15481 &mq_create_ext->u.request.context,
15482 LPFC_MQ_RING_SIZE_16);
15483 break;
15484 case 32:
15485 bf_set(lpfc_mq_context_ring_size,
15486 &mq_create_ext->u.request.context,
15487 LPFC_MQ_RING_SIZE_32);
15488 break;
15489 case 64:
15490 bf_set(lpfc_mq_context_ring_size,
15491 &mq_create_ext->u.request.context,
15492 LPFC_MQ_RING_SIZE_64);
15493 break;
15494 case 128:
15495 bf_set(lpfc_mq_context_ring_size,
15496 &mq_create_ext->u.request.context,
15497 LPFC_MQ_RING_SIZE_128);
15498 break;
15500 list_for_each_entry(dmabuf, &mq->page_list, list) {
15501 memset(dmabuf->virt, 0, hw_page_size);
15502 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15503 putPaddrLow(dmabuf->phys);
15504 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15505 putPaddrHigh(dmabuf->phys);
15507 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15508 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15509 &mq_create_ext->u.response);
15510 if (rc != MBX_SUCCESS) {
15511 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15512 "2795 MQ_CREATE_EXT failed with "
15513 "status x%x. Failback to MQ_CREATE.\n",
15514 rc);
15515 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15516 mq_create = &mbox->u.mqe.un.mq_create;
15517 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15518 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15519 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15520 &mq_create->u.response);
15523 /* The IOCTL status is embedded in the mailbox subheader. */
15524 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15525 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15526 if (shdr_status || shdr_add_status || rc) {
15527 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15528 "2502 MQ_CREATE mailbox failed with "
15529 "status x%x add_status x%x, mbx status x%x\n",
15530 shdr_status, shdr_add_status, rc);
15531 status = -ENXIO;
15532 goto out;
15534 if (mq->queue_id == 0xFFFF) {
15535 status = -ENXIO;
15536 goto out;
15538 mq->type = LPFC_MQ;
15539 mq->assoc_qid = cq->queue_id;
15540 mq->subtype = subtype;
15541 mq->host_index = 0;
15542 mq->hba_index = 0;
15544 /* link the mq onto the parent cq child list */
15545 list_add_tail(&mq->list, &cq->child_list);
15546 out:
15547 mempool_free(mbox, phba->mbox_mem_pool);
15548 return status;
15552 * lpfc_wq_create - Create a Work Queue on the HBA
15553 * @phba: HBA structure that indicates port to create a queue on.
15554 * @wq: The queue structure to use to create the work queue.
15555 * @cq: The completion queue to bind this work queue to.
15556 * @subtype: The subtype of the work queue indicating its functionality.
15558 * This function creates a work queue, as detailed in @wq, on a port, described
15559 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15561 * The @phba struct is used to send mailbox command to HBA. The @wq struct
15562 * is used to get the entry count and entry size that are necessary to
15563 * determine the number of pages to allocate and use for this queue. The @cq
15564 * is used to indicate which completion queue to bind this work queue to. This
15565 * function will send the WQ_CREATE mailbox command to the HBA to setup the
15566 * work queue. This function is asynchronous and will wait for the mailbox
15567 * command to finish before continuing.
15569 * On success this function will return a zero. If unable to allocate enough
15570 * memory this function will return -ENOMEM. If the queue create mailbox command
15571 * fails this function will return -ENXIO.
15574 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15575 struct lpfc_queue *cq, uint32_t subtype)
15577 struct lpfc_mbx_wq_create *wq_create;
15578 struct lpfc_dmabuf *dmabuf;
15579 LPFC_MBOXQ_t *mbox;
15580 int rc, length, status = 0;
15581 uint32_t shdr_status, shdr_add_status;
15582 union lpfc_sli4_cfg_shdr *shdr;
15583 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15584 struct dma_address *page;
15585 void __iomem *bar_memmap_p;
15586 uint32_t db_offset;
15587 uint16_t pci_barset;
15588 uint8_t dpp_barset;
15589 uint32_t dpp_offset;
15590 unsigned long pg_addr;
15591 uint8_t wq_create_version;
15593 /* sanity check on queue memory */
15594 if (!wq || !cq)
15595 return -ENODEV;
15596 if (!phba->sli4_hba.pc_sli4_params.supported)
15597 hw_page_size = wq->page_size;
15599 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15600 if (!mbox)
15601 return -ENOMEM;
15602 length = (sizeof(struct lpfc_mbx_wq_create) -
15603 sizeof(struct lpfc_sli4_cfg_mhdr));
15604 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15605 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15606 length, LPFC_SLI4_MBX_EMBED);
15607 wq_create = &mbox->u.mqe.un.wq_create;
15608 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15609 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15610 wq->page_count);
15611 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15612 cq->queue_id);
15614 /* wqv is the earliest version supported, NOT the latest */
15615 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15616 phba->sli4_hba.pc_sli4_params.wqv);
15618 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15619 (wq->page_size > SLI4_PAGE_SIZE))
15620 wq_create_version = LPFC_Q_CREATE_VERSION_1;
15621 else
15622 wq_create_version = LPFC_Q_CREATE_VERSION_0;
15625 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15626 wq_create_version = LPFC_Q_CREATE_VERSION_1;
15627 else
15628 wq_create_version = LPFC_Q_CREATE_VERSION_0;
15630 switch (wq_create_version) {
15631 case LPFC_Q_CREATE_VERSION_1:
15632 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15633 wq->entry_count);
15634 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15635 LPFC_Q_CREATE_VERSION_1);
15637 switch (wq->entry_size) {
15638 default:
15639 case 64:
15640 bf_set(lpfc_mbx_wq_create_wqe_size,
15641 &wq_create->u.request_1,
15642 LPFC_WQ_WQE_SIZE_64);
15643 break;
15644 case 128:
15645 bf_set(lpfc_mbx_wq_create_wqe_size,
15646 &wq_create->u.request_1,
15647 LPFC_WQ_WQE_SIZE_128);
15648 break;
15650 /* Request DPP by default */
15651 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15652 bf_set(lpfc_mbx_wq_create_page_size,
15653 &wq_create->u.request_1,
15654 (wq->page_size / SLI4_PAGE_SIZE));
15655 page = wq_create->u.request_1.page;
15656 break;
15657 default:
15658 page = wq_create->u.request.page;
15659 break;
15662 list_for_each_entry(dmabuf, &wq->page_list, list) {
15663 memset(dmabuf->virt, 0, hw_page_size);
15664 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15665 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15668 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15669 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15671 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15672 /* The IOCTL status is embedded in the mailbox subheader. */
15673 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15674 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15675 if (shdr_status || shdr_add_status || rc) {
15676 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15677 "2503 WQ_CREATE mailbox failed with "
15678 "status x%x add_status x%x, mbx status x%x\n",
15679 shdr_status, shdr_add_status, rc);
15680 status = -ENXIO;
15681 goto out;
15684 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15685 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15686 &wq_create->u.response);
15687 else
15688 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15689 &wq_create->u.response_1);
15691 if (wq->queue_id == 0xFFFF) {
15692 status = -ENXIO;
15693 goto out;
15696 wq->db_format = LPFC_DB_LIST_FORMAT;
15697 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15698 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15699 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15700 &wq_create->u.response);
15701 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15702 (wq->db_format != LPFC_DB_RING_FORMAT)) {
15703 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15704 "3265 WQ[%d] doorbell format "
15705 "not supported: x%x\n",
15706 wq->queue_id, wq->db_format);
15707 status = -EINVAL;
15708 goto out;
15710 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15711 &wq_create->u.response);
15712 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15713 pci_barset);
15714 if (!bar_memmap_p) {
15715 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15716 "3263 WQ[%d] failed to memmap "
15717 "pci barset:x%x\n",
15718 wq->queue_id, pci_barset);
15719 status = -ENOMEM;
15720 goto out;
15722 db_offset = wq_create->u.response.doorbell_offset;
15723 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15724 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15725 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15726 "3252 WQ[%d] doorbell offset "
15727 "not supported: x%x\n",
15728 wq->queue_id, db_offset);
15729 status = -EINVAL;
15730 goto out;
15732 wq->db_regaddr = bar_memmap_p + db_offset;
15733 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15734 "3264 WQ[%d]: barset:x%x, offset:x%x, "
15735 "format:x%x\n", wq->queue_id,
15736 pci_barset, db_offset, wq->db_format);
15737 } else
15738 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15739 } else {
15740 /* Check if DPP was honored by the firmware */
15741 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15742 &wq_create->u.response_1);
15743 if (wq->dpp_enable) {
15744 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15745 &wq_create->u.response_1);
15746 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15747 pci_barset);
15748 if (!bar_memmap_p) {
15749 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15750 "3267 WQ[%d] failed to memmap "
15751 "pci barset:x%x\n",
15752 wq->queue_id, pci_barset);
15753 status = -ENOMEM;
15754 goto out;
15756 db_offset = wq_create->u.response_1.doorbell_offset;
15757 wq->db_regaddr = bar_memmap_p + db_offset;
15758 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15759 &wq_create->u.response_1);
15760 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15761 &wq_create->u.response_1);
15762 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15763 dpp_barset);
15764 if (!bar_memmap_p) {
15765 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15766 "3268 WQ[%d] failed to memmap "
15767 "pci barset:x%x\n",
15768 wq->queue_id, dpp_barset);
15769 status = -ENOMEM;
15770 goto out;
15772 dpp_offset = wq_create->u.response_1.dpp_offset;
15773 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15774 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15775 "3271 WQ[%d]: barset:x%x, offset:x%x, "
15776 "dpp_id:x%x dpp_barset:x%x "
15777 "dpp_offset:x%x\n",
15778 wq->queue_id, pci_barset, db_offset,
15779 wq->dpp_id, dpp_barset, dpp_offset);
15781 /* Enable combined writes for DPP aperture */
15782 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15783 #ifdef CONFIG_X86
15784 rc = set_memory_wc(pg_addr, 1);
15785 if (rc) {
15786 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15787 "3272 Cannot setup Combined "
15788 "Write on WQ[%d] - disable DPP\n",
15789 wq->queue_id);
15790 phba->cfg_enable_dpp = 0;
15792 #else
15793 phba->cfg_enable_dpp = 0;
15794 #endif
15795 } else
15796 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15798 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15799 if (wq->pring == NULL) {
15800 status = -ENOMEM;
15801 goto out;
15803 wq->type = LPFC_WQ;
15804 wq->assoc_qid = cq->queue_id;
15805 wq->subtype = subtype;
15806 wq->host_index = 0;
15807 wq->hba_index = 0;
15808 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15810 /* link the wq onto the parent cq child list */
15811 list_add_tail(&wq->list, &cq->child_list);
15812 out:
15813 mempool_free(mbox, phba->mbox_mem_pool);
15814 return status;
15818 * lpfc_rq_create - Create a Receive Queue on the HBA
15819 * @phba: HBA structure that indicates port to create a queue on.
15820 * @hrq: The queue structure to use to create the header receive queue.
15821 * @drq: The queue structure to use to create the data receive queue.
15822 * @cq: The completion queue to bind this work queue to.
15824 * This function creates a receive buffer queue pair , as detailed in @hrq and
15825 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15826 * to the HBA.
15828 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15829 * struct is used to get the entry count that is necessary to determine the
15830 * number of pages to use for this queue. The @cq is used to indicate which
15831 * completion queue to bind received buffers that are posted to these queues to.
15832 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15833 * receive queue pair. This function is asynchronous and will wait for the
15834 * mailbox command to finish before continuing.
15836 * On success this function will return a zero. If unable to allocate enough
15837 * memory this function will return -ENOMEM. If the queue create mailbox command
15838 * fails this function will return -ENXIO.
15841 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15842 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15844 struct lpfc_mbx_rq_create *rq_create;
15845 struct lpfc_dmabuf *dmabuf;
15846 LPFC_MBOXQ_t *mbox;
15847 int rc, length, status = 0;
15848 uint32_t shdr_status, shdr_add_status;
15849 union lpfc_sli4_cfg_shdr *shdr;
15850 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15851 void __iomem *bar_memmap_p;
15852 uint32_t db_offset;
15853 uint16_t pci_barset;
15855 /* sanity check on queue memory */
15856 if (!hrq || !drq || !cq)
15857 return -ENODEV;
15858 if (!phba->sli4_hba.pc_sli4_params.supported)
15859 hw_page_size = SLI4_PAGE_SIZE;
15861 if (hrq->entry_count != drq->entry_count)
15862 return -EINVAL;
15863 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15864 if (!mbox)
15865 return -ENOMEM;
15866 length = (sizeof(struct lpfc_mbx_rq_create) -
15867 sizeof(struct lpfc_sli4_cfg_mhdr));
15868 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15869 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15870 length, LPFC_SLI4_MBX_EMBED);
15871 rq_create = &mbox->u.mqe.un.rq_create;
15872 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15873 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15874 phba->sli4_hba.pc_sli4_params.rqv);
15875 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15876 bf_set(lpfc_rq_context_rqe_count_1,
15877 &rq_create->u.request.context,
15878 hrq->entry_count);
15879 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15880 bf_set(lpfc_rq_context_rqe_size,
15881 &rq_create->u.request.context,
15882 LPFC_RQE_SIZE_8);
15883 bf_set(lpfc_rq_context_page_size,
15884 &rq_create->u.request.context,
15885 LPFC_RQ_PAGE_SIZE_4096);
15886 } else {
15887 switch (hrq->entry_count) {
15888 default:
15889 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15890 "2535 Unsupported RQ count. (%d)\n",
15891 hrq->entry_count);
15892 if (hrq->entry_count < 512) {
15893 status = -EINVAL;
15894 goto out;
15896 /* fall through - otherwise default to smallest count */
15897 case 512:
15898 bf_set(lpfc_rq_context_rqe_count,
15899 &rq_create->u.request.context,
15900 LPFC_RQ_RING_SIZE_512);
15901 break;
15902 case 1024:
15903 bf_set(lpfc_rq_context_rqe_count,
15904 &rq_create->u.request.context,
15905 LPFC_RQ_RING_SIZE_1024);
15906 break;
15907 case 2048:
15908 bf_set(lpfc_rq_context_rqe_count,
15909 &rq_create->u.request.context,
15910 LPFC_RQ_RING_SIZE_2048);
15911 break;
15912 case 4096:
15913 bf_set(lpfc_rq_context_rqe_count,
15914 &rq_create->u.request.context,
15915 LPFC_RQ_RING_SIZE_4096);
15916 break;
15918 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15919 LPFC_HDR_BUF_SIZE);
15921 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15922 cq->queue_id);
15923 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15924 hrq->page_count);
15925 list_for_each_entry(dmabuf, &hrq->page_list, list) {
15926 memset(dmabuf->virt, 0, hw_page_size);
15927 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15928 putPaddrLow(dmabuf->phys);
15929 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15930 putPaddrHigh(dmabuf->phys);
15932 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15933 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15935 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15936 /* The IOCTL status is embedded in the mailbox subheader. */
15937 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15938 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15939 if (shdr_status || shdr_add_status || rc) {
15940 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15941 "2504 RQ_CREATE mailbox failed with "
15942 "status x%x add_status x%x, mbx status x%x\n",
15943 shdr_status, shdr_add_status, rc);
15944 status = -ENXIO;
15945 goto out;
15947 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15948 if (hrq->queue_id == 0xFFFF) {
15949 status = -ENXIO;
15950 goto out;
15953 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15954 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15955 &rq_create->u.response);
15956 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15957 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15958 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15959 "3262 RQ [%d] doorbell format not "
15960 "supported: x%x\n", hrq->queue_id,
15961 hrq->db_format);
15962 status = -EINVAL;
15963 goto out;
15966 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15967 &rq_create->u.response);
15968 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15969 if (!bar_memmap_p) {
15970 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15971 "3269 RQ[%d] failed to memmap pci "
15972 "barset:x%x\n", hrq->queue_id,
15973 pci_barset);
15974 status = -ENOMEM;
15975 goto out;
15978 db_offset = rq_create->u.response.doorbell_offset;
15979 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15980 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15981 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15982 "3270 RQ[%d] doorbell offset not "
15983 "supported: x%x\n", hrq->queue_id,
15984 db_offset);
15985 status = -EINVAL;
15986 goto out;
15988 hrq->db_regaddr = bar_memmap_p + db_offset;
15989 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15990 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15991 "format:x%x\n", hrq->queue_id, pci_barset,
15992 db_offset, hrq->db_format);
15993 } else {
15994 hrq->db_format = LPFC_DB_RING_FORMAT;
15995 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15997 hrq->type = LPFC_HRQ;
15998 hrq->assoc_qid = cq->queue_id;
15999 hrq->subtype = subtype;
16000 hrq->host_index = 0;
16001 hrq->hba_index = 0;
16002 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16004 /* now create the data queue */
16005 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16006 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16007 length, LPFC_SLI4_MBX_EMBED);
16008 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16009 phba->sli4_hba.pc_sli4_params.rqv);
16010 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16011 bf_set(lpfc_rq_context_rqe_count_1,
16012 &rq_create->u.request.context, hrq->entry_count);
16013 if (subtype == LPFC_NVMET)
16014 rq_create->u.request.context.buffer_size =
16015 LPFC_NVMET_DATA_BUF_SIZE;
16016 else
16017 rq_create->u.request.context.buffer_size =
16018 LPFC_DATA_BUF_SIZE;
16019 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16020 LPFC_RQE_SIZE_8);
16021 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16022 (PAGE_SIZE/SLI4_PAGE_SIZE));
16023 } else {
16024 switch (drq->entry_count) {
16025 default:
16026 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16027 "2536 Unsupported RQ count. (%d)\n",
16028 drq->entry_count);
16029 if (drq->entry_count < 512) {
16030 status = -EINVAL;
16031 goto out;
16033 /* fall through - otherwise default to smallest count */
16034 case 512:
16035 bf_set(lpfc_rq_context_rqe_count,
16036 &rq_create->u.request.context,
16037 LPFC_RQ_RING_SIZE_512);
16038 break;
16039 case 1024:
16040 bf_set(lpfc_rq_context_rqe_count,
16041 &rq_create->u.request.context,
16042 LPFC_RQ_RING_SIZE_1024);
16043 break;
16044 case 2048:
16045 bf_set(lpfc_rq_context_rqe_count,
16046 &rq_create->u.request.context,
16047 LPFC_RQ_RING_SIZE_2048);
16048 break;
16049 case 4096:
16050 bf_set(lpfc_rq_context_rqe_count,
16051 &rq_create->u.request.context,
16052 LPFC_RQ_RING_SIZE_4096);
16053 break;
16055 if (subtype == LPFC_NVMET)
16056 bf_set(lpfc_rq_context_buf_size,
16057 &rq_create->u.request.context,
16058 LPFC_NVMET_DATA_BUF_SIZE);
16059 else
16060 bf_set(lpfc_rq_context_buf_size,
16061 &rq_create->u.request.context,
16062 LPFC_DATA_BUF_SIZE);
16064 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16065 cq->queue_id);
16066 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16067 drq->page_count);
16068 list_for_each_entry(dmabuf, &drq->page_list, list) {
16069 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16070 putPaddrLow(dmabuf->phys);
16071 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16072 putPaddrHigh(dmabuf->phys);
16074 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16075 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16076 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16077 /* The IOCTL status is embedded in the mailbox subheader. */
16078 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16079 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16080 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16081 if (shdr_status || shdr_add_status || rc) {
16082 status = -ENXIO;
16083 goto out;
16085 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16086 if (drq->queue_id == 0xFFFF) {
16087 status = -ENXIO;
16088 goto out;
16090 drq->type = LPFC_DRQ;
16091 drq->assoc_qid = cq->queue_id;
16092 drq->subtype = subtype;
16093 drq->host_index = 0;
16094 drq->hba_index = 0;
16095 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16097 /* link the header and data RQs onto the parent cq child list */
16098 list_add_tail(&hrq->list, &cq->child_list);
16099 list_add_tail(&drq->list, &cq->child_list);
16101 out:
16102 mempool_free(mbox, phba->mbox_mem_pool);
16103 return status;
16107 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16108 * @phba: HBA structure that indicates port to create a queue on.
16109 * @hrqp: The queue structure array to use to create the header receive queues.
16110 * @drqp: The queue structure array to use to create the data receive queues.
16111 * @cqp: The completion queue array to bind these receive queues to.
16113 * This function creates a receive buffer queue pair , as detailed in @hrq and
16114 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16115 * to the HBA.
16117 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16118 * struct is used to get the entry count that is necessary to determine the
16119 * number of pages to use for this queue. The @cq is used to indicate which
16120 * completion queue to bind received buffers that are posted to these queues to.
16121 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16122 * receive queue pair. This function is asynchronous and will wait for the
16123 * mailbox command to finish before continuing.
16125 * On success this function will return a zero. If unable to allocate enough
16126 * memory this function will return -ENOMEM. If the queue create mailbox command
16127 * fails this function will return -ENXIO.
16130 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16131 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16132 uint32_t subtype)
16134 struct lpfc_queue *hrq, *drq, *cq;
16135 struct lpfc_mbx_rq_create_v2 *rq_create;
16136 struct lpfc_dmabuf *dmabuf;
16137 LPFC_MBOXQ_t *mbox;
16138 int rc, length, alloclen, status = 0;
16139 int cnt, idx, numrq, page_idx = 0;
16140 uint32_t shdr_status, shdr_add_status;
16141 union lpfc_sli4_cfg_shdr *shdr;
16142 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16144 numrq = phba->cfg_nvmet_mrq;
16145 /* sanity check on array memory */
16146 if (!hrqp || !drqp || !cqp || !numrq)
16147 return -ENODEV;
16148 if (!phba->sli4_hba.pc_sli4_params.supported)
16149 hw_page_size = SLI4_PAGE_SIZE;
16151 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16152 if (!mbox)
16153 return -ENOMEM;
16155 length = sizeof(struct lpfc_mbx_rq_create_v2);
16156 length += ((2 * numrq * hrqp[0]->page_count) *
16157 sizeof(struct dma_address));
16159 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16160 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16161 LPFC_SLI4_MBX_NEMBED);
16162 if (alloclen < length) {
16163 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16164 "3099 Allocated DMA memory size (%d) is "
16165 "less than the requested DMA memory size "
16166 "(%d)\n", alloclen, length);
16167 status = -ENOMEM;
16168 goto out;
16173 rq_create = mbox->sge_array->addr[0];
16174 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16176 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16177 cnt = 0;
16179 for (idx = 0; idx < numrq; idx++) {
16180 hrq = hrqp[idx];
16181 drq = drqp[idx];
16182 cq = cqp[idx];
16184 /* sanity check on queue memory */
16185 if (!hrq || !drq || !cq) {
16186 status = -ENODEV;
16187 goto out;
16190 if (hrq->entry_count != drq->entry_count) {
16191 status = -EINVAL;
16192 goto out;
16195 if (idx == 0) {
16196 bf_set(lpfc_mbx_rq_create_num_pages,
16197 &rq_create->u.request,
16198 hrq->page_count);
16199 bf_set(lpfc_mbx_rq_create_rq_cnt,
16200 &rq_create->u.request, (numrq * 2));
16201 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16203 bf_set(lpfc_rq_context_base_cq,
16204 &rq_create->u.request.context,
16205 cq->queue_id);
16206 bf_set(lpfc_rq_context_data_size,
16207 &rq_create->u.request.context,
16208 LPFC_NVMET_DATA_BUF_SIZE);
16209 bf_set(lpfc_rq_context_hdr_size,
16210 &rq_create->u.request.context,
16211 LPFC_HDR_BUF_SIZE);
16212 bf_set(lpfc_rq_context_rqe_count_1,
16213 &rq_create->u.request.context,
16214 hrq->entry_count);
16215 bf_set(lpfc_rq_context_rqe_size,
16216 &rq_create->u.request.context,
16217 LPFC_RQE_SIZE_8);
16218 bf_set(lpfc_rq_context_page_size,
16219 &rq_create->u.request.context,
16220 (PAGE_SIZE/SLI4_PAGE_SIZE));
16222 rc = 0;
16223 list_for_each_entry(dmabuf, &hrq->page_list, list) {
16224 memset(dmabuf->virt, 0, hw_page_size);
16225 cnt = page_idx + dmabuf->buffer_tag;
16226 rq_create->u.request.page[cnt].addr_lo =
16227 putPaddrLow(dmabuf->phys);
16228 rq_create->u.request.page[cnt].addr_hi =
16229 putPaddrHigh(dmabuf->phys);
16230 rc++;
16232 page_idx += rc;
16234 rc = 0;
16235 list_for_each_entry(dmabuf, &drq->page_list, list) {
16236 memset(dmabuf->virt, 0, hw_page_size);
16237 cnt = page_idx + dmabuf->buffer_tag;
16238 rq_create->u.request.page[cnt].addr_lo =
16239 putPaddrLow(dmabuf->phys);
16240 rq_create->u.request.page[cnt].addr_hi =
16241 putPaddrHigh(dmabuf->phys);
16242 rc++;
16244 page_idx += rc;
16246 hrq->db_format = LPFC_DB_RING_FORMAT;
16247 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16248 hrq->type = LPFC_HRQ;
16249 hrq->assoc_qid = cq->queue_id;
16250 hrq->subtype = subtype;
16251 hrq->host_index = 0;
16252 hrq->hba_index = 0;
16253 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16255 drq->db_format = LPFC_DB_RING_FORMAT;
16256 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16257 drq->type = LPFC_DRQ;
16258 drq->assoc_qid = cq->queue_id;
16259 drq->subtype = subtype;
16260 drq->host_index = 0;
16261 drq->hba_index = 0;
16262 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16264 list_add_tail(&hrq->list, &cq->child_list);
16265 list_add_tail(&drq->list, &cq->child_list);
16268 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16269 /* The IOCTL status is embedded in the mailbox subheader. */
16270 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16271 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16272 if (shdr_status || shdr_add_status || rc) {
16273 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16274 "3120 RQ_CREATE mailbox failed with "
16275 "status x%x add_status x%x, mbx status x%x\n",
16276 shdr_status, shdr_add_status, rc);
16277 status = -ENXIO;
16278 goto out;
16280 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16281 if (rc == 0xFFFF) {
16282 status = -ENXIO;
16283 goto out;
16286 /* Initialize all RQs with associated queue id */
16287 for (idx = 0; idx < numrq; idx++) {
16288 hrq = hrqp[idx];
16289 hrq->queue_id = rc + (2 * idx);
16290 drq = drqp[idx];
16291 drq->queue_id = rc + (2 * idx) + 1;
16294 out:
16295 lpfc_sli4_mbox_cmd_free(phba, mbox);
16296 return status;
16300 * lpfc_eq_destroy - Destroy an event Queue on the HBA
16301 * @eq: The queue structure associated with the queue to destroy.
16303 * This function destroys a queue, as detailed in @eq by sending an mailbox
16304 * command, specific to the type of queue, to the HBA.
16306 * The @eq struct is used to get the queue ID of the queue to destroy.
16308 * On success this function will return a zero. If the queue destroy mailbox
16309 * command fails this function will return -ENXIO.
16312 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16314 LPFC_MBOXQ_t *mbox;
16315 int rc, length, status = 0;
16316 uint32_t shdr_status, shdr_add_status;
16317 union lpfc_sli4_cfg_shdr *shdr;
16319 /* sanity check on queue memory */
16320 if (!eq)
16321 return -ENODEV;
16323 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16324 if (!mbox)
16325 return -ENOMEM;
16326 length = (sizeof(struct lpfc_mbx_eq_destroy) -
16327 sizeof(struct lpfc_sli4_cfg_mhdr));
16328 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16329 LPFC_MBOX_OPCODE_EQ_DESTROY,
16330 length, LPFC_SLI4_MBX_EMBED);
16331 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16332 eq->queue_id);
16333 mbox->vport = eq->phba->pport;
16334 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16336 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16337 /* The IOCTL status is embedded in the mailbox subheader. */
16338 shdr = (union lpfc_sli4_cfg_shdr *)
16339 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16340 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16341 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16342 if (shdr_status || shdr_add_status || rc) {
16343 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16344 "2505 EQ_DESTROY mailbox failed with "
16345 "status x%x add_status x%x, mbx status x%x\n",
16346 shdr_status, shdr_add_status, rc);
16347 status = -ENXIO;
16350 /* Remove eq from any list */
16351 list_del_init(&eq->list);
16352 mempool_free(mbox, eq->phba->mbox_mem_pool);
16353 return status;
16357 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16358 * @cq: The queue structure associated with the queue to destroy.
16360 * This function destroys a queue, as detailed in @cq by sending an mailbox
16361 * command, specific to the type of queue, to the HBA.
16363 * The @cq struct is used to get the queue ID of the queue to destroy.
16365 * On success this function will return a zero. If the queue destroy mailbox
16366 * command fails this function will return -ENXIO.
16369 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16371 LPFC_MBOXQ_t *mbox;
16372 int rc, length, status = 0;
16373 uint32_t shdr_status, shdr_add_status;
16374 union lpfc_sli4_cfg_shdr *shdr;
16376 /* sanity check on queue memory */
16377 if (!cq)
16378 return -ENODEV;
16379 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16380 if (!mbox)
16381 return -ENOMEM;
16382 length = (sizeof(struct lpfc_mbx_cq_destroy) -
16383 sizeof(struct lpfc_sli4_cfg_mhdr));
16384 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16385 LPFC_MBOX_OPCODE_CQ_DESTROY,
16386 length, LPFC_SLI4_MBX_EMBED);
16387 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16388 cq->queue_id);
16389 mbox->vport = cq->phba->pport;
16390 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16391 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16392 /* The IOCTL status is embedded in the mailbox subheader. */
16393 shdr = (union lpfc_sli4_cfg_shdr *)
16394 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
16395 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16396 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16397 if (shdr_status || shdr_add_status || rc) {
16398 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16399 "2506 CQ_DESTROY mailbox failed with "
16400 "status x%x add_status x%x, mbx status x%x\n",
16401 shdr_status, shdr_add_status, rc);
16402 status = -ENXIO;
16404 /* Remove cq from any list */
16405 list_del_init(&cq->list);
16406 mempool_free(mbox, cq->phba->mbox_mem_pool);
16407 return status;
16411 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16412 * @qm: The queue structure associated with the queue to destroy.
16414 * This function destroys a queue, as detailed in @mq by sending an mailbox
16415 * command, specific to the type of queue, to the HBA.
16417 * The @mq struct is used to get the queue ID of the queue to destroy.
16419 * On success this function will return a zero. If the queue destroy mailbox
16420 * command fails this function will return -ENXIO.
16423 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16425 LPFC_MBOXQ_t *mbox;
16426 int rc, length, status = 0;
16427 uint32_t shdr_status, shdr_add_status;
16428 union lpfc_sli4_cfg_shdr *shdr;
16430 /* sanity check on queue memory */
16431 if (!mq)
16432 return -ENODEV;
16433 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16434 if (!mbox)
16435 return -ENOMEM;
16436 length = (sizeof(struct lpfc_mbx_mq_destroy) -
16437 sizeof(struct lpfc_sli4_cfg_mhdr));
16438 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16439 LPFC_MBOX_OPCODE_MQ_DESTROY,
16440 length, LPFC_SLI4_MBX_EMBED);
16441 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16442 mq->queue_id);
16443 mbox->vport = mq->phba->pport;
16444 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16445 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16446 /* The IOCTL status is embedded in the mailbox subheader. */
16447 shdr = (union lpfc_sli4_cfg_shdr *)
16448 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16449 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16450 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16451 if (shdr_status || shdr_add_status || rc) {
16452 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16453 "2507 MQ_DESTROY mailbox failed with "
16454 "status x%x add_status x%x, mbx status x%x\n",
16455 shdr_status, shdr_add_status, rc);
16456 status = -ENXIO;
16458 /* Remove mq from any list */
16459 list_del_init(&mq->list);
16460 mempool_free(mbox, mq->phba->mbox_mem_pool);
16461 return status;
16465 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16466 * @wq: The queue structure associated with the queue to destroy.
16468 * This function destroys a queue, as detailed in @wq by sending an mailbox
16469 * command, specific to the type of queue, to the HBA.
16471 * The @wq struct is used to get the queue ID of the queue to destroy.
16473 * On success this function will return a zero. If the queue destroy mailbox
16474 * command fails this function will return -ENXIO.
16477 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16479 LPFC_MBOXQ_t *mbox;
16480 int rc, length, status = 0;
16481 uint32_t shdr_status, shdr_add_status;
16482 union lpfc_sli4_cfg_shdr *shdr;
16484 /* sanity check on queue memory */
16485 if (!wq)
16486 return -ENODEV;
16487 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16488 if (!mbox)
16489 return -ENOMEM;
16490 length = (sizeof(struct lpfc_mbx_wq_destroy) -
16491 sizeof(struct lpfc_sli4_cfg_mhdr));
16492 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16493 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16494 length, LPFC_SLI4_MBX_EMBED);
16495 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16496 wq->queue_id);
16497 mbox->vport = wq->phba->pport;
16498 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16499 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16500 shdr = (union lpfc_sli4_cfg_shdr *)
16501 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16502 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16503 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16504 if (shdr_status || shdr_add_status || rc) {
16505 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16506 "2508 WQ_DESTROY mailbox failed with "
16507 "status x%x add_status x%x, mbx status x%x\n",
16508 shdr_status, shdr_add_status, rc);
16509 status = -ENXIO;
16511 /* Remove wq from any list */
16512 list_del_init(&wq->list);
16513 kfree(wq->pring);
16514 wq->pring = NULL;
16515 mempool_free(mbox, wq->phba->mbox_mem_pool);
16516 return status;
16520 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16521 * @rq: The queue structure associated with the queue to destroy.
16523 * This function destroys a queue, as detailed in @rq by sending an mailbox
16524 * command, specific to the type of queue, to the HBA.
16526 * The @rq struct is used to get the queue ID of the queue to destroy.
16528 * On success this function will return a zero. If the queue destroy mailbox
16529 * command fails this function will return -ENXIO.
16532 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16533 struct lpfc_queue *drq)
16535 LPFC_MBOXQ_t *mbox;
16536 int rc, length, status = 0;
16537 uint32_t shdr_status, shdr_add_status;
16538 union lpfc_sli4_cfg_shdr *shdr;
16540 /* sanity check on queue memory */
16541 if (!hrq || !drq)
16542 return -ENODEV;
16543 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16544 if (!mbox)
16545 return -ENOMEM;
16546 length = (sizeof(struct lpfc_mbx_rq_destroy) -
16547 sizeof(struct lpfc_sli4_cfg_mhdr));
16548 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16549 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16550 length, LPFC_SLI4_MBX_EMBED);
16551 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16552 hrq->queue_id);
16553 mbox->vport = hrq->phba->pport;
16554 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16555 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16556 /* The IOCTL status is embedded in the mailbox subheader. */
16557 shdr = (union lpfc_sli4_cfg_shdr *)
16558 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16559 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16560 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16561 if (shdr_status || shdr_add_status || rc) {
16562 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16563 "2509 RQ_DESTROY mailbox failed with "
16564 "status x%x add_status x%x, mbx status x%x\n",
16565 shdr_status, shdr_add_status, rc);
16566 if (rc != MBX_TIMEOUT)
16567 mempool_free(mbox, hrq->phba->mbox_mem_pool);
16568 return -ENXIO;
16570 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16571 drq->queue_id);
16572 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16573 shdr = (union lpfc_sli4_cfg_shdr *)
16574 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16575 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16576 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16577 if (shdr_status || shdr_add_status || rc) {
16578 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16579 "2510 RQ_DESTROY mailbox failed with "
16580 "status x%x add_status x%x, mbx status x%x\n",
16581 shdr_status, shdr_add_status, rc);
16582 status = -ENXIO;
16584 list_del_init(&hrq->list);
16585 list_del_init(&drq->list);
16586 mempool_free(mbox, hrq->phba->mbox_mem_pool);
16587 return status;
16591 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16592 * @phba: The virtual port for which this call being executed.
16593 * @pdma_phys_addr0: Physical address of the 1st SGL page.
16594 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16595 * @xritag: the xritag that ties this io to the SGL pages.
16597 * This routine will post the sgl pages for the IO that has the xritag
16598 * that is in the iocbq structure. The xritag is assigned during iocbq
16599 * creation and persists for as long as the driver is loaded.
16600 * if the caller has fewer than 256 scatter gather segments to map then
16601 * pdma_phys_addr1 should be 0.
16602 * If the caller needs to map more than 256 scatter gather segment then
16603 * pdma_phys_addr1 should be a valid physical address.
16604 * physical address for SGLs must be 64 byte aligned.
16605 * If you are going to map 2 SGL's then the first one must have 256 entries
16606 * the second sgl can have between 1 and 256 entries.
16608 * Return codes:
16609 * 0 - Success
16610 * -ENXIO, -ENOMEM - Failure
16613 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16614 dma_addr_t pdma_phys_addr0,
16615 dma_addr_t pdma_phys_addr1,
16616 uint16_t xritag)
16618 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16619 LPFC_MBOXQ_t *mbox;
16620 int rc;
16621 uint32_t shdr_status, shdr_add_status;
16622 uint32_t mbox_tmo;
16623 union lpfc_sli4_cfg_shdr *shdr;
16625 if (xritag == NO_XRI) {
16626 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16627 "0364 Invalid param:\n");
16628 return -EINVAL;
16631 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16632 if (!mbox)
16633 return -ENOMEM;
16635 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16636 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16637 sizeof(struct lpfc_mbx_post_sgl_pages) -
16638 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16640 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16641 &mbox->u.mqe.un.post_sgl_pages;
16642 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16643 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16645 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
16646 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16647 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16648 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16650 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
16651 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16652 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16653 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16654 if (!phba->sli4_hba.intr_enable)
16655 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16656 else {
16657 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16658 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16660 /* The IOCTL status is embedded in the mailbox subheader. */
16661 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16662 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16663 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16664 if (rc != MBX_TIMEOUT)
16665 mempool_free(mbox, phba->mbox_mem_pool);
16666 if (shdr_status || shdr_add_status || rc) {
16667 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16668 "2511 POST_SGL mailbox failed with "
16669 "status x%x add_status x%x, mbx status x%x\n",
16670 shdr_status, shdr_add_status, rc);
16672 return 0;
16676 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16677 * @phba: pointer to lpfc hba data structure.
16679 * This routine is invoked to post rpi header templates to the
16680 * HBA consistent with the SLI-4 interface spec. This routine
16681 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16682 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16684 * Returns
16685 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16686 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
16688 static uint16_t
16689 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16691 unsigned long xri;
16694 * Fetch the next logical xri. Because this index is logical,
16695 * the driver starts at 0 each time.
16697 spin_lock_irq(&phba->hbalock);
16698 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16699 phba->sli4_hba.max_cfg_param.max_xri, 0);
16700 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16701 spin_unlock_irq(&phba->hbalock);
16702 return NO_XRI;
16703 } else {
16704 set_bit(xri, phba->sli4_hba.xri_bmask);
16705 phba->sli4_hba.max_cfg_param.xri_used++;
16707 spin_unlock_irq(&phba->hbalock);
16708 return xri;
16712 * lpfc_sli4_free_xri - Release an xri for reuse.
16713 * @phba: pointer to lpfc hba data structure.
16715 * This routine is invoked to release an xri to the pool of
16716 * available rpis maintained by the driver.
16718 static void
16719 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16721 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16722 phba->sli4_hba.max_cfg_param.xri_used--;
16727 * lpfc_sli4_free_xri - Release an xri for reuse.
16728 * @phba: pointer to lpfc hba data structure.
16730 * This routine is invoked to release an xri to the pool of
16731 * available rpis maintained by the driver.
16733 void
16734 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16736 spin_lock_irq(&phba->hbalock);
16737 __lpfc_sli4_free_xri(phba, xri);
16738 spin_unlock_irq(&phba->hbalock);
16742 * lpfc_sli4_next_xritag - Get an xritag for the io
16743 * @phba: Pointer to HBA context object.
16745 * This function gets an xritag for the iocb. If there is no unused xritag
16746 * it will return 0xffff.
16747 * The function returns the allocated xritag if successful, else returns zero.
16748 * Zero is not a valid xritag.
16749 * The caller is not required to hold any lock.
16751 uint16_t
16752 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16754 uint16_t xri_index;
16756 xri_index = lpfc_sli4_alloc_xri(phba);
16757 if (xri_index == NO_XRI)
16758 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16759 "2004 Failed to allocate XRI.last XRITAG is %d"
16760 " Max XRI is %d, Used XRI is %d\n",
16761 xri_index,
16762 phba->sli4_hba.max_cfg_param.max_xri,
16763 phba->sli4_hba.max_cfg_param.xri_used);
16764 return xri_index;
16768 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16769 * @phba: pointer to lpfc hba data structure.
16770 * @post_sgl_list: pointer to els sgl entry list.
16771 * @count: number of els sgl entries on the list.
16773 * This routine is invoked to post a block of driver's sgl pages to the
16774 * HBA using non-embedded mailbox command. No Lock is held. This routine
16775 * is only called when the driver is loading and after all IO has been
16776 * stopped.
16778 static int
16779 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16780 struct list_head *post_sgl_list,
16781 int post_cnt)
16783 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16784 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16785 struct sgl_page_pairs *sgl_pg_pairs;
16786 void *viraddr;
16787 LPFC_MBOXQ_t *mbox;
16788 uint32_t reqlen, alloclen, pg_pairs;
16789 uint32_t mbox_tmo;
16790 uint16_t xritag_start = 0;
16791 int rc = 0;
16792 uint32_t shdr_status, shdr_add_status;
16793 union lpfc_sli4_cfg_shdr *shdr;
16795 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16796 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16797 if (reqlen > SLI4_PAGE_SIZE) {
16798 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16799 "2559 Block sgl registration required DMA "
16800 "size (%d) great than a page\n", reqlen);
16801 return -ENOMEM;
16804 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16805 if (!mbox)
16806 return -ENOMEM;
16808 /* Allocate DMA memory and set up the non-embedded mailbox command */
16809 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16810 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16811 LPFC_SLI4_MBX_NEMBED);
16813 if (alloclen < reqlen) {
16814 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16815 "0285 Allocated DMA memory size (%d) is "
16816 "less than the requested DMA memory "
16817 "size (%d)\n", alloclen, reqlen);
16818 lpfc_sli4_mbox_cmd_free(phba, mbox);
16819 return -ENOMEM;
16821 /* Set up the SGL pages in the non-embedded DMA pages */
16822 viraddr = mbox->sge_array->addr[0];
16823 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16824 sgl_pg_pairs = &sgl->sgl_pg_pairs;
16826 pg_pairs = 0;
16827 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16828 /* Set up the sge entry */
16829 sgl_pg_pairs->sgl_pg0_addr_lo =
16830 cpu_to_le32(putPaddrLow(sglq_entry->phys));
16831 sgl_pg_pairs->sgl_pg0_addr_hi =
16832 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16833 sgl_pg_pairs->sgl_pg1_addr_lo =
16834 cpu_to_le32(putPaddrLow(0));
16835 sgl_pg_pairs->sgl_pg1_addr_hi =
16836 cpu_to_le32(putPaddrHigh(0));
16838 /* Keep the first xritag on the list */
16839 if (pg_pairs == 0)
16840 xritag_start = sglq_entry->sli4_xritag;
16841 sgl_pg_pairs++;
16842 pg_pairs++;
16845 /* Complete initialization and perform endian conversion. */
16846 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16847 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16848 sgl->word0 = cpu_to_le32(sgl->word0);
16850 if (!phba->sli4_hba.intr_enable)
16851 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16852 else {
16853 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16854 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16856 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16857 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16858 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16859 if (rc != MBX_TIMEOUT)
16860 lpfc_sli4_mbox_cmd_free(phba, mbox);
16861 if (shdr_status || shdr_add_status || rc) {
16862 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16863 "2513 POST_SGL_BLOCK mailbox command failed "
16864 "status x%x add_status x%x mbx status x%x\n",
16865 shdr_status, shdr_add_status, rc);
16866 rc = -ENXIO;
16868 return rc;
16872 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16873 * @phba: pointer to lpfc hba data structure.
16874 * @nblist: pointer to nvme buffer list.
16875 * @count: number of scsi buffers on the list.
16877 * This routine is invoked to post a block of @count scsi sgl pages from a
16878 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16879 * No Lock is held.
16882 static int
16883 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16884 int count)
16886 struct lpfc_io_buf *lpfc_ncmd;
16887 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16888 struct sgl_page_pairs *sgl_pg_pairs;
16889 void *viraddr;
16890 LPFC_MBOXQ_t *mbox;
16891 uint32_t reqlen, alloclen, pg_pairs;
16892 uint32_t mbox_tmo;
16893 uint16_t xritag_start = 0;
16894 int rc = 0;
16895 uint32_t shdr_status, shdr_add_status;
16896 dma_addr_t pdma_phys_bpl1;
16897 union lpfc_sli4_cfg_shdr *shdr;
16899 /* Calculate the requested length of the dma memory */
16900 reqlen = count * sizeof(struct sgl_page_pairs) +
16901 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16902 if (reqlen > SLI4_PAGE_SIZE) {
16903 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16904 "6118 Block sgl registration required DMA "
16905 "size (%d) great than a page\n", reqlen);
16906 return -ENOMEM;
16908 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16909 if (!mbox) {
16910 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16911 "6119 Failed to allocate mbox cmd memory\n");
16912 return -ENOMEM;
16915 /* Allocate DMA memory and set up the non-embedded mailbox command */
16916 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16917 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16918 reqlen, LPFC_SLI4_MBX_NEMBED);
16920 if (alloclen < reqlen) {
16921 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16922 "6120 Allocated DMA memory size (%d) is "
16923 "less than the requested DMA memory "
16924 "size (%d)\n", alloclen, reqlen);
16925 lpfc_sli4_mbox_cmd_free(phba, mbox);
16926 return -ENOMEM;
16929 /* Get the first SGE entry from the non-embedded DMA memory */
16930 viraddr = mbox->sge_array->addr[0];
16932 /* Set up the SGL pages in the non-embedded DMA pages */
16933 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16934 sgl_pg_pairs = &sgl->sgl_pg_pairs;
16936 pg_pairs = 0;
16937 list_for_each_entry(lpfc_ncmd, nblist, list) {
16938 /* Set up the sge entry */
16939 sgl_pg_pairs->sgl_pg0_addr_lo =
16940 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16941 sgl_pg_pairs->sgl_pg0_addr_hi =
16942 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16943 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16944 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16945 SGL_PAGE_SIZE;
16946 else
16947 pdma_phys_bpl1 = 0;
16948 sgl_pg_pairs->sgl_pg1_addr_lo =
16949 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16950 sgl_pg_pairs->sgl_pg1_addr_hi =
16951 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16952 /* Keep the first xritag on the list */
16953 if (pg_pairs == 0)
16954 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16955 sgl_pg_pairs++;
16956 pg_pairs++;
16958 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16959 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16960 /* Perform endian conversion if necessary */
16961 sgl->word0 = cpu_to_le32(sgl->word0);
16963 if (!phba->sli4_hba.intr_enable) {
16964 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16965 } else {
16966 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16967 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16969 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16970 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16971 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16972 if (rc != MBX_TIMEOUT)
16973 lpfc_sli4_mbox_cmd_free(phba, mbox);
16974 if (shdr_status || shdr_add_status || rc) {
16975 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16976 "6125 POST_SGL_BLOCK mailbox command failed "
16977 "status x%x add_status x%x mbx status x%x\n",
16978 shdr_status, shdr_add_status, rc);
16979 rc = -ENXIO;
16981 return rc;
16985 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16986 * @phba: pointer to lpfc hba data structure.
16987 * @post_nblist: pointer to the nvme buffer list.
16989 * This routine walks a list of nvme buffers that was passed in. It attempts
16990 * to construct blocks of nvme buffer sgls which contains contiguous xris and
16991 * uses the non-embedded SGL block post mailbox commands to post to the port.
16992 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16993 * embedded SGL post mailbox command for posting. The @post_nblist passed in
16994 * must be local list, thus no lock is needed when manipulate the list.
16996 * Returns: 0 = failure, non-zero number of successfully posted buffers.
16999 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17000 struct list_head *post_nblist, int sb_count)
17002 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17003 int status, sgl_size;
17004 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17005 dma_addr_t pdma_phys_sgl1;
17006 int last_xritag = NO_XRI;
17007 int cur_xritag;
17008 LIST_HEAD(prep_nblist);
17009 LIST_HEAD(blck_nblist);
17010 LIST_HEAD(nvme_nblist);
17012 /* sanity check */
17013 if (sb_count <= 0)
17014 return -EINVAL;
17016 sgl_size = phba->cfg_sg_dma_buf_size;
17017 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17018 list_del_init(&lpfc_ncmd->list);
17019 block_cnt++;
17020 if ((last_xritag != NO_XRI) &&
17021 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17022 /* a hole in xri block, form a sgl posting block */
17023 list_splice_init(&prep_nblist, &blck_nblist);
17024 post_cnt = block_cnt - 1;
17025 /* prepare list for next posting block */
17026 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17027 block_cnt = 1;
17028 } else {
17029 /* prepare list for next posting block */
17030 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17031 /* enough sgls for non-embed sgl mbox command */
17032 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17033 list_splice_init(&prep_nblist, &blck_nblist);
17034 post_cnt = block_cnt;
17035 block_cnt = 0;
17038 num_posting++;
17039 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17041 /* end of repost sgl list condition for NVME buffers */
17042 if (num_posting == sb_count) {
17043 if (post_cnt == 0) {
17044 /* last sgl posting block */
17045 list_splice_init(&prep_nblist, &blck_nblist);
17046 post_cnt = block_cnt;
17047 } else if (block_cnt == 1) {
17048 /* last single sgl with non-contiguous xri */
17049 if (sgl_size > SGL_PAGE_SIZE)
17050 pdma_phys_sgl1 =
17051 lpfc_ncmd->dma_phys_sgl +
17052 SGL_PAGE_SIZE;
17053 else
17054 pdma_phys_sgl1 = 0;
17055 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17056 status = lpfc_sli4_post_sgl(
17057 phba, lpfc_ncmd->dma_phys_sgl,
17058 pdma_phys_sgl1, cur_xritag);
17059 if (status) {
17060 /* Post error. Buffer unavailable. */
17061 lpfc_ncmd->flags |=
17062 LPFC_SBUF_NOT_POSTED;
17063 } else {
17064 /* Post success. Bffer available. */
17065 lpfc_ncmd->flags &=
17066 ~LPFC_SBUF_NOT_POSTED;
17067 lpfc_ncmd->status = IOSTAT_SUCCESS;
17068 num_posted++;
17070 /* success, put on NVME buffer sgl list */
17071 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17075 /* continue until a nembed page worth of sgls */
17076 if (post_cnt == 0)
17077 continue;
17079 /* post block of NVME buffer list sgls */
17080 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17081 post_cnt);
17083 /* don't reset xirtag due to hole in xri block */
17084 if (block_cnt == 0)
17085 last_xritag = NO_XRI;
17087 /* reset NVME buffer post count for next round of posting */
17088 post_cnt = 0;
17090 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17091 while (!list_empty(&blck_nblist)) {
17092 list_remove_head(&blck_nblist, lpfc_ncmd,
17093 struct lpfc_io_buf, list);
17094 if (status) {
17095 /* Post error. Mark buffer unavailable. */
17096 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17097 } else {
17098 /* Post success, Mark buffer available. */
17099 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17100 lpfc_ncmd->status = IOSTAT_SUCCESS;
17101 num_posted++;
17103 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17106 /* Push NVME buffers with sgl posted to the available list */
17107 lpfc_io_buf_replenish(phba, &nvme_nblist);
17109 return num_posted;
17113 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17114 * @phba: pointer to lpfc_hba struct that the frame was received on
17115 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17117 * This function checks the fields in the @fc_hdr to see if the FC frame is a
17118 * valid type of frame that the LPFC driver will handle. This function will
17119 * return a zero if the frame is a valid frame or a non zero value when the
17120 * frame does not pass the check.
17122 static int
17123 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17125 /* make rctl_names static to save stack space */
17126 struct fc_vft_header *fc_vft_hdr;
17127 uint32_t *header = (uint32_t *) fc_hdr;
17129 #define FC_RCTL_MDS_DIAGS 0xF4
17131 switch (fc_hdr->fh_r_ctl) {
17132 case FC_RCTL_DD_UNCAT: /* uncategorized information */
17133 case FC_RCTL_DD_SOL_DATA: /* solicited data */
17134 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
17135 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
17136 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
17137 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
17138 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
17139 case FC_RCTL_DD_CMD_STATUS: /* command status */
17140 case FC_RCTL_ELS_REQ: /* extended link services request */
17141 case FC_RCTL_ELS_REP: /* extended link services reply */
17142 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
17143 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
17144 case FC_RCTL_BA_NOP: /* basic link service NOP */
17145 case FC_RCTL_BA_ABTS: /* basic link service abort */
17146 case FC_RCTL_BA_RMC: /* remove connection */
17147 case FC_RCTL_BA_ACC: /* basic accept */
17148 case FC_RCTL_BA_RJT: /* basic reject */
17149 case FC_RCTL_BA_PRMT:
17150 case FC_RCTL_ACK_1: /* acknowledge_1 */
17151 case FC_RCTL_ACK_0: /* acknowledge_0 */
17152 case FC_RCTL_P_RJT: /* port reject */
17153 case FC_RCTL_F_RJT: /* fabric reject */
17154 case FC_RCTL_P_BSY: /* port busy */
17155 case FC_RCTL_F_BSY: /* fabric busy to data frame */
17156 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
17157 case FC_RCTL_LCR: /* link credit reset */
17158 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17159 case FC_RCTL_END: /* end */
17160 break;
17161 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
17162 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17163 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17164 return lpfc_fc_frame_check(phba, fc_hdr);
17165 default:
17166 goto drop;
17169 switch (fc_hdr->fh_type) {
17170 case FC_TYPE_BLS:
17171 case FC_TYPE_ELS:
17172 case FC_TYPE_FCP:
17173 case FC_TYPE_CT:
17174 case FC_TYPE_NVME:
17175 break;
17176 case FC_TYPE_IP:
17177 case FC_TYPE_ILS:
17178 default:
17179 goto drop;
17182 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17183 "2538 Received frame rctl:x%x, type:x%x, "
17184 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17185 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17186 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17187 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17188 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17189 be32_to_cpu(header[6]));
17190 return 0;
17191 drop:
17192 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17193 "2539 Dropped frame rctl:x%x type:x%x\n",
17194 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17195 return 1;
17199 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17200 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17202 * This function processes the FC header to retrieve the VFI from the VF
17203 * header, if one exists. This function will return the VFI if one exists
17204 * or 0 if no VSAN Header exists.
17206 static uint32_t
17207 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17209 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17211 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17212 return 0;
17213 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17217 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17218 * @phba: Pointer to the HBA structure to search for the vport on
17219 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17220 * @fcfi: The FC Fabric ID that the frame came from
17222 * This function searches the @phba for a vport that matches the content of the
17223 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17224 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17225 * returns the matching vport pointer or NULL if unable to match frame to a
17226 * vport.
17228 static struct lpfc_vport *
17229 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17230 uint16_t fcfi, uint32_t did)
17232 struct lpfc_vport **vports;
17233 struct lpfc_vport *vport = NULL;
17234 int i;
17236 if (did == Fabric_DID)
17237 return phba->pport;
17238 if ((phba->pport->fc_flag & FC_PT2PT) &&
17239 !(phba->link_state == LPFC_HBA_READY))
17240 return phba->pport;
17242 vports = lpfc_create_vport_work_array(phba);
17243 if (vports != NULL) {
17244 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17245 if (phba->fcf.fcfi == fcfi &&
17246 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17247 vports[i]->fc_myDID == did) {
17248 vport = vports[i];
17249 break;
17253 lpfc_destroy_vport_work_array(phba, vports);
17254 return vport;
17258 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17259 * @vport: The vport to work on.
17261 * This function updates the receive sequence time stamp for this vport. The
17262 * receive sequence time stamp indicates the time that the last frame of the
17263 * the sequence that has been idle for the longest amount of time was received.
17264 * the driver uses this time stamp to indicate if any received sequences have
17265 * timed out.
17267 static void
17268 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17270 struct lpfc_dmabuf *h_buf;
17271 struct hbq_dmabuf *dmabuf = NULL;
17273 /* get the oldest sequence on the rcv list */
17274 h_buf = list_get_first(&vport->rcv_buffer_list,
17275 struct lpfc_dmabuf, list);
17276 if (!h_buf)
17277 return;
17278 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17279 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17283 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17284 * @vport: The vport that the received sequences were sent to.
17286 * This function cleans up all outstanding received sequences. This is called
17287 * by the driver when a link event or user action invalidates all the received
17288 * sequences.
17290 void
17291 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17293 struct lpfc_dmabuf *h_buf, *hnext;
17294 struct lpfc_dmabuf *d_buf, *dnext;
17295 struct hbq_dmabuf *dmabuf = NULL;
17297 /* start with the oldest sequence on the rcv list */
17298 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17299 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17300 list_del_init(&dmabuf->hbuf.list);
17301 list_for_each_entry_safe(d_buf, dnext,
17302 &dmabuf->dbuf.list, list) {
17303 list_del_init(&d_buf->list);
17304 lpfc_in_buf_free(vport->phba, d_buf);
17306 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17311 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17312 * @vport: The vport that the received sequences were sent to.
17314 * This function determines whether any received sequences have timed out by
17315 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17316 * indicates that there is at least one timed out sequence this routine will
17317 * go through the received sequences one at a time from most inactive to most
17318 * active to determine which ones need to be cleaned up. Once it has determined
17319 * that a sequence needs to be cleaned up it will simply free up the resources
17320 * without sending an abort.
17322 void
17323 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17325 struct lpfc_dmabuf *h_buf, *hnext;
17326 struct lpfc_dmabuf *d_buf, *dnext;
17327 struct hbq_dmabuf *dmabuf = NULL;
17328 unsigned long timeout;
17329 int abort_count = 0;
17331 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17332 vport->rcv_buffer_time_stamp);
17333 if (list_empty(&vport->rcv_buffer_list) ||
17334 time_before(jiffies, timeout))
17335 return;
17336 /* start with the oldest sequence on the rcv list */
17337 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17338 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17339 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17340 dmabuf->time_stamp);
17341 if (time_before(jiffies, timeout))
17342 break;
17343 abort_count++;
17344 list_del_init(&dmabuf->hbuf.list);
17345 list_for_each_entry_safe(d_buf, dnext,
17346 &dmabuf->dbuf.list, list) {
17347 list_del_init(&d_buf->list);
17348 lpfc_in_buf_free(vport->phba, d_buf);
17350 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17352 if (abort_count)
17353 lpfc_update_rcv_time_stamp(vport);
17357 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17358 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17360 * This function searches through the existing incomplete sequences that have
17361 * been sent to this @vport. If the frame matches one of the incomplete
17362 * sequences then the dbuf in the @dmabuf is added to the list of frames that
17363 * make up that sequence. If no sequence is found that matches this frame then
17364 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17365 * This function returns a pointer to the first dmabuf in the sequence list that
17366 * the frame was linked to.
17368 static struct hbq_dmabuf *
17369 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17371 struct fc_frame_header *new_hdr;
17372 struct fc_frame_header *temp_hdr;
17373 struct lpfc_dmabuf *d_buf;
17374 struct lpfc_dmabuf *h_buf;
17375 struct hbq_dmabuf *seq_dmabuf = NULL;
17376 struct hbq_dmabuf *temp_dmabuf = NULL;
17377 uint8_t found = 0;
17379 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17380 dmabuf->time_stamp = jiffies;
17381 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17383 /* Use the hdr_buf to find the sequence that this frame belongs to */
17384 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17385 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17386 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17387 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17388 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17389 continue;
17390 /* found a pending sequence that matches this frame */
17391 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17392 break;
17394 if (!seq_dmabuf) {
17396 * This indicates first frame received for this sequence.
17397 * Queue the buffer on the vport's rcv_buffer_list.
17399 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17400 lpfc_update_rcv_time_stamp(vport);
17401 return dmabuf;
17403 temp_hdr = seq_dmabuf->hbuf.virt;
17404 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17405 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17406 list_del_init(&seq_dmabuf->hbuf.list);
17407 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17408 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17409 lpfc_update_rcv_time_stamp(vport);
17410 return dmabuf;
17412 /* move this sequence to the tail to indicate a young sequence */
17413 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17414 seq_dmabuf->time_stamp = jiffies;
17415 lpfc_update_rcv_time_stamp(vport);
17416 if (list_empty(&seq_dmabuf->dbuf.list)) {
17417 temp_hdr = dmabuf->hbuf.virt;
17418 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17419 return seq_dmabuf;
17421 /* find the correct place in the sequence to insert this frame */
17422 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17423 while (!found) {
17424 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17425 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17427 * If the frame's sequence count is greater than the frame on
17428 * the list then insert the frame right after this frame
17430 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17431 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17432 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17433 found = 1;
17434 break;
17437 if (&d_buf->list == &seq_dmabuf->dbuf.list)
17438 break;
17439 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17442 if (found)
17443 return seq_dmabuf;
17444 return NULL;
17448 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17449 * @vport: pointer to a vitural port
17450 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17452 * This function tries to abort from the partially assembed sequence, described
17453 * by the information from basic abbort @dmabuf. It checks to see whether such
17454 * partially assembled sequence held by the driver. If so, it shall free up all
17455 * the frames from the partially assembled sequence.
17457 * Return
17458 * true -- if there is matching partially assembled sequence present and all
17459 * the frames freed with the sequence;
17460 * false -- if there is no matching partially assembled sequence present so
17461 * nothing got aborted in the lower layer driver
17463 static bool
17464 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17465 struct hbq_dmabuf *dmabuf)
17467 struct fc_frame_header *new_hdr;
17468 struct fc_frame_header *temp_hdr;
17469 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17470 struct hbq_dmabuf *seq_dmabuf = NULL;
17472 /* Use the hdr_buf to find the sequence that matches this frame */
17473 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17474 INIT_LIST_HEAD(&dmabuf->hbuf.list);
17475 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17476 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17477 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17478 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17479 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17480 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17481 continue;
17482 /* found a pending sequence that matches this frame */
17483 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17484 break;
17487 /* Free up all the frames from the partially assembled sequence */
17488 if (seq_dmabuf) {
17489 list_for_each_entry_safe(d_buf, n_buf,
17490 &seq_dmabuf->dbuf.list, list) {
17491 list_del_init(&d_buf->list);
17492 lpfc_in_buf_free(vport->phba, d_buf);
17494 return true;
17496 return false;
17500 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17501 * @vport: pointer to a vitural port
17502 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17504 * This function tries to abort from the assembed sequence from upper level
17505 * protocol, described by the information from basic abbort @dmabuf. It
17506 * checks to see whether such pending context exists at upper level protocol.
17507 * If so, it shall clean up the pending context.
17509 * Return
17510 * true -- if there is matching pending context of the sequence cleaned
17511 * at ulp;
17512 * false -- if there is no matching pending context of the sequence present
17513 * at ulp.
17515 static bool
17516 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17518 struct lpfc_hba *phba = vport->phba;
17519 int handled;
17521 /* Accepting abort at ulp with SLI4 only */
17522 if (phba->sli_rev < LPFC_SLI_REV4)
17523 return false;
17525 /* Register all caring upper level protocols to attend abort */
17526 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17527 if (handled)
17528 return true;
17530 return false;
17534 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17535 * @phba: Pointer to HBA context object.
17536 * @cmd_iocbq: pointer to the command iocbq structure.
17537 * @rsp_iocbq: pointer to the response iocbq structure.
17539 * This function handles the sequence abort response iocb command complete
17540 * event. It properly releases the memory allocated to the sequence abort
17541 * accept iocb.
17543 static void
17544 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17545 struct lpfc_iocbq *cmd_iocbq,
17546 struct lpfc_iocbq *rsp_iocbq)
17548 struct lpfc_nodelist *ndlp;
17550 if (cmd_iocbq) {
17551 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17552 lpfc_nlp_put(ndlp);
17553 lpfc_nlp_not_used(ndlp);
17554 lpfc_sli_release_iocbq(phba, cmd_iocbq);
17557 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
17558 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17559 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17560 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
17561 rsp_iocbq->iocb.ulpStatus,
17562 rsp_iocbq->iocb.un.ulpWord[4]);
17566 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17567 * @phba: Pointer to HBA context object.
17568 * @xri: xri id in transaction.
17570 * This function validates the xri maps to the known range of XRIs allocated an
17571 * used by the driver.
17573 uint16_t
17574 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17575 uint16_t xri)
17577 uint16_t i;
17579 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17580 if (xri == phba->sli4_hba.xri_ids[i])
17581 return i;
17583 return NO_XRI;
17587 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17588 * @phba: Pointer to HBA context object.
17589 * @fc_hdr: pointer to a FC frame header.
17591 * This function sends a basic response to a previous unsol sequence abort
17592 * event after aborting the sequence handling.
17594 void
17595 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17596 struct fc_frame_header *fc_hdr, bool aborted)
17598 struct lpfc_hba *phba = vport->phba;
17599 struct lpfc_iocbq *ctiocb = NULL;
17600 struct lpfc_nodelist *ndlp;
17601 uint16_t oxid, rxid, xri, lxri;
17602 uint32_t sid, fctl;
17603 IOCB_t *icmd;
17604 int rc;
17606 if (!lpfc_is_link_up(phba))
17607 return;
17609 sid = sli4_sid_from_fc_hdr(fc_hdr);
17610 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17611 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17613 ndlp = lpfc_findnode_did(vport, sid);
17614 if (!ndlp) {
17615 ndlp = lpfc_nlp_init(vport, sid);
17616 if (!ndlp) {
17617 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17618 "1268 Failed to allocate ndlp for "
17619 "oxid:x%x SID:x%x\n", oxid, sid);
17620 return;
17622 /* Put ndlp onto pport node list */
17623 lpfc_enqueue_node(vport, ndlp);
17624 } else if (!NLP_CHK_NODE_ACT(ndlp)) {
17625 /* re-setup ndlp without removing from node list */
17626 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17627 if (!ndlp) {
17628 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17629 "3275 Failed to active ndlp found "
17630 "for oxid:x%x SID:x%x\n", oxid, sid);
17631 return;
17635 /* Allocate buffer for rsp iocb */
17636 ctiocb = lpfc_sli_get_iocbq(phba);
17637 if (!ctiocb)
17638 return;
17640 /* Extract the F_CTL field from FC_HDR */
17641 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17643 icmd = &ctiocb->iocb;
17644 icmd->un.xseq64.bdl.bdeSize = 0;
17645 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17646 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17647 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17648 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17650 /* Fill in the rest of iocb fields */
17651 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17652 icmd->ulpBdeCount = 0;
17653 icmd->ulpLe = 1;
17654 icmd->ulpClass = CLASS3;
17655 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17656 ctiocb->context1 = lpfc_nlp_get(ndlp);
17658 ctiocb->vport = phba->pport;
17659 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17660 ctiocb->sli4_lxritag = NO_XRI;
17661 ctiocb->sli4_xritag = NO_XRI;
17663 if (fctl & FC_FC_EX_CTX)
17664 /* Exchange responder sent the abort so we
17665 * own the oxid.
17667 xri = oxid;
17668 else
17669 xri = rxid;
17670 lxri = lpfc_sli4_xri_inrange(phba, xri);
17671 if (lxri != NO_XRI)
17672 lpfc_set_rrq_active(phba, ndlp, lxri,
17673 (xri == oxid) ? rxid : oxid, 0);
17674 /* For BA_ABTS from exchange responder, if the logical xri with
17675 * the oxid maps to the FCP XRI range, the port no longer has
17676 * that exchange context, send a BLS_RJT. Override the IOCB for
17677 * a BA_RJT.
17679 if ((fctl & FC_FC_EX_CTX) &&
17680 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17681 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17682 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17683 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17684 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17687 /* If BA_ABTS failed to abort a partially assembled receive sequence,
17688 * the driver no longer has that exchange, send a BLS_RJT. Override
17689 * the IOCB for a BA_RJT.
17691 if (aborted == false) {
17692 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17693 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17694 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17695 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17698 if (fctl & FC_FC_EX_CTX) {
17699 /* ABTS sent by responder to CT exchange, construction
17700 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17701 * field and RX_ID from ABTS for RX_ID field.
17703 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17704 } else {
17705 /* ABTS sent by initiator to CT exchange, construction
17706 * of BA_ACC will need to allocate a new XRI as for the
17707 * XRI_TAG field.
17709 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17711 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17712 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17714 /* Xmit CT abts response on exchange <xid> */
17715 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17716 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17717 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17719 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17720 if (rc == IOCB_ERROR) {
17721 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17722 "2925 Failed to issue CT ABTS RSP x%x on "
17723 "xri x%x, Data x%x\n",
17724 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17725 phba->link_state);
17726 lpfc_nlp_put(ndlp);
17727 ctiocb->context1 = NULL;
17728 lpfc_sli_release_iocbq(phba, ctiocb);
17733 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17734 * @vport: Pointer to the vport on which this sequence was received
17735 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17737 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17738 * receive sequence is only partially assembed by the driver, it shall abort
17739 * the partially assembled frames for the sequence. Otherwise, if the
17740 * unsolicited receive sequence has been completely assembled and passed to
17741 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17742 * unsolicited sequence has been aborted. After that, it will issue a basic
17743 * accept to accept the abort.
17745 static void
17746 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17747 struct hbq_dmabuf *dmabuf)
17749 struct lpfc_hba *phba = vport->phba;
17750 struct fc_frame_header fc_hdr;
17751 uint32_t fctl;
17752 bool aborted;
17754 /* Make a copy of fc_hdr before the dmabuf being released */
17755 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17756 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17758 if (fctl & FC_FC_EX_CTX) {
17759 /* ABTS by responder to exchange, no cleanup needed */
17760 aborted = true;
17761 } else {
17762 /* ABTS by initiator to exchange, need to do cleanup */
17763 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17764 if (aborted == false)
17765 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17767 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17769 if (phba->nvmet_support) {
17770 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17771 return;
17774 /* Respond with BA_ACC or BA_RJT accordingly */
17775 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17779 * lpfc_seq_complete - Indicates if a sequence is complete
17780 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17782 * This function checks the sequence, starting with the frame described by
17783 * @dmabuf, to see if all the frames associated with this sequence are present.
17784 * the frames associated with this sequence are linked to the @dmabuf using the
17785 * dbuf list. This function looks for two major things. 1) That the first frame
17786 * has a sequence count of zero. 2) There is a frame with last frame of sequence
17787 * set. 3) That there are no holes in the sequence count. The function will
17788 * return 1 when the sequence is complete, otherwise it will return 0.
17790 static int
17791 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17793 struct fc_frame_header *hdr;
17794 struct lpfc_dmabuf *d_buf;
17795 struct hbq_dmabuf *seq_dmabuf;
17796 uint32_t fctl;
17797 int seq_count = 0;
17799 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17800 /* make sure first fame of sequence has a sequence count of zero */
17801 if (hdr->fh_seq_cnt != seq_count)
17802 return 0;
17803 fctl = (hdr->fh_f_ctl[0] << 16 |
17804 hdr->fh_f_ctl[1] << 8 |
17805 hdr->fh_f_ctl[2]);
17806 /* If last frame of sequence we can return success. */
17807 if (fctl & FC_FC_END_SEQ)
17808 return 1;
17809 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17810 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17811 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17812 /* If there is a hole in the sequence count then fail. */
17813 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17814 return 0;
17815 fctl = (hdr->fh_f_ctl[0] << 16 |
17816 hdr->fh_f_ctl[1] << 8 |
17817 hdr->fh_f_ctl[2]);
17818 /* If last frame of sequence we can return success. */
17819 if (fctl & FC_FC_END_SEQ)
17820 return 1;
17822 return 0;
17826 * lpfc_prep_seq - Prep sequence for ULP processing
17827 * @vport: Pointer to the vport on which this sequence was received
17828 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17830 * This function takes a sequence, described by a list of frames, and creates
17831 * a list of iocbq structures to describe the sequence. This iocbq list will be
17832 * used to issue to the generic unsolicited sequence handler. This routine
17833 * returns a pointer to the first iocbq in the list. If the function is unable
17834 * to allocate an iocbq then it throw out the received frames that were not
17835 * able to be described and return a pointer to the first iocbq. If unable to
17836 * allocate any iocbqs (including the first) this function will return NULL.
17838 static struct lpfc_iocbq *
17839 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17841 struct hbq_dmabuf *hbq_buf;
17842 struct lpfc_dmabuf *d_buf, *n_buf;
17843 struct lpfc_iocbq *first_iocbq, *iocbq;
17844 struct fc_frame_header *fc_hdr;
17845 uint32_t sid;
17846 uint32_t len, tot_len;
17847 struct ulp_bde64 *pbde;
17849 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17850 /* remove from receive buffer list */
17851 list_del_init(&seq_dmabuf->hbuf.list);
17852 lpfc_update_rcv_time_stamp(vport);
17853 /* get the Remote Port's SID */
17854 sid = sli4_sid_from_fc_hdr(fc_hdr);
17855 tot_len = 0;
17856 /* Get an iocbq struct to fill in. */
17857 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17858 if (first_iocbq) {
17859 /* Initialize the first IOCB. */
17860 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17861 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17862 first_iocbq->vport = vport;
17864 /* Check FC Header to see what TYPE of frame we are rcv'ing */
17865 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17866 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17867 first_iocbq->iocb.un.rcvels.parmRo =
17868 sli4_did_from_fc_hdr(fc_hdr);
17869 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17870 } else
17871 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17872 first_iocbq->iocb.ulpContext = NO_XRI;
17873 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17874 be16_to_cpu(fc_hdr->fh_ox_id);
17875 /* iocbq is prepped for internal consumption. Physical vpi. */
17876 first_iocbq->iocb.unsli3.rcvsli3.vpi =
17877 vport->phba->vpi_ids[vport->vpi];
17878 /* put the first buffer into the first IOCBq */
17879 tot_len = bf_get(lpfc_rcqe_length,
17880 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17882 first_iocbq->context2 = &seq_dmabuf->dbuf;
17883 first_iocbq->context3 = NULL;
17884 first_iocbq->iocb.ulpBdeCount = 1;
17885 if (tot_len > LPFC_DATA_BUF_SIZE)
17886 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17887 LPFC_DATA_BUF_SIZE;
17888 else
17889 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17891 first_iocbq->iocb.un.rcvels.remoteID = sid;
17893 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17895 iocbq = first_iocbq;
17897 * Each IOCBq can have two Buffers assigned, so go through the list
17898 * of buffers for this sequence and save two buffers in each IOCBq
17900 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17901 if (!iocbq) {
17902 lpfc_in_buf_free(vport->phba, d_buf);
17903 continue;
17905 if (!iocbq->context3) {
17906 iocbq->context3 = d_buf;
17907 iocbq->iocb.ulpBdeCount++;
17908 /* We need to get the size out of the right CQE */
17909 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17910 len = bf_get(lpfc_rcqe_length,
17911 &hbq_buf->cq_event.cqe.rcqe_cmpl);
17912 pbde = (struct ulp_bde64 *)
17913 &iocbq->iocb.unsli3.sli3Words[4];
17914 if (len > LPFC_DATA_BUF_SIZE)
17915 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17916 else
17917 pbde->tus.f.bdeSize = len;
17919 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17920 tot_len += len;
17921 } else {
17922 iocbq = lpfc_sli_get_iocbq(vport->phba);
17923 if (!iocbq) {
17924 if (first_iocbq) {
17925 first_iocbq->iocb.ulpStatus =
17926 IOSTAT_FCP_RSP_ERROR;
17927 first_iocbq->iocb.un.ulpWord[4] =
17928 IOERR_NO_RESOURCES;
17930 lpfc_in_buf_free(vport->phba, d_buf);
17931 continue;
17933 /* We need to get the size out of the right CQE */
17934 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17935 len = bf_get(lpfc_rcqe_length,
17936 &hbq_buf->cq_event.cqe.rcqe_cmpl);
17937 iocbq->context2 = d_buf;
17938 iocbq->context3 = NULL;
17939 iocbq->iocb.ulpBdeCount = 1;
17940 if (len > LPFC_DATA_BUF_SIZE)
17941 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17942 LPFC_DATA_BUF_SIZE;
17943 else
17944 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17946 tot_len += len;
17947 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17949 iocbq->iocb.un.rcvels.remoteID = sid;
17950 list_add_tail(&iocbq->list, &first_iocbq->list);
17953 return first_iocbq;
17956 static void
17957 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17958 struct hbq_dmabuf *seq_dmabuf)
17960 struct fc_frame_header *fc_hdr;
17961 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17962 struct lpfc_hba *phba = vport->phba;
17964 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17965 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17966 if (!iocbq) {
17967 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17968 "2707 Ring %d handler: Failed to allocate "
17969 "iocb Rctl x%x Type x%x received\n",
17970 LPFC_ELS_RING,
17971 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17972 return;
17974 if (!lpfc_complete_unsol_iocb(phba,
17975 phba->sli4_hba.els_wq->pring,
17976 iocbq, fc_hdr->fh_r_ctl,
17977 fc_hdr->fh_type))
17978 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17979 "2540 Ring %d handler: unexpected Rctl "
17980 "x%x Type x%x received\n",
17981 LPFC_ELS_RING,
17982 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17984 /* Free iocb created in lpfc_prep_seq */
17985 list_for_each_entry_safe(curr_iocb, next_iocb,
17986 &iocbq->list, list) {
17987 list_del_init(&curr_iocb->list);
17988 lpfc_sli_release_iocbq(phba, curr_iocb);
17990 lpfc_sli_release_iocbq(phba, iocbq);
17993 static void
17994 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17995 struct lpfc_iocbq *rspiocb)
17997 struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17999 if (pcmd && pcmd->virt)
18000 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18001 kfree(pcmd);
18002 lpfc_sli_release_iocbq(phba, cmdiocb);
18003 lpfc_drain_txq(phba);
18006 static void
18007 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18008 struct hbq_dmabuf *dmabuf)
18010 struct fc_frame_header *fc_hdr;
18011 struct lpfc_hba *phba = vport->phba;
18012 struct lpfc_iocbq *iocbq = NULL;
18013 union lpfc_wqe *wqe;
18014 struct lpfc_dmabuf *pcmd = NULL;
18015 uint32_t frame_len;
18016 int rc;
18017 unsigned long iflags;
18019 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18020 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18022 /* Send the received frame back */
18023 iocbq = lpfc_sli_get_iocbq(phba);
18024 if (!iocbq) {
18025 /* Queue cq event and wakeup worker thread to process it */
18026 spin_lock_irqsave(&phba->hbalock, iflags);
18027 list_add_tail(&dmabuf->cq_event.list,
18028 &phba->sli4_hba.sp_queue_event);
18029 phba->hba_flag |= HBA_SP_QUEUE_EVT;
18030 spin_unlock_irqrestore(&phba->hbalock, iflags);
18031 lpfc_worker_wake_up(phba);
18032 return;
18035 /* Allocate buffer for command payload */
18036 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18037 if (pcmd)
18038 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18039 &pcmd->phys);
18040 if (!pcmd || !pcmd->virt)
18041 goto exit;
18043 INIT_LIST_HEAD(&pcmd->list);
18045 /* copyin the payload */
18046 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18048 /* fill in BDE's for command */
18049 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18050 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18051 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18052 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18054 iocbq->context2 = pcmd;
18055 iocbq->vport = vport;
18056 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18057 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18060 * Setup rest of the iocb as though it were a WQE
18061 * Build the SEND_FRAME WQE
18063 wqe = (union lpfc_wqe *)&iocbq->iocb;
18065 wqe->send_frame.frame_len = frame_len;
18066 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18067 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18068 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18069 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18070 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18071 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18073 iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18074 iocbq->iocb.ulpLe = 1;
18075 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18076 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18077 if (rc == IOCB_ERROR)
18078 goto exit;
18080 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18081 return;
18083 exit:
18084 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18085 "2023 Unable to process MDS loopback frame\n");
18086 if (pcmd && pcmd->virt)
18087 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18088 kfree(pcmd);
18089 if (iocbq)
18090 lpfc_sli_release_iocbq(phba, iocbq);
18091 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18095 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18096 * @phba: Pointer to HBA context object.
18098 * This function is called with no lock held. This function processes all
18099 * the received buffers and gives it to upper layers when a received buffer
18100 * indicates that it is the final frame in the sequence. The interrupt
18101 * service routine processes received buffers at interrupt contexts.
18102 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18103 * appropriate receive function when the final frame in a sequence is received.
18105 void
18106 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18107 struct hbq_dmabuf *dmabuf)
18109 struct hbq_dmabuf *seq_dmabuf;
18110 struct fc_frame_header *fc_hdr;
18111 struct lpfc_vport *vport;
18112 uint32_t fcfi;
18113 uint32_t did;
18115 /* Process each received buffer */
18116 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18118 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18119 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18120 vport = phba->pport;
18121 /* Handle MDS Loopback frames */
18122 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18123 return;
18126 /* check to see if this a valid type of frame */
18127 if (lpfc_fc_frame_check(phba, fc_hdr)) {
18128 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18129 return;
18132 if ((bf_get(lpfc_cqe_code,
18133 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18134 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18135 &dmabuf->cq_event.cqe.rcqe_cmpl);
18136 else
18137 fcfi = bf_get(lpfc_rcqe_fcf_id,
18138 &dmabuf->cq_event.cqe.rcqe_cmpl);
18140 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18141 vport = phba->pport;
18142 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18143 "2023 MDS Loopback %d bytes\n",
18144 bf_get(lpfc_rcqe_length,
18145 &dmabuf->cq_event.cqe.rcqe_cmpl));
18146 /* Handle MDS Loopback frames */
18147 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18148 return;
18151 /* d_id this frame is directed to */
18152 did = sli4_did_from_fc_hdr(fc_hdr);
18154 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18155 if (!vport) {
18156 /* throw out the frame */
18157 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18158 return;
18161 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18162 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18163 (did != Fabric_DID)) {
18165 * Throw out the frame if we are not pt2pt.
18166 * The pt2pt protocol allows for discovery frames
18167 * to be received without a registered VPI.
18169 if (!(vport->fc_flag & FC_PT2PT) ||
18170 (phba->link_state == LPFC_HBA_READY)) {
18171 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18172 return;
18176 /* Handle the basic abort sequence (BA_ABTS) event */
18177 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18178 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18179 return;
18182 /* Link this frame */
18183 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18184 if (!seq_dmabuf) {
18185 /* unable to add frame to vport - throw it out */
18186 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18187 return;
18189 /* If not last frame in sequence continue processing frames. */
18190 if (!lpfc_seq_complete(seq_dmabuf))
18191 return;
18193 /* Send the complete sequence to the upper layer protocol */
18194 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18198 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18199 * @phba: pointer to lpfc hba data structure.
18201 * This routine is invoked to post rpi header templates to the
18202 * HBA consistent with the SLI-4 interface spec. This routine
18203 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18204 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18206 * This routine does not require any locks. It's usage is expected
18207 * to be driver load or reset recovery when the driver is
18208 * sequential.
18210 * Return codes
18211 * 0 - successful
18212 * -EIO - The mailbox failed to complete successfully.
18213 * When this error occurs, the driver is not guaranteed
18214 * to have any rpi regions posted to the device and
18215 * must either attempt to repost the regions or take a
18216 * fatal error.
18219 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18221 struct lpfc_rpi_hdr *rpi_page;
18222 uint32_t rc = 0;
18223 uint16_t lrpi = 0;
18225 /* SLI4 ports that support extents do not require RPI headers. */
18226 if (!phba->sli4_hba.rpi_hdrs_in_use)
18227 goto exit;
18228 if (phba->sli4_hba.extents_in_use)
18229 return -EIO;
18231 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18233 * Assign the rpi headers a physical rpi only if the driver
18234 * has not initialized those resources. A port reset only
18235 * needs the headers posted.
18237 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18238 LPFC_RPI_RSRC_RDY)
18239 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18241 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18242 if (rc != MBX_SUCCESS) {
18243 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18244 "2008 Error %d posting all rpi "
18245 "headers\n", rc);
18246 rc = -EIO;
18247 break;
18251 exit:
18252 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18253 LPFC_RPI_RSRC_RDY);
18254 return rc;
18258 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18259 * @phba: pointer to lpfc hba data structure.
18260 * @rpi_page: pointer to the rpi memory region.
18262 * This routine is invoked to post a single rpi header to the
18263 * HBA consistent with the SLI-4 interface spec. This memory region
18264 * maps up to 64 rpi context regions.
18266 * Return codes
18267 * 0 - successful
18268 * -ENOMEM - No available memory
18269 * -EIO - The mailbox failed to complete successfully.
18272 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18274 LPFC_MBOXQ_t *mboxq;
18275 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18276 uint32_t rc = 0;
18277 uint32_t shdr_status, shdr_add_status;
18278 union lpfc_sli4_cfg_shdr *shdr;
18280 /* SLI4 ports that support extents do not require RPI headers. */
18281 if (!phba->sli4_hba.rpi_hdrs_in_use)
18282 return rc;
18283 if (phba->sli4_hba.extents_in_use)
18284 return -EIO;
18286 /* The port is notified of the header region via a mailbox command. */
18287 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18288 if (!mboxq) {
18289 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18290 "2001 Unable to allocate memory for issuing "
18291 "SLI_CONFIG_SPECIAL mailbox command\n");
18292 return -ENOMEM;
18295 /* Post all rpi memory regions to the port. */
18296 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18297 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18298 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18299 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18300 sizeof(struct lpfc_sli4_cfg_mhdr),
18301 LPFC_SLI4_MBX_EMBED);
18304 /* Post the physical rpi to the port for this rpi header. */
18305 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18306 rpi_page->start_rpi);
18307 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18308 hdr_tmpl, rpi_page->page_count);
18310 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18311 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18312 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18313 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18314 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18315 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18316 if (rc != MBX_TIMEOUT)
18317 mempool_free(mboxq, phba->mbox_mem_pool);
18318 if (shdr_status || shdr_add_status || rc) {
18319 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18320 "2514 POST_RPI_HDR mailbox failed with "
18321 "status x%x add_status x%x, mbx status x%x\n",
18322 shdr_status, shdr_add_status, rc);
18323 rc = -ENXIO;
18324 } else {
18326 * The next_rpi stores the next logical module-64 rpi value used
18327 * to post physical rpis in subsequent rpi postings.
18329 spin_lock_irq(&phba->hbalock);
18330 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18331 spin_unlock_irq(&phba->hbalock);
18333 return rc;
18337 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18338 * @phba: pointer to lpfc hba data structure.
18340 * This routine is invoked to post rpi header templates to the
18341 * HBA consistent with the SLI-4 interface spec. This routine
18342 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18343 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18345 * Returns
18346 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18347 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18350 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18352 unsigned long rpi;
18353 uint16_t max_rpi, rpi_limit;
18354 uint16_t rpi_remaining, lrpi = 0;
18355 struct lpfc_rpi_hdr *rpi_hdr;
18356 unsigned long iflag;
18359 * Fetch the next logical rpi. Because this index is logical,
18360 * the driver starts at 0 each time.
18362 spin_lock_irqsave(&phba->hbalock, iflag);
18363 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18364 rpi_limit = phba->sli4_hba.next_rpi;
18366 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18367 if (rpi >= rpi_limit)
18368 rpi = LPFC_RPI_ALLOC_ERROR;
18369 else {
18370 set_bit(rpi, phba->sli4_hba.rpi_bmask);
18371 phba->sli4_hba.max_cfg_param.rpi_used++;
18372 phba->sli4_hba.rpi_count++;
18374 lpfc_printf_log(phba, KERN_INFO,
18375 LOG_NODE | LOG_DISCOVERY,
18376 "0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18377 (int) rpi, max_rpi, rpi_limit);
18380 * Don't try to allocate more rpi header regions if the device limit
18381 * has been exhausted.
18383 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18384 (phba->sli4_hba.rpi_count >= max_rpi)) {
18385 spin_unlock_irqrestore(&phba->hbalock, iflag);
18386 return rpi;
18390 * RPI header postings are not required for SLI4 ports capable of
18391 * extents.
18393 if (!phba->sli4_hba.rpi_hdrs_in_use) {
18394 spin_unlock_irqrestore(&phba->hbalock, iflag);
18395 return rpi;
18399 * If the driver is running low on rpi resources, allocate another
18400 * page now. Note that the next_rpi value is used because
18401 * it represents how many are actually in use whereas max_rpi notes
18402 * how many are supported max by the device.
18404 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18405 spin_unlock_irqrestore(&phba->hbalock, iflag);
18406 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18407 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18408 if (!rpi_hdr) {
18409 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18410 "2002 Error Could not grow rpi "
18411 "count\n");
18412 } else {
18413 lrpi = rpi_hdr->start_rpi;
18414 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18415 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18419 return rpi;
18423 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18424 * @phba: pointer to lpfc hba data structure.
18426 * This routine is invoked to release an rpi to the pool of
18427 * available rpis maintained by the driver.
18429 static void
18430 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18433 * if the rpi value indicates a prior unreg has already
18434 * been done, skip the unreg.
18436 if (rpi == LPFC_RPI_ALLOC_ERROR)
18437 return;
18439 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18440 phba->sli4_hba.rpi_count--;
18441 phba->sli4_hba.max_cfg_param.rpi_used--;
18442 } else {
18443 lpfc_printf_log(phba, KERN_INFO,
18444 LOG_NODE | LOG_DISCOVERY,
18445 "2016 rpi %x not inuse\n",
18446 rpi);
18451 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18452 * @phba: pointer to lpfc hba data structure.
18454 * This routine is invoked to release an rpi to the pool of
18455 * available rpis maintained by the driver.
18457 void
18458 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18460 spin_lock_irq(&phba->hbalock);
18461 __lpfc_sli4_free_rpi(phba, rpi);
18462 spin_unlock_irq(&phba->hbalock);
18466 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18467 * @phba: pointer to lpfc hba data structure.
18469 * This routine is invoked to remove the memory region that
18470 * provided rpi via a bitmask.
18472 void
18473 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18475 kfree(phba->sli4_hba.rpi_bmask);
18476 kfree(phba->sli4_hba.rpi_ids);
18477 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18481 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18482 * @phba: pointer to lpfc hba data structure.
18484 * This routine is invoked to remove the memory region that
18485 * provided rpi via a bitmask.
18488 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18489 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18491 LPFC_MBOXQ_t *mboxq;
18492 struct lpfc_hba *phba = ndlp->phba;
18493 int rc;
18495 /* The port is notified of the header region via a mailbox command. */
18496 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18497 if (!mboxq)
18498 return -ENOMEM;
18500 /* Post all rpi memory regions to the port. */
18501 lpfc_resume_rpi(mboxq, ndlp);
18502 if (cmpl) {
18503 mboxq->mbox_cmpl = cmpl;
18504 mboxq->ctx_buf = arg;
18505 mboxq->ctx_ndlp = ndlp;
18506 } else
18507 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18508 mboxq->vport = ndlp->vport;
18509 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18510 if (rc == MBX_NOT_FINISHED) {
18511 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18512 "2010 Resume RPI Mailbox failed "
18513 "status %d, mbxStatus x%x\n", rc,
18514 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18515 mempool_free(mboxq, phba->mbox_mem_pool);
18516 return -EIO;
18518 return 0;
18522 * lpfc_sli4_init_vpi - Initialize a vpi with the port
18523 * @vport: Pointer to the vport for which the vpi is being initialized
18525 * This routine is invoked to activate a vpi with the port.
18527 * Returns:
18528 * 0 success
18529 * -Evalue otherwise
18532 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18534 LPFC_MBOXQ_t *mboxq;
18535 int rc = 0;
18536 int retval = MBX_SUCCESS;
18537 uint32_t mbox_tmo;
18538 struct lpfc_hba *phba = vport->phba;
18539 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18540 if (!mboxq)
18541 return -ENOMEM;
18542 lpfc_init_vpi(phba, mboxq, vport->vpi);
18543 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18544 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18545 if (rc != MBX_SUCCESS) {
18546 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18547 "2022 INIT VPI Mailbox failed "
18548 "status %d, mbxStatus x%x\n", rc,
18549 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18550 retval = -EIO;
18552 if (rc != MBX_TIMEOUT)
18553 mempool_free(mboxq, vport->phba->mbox_mem_pool);
18555 return retval;
18559 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18560 * @phba: pointer to lpfc hba data structure.
18561 * @mboxq: Pointer to mailbox object.
18563 * This routine is invoked to manually add a single FCF record. The caller
18564 * must pass a completely initialized FCF_Record. This routine takes
18565 * care of the nonembedded mailbox operations.
18567 static void
18568 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18570 void *virt_addr;
18571 union lpfc_sli4_cfg_shdr *shdr;
18572 uint32_t shdr_status, shdr_add_status;
18574 virt_addr = mboxq->sge_array->addr[0];
18575 /* The IOCTL status is embedded in the mailbox subheader. */
18576 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18577 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18578 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18580 if ((shdr_status || shdr_add_status) &&
18581 (shdr_status != STATUS_FCF_IN_USE))
18582 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18583 "2558 ADD_FCF_RECORD mailbox failed with "
18584 "status x%x add_status x%x\n",
18585 shdr_status, shdr_add_status);
18587 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18591 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18592 * @phba: pointer to lpfc hba data structure.
18593 * @fcf_record: pointer to the initialized fcf record to add.
18595 * This routine is invoked to manually add a single FCF record. The caller
18596 * must pass a completely initialized FCF_Record. This routine takes
18597 * care of the nonembedded mailbox operations.
18600 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18602 int rc = 0;
18603 LPFC_MBOXQ_t *mboxq;
18604 uint8_t *bytep;
18605 void *virt_addr;
18606 struct lpfc_mbx_sge sge;
18607 uint32_t alloc_len, req_len;
18608 uint32_t fcfindex;
18610 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18611 if (!mboxq) {
18612 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18613 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
18614 return -ENOMEM;
18617 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18618 sizeof(uint32_t);
18620 /* Allocate DMA memory and set up the non-embedded mailbox command */
18621 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18622 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18623 req_len, LPFC_SLI4_MBX_NEMBED);
18624 if (alloc_len < req_len) {
18625 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18626 "2523 Allocated DMA memory size (x%x) is "
18627 "less than the requested DMA memory "
18628 "size (x%x)\n", alloc_len, req_len);
18629 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18630 return -ENOMEM;
18634 * Get the first SGE entry from the non-embedded DMA memory. This
18635 * routine only uses a single SGE.
18637 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18638 virt_addr = mboxq->sge_array->addr[0];
18640 * Configure the FCF record for FCFI 0. This is the driver's
18641 * hardcoded default and gets used in nonFIP mode.
18643 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18644 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18645 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18648 * Copy the fcf_index and the FCF Record Data. The data starts after
18649 * the FCoE header plus word10. The data copy needs to be endian
18650 * correct.
18652 bytep += sizeof(uint32_t);
18653 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18654 mboxq->vport = phba->pport;
18655 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18656 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18657 if (rc == MBX_NOT_FINISHED) {
18658 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18659 "2515 ADD_FCF_RECORD mailbox failed with "
18660 "status 0x%x\n", rc);
18661 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18662 rc = -EIO;
18663 } else
18664 rc = 0;
18666 return rc;
18670 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18671 * @phba: pointer to lpfc hba data structure.
18672 * @fcf_record: pointer to the fcf record to write the default data.
18673 * @fcf_index: FCF table entry index.
18675 * This routine is invoked to build the driver's default FCF record. The
18676 * values used are hardcoded. This routine handles memory initialization.
18679 void
18680 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18681 struct fcf_record *fcf_record,
18682 uint16_t fcf_index)
18684 memset(fcf_record, 0, sizeof(struct fcf_record));
18685 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18686 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18687 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18688 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18689 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18690 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18691 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18692 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18693 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18694 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18695 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18696 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18697 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18698 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18699 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18700 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18701 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18702 /* Set the VLAN bit map */
18703 if (phba->valid_vlan) {
18704 fcf_record->vlan_bitmap[phba->vlan_id / 8]
18705 = 1 << (phba->vlan_id % 8);
18710 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18711 * @phba: pointer to lpfc hba data structure.
18712 * @fcf_index: FCF table entry offset.
18714 * This routine is invoked to scan the entire FCF table by reading FCF
18715 * record and processing it one at a time starting from the @fcf_index
18716 * for initial FCF discovery or fast FCF failover rediscovery.
18718 * Return 0 if the mailbox command is submitted successfully, none 0
18719 * otherwise.
18722 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18724 int rc = 0, error;
18725 LPFC_MBOXQ_t *mboxq;
18727 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18728 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18729 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18730 if (!mboxq) {
18731 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18732 "2000 Failed to allocate mbox for "
18733 "READ_FCF cmd\n");
18734 error = -ENOMEM;
18735 goto fail_fcf_scan;
18737 /* Construct the read FCF record mailbox command */
18738 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18739 if (rc) {
18740 error = -EINVAL;
18741 goto fail_fcf_scan;
18743 /* Issue the mailbox command asynchronously */
18744 mboxq->vport = phba->pport;
18745 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18747 spin_lock_irq(&phba->hbalock);
18748 phba->hba_flag |= FCF_TS_INPROG;
18749 spin_unlock_irq(&phba->hbalock);
18751 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18752 if (rc == MBX_NOT_FINISHED)
18753 error = -EIO;
18754 else {
18755 /* Reset eligible FCF count for new scan */
18756 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18757 phba->fcf.eligible_fcf_cnt = 0;
18758 error = 0;
18760 fail_fcf_scan:
18761 if (error) {
18762 if (mboxq)
18763 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18764 /* FCF scan failed, clear FCF_TS_INPROG flag */
18765 spin_lock_irq(&phba->hbalock);
18766 phba->hba_flag &= ~FCF_TS_INPROG;
18767 spin_unlock_irq(&phba->hbalock);
18769 return error;
18773 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18774 * @phba: pointer to lpfc hba data structure.
18775 * @fcf_index: FCF table entry offset.
18777 * This routine is invoked to read an FCF record indicated by @fcf_index
18778 * and to use it for FLOGI roundrobin FCF failover.
18780 * Return 0 if the mailbox command is submitted successfully, none 0
18781 * otherwise.
18784 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18786 int rc = 0, error;
18787 LPFC_MBOXQ_t *mboxq;
18789 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18790 if (!mboxq) {
18791 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18792 "2763 Failed to allocate mbox for "
18793 "READ_FCF cmd\n");
18794 error = -ENOMEM;
18795 goto fail_fcf_read;
18797 /* Construct the read FCF record mailbox command */
18798 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18799 if (rc) {
18800 error = -EINVAL;
18801 goto fail_fcf_read;
18803 /* Issue the mailbox command asynchronously */
18804 mboxq->vport = phba->pport;
18805 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18806 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18807 if (rc == MBX_NOT_FINISHED)
18808 error = -EIO;
18809 else
18810 error = 0;
18812 fail_fcf_read:
18813 if (error && mboxq)
18814 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18815 return error;
18819 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18820 * @phba: pointer to lpfc hba data structure.
18821 * @fcf_index: FCF table entry offset.
18823 * This routine is invoked to read an FCF record indicated by @fcf_index to
18824 * determine whether it's eligible for FLOGI roundrobin failover list.
18826 * Return 0 if the mailbox command is submitted successfully, none 0
18827 * otherwise.
18830 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18832 int rc = 0, error;
18833 LPFC_MBOXQ_t *mboxq;
18835 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18836 if (!mboxq) {
18837 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18838 "2758 Failed to allocate mbox for "
18839 "READ_FCF cmd\n");
18840 error = -ENOMEM;
18841 goto fail_fcf_read;
18843 /* Construct the read FCF record mailbox command */
18844 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18845 if (rc) {
18846 error = -EINVAL;
18847 goto fail_fcf_read;
18849 /* Issue the mailbox command asynchronously */
18850 mboxq->vport = phba->pport;
18851 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18852 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18853 if (rc == MBX_NOT_FINISHED)
18854 error = -EIO;
18855 else
18856 error = 0;
18858 fail_fcf_read:
18859 if (error && mboxq)
18860 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18861 return error;
18865 * lpfc_check_next_fcf_pri_level
18866 * phba pointer to the lpfc_hba struct for this port.
18867 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18868 * routine when the rr_bmask is empty. The FCF indecies are put into the
18869 * rr_bmask based on their priority level. Starting from the highest priority
18870 * to the lowest. The most likely FCF candidate will be in the highest
18871 * priority group. When this routine is called it searches the fcf_pri list for
18872 * next lowest priority group and repopulates the rr_bmask with only those
18873 * fcf_indexes.
18874 * returns:
18875 * 1=success 0=failure
18877 static int
18878 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18880 uint16_t next_fcf_pri;
18881 uint16_t last_index;
18882 struct lpfc_fcf_pri *fcf_pri;
18883 int rc;
18884 int ret = 0;
18886 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18887 LPFC_SLI4_FCF_TBL_INDX_MAX);
18888 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18889 "3060 Last IDX %d\n", last_index);
18891 /* Verify the priority list has 2 or more entries */
18892 spin_lock_irq(&phba->hbalock);
18893 if (list_empty(&phba->fcf.fcf_pri_list) ||
18894 list_is_singular(&phba->fcf.fcf_pri_list)) {
18895 spin_unlock_irq(&phba->hbalock);
18896 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18897 "3061 Last IDX %d\n", last_index);
18898 return 0; /* Empty rr list */
18900 spin_unlock_irq(&phba->hbalock);
18902 next_fcf_pri = 0;
18904 * Clear the rr_bmask and set all of the bits that are at this
18905 * priority.
18907 memset(phba->fcf.fcf_rr_bmask, 0,
18908 sizeof(*phba->fcf.fcf_rr_bmask));
18909 spin_lock_irq(&phba->hbalock);
18910 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18911 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18912 continue;
18914 * the 1st priority that has not FLOGI failed
18915 * will be the highest.
18917 if (!next_fcf_pri)
18918 next_fcf_pri = fcf_pri->fcf_rec.priority;
18919 spin_unlock_irq(&phba->hbalock);
18920 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18921 rc = lpfc_sli4_fcf_rr_index_set(phba,
18922 fcf_pri->fcf_rec.fcf_index);
18923 if (rc)
18924 return 0;
18926 spin_lock_irq(&phba->hbalock);
18929 * if next_fcf_pri was not set above and the list is not empty then
18930 * we have failed flogis on all of them. So reset flogi failed
18931 * and start at the beginning.
18933 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18934 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18935 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18937 * the 1st priority that has not FLOGI failed
18938 * will be the highest.
18940 if (!next_fcf_pri)
18941 next_fcf_pri = fcf_pri->fcf_rec.priority;
18942 spin_unlock_irq(&phba->hbalock);
18943 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18944 rc = lpfc_sli4_fcf_rr_index_set(phba,
18945 fcf_pri->fcf_rec.fcf_index);
18946 if (rc)
18947 return 0;
18949 spin_lock_irq(&phba->hbalock);
18951 } else
18952 ret = 1;
18953 spin_unlock_irq(&phba->hbalock);
18955 return ret;
18958 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18959 * @phba: pointer to lpfc hba data structure.
18961 * This routine is to get the next eligible FCF record index in a round
18962 * robin fashion. If the next eligible FCF record index equals to the
18963 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18964 * shall be returned, otherwise, the next eligible FCF record's index
18965 * shall be returned.
18967 uint16_t
18968 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18970 uint16_t next_fcf_index;
18972 initial_priority:
18973 /* Search start from next bit of currently registered FCF index */
18974 next_fcf_index = phba->fcf.current_rec.fcf_indx;
18976 next_priority:
18977 /* Determine the next fcf index to check */
18978 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18979 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18980 LPFC_SLI4_FCF_TBL_INDX_MAX,
18981 next_fcf_index);
18983 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
18984 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18986 * If we have wrapped then we need to clear the bits that
18987 * have been tested so that we can detect when we should
18988 * change the priority level.
18990 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18991 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18995 /* Check roundrobin failover list empty condition */
18996 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18997 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18999 * If next fcf index is not found check if there are lower
19000 * Priority level fcf's in the fcf_priority list.
19001 * Set up the rr_bmask with all of the avaiable fcf bits
19002 * at that level and continue the selection process.
19004 if (lpfc_check_next_fcf_pri_level(phba))
19005 goto initial_priority;
19006 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19007 "2844 No roundrobin failover FCF available\n");
19009 return LPFC_FCOE_FCF_NEXT_NONE;
19012 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19013 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19014 LPFC_FCF_FLOGI_FAILED) {
19015 if (list_is_singular(&phba->fcf.fcf_pri_list))
19016 return LPFC_FCOE_FCF_NEXT_NONE;
19018 goto next_priority;
19021 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19022 "2845 Get next roundrobin failover FCF (x%x)\n",
19023 next_fcf_index);
19025 return next_fcf_index;
19029 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19030 * @phba: pointer to lpfc hba data structure.
19032 * This routine sets the FCF record index in to the eligible bmask for
19033 * roundrobin failover search. It checks to make sure that the index
19034 * does not go beyond the range of the driver allocated bmask dimension
19035 * before setting the bit.
19037 * Returns 0 if the index bit successfully set, otherwise, it returns
19038 * -EINVAL.
19041 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19043 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19044 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19045 "2610 FCF (x%x) reached driver's book "
19046 "keeping dimension:x%x\n",
19047 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19048 return -EINVAL;
19050 /* Set the eligible FCF record index bmask */
19051 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19053 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19054 "2790 Set FCF (x%x) to roundrobin FCF failover "
19055 "bmask\n", fcf_index);
19057 return 0;
19061 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19062 * @phba: pointer to lpfc hba data structure.
19064 * This routine clears the FCF record index from the eligible bmask for
19065 * roundrobin failover search. It checks to make sure that the index
19066 * does not go beyond the range of the driver allocated bmask dimension
19067 * before clearing the bit.
19069 void
19070 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19072 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19073 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19074 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19075 "2762 FCF (x%x) reached driver's book "
19076 "keeping dimension:x%x\n",
19077 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19078 return;
19080 /* Clear the eligible FCF record index bmask */
19081 spin_lock_irq(&phba->hbalock);
19082 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19083 list) {
19084 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19085 list_del_init(&fcf_pri->list);
19086 break;
19089 spin_unlock_irq(&phba->hbalock);
19090 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19092 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19093 "2791 Clear FCF (x%x) from roundrobin failover "
19094 "bmask\n", fcf_index);
19098 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19099 * @phba: pointer to lpfc hba data structure.
19101 * This routine is the completion routine for the rediscover FCF table mailbox
19102 * command. If the mailbox command returned failure, it will try to stop the
19103 * FCF rediscover wait timer.
19105 static void
19106 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19108 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19109 uint32_t shdr_status, shdr_add_status;
19111 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19113 shdr_status = bf_get(lpfc_mbox_hdr_status,
19114 &redisc_fcf->header.cfg_shdr.response);
19115 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19116 &redisc_fcf->header.cfg_shdr.response);
19117 if (shdr_status || shdr_add_status) {
19118 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19119 "2746 Requesting for FCF rediscovery failed "
19120 "status x%x add_status x%x\n",
19121 shdr_status, shdr_add_status);
19122 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19123 spin_lock_irq(&phba->hbalock);
19124 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19125 spin_unlock_irq(&phba->hbalock);
19127 * CVL event triggered FCF rediscover request failed,
19128 * last resort to re-try current registered FCF entry.
19130 lpfc_retry_pport_discovery(phba);
19131 } else {
19132 spin_lock_irq(&phba->hbalock);
19133 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19134 spin_unlock_irq(&phba->hbalock);
19136 * DEAD FCF event triggered FCF rediscover request
19137 * failed, last resort to fail over as a link down
19138 * to FCF registration.
19140 lpfc_sli4_fcf_dead_failthrough(phba);
19142 } else {
19143 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19144 "2775 Start FCF rediscover quiescent timer\n");
19146 * Start FCF rediscovery wait timer for pending FCF
19147 * before rescan FCF record table.
19149 lpfc_fcf_redisc_wait_start_timer(phba);
19152 mempool_free(mbox, phba->mbox_mem_pool);
19156 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19157 * @phba: pointer to lpfc hba data structure.
19159 * This routine is invoked to request for rediscovery of the entire FCF table
19160 * by the port.
19163 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19165 LPFC_MBOXQ_t *mbox;
19166 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19167 int rc, length;
19169 /* Cancel retry delay timers to all vports before FCF rediscover */
19170 lpfc_cancel_all_vport_retry_delay_timer(phba);
19172 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19173 if (!mbox) {
19174 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19175 "2745 Failed to allocate mbox for "
19176 "requesting FCF rediscover.\n");
19177 return -ENOMEM;
19180 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19181 sizeof(struct lpfc_sli4_cfg_mhdr));
19182 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19183 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19184 length, LPFC_SLI4_MBX_EMBED);
19186 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19187 /* Set count to 0 for invalidating the entire FCF database */
19188 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19190 /* Issue the mailbox command asynchronously */
19191 mbox->vport = phba->pport;
19192 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19193 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19195 if (rc == MBX_NOT_FINISHED) {
19196 mempool_free(mbox, phba->mbox_mem_pool);
19197 return -EIO;
19199 return 0;
19203 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19204 * @phba: pointer to lpfc hba data structure.
19206 * This function is the failover routine as a last resort to the FCF DEAD
19207 * event when driver failed to perform fast FCF failover.
19209 void
19210 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19212 uint32_t link_state;
19215 * Last resort as FCF DEAD event failover will treat this as
19216 * a link down, but save the link state because we don't want
19217 * it to be changed to Link Down unless it is already down.
19219 link_state = phba->link_state;
19220 lpfc_linkdown(phba);
19221 phba->link_state = link_state;
19223 /* Unregister FCF if no devices connected to it */
19224 lpfc_unregister_unused_fcf(phba);
19228 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19229 * @phba: pointer to lpfc hba data structure.
19230 * @rgn23_data: pointer to configure region 23 data.
19232 * This function gets SLI3 port configure region 23 data through memory dump
19233 * mailbox command. When it successfully retrieves data, the size of the data
19234 * will be returned, otherwise, 0 will be returned.
19236 static uint32_t
19237 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19239 LPFC_MBOXQ_t *pmb = NULL;
19240 MAILBOX_t *mb;
19241 uint32_t offset = 0;
19242 int rc;
19244 if (!rgn23_data)
19245 return 0;
19247 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19248 if (!pmb) {
19249 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19250 "2600 failed to allocate mailbox memory\n");
19251 return 0;
19253 mb = &pmb->u.mb;
19255 do {
19256 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19257 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19259 if (rc != MBX_SUCCESS) {
19260 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19261 "2601 failed to read config "
19262 "region 23, rc 0x%x Status 0x%x\n",
19263 rc, mb->mbxStatus);
19264 mb->un.varDmp.word_cnt = 0;
19267 * dump mem may return a zero when finished or we got a
19268 * mailbox error, either way we are done.
19270 if (mb->un.varDmp.word_cnt == 0)
19271 break;
19272 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19273 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19275 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19276 rgn23_data + offset,
19277 mb->un.varDmp.word_cnt);
19278 offset += mb->un.varDmp.word_cnt;
19279 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19281 mempool_free(pmb, phba->mbox_mem_pool);
19282 return offset;
19286 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19287 * @phba: pointer to lpfc hba data structure.
19288 * @rgn23_data: pointer to configure region 23 data.
19290 * This function gets SLI4 port configure region 23 data through memory dump
19291 * mailbox command. When it successfully retrieves data, the size of the data
19292 * will be returned, otherwise, 0 will be returned.
19294 static uint32_t
19295 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19297 LPFC_MBOXQ_t *mboxq = NULL;
19298 struct lpfc_dmabuf *mp = NULL;
19299 struct lpfc_mqe *mqe;
19300 uint32_t data_length = 0;
19301 int rc;
19303 if (!rgn23_data)
19304 return 0;
19306 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19307 if (!mboxq) {
19308 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19309 "3105 failed to allocate mailbox memory\n");
19310 return 0;
19313 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19314 goto out;
19315 mqe = &mboxq->u.mqe;
19316 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19317 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19318 if (rc)
19319 goto out;
19320 data_length = mqe->un.mb_words[5];
19321 if (data_length == 0)
19322 goto out;
19323 if (data_length > DMP_RGN23_SIZE) {
19324 data_length = 0;
19325 goto out;
19327 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19328 out:
19329 mempool_free(mboxq, phba->mbox_mem_pool);
19330 if (mp) {
19331 lpfc_mbuf_free(phba, mp->virt, mp->phys);
19332 kfree(mp);
19334 return data_length;
19338 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19339 * @phba: pointer to lpfc hba data structure.
19341 * This function read region 23 and parse TLV for port status to
19342 * decide if the user disaled the port. If the TLV indicates the
19343 * port is disabled, the hba_flag is set accordingly.
19345 void
19346 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19348 uint8_t *rgn23_data = NULL;
19349 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19350 uint32_t offset = 0;
19352 /* Get adapter Region 23 data */
19353 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19354 if (!rgn23_data)
19355 goto out;
19357 if (phba->sli_rev < LPFC_SLI_REV4)
19358 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19359 else {
19360 if_type = bf_get(lpfc_sli_intf_if_type,
19361 &phba->sli4_hba.sli_intf);
19362 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19363 goto out;
19364 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19367 if (!data_size)
19368 goto out;
19370 /* Check the region signature first */
19371 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19372 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19373 "2619 Config region 23 has bad signature\n");
19374 goto out;
19376 offset += 4;
19378 /* Check the data structure version */
19379 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19380 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19381 "2620 Config region 23 has bad version\n");
19382 goto out;
19384 offset += 4;
19386 /* Parse TLV entries in the region */
19387 while (offset < data_size) {
19388 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19389 break;
19391 * If the TLV is not driver specific TLV or driver id is
19392 * not linux driver id, skip the record.
19394 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19395 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19396 (rgn23_data[offset + 3] != 0)) {
19397 offset += rgn23_data[offset + 1] * 4 + 4;
19398 continue;
19401 /* Driver found a driver specific TLV in the config region */
19402 sub_tlv_len = rgn23_data[offset + 1] * 4;
19403 offset += 4;
19404 tlv_offset = 0;
19407 * Search for configured port state sub-TLV.
19409 while ((offset < data_size) &&
19410 (tlv_offset < sub_tlv_len)) {
19411 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19412 offset += 4;
19413 tlv_offset += 4;
19414 break;
19416 if (rgn23_data[offset] != PORT_STE_TYPE) {
19417 offset += rgn23_data[offset + 1] * 4 + 4;
19418 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19419 continue;
19422 /* This HBA contains PORT_STE configured */
19423 if (!rgn23_data[offset + 2])
19424 phba->hba_flag |= LINK_DISABLED;
19426 goto out;
19430 out:
19431 kfree(rgn23_data);
19432 return;
19436 * lpfc_wr_object - write an object to the firmware
19437 * @phba: HBA structure that indicates port to create a queue on.
19438 * @dmabuf_list: list of dmabufs to write to the port.
19439 * @size: the total byte value of the objects to write to the port.
19440 * @offset: the current offset to be used to start the transfer.
19442 * This routine will create a wr_object mailbox command to send to the port.
19443 * the mailbox command will be constructed using the dma buffers described in
19444 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19445 * BDEs that the imbedded mailbox can support. The @offset variable will be
19446 * used to indicate the starting offset of the transfer and will also return
19447 * the offset after the write object mailbox has completed. @size is used to
19448 * determine the end of the object and whether the eof bit should be set.
19450 * Return 0 is successful and offset will contain the the new offset to use
19451 * for the next write.
19452 * Return negative value for error cases.
19455 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19456 uint32_t size, uint32_t *offset)
19458 struct lpfc_mbx_wr_object *wr_object;
19459 LPFC_MBOXQ_t *mbox;
19460 int rc = 0, i = 0;
19461 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
19462 uint32_t mbox_tmo;
19463 struct lpfc_dmabuf *dmabuf;
19464 uint32_t written = 0;
19465 bool check_change_status = false;
19467 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19468 if (!mbox)
19469 return -ENOMEM;
19471 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19472 LPFC_MBOX_OPCODE_WRITE_OBJECT,
19473 sizeof(struct lpfc_mbx_wr_object) -
19474 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19476 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19477 wr_object->u.request.write_offset = *offset;
19478 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19479 wr_object->u.request.object_name[0] =
19480 cpu_to_le32(wr_object->u.request.object_name[0]);
19481 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19482 list_for_each_entry(dmabuf, dmabuf_list, list) {
19483 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19484 break;
19485 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19486 wr_object->u.request.bde[i].addrHigh =
19487 putPaddrHigh(dmabuf->phys);
19488 if (written + SLI4_PAGE_SIZE >= size) {
19489 wr_object->u.request.bde[i].tus.f.bdeSize =
19490 (size - written);
19491 written += (size - written);
19492 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19493 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19494 check_change_status = true;
19495 } else {
19496 wr_object->u.request.bde[i].tus.f.bdeSize =
19497 SLI4_PAGE_SIZE;
19498 written += SLI4_PAGE_SIZE;
19500 i++;
19502 wr_object->u.request.bde_count = i;
19503 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19504 if (!phba->sli4_hba.intr_enable)
19505 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19506 else {
19507 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19508 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19510 /* The IOCTL status is embedded in the mailbox subheader. */
19511 shdr_status = bf_get(lpfc_mbox_hdr_status,
19512 &wr_object->header.cfg_shdr.response);
19513 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19514 &wr_object->header.cfg_shdr.response);
19515 if (check_change_status) {
19516 shdr_change_status = bf_get(lpfc_wr_object_change_status,
19517 &wr_object->u.response);
19519 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
19520 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
19521 shdr_csf = bf_get(lpfc_wr_object_csf,
19522 &wr_object->u.response);
19523 if (shdr_csf)
19524 shdr_change_status =
19525 LPFC_CHANGE_STATUS_PCI_RESET;
19528 switch (shdr_change_status) {
19529 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19530 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19531 "3198 Firmware write complete: System "
19532 "reboot required to instantiate\n");
19533 break;
19534 case (LPFC_CHANGE_STATUS_FW_RESET):
19535 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19536 "3199 Firmware write complete: Firmware"
19537 " reset required to instantiate\n");
19538 break;
19539 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19540 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19541 "3200 Firmware write complete: Port "
19542 "Migration or PCI Reset required to "
19543 "instantiate\n");
19544 break;
19545 case (LPFC_CHANGE_STATUS_PCI_RESET):
19546 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19547 "3201 Firmware write complete: PCI "
19548 "Reset required to instantiate\n");
19549 break;
19550 default:
19551 break;
19554 if (rc != MBX_TIMEOUT)
19555 mempool_free(mbox, phba->mbox_mem_pool);
19556 if (shdr_status || shdr_add_status || rc) {
19557 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19558 "3025 Write Object mailbox failed with "
19559 "status x%x add_status x%x, mbx status x%x\n",
19560 shdr_status, shdr_add_status, rc);
19561 rc = -ENXIO;
19562 *offset = shdr_add_status;
19563 } else
19564 *offset += wr_object->u.response.actual_write_length;
19565 return rc;
19569 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19570 * @vport: pointer to vport data structure.
19572 * This function iterate through the mailboxq and clean up all REG_LOGIN
19573 * and REG_VPI mailbox commands associated with the vport. This function
19574 * is called when driver want to restart discovery of the vport due to
19575 * a Clear Virtual Link event.
19577 void
19578 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19580 struct lpfc_hba *phba = vport->phba;
19581 LPFC_MBOXQ_t *mb, *nextmb;
19582 struct lpfc_dmabuf *mp;
19583 struct lpfc_nodelist *ndlp;
19584 struct lpfc_nodelist *act_mbx_ndlp = NULL;
19585 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
19586 LIST_HEAD(mbox_cmd_list);
19587 uint8_t restart_loop;
19589 /* Clean up internally queued mailbox commands with the vport */
19590 spin_lock_irq(&phba->hbalock);
19591 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19592 if (mb->vport != vport)
19593 continue;
19595 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19596 (mb->u.mb.mbxCommand != MBX_REG_VPI))
19597 continue;
19599 list_del(&mb->list);
19600 list_add_tail(&mb->list, &mbox_cmd_list);
19602 /* Clean up active mailbox command with the vport */
19603 mb = phba->sli.mbox_active;
19604 if (mb && (mb->vport == vport)) {
19605 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19606 (mb->u.mb.mbxCommand == MBX_REG_VPI))
19607 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19608 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19609 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19610 /* Put reference count for delayed processing */
19611 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19612 /* Unregister the RPI when mailbox complete */
19613 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19616 /* Cleanup any mailbox completions which are not yet processed */
19617 do {
19618 restart_loop = 0;
19619 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19621 * If this mailox is already processed or it is
19622 * for another vport ignore it.
19624 if ((mb->vport != vport) ||
19625 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19626 continue;
19628 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19629 (mb->u.mb.mbxCommand != MBX_REG_VPI))
19630 continue;
19632 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19633 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19634 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19635 /* Unregister the RPI when mailbox complete */
19636 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19637 restart_loop = 1;
19638 spin_unlock_irq(&phba->hbalock);
19639 spin_lock(shost->host_lock);
19640 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19641 spin_unlock(shost->host_lock);
19642 spin_lock_irq(&phba->hbalock);
19643 break;
19646 } while (restart_loop);
19648 spin_unlock_irq(&phba->hbalock);
19650 /* Release the cleaned-up mailbox commands */
19651 while (!list_empty(&mbox_cmd_list)) {
19652 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19653 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19654 mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19655 if (mp) {
19656 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
19657 kfree(mp);
19659 mb->ctx_buf = NULL;
19660 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19661 mb->ctx_ndlp = NULL;
19662 if (ndlp) {
19663 spin_lock(shost->host_lock);
19664 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19665 spin_unlock(shost->host_lock);
19666 lpfc_nlp_put(ndlp);
19669 mempool_free(mb, phba->mbox_mem_pool);
19672 /* Release the ndlp with the cleaned-up active mailbox command */
19673 if (act_mbx_ndlp) {
19674 spin_lock(shost->host_lock);
19675 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19676 spin_unlock(shost->host_lock);
19677 lpfc_nlp_put(act_mbx_ndlp);
19682 * lpfc_drain_txq - Drain the txq
19683 * @phba: Pointer to HBA context object.
19685 * This function attempt to submit IOCBs on the txq
19686 * to the adapter. For SLI4 adapters, the txq contains
19687 * ELS IOCBs that have been deferred because the there
19688 * are no SGLs. This congestion can occur with large
19689 * vport counts during node discovery.
19692 uint32_t
19693 lpfc_drain_txq(struct lpfc_hba *phba)
19695 LIST_HEAD(completions);
19696 struct lpfc_sli_ring *pring;
19697 struct lpfc_iocbq *piocbq = NULL;
19698 unsigned long iflags = 0;
19699 char *fail_msg = NULL;
19700 struct lpfc_sglq *sglq;
19701 union lpfc_wqe128 wqe;
19702 uint32_t txq_cnt = 0;
19703 struct lpfc_queue *wq;
19705 if (phba->link_flag & LS_MDS_LOOPBACK) {
19706 /* MDS WQE are posted only to first WQ*/
19707 wq = phba->sli4_hba.hdwq[0].io_wq;
19708 if (unlikely(!wq))
19709 return 0;
19710 pring = wq->pring;
19711 } else {
19712 wq = phba->sli4_hba.els_wq;
19713 if (unlikely(!wq))
19714 return 0;
19715 pring = lpfc_phba_elsring(phba);
19718 if (unlikely(!pring) || list_empty(&pring->txq))
19719 return 0;
19721 spin_lock_irqsave(&pring->ring_lock, iflags);
19722 list_for_each_entry(piocbq, &pring->txq, list) {
19723 txq_cnt++;
19726 if (txq_cnt > pring->txq_max)
19727 pring->txq_max = txq_cnt;
19729 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19731 while (!list_empty(&pring->txq)) {
19732 spin_lock_irqsave(&pring->ring_lock, iflags);
19734 piocbq = lpfc_sli_ringtx_get(phba, pring);
19735 if (!piocbq) {
19736 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19737 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19738 "2823 txq empty and txq_cnt is %d\n ",
19739 txq_cnt);
19740 break;
19742 sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19743 if (!sglq) {
19744 __lpfc_sli_ringtx_put(phba, pring, piocbq);
19745 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19746 break;
19748 txq_cnt--;
19750 /* The xri and iocb resources secured,
19751 * attempt to issue request
19753 piocbq->sli4_lxritag = sglq->sli4_lxritag;
19754 piocbq->sli4_xritag = sglq->sli4_xritag;
19755 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19756 fail_msg = "to convert bpl to sgl";
19757 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19758 fail_msg = "to convert iocb to wqe";
19759 else if (lpfc_sli4_wq_put(wq, &wqe))
19760 fail_msg = " - Wq is full";
19761 else
19762 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19764 if (fail_msg) {
19765 /* Failed means we can't issue and need to cancel */
19766 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19767 "2822 IOCB failed %s iotag 0x%x "
19768 "xri 0x%x\n",
19769 fail_msg,
19770 piocbq->iotag, piocbq->sli4_xritag);
19771 list_add_tail(&piocbq->list, &completions);
19773 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19776 /* Cancel all the IOCBs that cannot be issued */
19777 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19778 IOERR_SLI_ABORTED);
19780 return txq_cnt;
19784 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19785 * @phba: Pointer to HBA context object.
19786 * @pwqe: Pointer to command WQE.
19787 * @sglq: Pointer to the scatter gather queue object.
19789 * This routine converts the bpl or bde that is in the WQE
19790 * to a sgl list for the sli4 hardware. The physical address
19791 * of the bpl/bde is converted back to a virtual address.
19792 * If the WQE contains a BPL then the list of BDE's is
19793 * converted to sli4_sge's. If the WQE contains a single
19794 * BDE then it is converted to a single sli_sge.
19795 * The WQE is still in cpu endianness so the contents of
19796 * the bpl can be used without byte swapping.
19798 * Returns valid XRI = Success, NO_XRI = Failure.
19800 static uint16_t
19801 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19802 struct lpfc_sglq *sglq)
19804 uint16_t xritag = NO_XRI;
19805 struct ulp_bde64 *bpl = NULL;
19806 struct ulp_bde64 bde;
19807 struct sli4_sge *sgl = NULL;
19808 struct lpfc_dmabuf *dmabuf;
19809 union lpfc_wqe128 *wqe;
19810 int numBdes = 0;
19811 int i = 0;
19812 uint32_t offset = 0; /* accumulated offset in the sg request list */
19813 int inbound = 0; /* number of sg reply entries inbound from firmware */
19814 uint32_t cmd;
19816 if (!pwqeq || !sglq)
19817 return xritag;
19819 sgl = (struct sli4_sge *)sglq->sgl;
19820 wqe = &pwqeq->wqe;
19821 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19823 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19824 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19825 return sglq->sli4_xritag;
19826 numBdes = pwqeq->rsvd2;
19827 if (numBdes) {
19828 /* The addrHigh and addrLow fields within the WQE
19829 * have not been byteswapped yet so there is no
19830 * need to swap them back.
19832 if (pwqeq->context3)
19833 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19834 else
19835 return xritag;
19837 bpl = (struct ulp_bde64 *)dmabuf->virt;
19838 if (!bpl)
19839 return xritag;
19841 for (i = 0; i < numBdes; i++) {
19842 /* Should already be byte swapped. */
19843 sgl->addr_hi = bpl->addrHigh;
19844 sgl->addr_lo = bpl->addrLow;
19846 sgl->word2 = le32_to_cpu(sgl->word2);
19847 if ((i+1) == numBdes)
19848 bf_set(lpfc_sli4_sge_last, sgl, 1);
19849 else
19850 bf_set(lpfc_sli4_sge_last, sgl, 0);
19851 /* swap the size field back to the cpu so we
19852 * can assign it to the sgl.
19854 bde.tus.w = le32_to_cpu(bpl->tus.w);
19855 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19856 /* The offsets in the sgl need to be accumulated
19857 * separately for the request and reply lists.
19858 * The request is always first, the reply follows.
19860 switch (cmd) {
19861 case CMD_GEN_REQUEST64_WQE:
19862 /* add up the reply sg entries */
19863 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19864 inbound++;
19865 /* first inbound? reset the offset */
19866 if (inbound == 1)
19867 offset = 0;
19868 bf_set(lpfc_sli4_sge_offset, sgl, offset);
19869 bf_set(lpfc_sli4_sge_type, sgl,
19870 LPFC_SGE_TYPE_DATA);
19871 offset += bde.tus.f.bdeSize;
19872 break;
19873 case CMD_FCP_TRSP64_WQE:
19874 bf_set(lpfc_sli4_sge_offset, sgl, 0);
19875 bf_set(lpfc_sli4_sge_type, sgl,
19876 LPFC_SGE_TYPE_DATA);
19877 break;
19878 case CMD_FCP_TSEND64_WQE:
19879 case CMD_FCP_TRECEIVE64_WQE:
19880 bf_set(lpfc_sli4_sge_type, sgl,
19881 bpl->tus.f.bdeFlags);
19882 if (i < 3)
19883 offset = 0;
19884 else
19885 offset += bde.tus.f.bdeSize;
19886 bf_set(lpfc_sli4_sge_offset, sgl, offset);
19887 break;
19889 sgl->word2 = cpu_to_le32(sgl->word2);
19890 bpl++;
19891 sgl++;
19893 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19894 /* The addrHigh and addrLow fields of the BDE have not
19895 * been byteswapped yet so they need to be swapped
19896 * before putting them in the sgl.
19898 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19899 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19900 sgl->word2 = le32_to_cpu(sgl->word2);
19901 bf_set(lpfc_sli4_sge_last, sgl, 1);
19902 sgl->word2 = cpu_to_le32(sgl->word2);
19903 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19905 return sglq->sli4_xritag;
19909 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19910 * @phba: Pointer to HBA context object.
19911 * @ring_number: Base sli ring number
19912 * @pwqe: Pointer to command WQE.
19915 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19916 struct lpfc_iocbq *pwqe)
19918 union lpfc_wqe128 *wqe = &pwqe->wqe;
19919 struct lpfc_nvmet_rcv_ctx *ctxp;
19920 struct lpfc_queue *wq;
19921 struct lpfc_sglq *sglq;
19922 struct lpfc_sli_ring *pring;
19923 unsigned long iflags;
19924 uint32_t ret = 0;
19926 /* NVME_LS and NVME_LS ABTS requests. */
19927 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19928 pring = phba->sli4_hba.nvmels_wq->pring;
19929 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19930 qp, wq_access);
19931 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19932 if (!sglq) {
19933 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19934 return WQE_BUSY;
19936 pwqe->sli4_lxritag = sglq->sli4_lxritag;
19937 pwqe->sli4_xritag = sglq->sli4_xritag;
19938 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19939 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19940 return WQE_ERROR;
19942 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19943 pwqe->sli4_xritag);
19944 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19945 if (ret) {
19946 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19947 return ret;
19950 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19951 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19953 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
19954 return 0;
19957 /* NVME_FCREQ and NVME_ABTS requests */
19958 if (pwqe->iocb_flag & LPFC_IO_NVME) {
19959 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
19960 wq = qp->io_wq;
19961 pring = wq->pring;
19963 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19965 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19966 qp, wq_access);
19967 ret = lpfc_sli4_wq_put(wq, wqe);
19968 if (ret) {
19969 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19970 return ret;
19972 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19973 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19975 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
19976 return 0;
19979 /* NVMET requests */
19980 if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19981 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
19982 wq = qp->io_wq;
19983 pring = wq->pring;
19985 ctxp = pwqe->context2;
19986 sglq = ctxp->ctxbuf->sglq;
19987 if (pwqe->sli4_xritag == NO_XRI) {
19988 pwqe->sli4_lxritag = sglq->sli4_lxritag;
19989 pwqe->sli4_xritag = sglq->sli4_xritag;
19991 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19992 pwqe->sli4_xritag);
19993 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19995 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19996 qp, wq_access);
19997 ret = lpfc_sli4_wq_put(wq, wqe);
19998 if (ret) {
19999 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20000 return ret;
20002 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20003 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20005 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20006 return 0;
20008 return WQE_ERROR;
20011 #ifdef LPFC_MXP_STAT
20013 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
20014 * @phba: pointer to lpfc hba data structure.
20015 * @hwqid: belong to which HWQ.
20017 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
20018 * 15 seconds after a test case is running.
20020 * The user should call lpfc_debugfs_multixripools_write before running a test
20021 * case to clear stat_snapshot_taken. Then the user starts a test case. During
20022 * test case is running, stat_snapshot_taken is incremented by 1 every time when
20023 * this routine is called from heartbeat timer. When stat_snapshot_taken is
20024 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20026 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20028 struct lpfc_sli4_hdw_queue *qp;
20029 struct lpfc_multixri_pool *multixri_pool;
20030 struct lpfc_pvt_pool *pvt_pool;
20031 struct lpfc_pbl_pool *pbl_pool;
20032 u32 txcmplq_cnt;
20034 qp = &phba->sli4_hba.hdwq[hwqid];
20035 multixri_pool = qp->p_multixri_pool;
20036 if (!multixri_pool)
20037 return;
20039 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20040 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20041 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20042 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20044 multixri_pool->stat_pbl_count = pbl_pool->count;
20045 multixri_pool->stat_pvt_count = pvt_pool->count;
20046 multixri_pool->stat_busy_count = txcmplq_cnt;
20049 multixri_pool->stat_snapshot_taken++;
20051 #endif
20054 * lpfc_adjust_pvt_pool_count - Adjust private pool count
20055 * @phba: pointer to lpfc hba data structure.
20056 * @hwqid: belong to which HWQ.
20058 * This routine moves some XRIs from private to public pool when private pool
20059 * is not busy.
20061 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20063 struct lpfc_multixri_pool *multixri_pool;
20064 u32 io_req_count;
20065 u32 prev_io_req_count;
20067 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20068 if (!multixri_pool)
20069 return;
20070 io_req_count = multixri_pool->io_req_count;
20071 prev_io_req_count = multixri_pool->prev_io_req_count;
20073 if (prev_io_req_count != io_req_count) {
20074 /* Private pool is busy */
20075 multixri_pool->prev_io_req_count = io_req_count;
20076 } else {
20077 /* Private pool is not busy.
20078 * Move XRIs from private to public pool.
20080 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20085 * lpfc_adjust_high_watermark - Adjust high watermark
20086 * @phba: pointer to lpfc hba data structure.
20087 * @hwqid: belong to which HWQ.
20089 * This routine sets high watermark as number of outstanding XRIs,
20090 * but make sure the new value is between xri_limit/2 and xri_limit.
20092 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20094 u32 new_watermark;
20095 u32 watermark_max;
20096 u32 watermark_min;
20097 u32 xri_limit;
20098 u32 txcmplq_cnt;
20099 u32 abts_io_bufs;
20100 struct lpfc_multixri_pool *multixri_pool;
20101 struct lpfc_sli4_hdw_queue *qp;
20103 qp = &phba->sli4_hba.hdwq[hwqid];
20104 multixri_pool = qp->p_multixri_pool;
20105 if (!multixri_pool)
20106 return;
20107 xri_limit = multixri_pool->xri_limit;
20109 watermark_max = xri_limit;
20110 watermark_min = xri_limit / 2;
20112 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20113 abts_io_bufs = qp->abts_scsi_io_bufs;
20114 abts_io_bufs += qp->abts_nvme_io_bufs;
20116 new_watermark = txcmplq_cnt + abts_io_bufs;
20117 new_watermark = min(watermark_max, new_watermark);
20118 new_watermark = max(watermark_min, new_watermark);
20119 multixri_pool->pvt_pool.high_watermark = new_watermark;
20121 #ifdef LPFC_MXP_STAT
20122 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20123 new_watermark);
20124 #endif
20128 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20129 * @phba: pointer to lpfc hba data structure.
20130 * @hwqid: belong to which HWQ.
20132 * This routine is called from hearbeat timer when pvt_pool is idle.
20133 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20134 * The first step moves (all - low_watermark) amount of XRIs.
20135 * The second step moves the rest of XRIs.
20137 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20139 struct lpfc_pbl_pool *pbl_pool;
20140 struct lpfc_pvt_pool *pvt_pool;
20141 struct lpfc_sli4_hdw_queue *qp;
20142 struct lpfc_io_buf *lpfc_ncmd;
20143 struct lpfc_io_buf *lpfc_ncmd_next;
20144 unsigned long iflag;
20145 struct list_head tmp_list;
20146 u32 tmp_count;
20148 qp = &phba->sli4_hba.hdwq[hwqid];
20149 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20150 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20151 tmp_count = 0;
20153 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20154 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20156 if (pvt_pool->count > pvt_pool->low_watermark) {
20157 /* Step 1: move (all - low_watermark) from pvt_pool
20158 * to pbl_pool
20161 /* Move low watermark of bufs from pvt_pool to tmp_list */
20162 INIT_LIST_HEAD(&tmp_list);
20163 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20164 &pvt_pool->list, list) {
20165 list_move_tail(&lpfc_ncmd->list, &tmp_list);
20166 tmp_count++;
20167 if (tmp_count >= pvt_pool->low_watermark)
20168 break;
20171 /* Move all bufs from pvt_pool to pbl_pool */
20172 list_splice_init(&pvt_pool->list, &pbl_pool->list);
20174 /* Move all bufs from tmp_list to pvt_pool */
20175 list_splice(&tmp_list, &pvt_pool->list);
20177 pbl_pool->count += (pvt_pool->count - tmp_count);
20178 pvt_pool->count = tmp_count;
20179 } else {
20180 /* Step 2: move the rest from pvt_pool to pbl_pool */
20181 list_splice_init(&pvt_pool->list, &pbl_pool->list);
20182 pbl_pool->count += pvt_pool->count;
20183 pvt_pool->count = 0;
20186 spin_unlock(&pvt_pool->lock);
20187 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20191 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20192 * @phba: pointer to lpfc hba data structure
20193 * @pbl_pool: specified public free XRI pool
20194 * @pvt_pool: specified private free XRI pool
20195 * @count: number of XRIs to move
20197 * This routine tries to move some free common bufs from the specified pbl_pool
20198 * to the specified pvt_pool. It might move less than count XRIs if there's not
20199 * enough in public pool.
20201 * Return:
20202 * true - if XRIs are successfully moved from the specified pbl_pool to the
20203 * specified pvt_pool
20204 * false - if the specified pbl_pool is empty or locked by someone else
20206 static bool
20207 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20208 struct lpfc_pbl_pool *pbl_pool,
20209 struct lpfc_pvt_pool *pvt_pool, u32 count)
20211 struct lpfc_io_buf *lpfc_ncmd;
20212 struct lpfc_io_buf *lpfc_ncmd_next;
20213 unsigned long iflag;
20214 int ret;
20216 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20217 if (ret) {
20218 if (pbl_pool->count) {
20219 /* Move a batch of XRIs from public to private pool */
20220 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20221 list_for_each_entry_safe(lpfc_ncmd,
20222 lpfc_ncmd_next,
20223 &pbl_pool->list,
20224 list) {
20225 list_move_tail(&lpfc_ncmd->list,
20226 &pvt_pool->list);
20227 pvt_pool->count++;
20228 pbl_pool->count--;
20229 count--;
20230 if (count == 0)
20231 break;
20234 spin_unlock(&pvt_pool->lock);
20235 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20236 return true;
20238 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20241 return false;
20245 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20246 * @phba: pointer to lpfc hba data structure.
20247 * @hwqid: belong to which HWQ.
20248 * @count: number of XRIs to move
20250 * This routine tries to find some free common bufs in one of public pools with
20251 * Round Robin method. The search always starts from local hwqid, then the next
20252 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20253 * a batch of free common bufs are moved to private pool on hwqid.
20254 * It might move less than count XRIs if there's not enough in public pool.
20256 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20258 struct lpfc_multixri_pool *multixri_pool;
20259 struct lpfc_multixri_pool *next_multixri_pool;
20260 struct lpfc_pvt_pool *pvt_pool;
20261 struct lpfc_pbl_pool *pbl_pool;
20262 struct lpfc_sli4_hdw_queue *qp;
20263 u32 next_hwqid;
20264 u32 hwq_count;
20265 int ret;
20267 qp = &phba->sli4_hba.hdwq[hwqid];
20268 multixri_pool = qp->p_multixri_pool;
20269 pvt_pool = &multixri_pool->pvt_pool;
20270 pbl_pool = &multixri_pool->pbl_pool;
20272 /* Check if local pbl_pool is available */
20273 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20274 if (ret) {
20275 #ifdef LPFC_MXP_STAT
20276 multixri_pool->local_pbl_hit_count++;
20277 #endif
20278 return;
20281 hwq_count = phba->cfg_hdw_queue;
20283 /* Get the next hwqid which was found last time */
20284 next_hwqid = multixri_pool->rrb_next_hwqid;
20286 do {
20287 /* Go to next hwq */
20288 next_hwqid = (next_hwqid + 1) % hwq_count;
20290 next_multixri_pool =
20291 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20292 pbl_pool = &next_multixri_pool->pbl_pool;
20294 /* Check if the public free xri pool is available */
20295 ret = _lpfc_move_xri_pbl_to_pvt(
20296 phba, qp, pbl_pool, pvt_pool, count);
20298 /* Exit while-loop if success or all hwqid are checked */
20299 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20301 /* Starting point for the next time */
20302 multixri_pool->rrb_next_hwqid = next_hwqid;
20304 if (!ret) {
20305 /* stats: all public pools are empty*/
20306 multixri_pool->pbl_empty_count++;
20309 #ifdef LPFC_MXP_STAT
20310 if (ret) {
20311 if (next_hwqid == hwqid)
20312 multixri_pool->local_pbl_hit_count++;
20313 else
20314 multixri_pool->other_pbl_hit_count++;
20316 #endif
20320 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20321 * @phba: pointer to lpfc hba data structure.
20322 * @qp: belong to which HWQ.
20324 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20325 * low watermark.
20327 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20329 struct lpfc_multixri_pool *multixri_pool;
20330 struct lpfc_pvt_pool *pvt_pool;
20332 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20333 pvt_pool = &multixri_pool->pvt_pool;
20335 if (pvt_pool->count < pvt_pool->low_watermark)
20336 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20340 * lpfc_release_io_buf - Return one IO buf back to free pool
20341 * @phba: pointer to lpfc hba data structure.
20342 * @lpfc_ncmd: IO buf to be returned.
20343 * @qp: belong to which HWQ.
20345 * This routine returns one IO buf back to free pool. If this is an urgent IO,
20346 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20347 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20348 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
20349 * lpfc_io_buf_list_put.
20351 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20352 struct lpfc_sli4_hdw_queue *qp)
20354 unsigned long iflag;
20355 struct lpfc_pbl_pool *pbl_pool;
20356 struct lpfc_pvt_pool *pvt_pool;
20357 struct lpfc_epd_pool *epd_pool;
20358 u32 txcmplq_cnt;
20359 u32 xri_owned;
20360 u32 xri_limit;
20361 u32 abts_io_bufs;
20363 /* MUST zero fields if buffer is reused by another protocol */
20364 lpfc_ncmd->nvmeCmd = NULL;
20365 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20366 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20368 if (phba->cfg_xpsgl && !phba->nvmet_support &&
20369 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20370 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20372 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20373 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20375 if (phba->cfg_xri_rebalancing) {
20376 if (lpfc_ncmd->expedite) {
20377 /* Return to expedite pool */
20378 epd_pool = &phba->epd_pool;
20379 spin_lock_irqsave(&epd_pool->lock, iflag);
20380 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20381 epd_pool->count++;
20382 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20383 return;
20386 /* Avoid invalid access if an IO sneaks in and is being rejected
20387 * just _after_ xri pools are destroyed in lpfc_offline.
20388 * Nothing much can be done at this point.
20390 if (!qp->p_multixri_pool)
20391 return;
20393 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20394 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20396 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20397 abts_io_bufs = qp->abts_scsi_io_bufs;
20398 abts_io_bufs += qp->abts_nvme_io_bufs;
20400 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20401 xri_limit = qp->p_multixri_pool->xri_limit;
20403 #ifdef LPFC_MXP_STAT
20404 if (xri_owned <= xri_limit)
20405 qp->p_multixri_pool->below_limit_count++;
20406 else
20407 qp->p_multixri_pool->above_limit_count++;
20408 #endif
20410 /* XRI goes to either public or private free xri pool
20411 * based on watermark and xri_limit
20413 if ((pvt_pool->count < pvt_pool->low_watermark) ||
20414 (xri_owned < xri_limit &&
20415 pvt_pool->count < pvt_pool->high_watermark)) {
20416 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20417 qp, free_pvt_pool);
20418 list_add_tail(&lpfc_ncmd->list,
20419 &pvt_pool->list);
20420 pvt_pool->count++;
20421 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20422 } else {
20423 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20424 qp, free_pub_pool);
20425 list_add_tail(&lpfc_ncmd->list,
20426 &pbl_pool->list);
20427 pbl_pool->count++;
20428 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20430 } else {
20431 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20432 qp, free_xri);
20433 list_add_tail(&lpfc_ncmd->list,
20434 &qp->lpfc_io_buf_list_put);
20435 qp->put_io_bufs++;
20436 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20437 iflag);
20442 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20443 * @phba: pointer to lpfc hba data structure.
20444 * @pvt_pool: pointer to private pool data structure.
20445 * @ndlp: pointer to lpfc nodelist data structure.
20447 * This routine tries to get one free IO buf from private pool.
20449 * Return:
20450 * pointer to one free IO buf - if private pool is not empty
20451 * NULL - if private pool is empty
20453 static struct lpfc_io_buf *
20454 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20455 struct lpfc_sli4_hdw_queue *qp,
20456 struct lpfc_pvt_pool *pvt_pool,
20457 struct lpfc_nodelist *ndlp)
20459 struct lpfc_io_buf *lpfc_ncmd;
20460 struct lpfc_io_buf *lpfc_ncmd_next;
20461 unsigned long iflag;
20463 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20464 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20465 &pvt_pool->list, list) {
20466 if (lpfc_test_rrq_active(
20467 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20468 continue;
20469 list_del(&lpfc_ncmd->list);
20470 pvt_pool->count--;
20471 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20472 return lpfc_ncmd;
20474 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20476 return NULL;
20480 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20481 * @phba: pointer to lpfc hba data structure.
20483 * This routine tries to get one free IO buf from expedite pool.
20485 * Return:
20486 * pointer to one free IO buf - if expedite pool is not empty
20487 * NULL - if expedite pool is empty
20489 static struct lpfc_io_buf *
20490 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20492 struct lpfc_io_buf *lpfc_ncmd;
20493 struct lpfc_io_buf *lpfc_ncmd_next;
20494 unsigned long iflag;
20495 struct lpfc_epd_pool *epd_pool;
20497 epd_pool = &phba->epd_pool;
20498 lpfc_ncmd = NULL;
20500 spin_lock_irqsave(&epd_pool->lock, iflag);
20501 if (epd_pool->count > 0) {
20502 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20503 &epd_pool->list, list) {
20504 list_del(&lpfc_ncmd->list);
20505 epd_pool->count--;
20506 break;
20509 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20511 return lpfc_ncmd;
20515 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20516 * @phba: pointer to lpfc hba data structure.
20517 * @ndlp: pointer to lpfc nodelist data structure.
20518 * @hwqid: belong to which HWQ
20519 * @expedite: 1 means this request is urgent.
20521 * This routine will do the following actions and then return a pointer to
20522 * one free IO buf.
20524 * 1. If private free xri count is empty, move some XRIs from public to
20525 * private pool.
20526 * 2. Get one XRI from private free xri pool.
20527 * 3. If we fail to get one from pvt_pool and this is an expedite request,
20528 * get one free xri from expedite pool.
20530 * Note: ndlp is only used on SCSI side for RRQ testing.
20531 * The caller should pass NULL for ndlp on NVME side.
20533 * Return:
20534 * pointer to one free IO buf - if private pool is not empty
20535 * NULL - if private pool is empty
20537 static struct lpfc_io_buf *
20538 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20539 struct lpfc_nodelist *ndlp,
20540 int hwqid, int expedite)
20542 struct lpfc_sli4_hdw_queue *qp;
20543 struct lpfc_multixri_pool *multixri_pool;
20544 struct lpfc_pvt_pool *pvt_pool;
20545 struct lpfc_io_buf *lpfc_ncmd;
20547 qp = &phba->sli4_hba.hdwq[hwqid];
20548 lpfc_ncmd = NULL;
20549 multixri_pool = qp->p_multixri_pool;
20550 pvt_pool = &multixri_pool->pvt_pool;
20551 multixri_pool->io_req_count++;
20553 /* If pvt_pool is empty, move some XRIs from public to private pool */
20554 if (pvt_pool->count == 0)
20555 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20557 /* Get one XRI from private free xri pool */
20558 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20560 if (lpfc_ncmd) {
20561 lpfc_ncmd->hdwq = qp;
20562 lpfc_ncmd->hdwq_no = hwqid;
20563 } else if (expedite) {
20564 /* If we fail to get one from pvt_pool and this is an expedite
20565 * request, get one free xri from expedite pool.
20567 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20570 return lpfc_ncmd;
20573 static inline struct lpfc_io_buf *
20574 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20576 struct lpfc_sli4_hdw_queue *qp;
20577 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20579 qp = &phba->sli4_hba.hdwq[idx];
20580 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20581 &qp->lpfc_io_buf_list_get, list) {
20582 if (lpfc_test_rrq_active(phba, ndlp,
20583 lpfc_cmd->cur_iocbq.sli4_lxritag))
20584 continue;
20586 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20587 continue;
20589 list_del_init(&lpfc_cmd->list);
20590 qp->get_io_bufs--;
20591 lpfc_cmd->hdwq = qp;
20592 lpfc_cmd->hdwq_no = idx;
20593 return lpfc_cmd;
20595 return NULL;
20599 * lpfc_get_io_buf - Get one IO buffer from free pool
20600 * @phba: The HBA for which this call is being executed.
20601 * @ndlp: pointer to lpfc nodelist data structure.
20602 * @hwqid: belong to which HWQ
20603 * @expedite: 1 means this request is urgent.
20605 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20606 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20607 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20609 * Note: ndlp is only used on SCSI side for RRQ testing.
20610 * The caller should pass NULL for ndlp on NVME side.
20612 * Return codes:
20613 * NULL - Error
20614 * Pointer to lpfc_io_buf - Success
20616 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20617 struct lpfc_nodelist *ndlp,
20618 u32 hwqid, int expedite)
20620 struct lpfc_sli4_hdw_queue *qp;
20621 unsigned long iflag;
20622 struct lpfc_io_buf *lpfc_cmd;
20624 qp = &phba->sli4_hba.hdwq[hwqid];
20625 lpfc_cmd = NULL;
20627 if (phba->cfg_xri_rebalancing)
20628 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20629 phba, ndlp, hwqid, expedite);
20630 else {
20631 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20632 qp, alloc_xri_get);
20633 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20634 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20635 if (!lpfc_cmd) {
20636 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20637 qp, alloc_xri_put);
20638 list_splice(&qp->lpfc_io_buf_list_put,
20639 &qp->lpfc_io_buf_list_get);
20640 qp->get_io_bufs += qp->put_io_bufs;
20641 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20642 qp->put_io_bufs = 0;
20643 spin_unlock(&qp->io_buf_list_put_lock);
20644 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20645 expedite)
20646 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20648 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20651 return lpfc_cmd;
20655 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
20656 * @phba: The HBA for which this call is being executed.
20657 * @lpfc_buf: IO buf structure to append the SGL chunk
20659 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
20660 * and will allocate an SGL chunk if the pool is empty.
20662 * Return codes:
20663 * NULL - Error
20664 * Pointer to sli4_hybrid_sgl - Success
20666 struct sli4_hybrid_sgl *
20667 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20669 struct sli4_hybrid_sgl *list_entry = NULL;
20670 struct sli4_hybrid_sgl *tmp = NULL;
20671 struct sli4_hybrid_sgl *allocated_sgl = NULL;
20672 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20673 struct list_head *buf_list = &hdwq->sgl_list;
20674 unsigned long iflags;
20676 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20678 if (likely(!list_empty(buf_list))) {
20679 /* break off 1 chunk from the sgl_list */
20680 list_for_each_entry_safe(list_entry, tmp,
20681 buf_list, list_node) {
20682 list_move_tail(&list_entry->list_node,
20683 &lpfc_buf->dma_sgl_xtra_list);
20684 break;
20686 } else {
20687 /* allocate more */
20688 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20689 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20690 cpu_to_node(hdwq->io_wq->chann));
20691 if (!tmp) {
20692 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20693 "8353 error kmalloc memory for HDWQ "
20694 "%d %s\n",
20695 lpfc_buf->hdwq_no, __func__);
20696 return NULL;
20699 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
20700 GFP_ATOMIC, &tmp->dma_phys_sgl);
20701 if (!tmp->dma_sgl) {
20702 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20703 "8354 error pool_alloc memory for HDWQ "
20704 "%d %s\n",
20705 lpfc_buf->hdwq_no, __func__);
20706 kfree(tmp);
20707 return NULL;
20710 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20711 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
20714 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
20715 struct sli4_hybrid_sgl,
20716 list_node);
20718 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20720 return allocated_sgl;
20724 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
20725 * @phba: The HBA for which this call is being executed.
20726 * @lpfc_buf: IO buf structure with the SGL chunk
20728 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
20730 * Return codes:
20731 * 0 - Success
20732 * -EINVAL - Error
20735 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20737 int rc = 0;
20738 struct sli4_hybrid_sgl *list_entry = NULL;
20739 struct sli4_hybrid_sgl *tmp = NULL;
20740 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20741 struct list_head *buf_list = &hdwq->sgl_list;
20742 unsigned long iflags;
20744 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20746 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
20747 list_for_each_entry_safe(list_entry, tmp,
20748 &lpfc_buf->dma_sgl_xtra_list,
20749 list_node) {
20750 list_move_tail(&list_entry->list_node,
20751 buf_list);
20753 } else {
20754 rc = -EINVAL;
20757 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20758 return rc;
20762 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
20763 * @phba: phba object
20764 * @hdwq: hdwq to cleanup sgl buff resources on
20766 * This routine frees all SGL chunks of hdwq SGL chunk pool.
20768 * Return codes:
20769 * None
20771 void
20772 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
20773 struct lpfc_sli4_hdw_queue *hdwq)
20775 struct list_head *buf_list = &hdwq->sgl_list;
20776 struct sli4_hybrid_sgl *list_entry = NULL;
20777 struct sli4_hybrid_sgl *tmp = NULL;
20778 unsigned long iflags;
20780 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20782 /* Free sgl pool */
20783 list_for_each_entry_safe(list_entry, tmp,
20784 buf_list, list_node) {
20785 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
20786 list_entry->dma_sgl,
20787 list_entry->dma_phys_sgl);
20788 list_del(&list_entry->list_node);
20789 kfree(list_entry);
20792 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20796 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
20797 * @phba: The HBA for which this call is being executed.
20798 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
20800 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
20801 * and will allocate an CMD/RSP buffer if the pool is empty.
20803 * Return codes:
20804 * NULL - Error
20805 * Pointer to fcp_cmd_rsp_buf - Success
20807 struct fcp_cmd_rsp_buf *
20808 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20809 struct lpfc_io_buf *lpfc_buf)
20811 struct fcp_cmd_rsp_buf *list_entry = NULL;
20812 struct fcp_cmd_rsp_buf *tmp = NULL;
20813 struct fcp_cmd_rsp_buf *allocated_buf = NULL;
20814 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20815 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20816 unsigned long iflags;
20818 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20820 if (likely(!list_empty(buf_list))) {
20821 /* break off 1 chunk from the list */
20822 list_for_each_entry_safe(list_entry, tmp,
20823 buf_list,
20824 list_node) {
20825 list_move_tail(&list_entry->list_node,
20826 &lpfc_buf->dma_cmd_rsp_list);
20827 break;
20829 } else {
20830 /* allocate more */
20831 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20832 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20833 cpu_to_node(hdwq->io_wq->chann));
20834 if (!tmp) {
20835 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20836 "8355 error kmalloc memory for HDWQ "
20837 "%d %s\n",
20838 lpfc_buf->hdwq_no, __func__);
20839 return NULL;
20842 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
20843 GFP_ATOMIC,
20844 &tmp->fcp_cmd_rsp_dma_handle);
20846 if (!tmp->fcp_cmnd) {
20847 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20848 "8356 error pool_alloc memory for HDWQ "
20849 "%d %s\n",
20850 lpfc_buf->hdwq_no, __func__);
20851 kfree(tmp);
20852 return NULL;
20855 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
20856 sizeof(struct fcp_cmnd));
20858 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20859 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
20862 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
20863 struct fcp_cmd_rsp_buf,
20864 list_node);
20866 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20868 return allocated_buf;
20872 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
20873 * @phba: The HBA for which this call is being executed.
20874 * @lpfc_buf: IO buf structure with the CMD/RSP buf
20876 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
20878 * Return codes:
20879 * 0 - Success
20880 * -EINVAL - Error
20883 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20884 struct lpfc_io_buf *lpfc_buf)
20886 int rc = 0;
20887 struct fcp_cmd_rsp_buf *list_entry = NULL;
20888 struct fcp_cmd_rsp_buf *tmp = NULL;
20889 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20890 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20891 unsigned long iflags;
20893 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20895 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
20896 list_for_each_entry_safe(list_entry, tmp,
20897 &lpfc_buf->dma_cmd_rsp_list,
20898 list_node) {
20899 list_move_tail(&list_entry->list_node,
20900 buf_list);
20902 } else {
20903 rc = -EINVAL;
20906 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20907 return rc;
20911 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
20912 * @phba: phba object
20913 * @hdwq: hdwq to cleanup cmd rsp buff resources on
20915 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
20917 * Return codes:
20918 * None
20920 void
20921 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20922 struct lpfc_sli4_hdw_queue *hdwq)
20924 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20925 struct fcp_cmd_rsp_buf *list_entry = NULL;
20926 struct fcp_cmd_rsp_buf *tmp = NULL;
20927 unsigned long iflags;
20929 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20931 /* Free cmd_rsp buf pool */
20932 list_for_each_entry_safe(list_entry, tmp,
20933 buf_list,
20934 list_node) {
20935 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
20936 list_entry->fcp_cmnd,
20937 list_entry->fcp_cmd_rsp_dma_handle);
20938 list_del(&list_entry->list_node);
20939 kfree(list_entry);
20942 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);