treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / soc / qcom / smem.c
blob28c19bcb2f205d7616fba480e1aa601a98543d2f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
7 #include <linux/hwspinlock.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_address.h>
12 #include <linux/platform_device.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/soc/qcom/smem.h>
18 * The Qualcomm shared memory system is a allocate only heap structure that
19 * consists of one of more memory areas that can be accessed by the processors
20 * in the SoC.
22 * All systems contains a global heap, accessible by all processors in the SoC,
23 * with a table of contents data structure (@smem_header) at the beginning of
24 * the main shared memory block.
26 * The global header contains meta data for allocations as well as a fixed list
27 * of 512 entries (@smem_global_entry) that can be initialized to reference
28 * parts of the shared memory space.
31 * In addition to this global heap a set of "private" heaps can be set up at
32 * boot time with access restrictions so that only certain processor pairs can
33 * access the data.
35 * These partitions are referenced from an optional partition table
36 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
37 * partition table entries (@smem_ptable_entry) lists the involved processors
38 * (or hosts) and their location in the main shared memory region.
40 * Each partition starts with a header (@smem_partition_header) that identifies
41 * the partition and holds properties for the two internal memory regions. The
42 * two regions are cached and non-cached memory respectively. Each region
43 * contain a link list of allocation headers (@smem_private_entry) followed by
44 * their data.
46 * Items in the non-cached region are allocated from the start of the partition
47 * while items in the cached region are allocated from the end. The free area
48 * is hence the region between the cached and non-cached offsets. The header of
49 * cached items comes after the data.
51 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
52 * for the global heap. A new global partition is created from the global heap
53 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
54 * set by the bootloader.
56 * To synchronize allocations in the shared memory heaps a remote spinlock must
57 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
58 * platforms.
63 * The version member of the smem header contains an array of versions for the
64 * various software components in the SoC. We verify that the boot loader
65 * version is a valid version as a sanity check.
67 #define SMEM_MASTER_SBL_VERSION_INDEX 7
68 #define SMEM_GLOBAL_HEAP_VERSION 11
69 #define SMEM_GLOBAL_PART_VERSION 12
72 * The first 8 items are only to be allocated by the boot loader while
73 * initializing the heap.
75 #define SMEM_ITEM_LAST_FIXED 8
77 /* Highest accepted item number, for both global and private heaps */
78 #define SMEM_ITEM_COUNT 512
80 /* Processor/host identifier for the application processor */
81 #define SMEM_HOST_APPS 0
83 /* Processor/host identifier for the global partition */
84 #define SMEM_GLOBAL_HOST 0xfffe
86 /* Max number of processors/hosts in a system */
87 #define SMEM_HOST_COUNT 11
89 /**
90 * struct smem_proc_comm - proc_comm communication struct (legacy)
91 * @command: current command to be executed
92 * @status: status of the currently requested command
93 * @params: parameters to the command
95 struct smem_proc_comm {
96 __le32 command;
97 __le32 status;
98 __le32 params[2];
102 * struct smem_global_entry - entry to reference smem items on the heap
103 * @allocated: boolean to indicate if this entry is used
104 * @offset: offset to the allocated space
105 * @size: size of the allocated space, 8 byte aligned
106 * @aux_base: base address for the memory region used by this unit, or 0 for
107 * the default region. bits 0,1 are reserved
109 struct smem_global_entry {
110 __le32 allocated;
111 __le32 offset;
112 __le32 size;
113 __le32 aux_base; /* bits 1:0 reserved */
115 #define AUX_BASE_MASK 0xfffffffc
118 * struct smem_header - header found in beginning of primary smem region
119 * @proc_comm: proc_comm communication interface (legacy)
120 * @version: array of versions for the various subsystems
121 * @initialized: boolean to indicate that smem is initialized
122 * @free_offset: index of the first unallocated byte in smem
123 * @available: number of bytes available for allocation
124 * @reserved: reserved field, must be 0
125 * toc: array of references to items
127 struct smem_header {
128 struct smem_proc_comm proc_comm[4];
129 __le32 version[32];
130 __le32 initialized;
131 __le32 free_offset;
132 __le32 available;
133 __le32 reserved;
134 struct smem_global_entry toc[SMEM_ITEM_COUNT];
138 * struct smem_ptable_entry - one entry in the @smem_ptable list
139 * @offset: offset, within the main shared memory region, of the partition
140 * @size: size of the partition
141 * @flags: flags for the partition (currently unused)
142 * @host0: first processor/host with access to this partition
143 * @host1: second processor/host with access to this partition
144 * @cacheline: alignment for "cached" entries
145 * @reserved: reserved entries for later use
147 struct smem_ptable_entry {
148 __le32 offset;
149 __le32 size;
150 __le32 flags;
151 __le16 host0;
152 __le16 host1;
153 __le32 cacheline;
154 __le32 reserved[7];
158 * struct smem_ptable - partition table for the private partitions
159 * @magic: magic number, must be SMEM_PTABLE_MAGIC
160 * @version: version of the partition table
161 * @num_entries: number of partitions in the table
162 * @reserved: for now reserved entries
163 * @entry: list of @smem_ptable_entry for the @num_entries partitions
165 struct smem_ptable {
166 u8 magic[4];
167 __le32 version;
168 __le32 num_entries;
169 __le32 reserved[5];
170 struct smem_ptable_entry entry[];
173 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
176 * struct smem_partition_header - header of the partitions
177 * @magic: magic number, must be SMEM_PART_MAGIC
178 * @host0: first processor/host with access to this partition
179 * @host1: second processor/host with access to this partition
180 * @size: size of the partition
181 * @offset_free_uncached: offset to the first free byte of uncached memory in
182 * this partition
183 * @offset_free_cached: offset to the first free byte of cached memory in this
184 * partition
185 * @reserved: for now reserved entries
187 struct smem_partition_header {
188 u8 magic[4];
189 __le16 host0;
190 __le16 host1;
191 __le32 size;
192 __le32 offset_free_uncached;
193 __le32 offset_free_cached;
194 __le32 reserved[3];
197 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
200 * struct smem_private_entry - header of each item in the private partition
201 * @canary: magic number, must be SMEM_PRIVATE_CANARY
202 * @item: identifying number of the smem item
203 * @size: size of the data, including padding bytes
204 * @padding_data: number of bytes of padding of data
205 * @padding_hdr: number of bytes of padding between the header and the data
206 * @reserved: for now reserved entry
208 struct smem_private_entry {
209 u16 canary; /* bytes are the same so no swapping needed */
210 __le16 item;
211 __le32 size; /* includes padding bytes */
212 __le16 padding_data;
213 __le16 padding_hdr;
214 __le32 reserved;
216 #define SMEM_PRIVATE_CANARY 0xa5a5
219 * struct smem_info - smem region info located after the table of contents
220 * @magic: magic number, must be SMEM_INFO_MAGIC
221 * @size: size of the smem region
222 * @base_addr: base address of the smem region
223 * @reserved: for now reserved entry
224 * @num_items: highest accepted item number
226 struct smem_info {
227 u8 magic[4];
228 __le32 size;
229 __le32 base_addr;
230 __le32 reserved;
231 __le16 num_items;
234 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
237 * struct smem_region - representation of a chunk of memory used for smem
238 * @aux_base: identifier of aux_mem base
239 * @virt_base: virtual base address of memory with this aux_mem identifier
240 * @size: size of the memory region
242 struct smem_region {
243 u32 aux_base;
244 void __iomem *virt_base;
245 size_t size;
249 * struct qcom_smem - device data for the smem device
250 * @dev: device pointer
251 * @hwlock: reference to a hwspinlock
252 * @global_partition: pointer to global partition when in use
253 * @global_cacheline: cacheline size for global partition
254 * @partitions: list of pointers to partitions affecting the current
255 * processor/host
256 * @cacheline: list of cacheline sizes for each host
257 * @item_count: max accepted item number
258 * @num_regions: number of @regions
259 * @regions: list of the memory regions defining the shared memory
261 struct qcom_smem {
262 struct device *dev;
264 struct hwspinlock *hwlock;
266 struct smem_partition_header *global_partition;
267 size_t global_cacheline;
268 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
269 size_t cacheline[SMEM_HOST_COUNT];
270 u32 item_count;
271 struct platform_device *socinfo;
273 unsigned num_regions;
274 struct smem_region regions[];
277 static void *
278 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
280 void *p = phdr;
282 return p + le32_to_cpu(phdr->offset_free_uncached);
285 static struct smem_private_entry *
286 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
287 size_t cacheline)
289 void *p = phdr;
290 struct smem_private_entry *e;
292 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
295 static void *
296 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
298 void *p = phdr;
300 return p + le32_to_cpu(phdr->offset_free_cached);
303 static struct smem_private_entry *
304 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
306 void *p = phdr;
308 return p + sizeof(*phdr);
311 static struct smem_private_entry *
312 uncached_entry_next(struct smem_private_entry *e)
314 void *p = e;
316 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
317 le32_to_cpu(e->size);
320 static struct smem_private_entry *
321 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
323 void *p = e;
325 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
328 static void *uncached_entry_to_item(struct smem_private_entry *e)
330 void *p = e;
332 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
335 static void *cached_entry_to_item(struct smem_private_entry *e)
337 void *p = e;
339 return p - le32_to_cpu(e->size);
342 /* Pointer to the one and only smem handle */
343 static struct qcom_smem *__smem;
345 /* Timeout (ms) for the trylock of remote spinlocks */
346 #define HWSPINLOCK_TIMEOUT 1000
348 static int qcom_smem_alloc_private(struct qcom_smem *smem,
349 struct smem_partition_header *phdr,
350 unsigned item,
351 size_t size)
353 struct smem_private_entry *hdr, *end;
354 size_t alloc_size;
355 void *cached;
357 hdr = phdr_to_first_uncached_entry(phdr);
358 end = phdr_to_last_uncached_entry(phdr);
359 cached = phdr_to_last_cached_entry(phdr);
361 while (hdr < end) {
362 if (hdr->canary != SMEM_PRIVATE_CANARY)
363 goto bad_canary;
364 if (le16_to_cpu(hdr->item) == item)
365 return -EEXIST;
367 hdr = uncached_entry_next(hdr);
370 /* Check that we don't grow into the cached region */
371 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
372 if ((void *)hdr + alloc_size > cached) {
373 dev_err(smem->dev, "Out of memory\n");
374 return -ENOSPC;
377 hdr->canary = SMEM_PRIVATE_CANARY;
378 hdr->item = cpu_to_le16(item);
379 hdr->size = cpu_to_le32(ALIGN(size, 8));
380 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
381 hdr->padding_hdr = 0;
384 * Ensure the header is written before we advance the free offset, so
385 * that remote processors that does not take the remote spinlock still
386 * gets a consistent view of the linked list.
388 wmb();
389 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
391 return 0;
392 bad_canary:
393 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
394 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
396 return -EINVAL;
399 static int qcom_smem_alloc_global(struct qcom_smem *smem,
400 unsigned item,
401 size_t size)
403 struct smem_global_entry *entry;
404 struct smem_header *header;
406 header = smem->regions[0].virt_base;
407 entry = &header->toc[item];
408 if (entry->allocated)
409 return -EEXIST;
411 size = ALIGN(size, 8);
412 if (WARN_ON(size > le32_to_cpu(header->available)))
413 return -ENOMEM;
415 entry->offset = header->free_offset;
416 entry->size = cpu_to_le32(size);
419 * Ensure the header is consistent before we mark the item allocated,
420 * so that remote processors will get a consistent view of the item
421 * even though they do not take the spinlock on read.
423 wmb();
424 entry->allocated = cpu_to_le32(1);
426 le32_add_cpu(&header->free_offset, size);
427 le32_add_cpu(&header->available, -size);
429 return 0;
433 * qcom_smem_alloc() - allocate space for a smem item
434 * @host: remote processor id, or -1
435 * @item: smem item handle
436 * @size: number of bytes to be allocated
438 * Allocate space for a given smem item of size @size, given that the item is
439 * not yet allocated.
441 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
443 struct smem_partition_header *phdr;
444 unsigned long flags;
445 int ret;
447 if (!__smem)
448 return -EPROBE_DEFER;
450 if (item < SMEM_ITEM_LAST_FIXED) {
451 dev_err(__smem->dev,
452 "Rejecting allocation of static entry %d\n", item);
453 return -EINVAL;
456 if (WARN_ON(item >= __smem->item_count))
457 return -EINVAL;
459 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
460 HWSPINLOCK_TIMEOUT,
461 &flags);
462 if (ret)
463 return ret;
465 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
466 phdr = __smem->partitions[host];
467 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
468 } else if (__smem->global_partition) {
469 phdr = __smem->global_partition;
470 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
471 } else {
472 ret = qcom_smem_alloc_global(__smem, item, size);
475 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
477 return ret;
479 EXPORT_SYMBOL(qcom_smem_alloc);
481 static void *qcom_smem_get_global(struct qcom_smem *smem,
482 unsigned item,
483 size_t *size)
485 struct smem_header *header;
486 struct smem_region *region;
487 struct smem_global_entry *entry;
488 u32 aux_base;
489 unsigned i;
491 header = smem->regions[0].virt_base;
492 entry = &header->toc[item];
493 if (!entry->allocated)
494 return ERR_PTR(-ENXIO);
496 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
498 for (i = 0; i < smem->num_regions; i++) {
499 region = &smem->regions[i];
501 if (region->aux_base == aux_base || !aux_base) {
502 if (size != NULL)
503 *size = le32_to_cpu(entry->size);
504 return region->virt_base + le32_to_cpu(entry->offset);
508 return ERR_PTR(-ENOENT);
511 static void *qcom_smem_get_private(struct qcom_smem *smem,
512 struct smem_partition_header *phdr,
513 size_t cacheline,
514 unsigned item,
515 size_t *size)
517 struct smem_private_entry *e, *end;
519 e = phdr_to_first_uncached_entry(phdr);
520 end = phdr_to_last_uncached_entry(phdr);
522 while (e < end) {
523 if (e->canary != SMEM_PRIVATE_CANARY)
524 goto invalid_canary;
526 if (le16_to_cpu(e->item) == item) {
527 if (size != NULL)
528 *size = le32_to_cpu(e->size) -
529 le16_to_cpu(e->padding_data);
531 return uncached_entry_to_item(e);
534 e = uncached_entry_next(e);
537 /* Item was not found in the uncached list, search the cached list */
539 e = phdr_to_first_cached_entry(phdr, cacheline);
540 end = phdr_to_last_cached_entry(phdr);
542 while (e > end) {
543 if (e->canary != SMEM_PRIVATE_CANARY)
544 goto invalid_canary;
546 if (le16_to_cpu(e->item) == item) {
547 if (size != NULL)
548 *size = le32_to_cpu(e->size) -
549 le16_to_cpu(e->padding_data);
551 return cached_entry_to_item(e);
554 e = cached_entry_next(e, cacheline);
557 return ERR_PTR(-ENOENT);
559 invalid_canary:
560 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
561 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
563 return ERR_PTR(-EINVAL);
567 * qcom_smem_get() - resolve ptr of size of a smem item
568 * @host: the remote processor, or -1
569 * @item: smem item handle
570 * @size: pointer to be filled out with size of the item
572 * Looks up smem item and returns pointer to it. Size of smem
573 * item is returned in @size.
575 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
577 struct smem_partition_header *phdr;
578 unsigned long flags;
579 size_t cacheln;
580 int ret;
581 void *ptr = ERR_PTR(-EPROBE_DEFER);
583 if (!__smem)
584 return ptr;
586 if (WARN_ON(item >= __smem->item_count))
587 return ERR_PTR(-EINVAL);
589 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
590 HWSPINLOCK_TIMEOUT,
591 &flags);
592 if (ret)
593 return ERR_PTR(ret);
595 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
596 phdr = __smem->partitions[host];
597 cacheln = __smem->cacheline[host];
598 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
599 } else if (__smem->global_partition) {
600 phdr = __smem->global_partition;
601 cacheln = __smem->global_cacheline;
602 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
603 } else {
604 ptr = qcom_smem_get_global(__smem, item, size);
607 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
609 return ptr;
612 EXPORT_SYMBOL(qcom_smem_get);
615 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
616 * @host: the remote processor identifying a partition, or -1
618 * To be used by smem clients as a quick way to determine if any new
619 * allocations has been made.
621 int qcom_smem_get_free_space(unsigned host)
623 struct smem_partition_header *phdr;
624 struct smem_header *header;
625 unsigned ret;
627 if (!__smem)
628 return -EPROBE_DEFER;
630 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
631 phdr = __smem->partitions[host];
632 ret = le32_to_cpu(phdr->offset_free_cached) -
633 le32_to_cpu(phdr->offset_free_uncached);
634 } else if (__smem->global_partition) {
635 phdr = __smem->global_partition;
636 ret = le32_to_cpu(phdr->offset_free_cached) -
637 le32_to_cpu(phdr->offset_free_uncached);
638 } else {
639 header = __smem->regions[0].virt_base;
640 ret = le32_to_cpu(header->available);
643 return ret;
645 EXPORT_SYMBOL(qcom_smem_get_free_space);
648 * qcom_smem_virt_to_phys() - return the physical address associated
649 * with an smem item pointer (previously returned by qcom_smem_get()
650 * @p: the virtual address to convert
652 * Returns 0 if the pointer provided is not within any smem region.
654 phys_addr_t qcom_smem_virt_to_phys(void *p)
656 unsigned i;
658 for (i = 0; i < __smem->num_regions; i++) {
659 struct smem_region *region = &__smem->regions[i];
661 if (p < region->virt_base)
662 continue;
663 if (p < region->virt_base + region->size) {
664 u64 offset = p - region->virt_base;
666 return (phys_addr_t)region->aux_base + offset;
670 return 0;
672 EXPORT_SYMBOL(qcom_smem_virt_to_phys);
674 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
676 struct smem_header *header;
677 __le32 *versions;
679 header = smem->regions[0].virt_base;
680 versions = header->version;
682 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
685 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
687 struct smem_ptable *ptable;
688 u32 version;
690 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
691 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
692 return ERR_PTR(-ENOENT);
694 version = le32_to_cpu(ptable->version);
695 if (version != 1) {
696 dev_err(smem->dev,
697 "Unsupported partition header version %d\n", version);
698 return ERR_PTR(-EINVAL);
700 return ptable;
703 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
705 struct smem_ptable *ptable;
706 struct smem_info *info;
708 ptable = qcom_smem_get_ptable(smem);
709 if (IS_ERR_OR_NULL(ptable))
710 return SMEM_ITEM_COUNT;
712 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
713 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
714 return SMEM_ITEM_COUNT;
716 return le16_to_cpu(info->num_items);
720 * Validate the partition header for a partition whose partition
721 * table entry is supplied. Returns a pointer to its header if
722 * valid, or a null pointer otherwise.
724 static struct smem_partition_header *
725 qcom_smem_partition_header(struct qcom_smem *smem,
726 struct smem_ptable_entry *entry, u16 host0, u16 host1)
728 struct smem_partition_header *header;
729 u32 size;
731 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
733 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
734 dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
735 header->magic[0], header->magic[1],
736 header->magic[2], header->magic[3]);
737 return NULL;
740 if (host0 != le16_to_cpu(header->host0)) {
741 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
742 host0, le16_to_cpu(header->host0));
743 return NULL;
745 if (host1 != le16_to_cpu(header->host1)) {
746 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
747 host1, le16_to_cpu(header->host1));
748 return NULL;
751 size = le32_to_cpu(header->size);
752 if (size != le32_to_cpu(entry->size)) {
753 dev_err(smem->dev, "bad partition size (%u != %u)\n",
754 size, le32_to_cpu(entry->size));
755 return NULL;
758 if (le32_to_cpu(header->offset_free_uncached) > size) {
759 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
760 le32_to_cpu(header->offset_free_uncached), size);
761 return NULL;
764 return header;
767 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
769 struct smem_partition_header *header;
770 struct smem_ptable_entry *entry;
771 struct smem_ptable *ptable;
772 bool found = false;
773 int i;
775 if (smem->global_partition) {
776 dev_err(smem->dev, "Already found the global partition\n");
777 return -EINVAL;
780 ptable = qcom_smem_get_ptable(smem);
781 if (IS_ERR(ptable))
782 return PTR_ERR(ptable);
784 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
785 entry = &ptable->entry[i];
786 if (!le32_to_cpu(entry->offset))
787 continue;
788 if (!le32_to_cpu(entry->size))
789 continue;
791 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
792 continue;
794 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
795 found = true;
796 break;
800 if (!found) {
801 dev_err(smem->dev, "Missing entry for global partition\n");
802 return -EINVAL;
805 header = qcom_smem_partition_header(smem, entry,
806 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
807 if (!header)
808 return -EINVAL;
810 smem->global_partition = header;
811 smem->global_cacheline = le32_to_cpu(entry->cacheline);
813 return 0;
816 static int
817 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
819 struct smem_partition_header *header;
820 struct smem_ptable_entry *entry;
821 struct smem_ptable *ptable;
822 unsigned int remote_host;
823 u16 host0, host1;
824 int i;
826 ptable = qcom_smem_get_ptable(smem);
827 if (IS_ERR(ptable))
828 return PTR_ERR(ptable);
830 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
831 entry = &ptable->entry[i];
832 if (!le32_to_cpu(entry->offset))
833 continue;
834 if (!le32_to_cpu(entry->size))
835 continue;
837 host0 = le16_to_cpu(entry->host0);
838 host1 = le16_to_cpu(entry->host1);
839 if (host0 == local_host)
840 remote_host = host1;
841 else if (host1 == local_host)
842 remote_host = host0;
843 else
844 continue;
846 if (remote_host >= SMEM_HOST_COUNT) {
847 dev_err(smem->dev, "bad host %hu\n", remote_host);
848 return -EINVAL;
851 if (smem->partitions[remote_host]) {
852 dev_err(smem->dev, "duplicate host %hu\n", remote_host);
853 return -EINVAL;
856 header = qcom_smem_partition_header(smem, entry, host0, host1);
857 if (!header)
858 return -EINVAL;
860 smem->partitions[remote_host] = header;
861 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
864 return 0;
867 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
868 const char *name, int i)
870 struct device_node *np;
871 struct resource r;
872 resource_size_t size;
873 int ret;
875 np = of_parse_phandle(dev->of_node, name, 0);
876 if (!np) {
877 dev_err(dev, "No %s specified\n", name);
878 return -EINVAL;
881 ret = of_address_to_resource(np, 0, &r);
882 of_node_put(np);
883 if (ret)
884 return ret;
885 size = resource_size(&r);
887 smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
888 if (!smem->regions[i].virt_base)
889 return -ENOMEM;
890 smem->regions[i].aux_base = (u32)r.start;
891 smem->regions[i].size = size;
893 return 0;
896 static int qcom_smem_probe(struct platform_device *pdev)
898 struct smem_header *header;
899 struct qcom_smem *smem;
900 size_t array_size;
901 int num_regions;
902 int hwlock_id;
903 u32 version;
904 int ret;
906 num_regions = 1;
907 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
908 num_regions++;
910 array_size = num_regions * sizeof(struct smem_region);
911 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
912 if (!smem)
913 return -ENOMEM;
915 smem->dev = &pdev->dev;
916 smem->num_regions = num_regions;
918 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
919 if (ret)
920 return ret;
922 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
923 "qcom,rpm-msg-ram", 1)))
924 return ret;
926 header = smem->regions[0].virt_base;
927 if (le32_to_cpu(header->initialized) != 1 ||
928 le32_to_cpu(header->reserved)) {
929 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
930 return -EINVAL;
933 version = qcom_smem_get_sbl_version(smem);
934 switch (version >> 16) {
935 case SMEM_GLOBAL_PART_VERSION:
936 ret = qcom_smem_set_global_partition(smem);
937 if (ret < 0)
938 return ret;
939 smem->item_count = qcom_smem_get_item_count(smem);
940 break;
941 case SMEM_GLOBAL_HEAP_VERSION:
942 smem->item_count = SMEM_ITEM_COUNT;
943 break;
944 default:
945 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
946 return -EINVAL;
949 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
950 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
951 if (ret < 0 && ret != -ENOENT)
952 return ret;
954 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
955 if (hwlock_id < 0) {
956 if (hwlock_id != -EPROBE_DEFER)
957 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
958 return hwlock_id;
961 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
962 if (!smem->hwlock)
963 return -ENXIO;
965 __smem = smem;
967 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
968 PLATFORM_DEVID_NONE, NULL,
970 if (IS_ERR(smem->socinfo))
971 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
973 return 0;
976 static int qcom_smem_remove(struct platform_device *pdev)
978 platform_device_unregister(__smem->socinfo);
980 hwspin_lock_free(__smem->hwlock);
981 __smem = NULL;
983 return 0;
986 static const struct of_device_id qcom_smem_of_match[] = {
987 { .compatible = "qcom,smem" },
990 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
992 static struct platform_driver qcom_smem_driver = {
993 .probe = qcom_smem_probe,
994 .remove = qcom_smem_remove,
995 .driver = {
996 .name = "qcom-smem",
997 .of_match_table = qcom_smem_of_match,
998 .suppress_bind_attrs = true,
1002 static int __init qcom_smem_init(void)
1004 return platform_driver_register(&qcom_smem_driver);
1006 arch_initcall(qcom_smem_init);
1008 static void __exit qcom_smem_exit(void)
1010 platform_driver_unregister(&qcom_smem_driver);
1012 module_exit(qcom_smem_exit)
1014 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1015 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1016 MODULE_LICENSE("GPL v2");