treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / soc / fsl / dpio / qbman-portal.c
blobc66f5b73777c15870df350286a8d7ec6b4c7bb47
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4 * Copyright 2016 NXP
6 */
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <soc/fsl/dpaa2-global.h>
13 #include "qbman-portal.h"
15 #define QMAN_REV_4000 0x04000000
16 #define QMAN_REV_4100 0x04010000
17 #define QMAN_REV_4101 0x04010001
18 #define QMAN_REV_5000 0x05000000
20 #define QMAN_REV_MASK 0xffff0000
22 /* All QBMan command and result structures use this "valid bit" encoding */
23 #define QB_VALID_BIT ((u32)0x80)
25 /* QBMan portal management command codes */
26 #define QBMAN_MC_ACQUIRE 0x30
27 #define QBMAN_WQCHAN_CONFIGURE 0x46
29 /* CINH register offsets */
30 #define QBMAN_CINH_SWP_EQCR_PI 0x800
31 #define QBMAN_CINH_SWP_EQAR 0x8c0
32 #define QBMAN_CINH_SWP_CR_RT 0x900
33 #define QBMAN_CINH_SWP_VDQCR_RT 0x940
34 #define QBMAN_CINH_SWP_EQCR_AM_RT 0x980
35 #define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0
36 #define QBMAN_CINH_SWP_DQPI 0xa00
37 #define QBMAN_CINH_SWP_DCAP 0xac0
38 #define QBMAN_CINH_SWP_SDQCR 0xb00
39 #define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40
40 #define QBMAN_CINH_SWP_RCR_PI 0xc00
41 #define QBMAN_CINH_SWP_RAR 0xcc0
42 #define QBMAN_CINH_SWP_ISR 0xe00
43 #define QBMAN_CINH_SWP_IER 0xe40
44 #define QBMAN_CINH_SWP_ISDR 0xe80
45 #define QBMAN_CINH_SWP_IIR 0xec0
47 /* CENA register offsets */
48 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
49 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
50 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
51 #define QBMAN_CENA_SWP_CR 0x600
52 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
53 #define QBMAN_CENA_SWP_VDQCR 0x780
55 /* CENA register offsets in memory-backed mode */
56 #define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6))
57 #define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6))
58 #define QBMAN_CENA_SWP_CR_MEM 0x1600
59 #define QBMAN_CENA_SWP_RR_MEM 0x1680
60 #define QBMAN_CENA_SWP_VDQCR_MEM 0x1780
62 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
63 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
65 /* Define token used to determine if response written to memory is valid */
66 #define QMAN_DQ_TOKEN_VALID 1
68 /* SDQCR attribute codes */
69 #define QB_SDQCR_FC_SHIFT 29
70 #define QB_SDQCR_FC_MASK 0x1
71 #define QB_SDQCR_DCT_SHIFT 24
72 #define QB_SDQCR_DCT_MASK 0x3
73 #define QB_SDQCR_TOK_SHIFT 16
74 #define QB_SDQCR_TOK_MASK 0xff
75 #define QB_SDQCR_SRC_SHIFT 0
76 #define QB_SDQCR_SRC_MASK 0xffff
78 /* opaque token for static dequeues */
79 #define QMAN_SDQCR_TOKEN 0xbb
81 enum qbman_sdqcr_dct {
82 qbman_sdqcr_dct_null = 0,
83 qbman_sdqcr_dct_prio_ics,
84 qbman_sdqcr_dct_active_ics,
85 qbman_sdqcr_dct_active
88 enum qbman_sdqcr_fc {
89 qbman_sdqcr_fc_one = 0,
90 qbman_sdqcr_fc_up_to_3 = 1
93 /* Portal Access */
95 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
97 return readl_relaxed(p->addr_cinh + offset);
100 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
101 u32 value)
103 writel_relaxed(value, p->addr_cinh + offset);
106 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
108 return p->addr_cena + offset;
111 #define QBMAN_CINH_SWP_CFG 0xd00
113 #define SWP_CFG_DQRR_MF_SHIFT 20
114 #define SWP_CFG_EST_SHIFT 16
115 #define SWP_CFG_CPBS_SHIFT 15
116 #define SWP_CFG_WN_SHIFT 14
117 #define SWP_CFG_RPM_SHIFT 12
118 #define SWP_CFG_DCM_SHIFT 10
119 #define SWP_CFG_EPM_SHIFT 8
120 #define SWP_CFG_VPM_SHIFT 7
121 #define SWP_CFG_CPM_SHIFT 6
122 #define SWP_CFG_SD_SHIFT 5
123 #define SWP_CFG_SP_SHIFT 4
124 #define SWP_CFG_SE_SHIFT 3
125 #define SWP_CFG_DP_SHIFT 2
126 #define SWP_CFG_DE_SHIFT 1
127 #define SWP_CFG_EP_SHIFT 0
129 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
130 u8 epm, int sd, int sp, int se,
131 int dp, int de, int ep)
133 return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
134 est << SWP_CFG_EST_SHIFT |
135 wn << SWP_CFG_WN_SHIFT |
136 rpm << SWP_CFG_RPM_SHIFT |
137 dcm << SWP_CFG_DCM_SHIFT |
138 epm << SWP_CFG_EPM_SHIFT |
139 sd << SWP_CFG_SD_SHIFT |
140 sp << SWP_CFG_SP_SHIFT |
141 se << SWP_CFG_SE_SHIFT |
142 dp << SWP_CFG_DP_SHIFT |
143 de << SWP_CFG_DE_SHIFT |
144 ep << SWP_CFG_EP_SHIFT);
147 #define QMAN_RT_MODE 0x00000100
150 * qbman_swp_init() - Create a functional object representing the given
151 * QBMan portal descriptor.
152 * @d: the given qbman swp descriptor
154 * Return qbman_swp portal for success, NULL if the object cannot
155 * be created.
157 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
159 struct qbman_swp *p = kmalloc(sizeof(*p), GFP_KERNEL);
160 u32 reg;
162 if (!p)
163 return NULL;
164 p->desc = d;
165 p->mc.valid_bit = QB_VALID_BIT;
166 p->sdq = 0;
167 p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
168 p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
169 p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
170 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
171 p->mr.valid_bit = QB_VALID_BIT;
173 atomic_set(&p->vdq.available, 1);
174 p->vdq.valid_bit = QB_VALID_BIT;
175 p->dqrr.next_idx = 0;
176 p->dqrr.valid_bit = QB_VALID_BIT;
178 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
179 p->dqrr.dqrr_size = 4;
180 p->dqrr.reset_bug = 1;
181 } else {
182 p->dqrr.dqrr_size = 8;
183 p->dqrr.reset_bug = 0;
186 p->addr_cena = d->cena_bar;
187 p->addr_cinh = d->cinh_bar;
189 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
190 memset(p->addr_cena, 0, 64 * 1024);
192 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
193 1, /* Writes Non-cacheable */
194 0, /* EQCR_CI stashing threshold */
195 3, /* RPM: Valid bit mode, RCR in array mode */
196 2, /* DCM: Discrete consumption ack mode */
197 3, /* EPM: Valid bit mode, EQCR in array mode */
198 1, /* mem stashing drop enable == TRUE */
199 1, /* mem stashing priority == TRUE */
200 1, /* mem stashing enable == TRUE */
201 1, /* dequeue stashing priority == TRUE */
202 0, /* dequeue stashing enable == FALSE */
203 0); /* EQCR_CI stashing priority == FALSE */
204 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
205 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
206 1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */
207 1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */
209 qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
210 reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
211 if (!reg) {
212 pr_err("qbman: the portal is not enabled!\n");
213 kfree(p);
214 return NULL;
217 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
218 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
219 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
222 * SDQCR needs to be initialized to 0 when no channels are
223 * being dequeued from or else the QMan HW will indicate an
224 * error. The values that were calculated above will be
225 * applied when dequeues from a specific channel are enabled.
227 qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
228 return p;
232 * qbman_swp_finish() - Create and destroy a functional object representing
233 * the given QBMan portal descriptor.
234 * @p: the qbman_swp object to be destroyed
236 void qbman_swp_finish(struct qbman_swp *p)
238 kfree(p);
242 * qbman_swp_interrupt_read_status()
243 * @p: the given software portal
245 * Return the value in the SWP_ISR register.
247 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
249 return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
253 * qbman_swp_interrupt_clear_status()
254 * @p: the given software portal
255 * @mask: The mask to clear in SWP_ISR register
257 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
259 qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
263 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
264 * @p: the given software portal
266 * Return the value in the SWP_IER register.
268 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
270 return qbman_read_register(p, QBMAN_CINH_SWP_IER);
274 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
275 * @p: the given software portal
276 * @mask: The mask of bits to enable in SWP_IER
278 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
280 qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
284 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
285 * @p: the given software portal object
287 * Return the value in the SWP_IIR register.
289 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
291 return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
295 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
296 * @p: the given software portal object
297 * @mask: The mask to set in SWP_IIR register
299 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
301 qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
305 * Different management commands all use this common base layer of code to issue
306 * commands and poll for results.
310 * Returns a pointer to where the caller should fill in their management command
311 * (caller should ignore the verb byte)
313 void *qbman_swp_mc_start(struct qbman_swp *p)
315 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
316 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
317 else
318 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
322 * Commits merges in the caller-supplied command verb (which should not include
323 * the valid-bit) and submits the command to hardware
325 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
327 u8 *v = cmd;
329 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
330 dma_wmb();
331 *v = cmd_verb | p->mc.valid_bit;
332 } else {
333 *v = cmd_verb | p->mc.valid_bit;
334 dma_wmb();
335 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
340 * Checks for a completed response (returns non-NULL if only if the response
341 * is complete).
343 void *qbman_swp_mc_result(struct qbman_swp *p)
345 u32 *ret, verb;
347 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
348 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
349 /* Remove the valid-bit - command completed if the rest
350 * is non-zero.
352 verb = ret[0] & ~QB_VALID_BIT;
353 if (!verb)
354 return NULL;
355 p->mc.valid_bit ^= QB_VALID_BIT;
356 } else {
357 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
358 /* Command completed if the valid bit is toggled */
359 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
360 return NULL;
361 /* Command completed if the rest is non-zero */
362 verb = ret[0] & ~QB_VALID_BIT;
363 if (!verb)
364 return NULL;
365 p->mr.valid_bit ^= QB_VALID_BIT;
368 return ret;
371 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
372 enum qb_enqueue_commands {
373 enqueue_empty = 0,
374 enqueue_response_always = 1,
375 enqueue_rejects_to_fq = 2
378 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
379 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
380 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
383 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
384 * default/starting state.
386 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
388 memset(d, 0, sizeof(*d));
392 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
393 * @d: the enqueue descriptor.
394 * @response_success: 1 = enqueue with response always; 0 = enqueue with
395 * rejections returned on a FQ.
397 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
399 d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
400 if (respond_success)
401 d->verb |= enqueue_response_always;
402 else
403 d->verb |= enqueue_rejects_to_fq;
407 * Exactly one of the following descriptor "targets" should be set. (Calling any
408 * one of these will replace the effect of any prior call to one of these.)
409 * -enqueue to a frame queue
410 * -enqueue to a queuing destination
414 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
415 * @d: the enqueue descriptor
416 * @fqid: the id of the frame queue to be enqueued
418 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
420 d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
421 d->tgtid = cpu_to_le32(fqid);
425 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
426 * @d: the enqueue descriptor
427 * @qdid: the id of the queuing destination to be enqueued
428 * @qd_bin: the queuing destination bin
429 * @qd_prio: the queuing destination priority
431 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
432 u32 qd_bin, u32 qd_prio)
434 d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
435 d->tgtid = cpu_to_le32(qdid);
436 d->qdbin = cpu_to_le16(qd_bin);
437 d->qpri = qd_prio;
440 #define EQAR_IDX(eqar) ((eqar) & 0x7)
441 #define EQAR_VB(eqar) ((eqar) & 0x80)
442 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
444 static inline void qbman_write_eqcr_am_rt_register(struct qbman_swp *p,
445 u8 idx)
447 if (idx < 16)
448 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT + idx * 4,
449 QMAN_RT_MODE);
450 else
451 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT2 +
452 (idx - 16) * 4,
453 QMAN_RT_MODE);
457 * qbman_swp_enqueue() - Issue an enqueue command
458 * @s: the software portal used for enqueue
459 * @d: the enqueue descriptor
460 * @fd: the frame descriptor to be enqueued
462 * Please note that 'fd' should only be NULL if the "action" of the
463 * descriptor is "orp_hole" or "orp_nesn".
465 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
467 int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
468 const struct dpaa2_fd *fd)
470 struct qbman_eq_desc *p;
471 u32 eqar = qbman_read_register(s, QBMAN_CINH_SWP_EQAR);
473 if (!EQAR_SUCCESS(eqar))
474 return -EBUSY;
476 p = qbman_get_cmd(s, QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
477 memcpy(&p->dca, &d->dca, 31);
478 memcpy(&p->fd, fd, sizeof(*fd));
480 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
481 /* Set the verb byte, have to substitute in the valid-bit */
482 dma_wmb();
483 p->verb = d->verb | EQAR_VB(eqar);
484 } else {
485 p->verb = d->verb | EQAR_VB(eqar);
486 dma_wmb();
487 qbman_write_eqcr_am_rt_register(s, EQAR_IDX(eqar));
490 return 0;
493 /* Static (push) dequeue */
496 * qbman_swp_push_get() - Get the push dequeue setup
497 * @p: the software portal object
498 * @channel_idx: the channel index to query
499 * @enabled: returned boolean to show whether the push dequeue is enabled
500 * for the given channel
502 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
504 u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
506 WARN_ON(channel_idx > 15);
507 *enabled = src | (1 << channel_idx);
511 * qbman_swp_push_set() - Enable or disable push dequeue
512 * @p: the software portal object
513 * @channel_idx: the channel index (0 to 15)
514 * @enable: enable or disable push dequeue
516 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
518 u16 dqsrc;
520 WARN_ON(channel_idx > 15);
521 if (enable)
522 s->sdq |= 1 << channel_idx;
523 else
524 s->sdq &= ~(1 << channel_idx);
526 /* Read make the complete src map. If no channels are enabled
527 * the SDQCR must be 0 or else QMan will assert errors
529 dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
530 if (dqsrc != 0)
531 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
532 else
533 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
536 #define QB_VDQCR_VERB_DCT_SHIFT 0
537 #define QB_VDQCR_VERB_DT_SHIFT 2
538 #define QB_VDQCR_VERB_RLS_SHIFT 4
539 #define QB_VDQCR_VERB_WAE_SHIFT 5
541 enum qb_pull_dt_e {
542 qb_pull_dt_channel,
543 qb_pull_dt_workqueue,
544 qb_pull_dt_framequeue
548 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
549 * default/starting state
550 * @d: the pull dequeue descriptor to be cleared
552 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
554 memset(d, 0, sizeof(*d));
558 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
559 * @d: the pull dequeue descriptor to be set
560 * @storage: the pointer of the memory to store the dequeue result
561 * @storage_phys: the physical address of the storage memory
562 * @stash: to indicate whether write allocate is enabled
564 * If not called, or if called with 'storage' as NULL, the result pull dequeues
565 * will produce results to DQRR. If 'storage' is non-NULL, then results are
566 * produced to the given memory location (using the DMA address which
567 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
568 * those writes to main-memory express a cache-warming attribute.
570 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
571 struct dpaa2_dq *storage,
572 dma_addr_t storage_phys,
573 int stash)
575 /* save the virtual address */
576 d->rsp_addr_virt = (u64)(uintptr_t)storage;
578 if (!storage) {
579 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
580 return;
582 d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
583 if (stash)
584 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
585 else
586 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
588 d->rsp_addr = cpu_to_le64(storage_phys);
592 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
593 * @d: the pull dequeue descriptor to be set
594 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
596 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
598 d->numf = numframes - 1;
602 * Exactly one of the following descriptor "actions" should be set. (Calling any
603 * one of these will replace the effect of any prior call to one of these.)
604 * - pull dequeue from the given frame queue (FQ)
605 * - pull dequeue from any FQ in the given work queue (WQ)
606 * - pull dequeue from any FQ in any WQ in the given channel
610 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
611 * @fqid: the frame queue index of the given FQ
613 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
615 d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
616 d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
617 d->dq_src = cpu_to_le32(fqid);
621 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
622 * @wqid: composed of channel id and wqid within the channel
623 * @dct: the dequeue command type
625 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
626 enum qbman_pull_type_e dct)
628 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
629 d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
630 d->dq_src = cpu_to_le32(wqid);
634 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
635 * dequeues
636 * @chid: the channel id to be dequeued
637 * @dct: the dequeue command type
639 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
640 enum qbman_pull_type_e dct)
642 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
643 d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
644 d->dq_src = cpu_to_le32(chid);
648 * qbman_swp_pull() - Issue the pull dequeue command
649 * @s: the software portal object
650 * @d: the software portal descriptor which has been configured with
651 * the set of qbman_pull_desc_set_*() calls
653 * Return 0 for success, and -EBUSY if the software portal is not ready
654 * to do pull dequeue.
656 int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
658 struct qbman_pull_desc *p;
660 if (!atomic_dec_and_test(&s->vdq.available)) {
661 atomic_inc(&s->vdq.available);
662 return -EBUSY;
664 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
665 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
666 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
667 else
668 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
669 p->numf = d->numf;
670 p->tok = QMAN_DQ_TOKEN_VALID;
671 p->dq_src = d->dq_src;
672 p->rsp_addr = d->rsp_addr;
673 p->rsp_addr_virt = d->rsp_addr_virt;
675 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
676 dma_wmb();
677 /* Set the verb byte, have to substitute in the valid-bit */
678 p->verb = d->verb | s->vdq.valid_bit;
679 s->vdq.valid_bit ^= QB_VALID_BIT;
680 } else {
681 p->verb = d->verb | s->vdq.valid_bit;
682 s->vdq.valid_bit ^= QB_VALID_BIT;
683 dma_wmb();
684 qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
687 return 0;
690 #define QMAN_DQRR_PI_MASK 0xf
693 * qbman_swp_dqrr_next() - Get an valid DQRR entry
694 * @s: the software portal object
696 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
697 * only once, so repeated calls can return a sequence of DQRR entries, without
698 * requiring they be consumed immediately or in any particular order.
700 const struct dpaa2_dq *qbman_swp_dqrr_next(struct qbman_swp *s)
702 u32 verb;
703 u32 response_verb;
704 u32 flags;
705 struct dpaa2_dq *p;
707 /* Before using valid-bit to detect if something is there, we have to
708 * handle the case of the DQRR reset bug...
710 if (unlikely(s->dqrr.reset_bug)) {
712 * We pick up new entries by cache-inhibited producer index,
713 * which means that a non-coherent mapping would require us to
714 * invalidate and read *only* once that PI has indicated that
715 * there's an entry here. The first trip around the DQRR ring
716 * will be much less efficient than all subsequent trips around
717 * it...
719 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
720 QMAN_DQRR_PI_MASK;
722 /* there are new entries if pi != next_idx */
723 if (pi == s->dqrr.next_idx)
724 return NULL;
727 * if next_idx is/was the last ring index, and 'pi' is
728 * different, we can disable the workaround as all the ring
729 * entries have now been DMA'd to so valid-bit checking is
730 * repaired. Note: this logic needs to be based on next_idx
731 * (which increments one at a time), rather than on pi (which
732 * can burst and wrap-around between our snapshots of it).
734 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
735 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
736 s->dqrr.next_idx, pi);
737 s->dqrr.reset_bug = 0;
739 prefetch(qbman_get_cmd(s,
740 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
743 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
744 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
745 else
746 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
747 verb = p->dq.verb;
750 * If the valid-bit isn't of the expected polarity, nothing there. Note,
751 * in the DQRR reset bug workaround, we shouldn't need to skip these
752 * check, because we've already determined that a new entry is available
753 * and we've invalidated the cacheline before reading it, so the
754 * valid-bit behaviour is repaired and should tell us what we already
755 * knew from reading PI.
757 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
758 prefetch(qbman_get_cmd(s,
759 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
760 return NULL;
763 * There's something there. Move "next_idx" attention to the next ring
764 * entry (and prefetch it) before returning what we found.
766 s->dqrr.next_idx++;
767 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
768 if (!s->dqrr.next_idx)
769 s->dqrr.valid_bit ^= QB_VALID_BIT;
772 * If this is the final response to a volatile dequeue command
773 * indicate that the vdq is available
775 flags = p->dq.stat;
776 response_verb = verb & QBMAN_RESULT_MASK;
777 if ((response_verb == QBMAN_RESULT_DQ) &&
778 (flags & DPAA2_DQ_STAT_VOLATILE) &&
779 (flags & DPAA2_DQ_STAT_EXPIRED))
780 atomic_inc(&s->vdq.available);
782 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
784 return p;
788 * qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
789 * qbman_swp_dqrr_next().
790 * @s: the software portal object
791 * @dq: the DQRR entry to be consumed
793 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
795 qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
799 * qbman_result_has_new_result() - Check and get the dequeue response from the
800 * dq storage memory set in pull dequeue command
801 * @s: the software portal object
802 * @dq: the dequeue result read from the memory
804 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
805 * dequeue result.
807 * Only used for user-provided storage of dequeue results, not DQRR. For
808 * efficiency purposes, the driver will perform any required endianness
809 * conversion to ensure that the user's dequeue result storage is in host-endian
810 * format. As such, once the user has called qbman_result_has_new_result() and
811 * been returned a valid dequeue result, they should not call it again on
812 * the same memory location (except of course if another dequeue command has
813 * been executed to produce a new result to that location).
815 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
817 if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
818 return 0;
821 * Set token to be 0 so we will detect change back to 1
822 * next time the looping is traversed. Const is cast away here
823 * as we want users to treat the dequeue responses as read only.
825 ((struct dpaa2_dq *)dq)->dq.tok = 0;
828 * Determine whether VDQCR is available based on whether the
829 * current result is sitting in the first storage location of
830 * the busy command.
832 if (s->vdq.storage == dq) {
833 s->vdq.storage = NULL;
834 atomic_inc(&s->vdq.available);
837 return 1;
841 * qbman_release_desc_clear() - Clear the contents of a descriptor to
842 * default/starting state.
844 void qbman_release_desc_clear(struct qbman_release_desc *d)
846 memset(d, 0, sizeof(*d));
847 d->verb = 1 << 5; /* Release Command Valid */
851 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
853 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
855 d->bpid = cpu_to_le16(bpid);
859 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
860 * interrupt source should be asserted after the release command is completed.
862 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
864 if (enable)
865 d->verb |= 1 << 6;
866 else
867 d->verb &= ~(1 << 6);
870 #define RAR_IDX(rar) ((rar) & 0x7)
871 #define RAR_VB(rar) ((rar) & 0x80)
872 #define RAR_SUCCESS(rar) ((rar) & 0x100)
875 * qbman_swp_release() - Issue a buffer release command
876 * @s: the software portal object
877 * @d: the release descriptor
878 * @buffers: a pointer pointing to the buffer address to be released
879 * @num_buffers: number of buffers to be released, must be less than 8
881 * Return 0 for success, -EBUSY if the release command ring is not ready.
883 int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
884 const u64 *buffers, unsigned int num_buffers)
886 int i;
887 struct qbman_release_desc *p;
888 u32 rar;
890 if (!num_buffers || (num_buffers > 7))
891 return -EINVAL;
893 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
894 if (!RAR_SUCCESS(rar))
895 return -EBUSY;
897 /* Start the release command */
898 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
899 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
900 else
901 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
902 /* Copy the caller's buffer pointers to the command */
903 for (i = 0; i < num_buffers; i++)
904 p->buf[i] = cpu_to_le64(buffers[i]);
905 p->bpid = d->bpid;
907 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
909 * Set the verb byte, have to substitute in the valid-bit
910 * and the number of buffers.
912 dma_wmb();
913 p->verb = d->verb | RAR_VB(rar) | num_buffers;
914 } else {
915 p->verb = d->verb | RAR_VB(rar) | num_buffers;
916 dma_wmb();
917 qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
918 RAR_IDX(rar) * 4, QMAN_RT_MODE);
921 return 0;
924 struct qbman_acquire_desc {
925 u8 verb;
926 u8 reserved;
927 __le16 bpid;
928 u8 num;
929 u8 reserved2[59];
932 struct qbman_acquire_rslt {
933 u8 verb;
934 u8 rslt;
935 __le16 reserved;
936 u8 num;
937 u8 reserved2[3];
938 __le64 buf[7];
942 * qbman_swp_acquire() - Issue a buffer acquire command
943 * @s: the software portal object
944 * @bpid: the buffer pool index
945 * @buffers: a pointer pointing to the acquired buffer addresses
946 * @num_buffers: number of buffers to be acquired, must be less than 8
948 * Return 0 for success, or negative error code if the acquire command
949 * fails.
951 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
952 unsigned int num_buffers)
954 struct qbman_acquire_desc *p;
955 struct qbman_acquire_rslt *r;
956 int i;
958 if (!num_buffers || (num_buffers > 7))
959 return -EINVAL;
961 /* Start the management command */
962 p = qbman_swp_mc_start(s);
964 if (!p)
965 return -EBUSY;
967 /* Encode the caller-provided attributes */
968 p->bpid = cpu_to_le16(bpid);
969 p->num = num_buffers;
971 /* Complete the management command */
972 r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
973 if (unlikely(!r)) {
974 pr_err("qbman: acquire from BPID %d failed, no response\n",
975 bpid);
976 return -EIO;
979 /* Decode the outcome */
980 WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
982 /* Determine success or failure */
983 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
984 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
985 bpid, r->rslt);
986 return -EIO;
989 WARN_ON(r->num > num_buffers);
991 /* Copy the acquired buffers to the caller's array */
992 for (i = 0; i < r->num; i++)
993 buffers[i] = le64_to_cpu(r->buf[i]);
995 return (int)r->num;
998 struct qbman_alt_fq_state_desc {
999 u8 verb;
1000 u8 reserved[3];
1001 __le32 fqid;
1002 u8 reserved2[56];
1005 struct qbman_alt_fq_state_rslt {
1006 u8 verb;
1007 u8 rslt;
1008 u8 reserved[62];
1011 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1013 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1014 u8 alt_fq_verb)
1016 struct qbman_alt_fq_state_desc *p;
1017 struct qbman_alt_fq_state_rslt *r;
1019 /* Start the management command */
1020 p = qbman_swp_mc_start(s);
1021 if (!p)
1022 return -EBUSY;
1024 p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1026 /* Complete the management command */
1027 r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1028 if (unlikely(!r)) {
1029 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1030 alt_fq_verb);
1031 return -EIO;
1034 /* Decode the outcome */
1035 WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1037 /* Determine success or failure */
1038 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1039 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1040 fqid, r->verb, r->rslt);
1041 return -EIO;
1044 return 0;
1047 struct qbman_cdan_ctrl_desc {
1048 u8 verb;
1049 u8 reserved;
1050 __le16 ch;
1051 u8 we;
1052 u8 ctrl;
1053 __le16 reserved2;
1054 __le64 cdan_ctx;
1055 u8 reserved3[48];
1059 struct qbman_cdan_ctrl_rslt {
1060 u8 verb;
1061 u8 rslt;
1062 __le16 ch;
1063 u8 reserved[60];
1066 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1067 u8 we_mask, u8 cdan_en,
1068 u64 ctx)
1070 struct qbman_cdan_ctrl_desc *p = NULL;
1071 struct qbman_cdan_ctrl_rslt *r = NULL;
1073 /* Start the management command */
1074 p = qbman_swp_mc_start(s);
1075 if (!p)
1076 return -EBUSY;
1078 /* Encode the caller-provided attributes */
1079 p->ch = cpu_to_le16(channelid);
1080 p->we = we_mask;
1081 if (cdan_en)
1082 p->ctrl = 1;
1083 else
1084 p->ctrl = 0;
1085 p->cdan_ctx = cpu_to_le64(ctx);
1087 /* Complete the management command */
1088 r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1089 if (unlikely(!r)) {
1090 pr_err("qbman: wqchan config failed, no response\n");
1091 return -EIO;
1094 WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1096 /* Determine success or failure */
1097 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1098 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1099 channelid, r->rslt);
1100 return -EIO;
1103 return 0;
1106 #define QBMAN_RESPONSE_VERB_MASK 0x7f
1107 #define QBMAN_FQ_QUERY_NP 0x45
1108 #define QBMAN_BP_QUERY 0x32
1110 struct qbman_fq_query_desc {
1111 u8 verb;
1112 u8 reserved[3];
1113 __le32 fqid;
1114 u8 reserved2[56];
1117 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1118 struct qbman_fq_query_np_rslt *r)
1120 struct qbman_fq_query_desc *p;
1121 void *resp;
1123 p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1124 if (!p)
1125 return -EBUSY;
1127 /* FQID is a 24 bit value */
1128 p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1129 resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1130 if (!resp) {
1131 pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1132 fqid);
1133 return -EIO;
1135 *r = *(struct qbman_fq_query_np_rslt *)resp;
1136 /* Decode the outcome */
1137 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1139 /* Determine success or failure */
1140 if (r->rslt != QBMAN_MC_RSLT_OK) {
1141 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1142 p->fqid, r->rslt);
1143 return -EIO;
1146 return 0;
1149 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1151 return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1154 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1156 return le32_to_cpu(r->byte_cnt);
1159 struct qbman_bp_query_desc {
1160 u8 verb;
1161 u8 reserved;
1162 __le16 bpid;
1163 u8 reserved2[60];
1166 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1167 struct qbman_bp_query_rslt *r)
1169 struct qbman_bp_query_desc *p;
1170 void *resp;
1172 p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1173 if (!p)
1174 return -EBUSY;
1176 p->bpid = cpu_to_le16(bpid);
1177 resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1178 if (!resp) {
1179 pr_err("qbman: Query BPID %d fields failed, no response\n",
1180 bpid);
1181 return -EIO;
1183 *r = *(struct qbman_bp_query_rslt *)resp;
1184 /* Decode the outcome */
1185 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1187 /* Determine success or failure */
1188 if (r->rslt != QBMAN_MC_RSLT_OK) {
1189 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1190 bpid, r->rslt);
1191 return -EIO;
1194 return 0;
1197 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1199 return le32_to_cpu(a->fill);