1 // SPDX-License-Identifier: GPL-2.0-only
3 * Keystone Queue Manager subsystem driver
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
24 #include "knav_qmss.h"
26 static struct knav_device
*kdev
;
27 static DEFINE_MUTEX(knav_dev_lock
);
29 /* Queue manager register indices in DTS */
30 #define KNAV_QUEUE_PEEK_REG_INDEX 0
31 #define KNAV_QUEUE_STATUS_REG_INDEX 1
32 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
33 #define KNAV_QUEUE_REGION_REG_INDEX 3
34 #define KNAV_QUEUE_PUSH_REG_INDEX 4
35 #define KNAV_QUEUE_POP_REG_INDEX 5
37 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
38 * There are no status and vbusm push registers on this version
39 * of QMSS. Push registers are same as pop, So all indices above 1
40 * are to be re-defined
42 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
43 #define KNAV_L_QUEUE_REGION_REG_INDEX 2
44 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
46 /* PDSP register indices in DTS */
47 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
48 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
49 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
50 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
52 #define knav_queue_idx_to_inst(kdev, idx) \
53 (kdev->instances + (idx << kdev->inst_shift))
55 #define for_each_handle_rcu(qh, inst) \
56 list_for_each_entry_rcu(qh, &inst->handles, list)
58 #define for_each_instance(idx, inst, kdev) \
59 for (idx = 0, inst = kdev->instances; \
60 idx < (kdev)->num_queues_in_use; \
61 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
63 /* All firmware file names end up here. List the firmware file names below.
64 * Newest followed by older ones. Search is done from start of the array
65 * until a firmware file is found.
67 const char *knav_acc_firmwares
[] = {"ks2_qmss_pdsp_acc48.bin"};
69 static bool device_ready
;
70 bool knav_qmss_device_ready(void)
74 EXPORT_SYMBOL_GPL(knav_qmss_device_ready
);
77 * knav_queue_notify: qmss queue notfier call
79 * @inst: qmss queue instance like accumulator
81 void knav_queue_notify(struct knav_queue_inst
*inst
)
83 struct knav_queue
*qh
;
89 for_each_handle_rcu(qh
, inst
) {
90 if (atomic_read(&qh
->notifier_enabled
) <= 0)
92 if (WARN_ON(!qh
->notifier_fn
))
94 this_cpu_inc(qh
->stats
->notifies
);
95 qh
->notifier_fn(qh
->notifier_fn_arg
);
99 EXPORT_SYMBOL_GPL(knav_queue_notify
);
101 static irqreturn_t
knav_queue_int_handler(int irq
, void *_instdata
)
103 struct knav_queue_inst
*inst
= _instdata
;
105 knav_queue_notify(inst
);
109 static int knav_queue_setup_irq(struct knav_range_info
*range
,
110 struct knav_queue_inst
*inst
)
112 unsigned queue
= inst
->id
- range
->queue_base
;
115 if (range
->flags
& RANGE_HAS_IRQ
) {
116 irq
= range
->irqs
[queue
].irq
;
117 ret
= request_irq(irq
, knav_queue_int_handler
, 0,
118 inst
->irq_name
, inst
);
122 if (range
->irqs
[queue
].cpu_mask
) {
123 ret
= irq_set_affinity_hint(irq
, range
->irqs
[queue
].cpu_mask
);
125 dev_warn(range
->kdev
->dev
,
126 "Failed to set IRQ affinity\n");
134 static void knav_queue_free_irq(struct knav_queue_inst
*inst
)
136 struct knav_range_info
*range
= inst
->range
;
137 unsigned queue
= inst
->id
- inst
->range
->queue_base
;
140 if (range
->flags
& RANGE_HAS_IRQ
) {
141 irq
= range
->irqs
[queue
].irq
;
142 irq_set_affinity_hint(irq
, NULL
);
147 static inline bool knav_queue_is_busy(struct knav_queue_inst
*inst
)
149 return !list_empty(&inst
->handles
);
152 static inline bool knav_queue_is_reserved(struct knav_queue_inst
*inst
)
154 return inst
->range
->flags
& RANGE_RESERVED
;
157 static inline bool knav_queue_is_shared(struct knav_queue_inst
*inst
)
159 struct knav_queue
*tmp
;
162 for_each_handle_rcu(tmp
, inst
) {
163 if (tmp
->flags
& KNAV_QUEUE_SHARED
) {
172 static inline bool knav_queue_match_type(struct knav_queue_inst
*inst
,
175 if ((type
== KNAV_QUEUE_QPEND
) &&
176 (inst
->range
->flags
& RANGE_HAS_IRQ
)) {
178 } else if ((type
== KNAV_QUEUE_ACC
) &&
179 (inst
->range
->flags
& RANGE_HAS_ACCUMULATOR
)) {
181 } else if ((type
== KNAV_QUEUE_GP
) &&
182 !(inst
->range
->flags
&
183 (RANGE_HAS_ACCUMULATOR
| RANGE_HAS_IRQ
))) {
189 static inline struct knav_queue_inst
*
190 knav_queue_match_id_to_inst(struct knav_device
*kdev
, unsigned id
)
192 struct knav_queue_inst
*inst
;
195 for_each_instance(idx
, inst
, kdev
) {
202 static inline struct knav_queue_inst
*knav_queue_find_by_id(int id
)
204 if (kdev
->base_id
<= id
&&
205 kdev
->base_id
+ kdev
->num_queues
> id
) {
207 return knav_queue_match_id_to_inst(kdev
, id
);
212 static struct knav_queue
*__knav_queue_open(struct knav_queue_inst
*inst
,
213 const char *name
, unsigned flags
)
215 struct knav_queue
*qh
;
219 qh
= devm_kzalloc(inst
->kdev
->dev
, sizeof(*qh
), GFP_KERNEL
);
221 return ERR_PTR(-ENOMEM
);
223 qh
->stats
= alloc_percpu(struct knav_queue_stats
);
231 id
= inst
->id
- inst
->qmgr
->start_queue
;
232 qh
->reg_push
= &inst
->qmgr
->reg_push
[id
];
233 qh
->reg_pop
= &inst
->qmgr
->reg_pop
[id
];
234 qh
->reg_peek
= &inst
->qmgr
->reg_peek
[id
];
237 if (!knav_queue_is_busy(inst
)) {
238 struct knav_range_info
*range
= inst
->range
;
240 inst
->name
= kstrndup(name
, KNAV_NAME_SIZE
- 1, GFP_KERNEL
);
241 if (range
->ops
&& range
->ops
->open_queue
)
242 ret
= range
->ops
->open_queue(range
, inst
, flags
);
247 list_add_tail_rcu(&qh
->list
, &inst
->handles
);
252 free_percpu(qh
->stats
);
253 devm_kfree(inst
->kdev
->dev
, qh
);
257 static struct knav_queue
*
258 knav_queue_open_by_id(const char *name
, unsigned id
, unsigned flags
)
260 struct knav_queue_inst
*inst
;
261 struct knav_queue
*qh
;
263 mutex_lock(&knav_dev_lock
);
265 qh
= ERR_PTR(-ENODEV
);
266 inst
= knav_queue_find_by_id(id
);
270 qh
= ERR_PTR(-EEXIST
);
271 if (!(flags
& KNAV_QUEUE_SHARED
) && knav_queue_is_busy(inst
))
274 qh
= ERR_PTR(-EBUSY
);
275 if ((flags
& KNAV_QUEUE_SHARED
) &&
276 (knav_queue_is_busy(inst
) && !knav_queue_is_shared(inst
)))
279 qh
= __knav_queue_open(inst
, name
, flags
);
282 mutex_unlock(&knav_dev_lock
);
287 static struct knav_queue
*knav_queue_open_by_type(const char *name
,
288 unsigned type
, unsigned flags
)
290 struct knav_queue_inst
*inst
;
291 struct knav_queue
*qh
= ERR_PTR(-EINVAL
);
294 mutex_lock(&knav_dev_lock
);
296 for_each_instance(idx
, inst
, kdev
) {
297 if (knav_queue_is_reserved(inst
))
299 if (!knav_queue_match_type(inst
, type
))
301 if (knav_queue_is_busy(inst
))
303 qh
= __knav_queue_open(inst
, name
, flags
);
308 mutex_unlock(&knav_dev_lock
);
312 static void knav_queue_set_notify(struct knav_queue_inst
*inst
, bool enabled
)
314 struct knav_range_info
*range
= inst
->range
;
316 if (range
->ops
&& range
->ops
->set_notify
)
317 range
->ops
->set_notify(range
, inst
, enabled
);
320 static int knav_queue_enable_notifier(struct knav_queue
*qh
)
322 struct knav_queue_inst
*inst
= qh
->inst
;
325 if (WARN_ON(!qh
->notifier_fn
))
328 /* Adjust the per handle notifier count */
329 first
= (atomic_inc_return(&qh
->notifier_enabled
) == 1);
331 return 0; /* nothing to do */
333 /* Now adjust the per instance notifier count */
334 first
= (atomic_inc_return(&inst
->num_notifiers
) == 1);
336 knav_queue_set_notify(inst
, true);
341 static int knav_queue_disable_notifier(struct knav_queue
*qh
)
343 struct knav_queue_inst
*inst
= qh
->inst
;
346 last
= (atomic_dec_return(&qh
->notifier_enabled
) == 0);
348 return 0; /* nothing to do */
350 last
= (atomic_dec_return(&inst
->num_notifiers
) == 0);
352 knav_queue_set_notify(inst
, false);
357 static int knav_queue_set_notifier(struct knav_queue
*qh
,
358 struct knav_queue_notify_config
*cfg
)
360 knav_queue_notify_fn old_fn
= qh
->notifier_fn
;
365 if (!(qh
->inst
->range
->flags
& (RANGE_HAS_ACCUMULATOR
| RANGE_HAS_IRQ
)))
368 if (!cfg
->fn
&& old_fn
)
369 knav_queue_disable_notifier(qh
);
371 qh
->notifier_fn
= cfg
->fn
;
372 qh
->notifier_fn_arg
= cfg
->fn_arg
;
374 if (cfg
->fn
&& !old_fn
)
375 knav_queue_enable_notifier(qh
);
380 static int knav_gp_set_notify(struct knav_range_info
*range
,
381 struct knav_queue_inst
*inst
,
386 if (range
->flags
& RANGE_HAS_IRQ
) {
387 queue
= inst
->id
- range
->queue_base
;
389 enable_irq(range
->irqs
[queue
].irq
);
391 disable_irq_nosync(range
->irqs
[queue
].irq
);
396 static int knav_gp_open_queue(struct knav_range_info
*range
,
397 struct knav_queue_inst
*inst
, unsigned flags
)
399 return knav_queue_setup_irq(range
, inst
);
402 static int knav_gp_close_queue(struct knav_range_info
*range
,
403 struct knav_queue_inst
*inst
)
405 knav_queue_free_irq(inst
);
409 struct knav_range_ops knav_gp_range_ops
= {
410 .set_notify
= knav_gp_set_notify
,
411 .open_queue
= knav_gp_open_queue
,
412 .close_queue
= knav_gp_close_queue
,
416 static int knav_queue_get_count(void *qhandle
)
418 struct knav_queue
*qh
= qhandle
;
419 struct knav_queue_inst
*inst
= qh
->inst
;
421 return readl_relaxed(&qh
->reg_peek
[0].entry_count
) +
422 atomic_read(&inst
->desc_count
);
425 static void knav_queue_debug_show_instance(struct seq_file
*s
,
426 struct knav_queue_inst
*inst
)
428 struct knav_device
*kdev
= inst
->kdev
;
429 struct knav_queue
*qh
;
437 if (!knav_queue_is_busy(inst
))
440 seq_printf(s
, "\tqueue id %d (%s)\n",
441 kdev
->base_id
+ inst
->id
, inst
->name
);
442 for_each_handle_rcu(qh
, inst
) {
443 for_each_possible_cpu(cpu
) {
444 pushes
+= per_cpu_ptr(qh
->stats
, cpu
)->pushes
;
445 pops
+= per_cpu_ptr(qh
->stats
, cpu
)->pops
;
446 push_errors
+= per_cpu_ptr(qh
->stats
, cpu
)->push_errors
;
447 pop_errors
+= per_cpu_ptr(qh
->stats
, cpu
)->pop_errors
;
448 notifies
+= per_cpu_ptr(qh
->stats
, cpu
)->notifies
;
451 seq_printf(s
, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455 knav_queue_get_count(qh
),
462 static int knav_queue_debug_show(struct seq_file
*s
, void *v
)
464 struct knav_queue_inst
*inst
;
467 mutex_lock(&knav_dev_lock
);
468 seq_printf(s
, "%s: %u-%u\n",
469 dev_name(kdev
->dev
), kdev
->base_id
,
470 kdev
->base_id
+ kdev
->num_queues
- 1);
471 for_each_instance(idx
, inst
, kdev
)
472 knav_queue_debug_show_instance(s
, inst
);
473 mutex_unlock(&knav_dev_lock
);
478 static int knav_queue_debug_open(struct inode
*inode
, struct file
*file
)
480 return single_open(file
, knav_queue_debug_show
, NULL
);
483 static const struct file_operations knav_queue_debug_ops
= {
484 .open
= knav_queue_debug_open
,
487 .release
= single_release
,
490 static inline int knav_queue_pdsp_wait(u32
* __iomem addr
, unsigned timeout
,
496 end
= jiffies
+ msecs_to_jiffies(timeout
);
497 while (time_after(end
, jiffies
)) {
498 val
= readl_relaxed(addr
);
505 return val
? -ETIMEDOUT
: 0;
509 static int knav_queue_flush(struct knav_queue
*qh
)
511 struct knav_queue_inst
*inst
= qh
->inst
;
512 unsigned id
= inst
->id
- inst
->qmgr
->start_queue
;
514 atomic_set(&inst
->desc_count
, 0);
515 writel_relaxed(0, &inst
->qmgr
->reg_push
[id
].ptr_size_thresh
);
520 * knav_queue_open() - open a hardware queue
521 * @name - name to give the queue handle
522 * @id - desired queue number if any or specifes the type
524 * @flags - the following flags are applicable to queues:
525 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
526 * exclusive by default.
527 * Subsequent attempts to open a shared queue should
528 * also have this flag.
530 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
531 * to check the returned value for error codes.
533 void *knav_queue_open(const char *name
, unsigned id
,
536 struct knav_queue
*qh
= ERR_PTR(-EINVAL
);
539 case KNAV_QUEUE_QPEND
:
542 qh
= knav_queue_open_by_type(name
, id
, flags
);
546 qh
= knav_queue_open_by_id(name
, id
, flags
);
551 EXPORT_SYMBOL_GPL(knav_queue_open
);
554 * knav_queue_close() - close a hardware queue handle
555 * @qh - handle to close
557 void knav_queue_close(void *qhandle
)
559 struct knav_queue
*qh
= qhandle
;
560 struct knav_queue_inst
*inst
= qh
->inst
;
562 while (atomic_read(&qh
->notifier_enabled
) > 0)
563 knav_queue_disable_notifier(qh
);
565 mutex_lock(&knav_dev_lock
);
566 list_del_rcu(&qh
->list
);
567 mutex_unlock(&knav_dev_lock
);
569 if (!knav_queue_is_busy(inst
)) {
570 struct knav_range_info
*range
= inst
->range
;
572 if (range
->ops
&& range
->ops
->close_queue
)
573 range
->ops
->close_queue(range
, inst
);
575 free_percpu(qh
->stats
);
576 devm_kfree(inst
->kdev
->dev
, qh
);
578 EXPORT_SYMBOL_GPL(knav_queue_close
);
581 * knav_queue_device_control() - Perform control operations on a queue
583 * @cmd - control commands
584 * @arg - command argument
586 * Returns 0 on success, errno otherwise.
588 int knav_queue_device_control(void *qhandle
, enum knav_queue_ctrl_cmd cmd
,
591 struct knav_queue
*qh
= qhandle
;
592 struct knav_queue_notify_config
*cfg
;
596 case KNAV_QUEUE_GET_ID
:
597 ret
= qh
->inst
->kdev
->base_id
+ qh
->inst
->id
;
600 case KNAV_QUEUE_FLUSH
:
601 ret
= knav_queue_flush(qh
);
604 case KNAV_QUEUE_SET_NOTIFIER
:
606 ret
= knav_queue_set_notifier(qh
, cfg
);
609 case KNAV_QUEUE_ENABLE_NOTIFY
:
610 ret
= knav_queue_enable_notifier(qh
);
613 case KNAV_QUEUE_DISABLE_NOTIFY
:
614 ret
= knav_queue_disable_notifier(qh
);
617 case KNAV_QUEUE_GET_COUNT
:
618 ret
= knav_queue_get_count(qh
);
627 EXPORT_SYMBOL_GPL(knav_queue_device_control
);
632 * knav_queue_push() - push data (or descriptor) to the tail of a queue
633 * @qh - hardware queue handle
634 * @data - data to push
635 * @size - size of data to push
636 * @flags - can be used to pass additional information
638 * Returns 0 on success, errno otherwise.
640 int knav_queue_push(void *qhandle
, dma_addr_t dma
,
641 unsigned size
, unsigned flags
)
643 struct knav_queue
*qh
= qhandle
;
646 val
= (u32
)dma
| ((size
/ 16) - 1);
647 writel_relaxed(val
, &qh
->reg_push
[0].ptr_size_thresh
);
649 this_cpu_inc(qh
->stats
->pushes
);
652 EXPORT_SYMBOL_GPL(knav_queue_push
);
655 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
656 * @qh - hardware queue handle
657 * @size - (optional) size of the data pop'ed.
659 * Returns a DMA address on success, 0 on failure.
661 dma_addr_t
knav_queue_pop(void *qhandle
, unsigned *size
)
663 struct knav_queue
*qh
= qhandle
;
664 struct knav_queue_inst
*inst
= qh
->inst
;
668 /* are we accumulated? */
670 if (unlikely(atomic_dec_return(&inst
->desc_count
) < 0)) {
671 atomic_inc(&inst
->desc_count
);
674 idx
= atomic_inc_return(&inst
->desc_head
);
675 idx
&= ACC_DESCS_MASK
;
676 val
= inst
->descs
[idx
];
678 val
= readl_relaxed(&qh
->reg_pop
[0].ptr_size_thresh
);
683 dma
= val
& DESC_PTR_MASK
;
685 *size
= ((val
& DESC_SIZE_MASK
) + 1) * 16;
687 this_cpu_inc(qh
->stats
->pops
);
690 EXPORT_SYMBOL_GPL(knav_queue_pop
);
692 /* carve out descriptors and push into queue */
693 static void kdesc_fill_pool(struct knav_pool
*pool
)
695 struct knav_region
*region
;
698 region
= pool
->region
;
699 pool
->desc_size
= region
->desc_size
;
700 for (i
= 0; i
< pool
->num_desc
; i
++) {
701 int index
= pool
->region_offset
+ i
;
704 dma_addr
= region
->dma_start
+ (region
->desc_size
* index
);
705 dma_size
= ALIGN(pool
->desc_size
, SMP_CACHE_BYTES
);
706 dma_sync_single_for_device(pool
->dev
, dma_addr
, dma_size
,
708 knav_queue_push(pool
->queue
, dma_addr
, dma_size
, 0);
712 /* pop out descriptors and close the queue */
713 static void kdesc_empty_pool(struct knav_pool
*pool
)
724 dma
= knav_queue_pop(pool
->queue
, &size
);
727 desc
= knav_pool_desc_dma_to_virt(pool
, dma
);
729 dev_dbg(pool
->kdev
->dev
,
730 "couldn't unmap desc, continuing\n");
734 WARN_ON(i
!= pool
->num_desc
);
735 knav_queue_close(pool
->queue
);
739 /* Get the DMA address of a descriptor */
740 dma_addr_t
knav_pool_desc_virt_to_dma(void *ph
, void *virt
)
742 struct knav_pool
*pool
= ph
;
743 return pool
->region
->dma_start
+ (virt
- pool
->region
->virt_start
);
745 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma
);
747 void *knav_pool_desc_dma_to_virt(void *ph
, dma_addr_t dma
)
749 struct knav_pool
*pool
= ph
;
750 return pool
->region
->virt_start
+ (dma
- pool
->region
->dma_start
);
752 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt
);
755 * knav_pool_create() - Create a pool of descriptors
756 * @name - name to give the pool handle
757 * @num_desc - numbers of descriptors in the pool
758 * @region_id - QMSS region id from which the descriptors are to be
761 * Returns a pool handle on success.
762 * Use IS_ERR_OR_NULL() to identify error values on return.
764 void *knav_pool_create(const char *name
,
765 int num_desc
, int region_id
)
767 struct knav_region
*reg_itr
, *region
= NULL
;
768 struct knav_pool
*pool
, *pi
;
769 struct list_head
*node
;
770 unsigned last_offset
;
775 return ERR_PTR(-EPROBE_DEFER
);
778 return ERR_PTR(-ENODEV
);
780 pool
= devm_kzalloc(kdev
->dev
, sizeof(*pool
), GFP_KERNEL
);
782 dev_err(kdev
->dev
, "out of memory allocating pool\n");
783 return ERR_PTR(-ENOMEM
);
786 for_each_region(kdev
, reg_itr
) {
787 if (reg_itr
->id
!= region_id
)
794 dev_err(kdev
->dev
, "region-id(%d) not found\n", region_id
);
799 pool
->queue
= knav_queue_open(name
, KNAV_QUEUE_GP
, 0);
800 if (IS_ERR_OR_NULL(pool
->queue
)) {
802 "failed to open queue for pool(%s), error %ld\n",
803 name
, PTR_ERR(pool
->queue
));
804 ret
= PTR_ERR(pool
->queue
);
808 pool
->name
= kstrndup(name
, KNAV_NAME_SIZE
- 1, GFP_KERNEL
);
810 pool
->dev
= kdev
->dev
;
812 mutex_lock(&knav_dev_lock
);
814 if (num_desc
> (region
->num_desc
- region
->used_desc
)) {
815 dev_err(kdev
->dev
, "out of descs in region(%d) for pool(%s)\n",
821 /* Region maintains a sorted (by region offset) list of pools
822 * use the first free slot which is large enough to accomodate
827 node
= ®ion
->pools
;
828 list_for_each_entry(pi
, ®ion
->pools
, region_inst
) {
829 if ((pi
->region_offset
- last_offset
) >= num_desc
) {
833 last_offset
= pi
->region_offset
+ pi
->num_desc
;
835 node
= &pi
->region_inst
;
838 pool
->region
= region
;
839 pool
->num_desc
= num_desc
;
840 pool
->region_offset
= last_offset
;
841 region
->used_desc
+= num_desc
;
842 list_add_tail(&pool
->list
, &kdev
->pools
);
843 list_add_tail(&pool
->region_inst
, node
);
845 dev_err(kdev
->dev
, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
851 mutex_unlock(&knav_dev_lock
);
852 kdesc_fill_pool(pool
);
856 mutex_unlock(&knav_dev_lock
);
859 devm_kfree(kdev
->dev
, pool
);
862 EXPORT_SYMBOL_GPL(knav_pool_create
);
865 * knav_pool_destroy() - Free a pool of descriptors
866 * @pool - pool handle
868 void knav_pool_destroy(void *ph
)
870 struct knav_pool
*pool
= ph
;
878 kdesc_empty_pool(pool
);
879 mutex_lock(&knav_dev_lock
);
881 pool
->region
->used_desc
-= pool
->num_desc
;
882 list_del(&pool
->region_inst
);
883 list_del(&pool
->list
);
885 mutex_unlock(&knav_dev_lock
);
887 devm_kfree(kdev
->dev
, pool
);
889 EXPORT_SYMBOL_GPL(knav_pool_destroy
);
893 * knav_pool_desc_get() - Get a descriptor from the pool
894 * @pool - pool handle
896 * Returns descriptor from the pool.
898 void *knav_pool_desc_get(void *ph
)
900 struct knav_pool
*pool
= ph
;
905 dma
= knav_queue_pop(pool
->queue
, &size
);
907 return ERR_PTR(-ENOMEM
);
908 data
= knav_pool_desc_dma_to_virt(pool
, dma
);
911 EXPORT_SYMBOL_GPL(knav_pool_desc_get
);
914 * knav_pool_desc_put() - return a descriptor to the pool
915 * @pool - pool handle
917 void knav_pool_desc_put(void *ph
, void *desc
)
919 struct knav_pool
*pool
= ph
;
921 dma
= knav_pool_desc_virt_to_dma(pool
, desc
);
922 knav_queue_push(pool
->queue
, dma
, pool
->region
->desc_size
, 0);
924 EXPORT_SYMBOL_GPL(knav_pool_desc_put
);
927 * knav_pool_desc_map() - Map descriptor for DMA transfer
928 * @pool - pool handle
929 * @desc - address of descriptor to map
930 * @size - size of descriptor to map
931 * @dma - DMA address return pointer
932 * @dma_sz - adjusted return pointer
934 * Returns 0 on success, errno otherwise.
936 int knav_pool_desc_map(void *ph
, void *desc
, unsigned size
,
937 dma_addr_t
*dma
, unsigned *dma_sz
)
939 struct knav_pool
*pool
= ph
;
940 *dma
= knav_pool_desc_virt_to_dma(pool
, desc
);
941 size
= min(size
, pool
->region
->desc_size
);
942 size
= ALIGN(size
, SMP_CACHE_BYTES
);
944 dma_sync_single_for_device(pool
->dev
, *dma
, size
, DMA_TO_DEVICE
);
946 /* Ensure the descriptor reaches to the memory */
951 EXPORT_SYMBOL_GPL(knav_pool_desc_map
);
954 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
955 * @pool - pool handle
956 * @dma - DMA address of descriptor to unmap
957 * @dma_sz - size of descriptor to unmap
959 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
960 * error values on return.
962 void *knav_pool_desc_unmap(void *ph
, dma_addr_t dma
, unsigned dma_sz
)
964 struct knav_pool
*pool
= ph
;
968 desc_sz
= min(dma_sz
, pool
->region
->desc_size
);
969 desc
= knav_pool_desc_dma_to_virt(pool
, dma
);
970 dma_sync_single_for_cpu(pool
->dev
, dma
, desc_sz
, DMA_FROM_DEVICE
);
974 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap
);
977 * knav_pool_count() - Get the number of descriptors in pool.
978 * @pool - pool handle
979 * Returns number of elements in the pool.
981 int knav_pool_count(void *ph
)
983 struct knav_pool
*pool
= ph
;
984 return knav_queue_get_count(pool
->queue
);
986 EXPORT_SYMBOL_GPL(knav_pool_count
);
988 static void knav_queue_setup_region(struct knav_device
*kdev
,
989 struct knav_region
*region
)
991 unsigned hw_num_desc
, hw_desc_size
, size
;
992 struct knav_reg_region __iomem
*regs
;
993 struct knav_qmgr_info
*qmgr
;
994 struct knav_pool
*pool
;
999 if (!region
->num_desc
) {
1000 dev_warn(kdev
->dev
, "unused region %s\n", region
->name
);
1004 /* get hardware descriptor value */
1005 hw_num_desc
= ilog2(region
->num_desc
- 1) + 1;
1007 /* did we force fit ourselves into nothingness? */
1008 if (region
->num_desc
< 32) {
1009 region
->num_desc
= 0;
1010 dev_warn(kdev
->dev
, "too few descriptors in region %s\n",
1015 size
= region
->num_desc
* region
->desc_size
;
1016 region
->virt_start
= alloc_pages_exact(size
, GFP_KERNEL
| GFP_DMA
|
1018 if (!region
->virt_start
) {
1019 region
->num_desc
= 0;
1020 dev_err(kdev
->dev
, "memory alloc failed for region %s\n",
1024 region
->virt_end
= region
->virt_start
+ size
;
1025 page
= virt_to_page(region
->virt_start
);
1027 region
->dma_start
= dma_map_page(kdev
->dev
, page
, 0, size
,
1029 if (dma_mapping_error(kdev
->dev
, region
->dma_start
)) {
1030 dev_err(kdev
->dev
, "dma map failed for region %s\n",
1034 region
->dma_end
= region
->dma_start
+ size
;
1036 pool
= devm_kzalloc(kdev
->dev
, sizeof(*pool
), GFP_KERNEL
);
1038 dev_err(kdev
->dev
, "out of memory allocating dummy pool\n");
1042 pool
->region_offset
= region
->num_desc
;
1043 list_add(&pool
->region_inst
, ®ion
->pools
);
1046 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1047 region
->name
, id
, region
->desc_size
, region
->num_desc
,
1048 region
->link_index
, ®ion
->dma_start
, ®ion
->dma_end
,
1049 region
->virt_start
, region
->virt_end
);
1051 hw_desc_size
= (region
->desc_size
/ 16) - 1;
1054 for_each_qmgr(kdev
, qmgr
) {
1055 regs
= qmgr
->reg_region
+ id
;
1056 writel_relaxed((u32
)region
->dma_start
, ®s
->base
);
1057 writel_relaxed(region
->link_index
, ®s
->start_index
);
1058 writel_relaxed(hw_desc_size
<< 16 | hw_num_desc
,
1064 if (region
->dma_start
)
1065 dma_unmap_page(kdev
->dev
, region
->dma_start
, size
,
1067 if (region
->virt_start
)
1068 free_pages_exact(region
->virt_start
, size
);
1069 region
->num_desc
= 0;
1073 static const char *knav_queue_find_name(struct device_node
*node
)
1077 if (of_property_read_string(node
, "label", &name
) < 0)
1084 static int knav_queue_setup_regions(struct knav_device
*kdev
,
1085 struct device_node
*regions
)
1087 struct device
*dev
= kdev
->dev
;
1088 struct knav_region
*region
;
1089 struct device_node
*child
;
1093 for_each_child_of_node(regions
, child
) {
1094 region
= devm_kzalloc(dev
, sizeof(*region
), GFP_KERNEL
);
1096 dev_err(dev
, "out of memory allocating region\n");
1100 region
->name
= knav_queue_find_name(child
);
1101 of_property_read_u32(child
, "id", ®ion
->id
);
1102 ret
= of_property_read_u32_array(child
, "region-spec", temp
, 2);
1104 region
->num_desc
= temp
[0];
1105 region
->desc_size
= temp
[1];
1107 dev_err(dev
, "invalid region info %s\n", region
->name
);
1108 devm_kfree(dev
, region
);
1112 if (!of_get_property(child
, "link-index", NULL
)) {
1113 dev_err(dev
, "No link info for %s\n", region
->name
);
1114 devm_kfree(dev
, region
);
1117 ret
= of_property_read_u32(child
, "link-index",
1118 ®ion
->link_index
);
1120 dev_err(dev
, "link index not found for %s\n",
1122 devm_kfree(dev
, region
);
1126 INIT_LIST_HEAD(®ion
->pools
);
1127 list_add_tail(®ion
->list
, &kdev
->regions
);
1129 if (list_empty(&kdev
->regions
)) {
1130 dev_err(dev
, "no valid region information found\n");
1134 /* Next, we run through the regions and set things up */
1135 for_each_region(kdev
, region
)
1136 knav_queue_setup_region(kdev
, region
);
1141 static int knav_get_link_ram(struct knav_device
*kdev
,
1143 struct knav_link_ram_block
*block
)
1145 struct platform_device
*pdev
= to_platform_device(kdev
->dev
);
1146 struct device_node
*node
= pdev
->dev
.of_node
;
1150 * Note: link ram resources are specified in "entry" sized units. In
1151 * reality, although entries are ~40bits in hardware, we treat them as
1152 * 64-bit entities here.
1154 * For example, to specify the internal link ram for Keystone-I class
1155 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1157 * This gets a bit weird when other link rams are used. For example,
1158 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1159 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1160 * which accounts for 64-bits per entry, for 16K entries.
1162 if (!of_property_read_u32_array(node
, name
, temp
, 2)) {
1165 * queue_base specified => using internal or onchip
1166 * link ram WARNING - we do not "reserve" this block
1168 block
->dma
= (dma_addr_t
)temp
[0];
1170 block
->size
= temp
[1];
1172 block
->size
= temp
[1];
1173 /* queue_base not specific => allocate requested size */
1174 block
->virt
= dmam_alloc_coherent(kdev
->dev
,
1175 8 * block
->size
, &block
->dma
,
1178 dev_err(kdev
->dev
, "failed to alloc linkram\n");
1188 static int knav_queue_setup_link_ram(struct knav_device
*kdev
)
1190 struct knav_link_ram_block
*block
;
1191 struct knav_qmgr_info
*qmgr
;
1193 for_each_qmgr(kdev
, qmgr
) {
1194 block
= &kdev
->link_rams
[0];
1195 dev_dbg(kdev
->dev
, "linkram0: dma:%pad, virt:%p, size:%x\n",
1196 &block
->dma
, block
->virt
, block
->size
);
1197 writel_relaxed((u32
)block
->dma
, &qmgr
->reg_config
->link_ram_base0
);
1198 if (kdev
->version
== QMSS_66AK2G
)
1199 writel_relaxed(block
->size
,
1200 &qmgr
->reg_config
->link_ram_size0
);
1202 writel_relaxed(block
->size
- 1,
1203 &qmgr
->reg_config
->link_ram_size0
);
1208 dev_dbg(kdev
->dev
, "linkram1: dma:%pad, virt:%p, size:%x\n",
1209 &block
->dma
, block
->virt
, block
->size
);
1210 writel_relaxed(block
->dma
, &qmgr
->reg_config
->link_ram_base1
);
1216 static int knav_setup_queue_range(struct knav_device
*kdev
,
1217 struct device_node
*node
)
1219 struct device
*dev
= kdev
->dev
;
1220 struct knav_range_info
*range
;
1221 struct knav_qmgr_info
*qmgr
;
1222 u32 temp
[2], start
, end
, id
, index
;
1225 range
= devm_kzalloc(dev
, sizeof(*range
), GFP_KERNEL
);
1227 dev_err(dev
, "out of memory allocating range\n");
1232 range
->name
= knav_queue_find_name(node
);
1233 ret
= of_property_read_u32_array(node
, "qrange", temp
, 2);
1235 range
->queue_base
= temp
[0] - kdev
->base_id
;
1236 range
->num_queues
= temp
[1];
1238 dev_err(dev
, "invalid queue range %s\n", range
->name
);
1239 devm_kfree(dev
, range
);
1243 for (i
= 0; i
< RANGE_MAX_IRQS
; i
++) {
1244 struct of_phandle_args oirq
;
1246 if (of_irq_parse_one(node
, i
, &oirq
))
1249 range
->irqs
[i
].irq
= irq_create_of_mapping(&oirq
);
1250 if (range
->irqs
[i
].irq
== IRQ_NONE
)
1255 if (IS_ENABLED(CONFIG_SMP
) && oirq
.args_count
== 3) {
1259 range
->irqs
[i
].cpu_mask
= devm_kzalloc(dev
,
1260 cpumask_size(), GFP_KERNEL
);
1261 if (!range
->irqs
[i
].cpu_mask
)
1264 mask
= (oirq
.args
[2] & 0x0000ff00) >> 8;
1265 for_each_set_bit(bit
, &mask
, BITS_PER_LONG
)
1266 cpumask_set_cpu(bit
, range
->irqs
[i
].cpu_mask
);
1270 range
->num_irqs
= min(range
->num_irqs
, range
->num_queues
);
1271 if (range
->num_irqs
)
1272 range
->flags
|= RANGE_HAS_IRQ
;
1274 if (of_get_property(node
, "qalloc-by-id", NULL
))
1275 range
->flags
|= RANGE_RESERVED
;
1277 if (of_get_property(node
, "accumulator", NULL
)) {
1278 ret
= knav_init_acc_range(kdev
, node
, range
);
1280 devm_kfree(dev
, range
);
1284 range
->ops
= &knav_gp_range_ops
;
1287 /* set threshold to 1, and flush out the queues */
1288 for_each_qmgr(kdev
, qmgr
) {
1289 start
= max(qmgr
->start_queue
, range
->queue_base
);
1290 end
= min(qmgr
->start_queue
+ qmgr
->num_queues
,
1291 range
->queue_base
+ range
->num_queues
);
1292 for (id
= start
; id
< end
; id
++) {
1293 index
= id
- qmgr
->start_queue
;
1294 writel_relaxed(THRESH_GTE
| 1,
1295 &qmgr
->reg_peek
[index
].ptr_size_thresh
);
1297 &qmgr
->reg_push
[index
].ptr_size_thresh
);
1301 list_add_tail(&range
->list
, &kdev
->queue_ranges
);
1302 dev_dbg(dev
, "added range %s: %d-%d, %d irqs%s%s%s\n",
1303 range
->name
, range
->queue_base
,
1304 range
->queue_base
+ range
->num_queues
- 1,
1306 (range
->flags
& RANGE_HAS_IRQ
) ? ", has irq" : "",
1307 (range
->flags
& RANGE_RESERVED
) ? ", reserved" : "",
1308 (range
->flags
& RANGE_HAS_ACCUMULATOR
) ? ", acc" : "");
1309 kdev
->num_queues_in_use
+= range
->num_queues
;
1313 static int knav_setup_queue_pools(struct knav_device
*kdev
,
1314 struct device_node
*queue_pools
)
1316 struct device_node
*type
, *range
;
1319 for_each_child_of_node(queue_pools
, type
) {
1320 for_each_child_of_node(type
, range
) {
1321 ret
= knav_setup_queue_range(kdev
, range
);
1322 /* return value ignored, we init the rest... */
1326 /* ... and barf if they all failed! */
1327 if (list_empty(&kdev
->queue_ranges
)) {
1328 dev_err(kdev
->dev
, "no valid queue range found\n");
1334 static void knav_free_queue_range(struct knav_device
*kdev
,
1335 struct knav_range_info
*range
)
1337 if (range
->ops
&& range
->ops
->free_range
)
1338 range
->ops
->free_range(range
);
1339 list_del(&range
->list
);
1340 devm_kfree(kdev
->dev
, range
);
1343 static void knav_free_queue_ranges(struct knav_device
*kdev
)
1345 struct knav_range_info
*range
;
1348 range
= first_queue_range(kdev
);
1351 knav_free_queue_range(kdev
, range
);
1355 static void knav_queue_free_regions(struct knav_device
*kdev
)
1357 struct knav_region
*region
;
1358 struct knav_pool
*pool
, *tmp
;
1362 region
= first_region(kdev
);
1365 list_for_each_entry_safe(pool
, tmp
, ®ion
->pools
, region_inst
)
1366 knav_pool_destroy(pool
);
1368 size
= region
->virt_end
- region
->virt_start
;
1370 free_pages_exact(region
->virt_start
, size
);
1371 list_del(®ion
->list
);
1372 devm_kfree(kdev
->dev
, region
);
1376 static void __iomem
*knav_queue_map_reg(struct knav_device
*kdev
,
1377 struct device_node
*node
, int index
)
1379 struct resource res
;
1383 ret
= of_address_to_resource(node
, index
, &res
);
1385 dev_err(kdev
->dev
, "Can't translate of node(%pOFn) address for index(%d)\n",
1387 return ERR_PTR(ret
);
1390 regs
= devm_ioremap_resource(kdev
->dev
, &res
);
1392 dev_err(kdev
->dev
, "Failed to map register base for index(%d) node(%pOFn)\n",
1397 static int knav_queue_init_qmgrs(struct knav_device
*kdev
,
1398 struct device_node
*qmgrs
)
1400 struct device
*dev
= kdev
->dev
;
1401 struct knav_qmgr_info
*qmgr
;
1402 struct device_node
*child
;
1406 for_each_child_of_node(qmgrs
, child
) {
1407 qmgr
= devm_kzalloc(dev
, sizeof(*qmgr
), GFP_KERNEL
);
1409 dev_err(dev
, "out of memory allocating qmgr\n");
1413 ret
= of_property_read_u32_array(child
, "managed-queues",
1416 qmgr
->start_queue
= temp
[0];
1417 qmgr
->num_queues
= temp
[1];
1419 dev_err(dev
, "invalid qmgr queue range\n");
1420 devm_kfree(dev
, qmgr
);
1424 dev_info(dev
, "qmgr start queue %d, number of queues %d\n",
1425 qmgr
->start_queue
, qmgr
->num_queues
);
1428 knav_queue_map_reg(kdev
, child
,
1429 KNAV_QUEUE_PEEK_REG_INDEX
);
1431 if (kdev
->version
== QMSS
) {
1433 knav_queue_map_reg(kdev
, child
,
1434 KNAV_QUEUE_STATUS_REG_INDEX
);
1438 knav_queue_map_reg(kdev
, child
,
1439 (kdev
->version
== QMSS_66AK2G
) ?
1440 KNAV_L_QUEUE_CONFIG_REG_INDEX
:
1441 KNAV_QUEUE_CONFIG_REG_INDEX
);
1443 knav_queue_map_reg(kdev
, child
,
1444 (kdev
->version
== QMSS_66AK2G
) ?
1445 KNAV_L_QUEUE_REGION_REG_INDEX
:
1446 KNAV_QUEUE_REGION_REG_INDEX
);
1449 knav_queue_map_reg(kdev
, child
,
1450 (kdev
->version
== QMSS_66AK2G
) ?
1451 KNAV_L_QUEUE_PUSH_REG_INDEX
:
1452 KNAV_QUEUE_PUSH_REG_INDEX
);
1454 if (kdev
->version
== QMSS
) {
1456 knav_queue_map_reg(kdev
, child
,
1457 KNAV_QUEUE_POP_REG_INDEX
);
1460 if (IS_ERR(qmgr
->reg_peek
) ||
1461 ((kdev
->version
== QMSS
) &&
1462 (IS_ERR(qmgr
->reg_status
) || IS_ERR(qmgr
->reg_pop
))) ||
1463 IS_ERR(qmgr
->reg_config
) || IS_ERR(qmgr
->reg_region
) ||
1464 IS_ERR(qmgr
->reg_push
)) {
1465 dev_err(dev
, "failed to map qmgr regs\n");
1466 if (kdev
->version
== QMSS
) {
1467 if (!IS_ERR(qmgr
->reg_status
))
1468 devm_iounmap(dev
, qmgr
->reg_status
);
1469 if (!IS_ERR(qmgr
->reg_pop
))
1470 devm_iounmap(dev
, qmgr
->reg_pop
);
1472 if (!IS_ERR(qmgr
->reg_peek
))
1473 devm_iounmap(dev
, qmgr
->reg_peek
);
1474 if (!IS_ERR(qmgr
->reg_config
))
1475 devm_iounmap(dev
, qmgr
->reg_config
);
1476 if (!IS_ERR(qmgr
->reg_region
))
1477 devm_iounmap(dev
, qmgr
->reg_region
);
1478 if (!IS_ERR(qmgr
->reg_push
))
1479 devm_iounmap(dev
, qmgr
->reg_push
);
1480 devm_kfree(dev
, qmgr
);
1484 /* Use same push register for pop as well */
1485 if (kdev
->version
== QMSS_66AK2G
)
1486 qmgr
->reg_pop
= qmgr
->reg_push
;
1488 list_add_tail(&qmgr
->list
, &kdev
->qmgrs
);
1489 dev_info(dev
, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1490 qmgr
->start_queue
, qmgr
->num_queues
,
1491 qmgr
->reg_peek
, qmgr
->reg_status
,
1492 qmgr
->reg_config
, qmgr
->reg_region
,
1493 qmgr
->reg_push
, qmgr
->reg_pop
);
1498 static int knav_queue_init_pdsps(struct knav_device
*kdev
,
1499 struct device_node
*pdsps
)
1501 struct device
*dev
= kdev
->dev
;
1502 struct knav_pdsp_info
*pdsp
;
1503 struct device_node
*child
;
1505 for_each_child_of_node(pdsps
, child
) {
1506 pdsp
= devm_kzalloc(dev
, sizeof(*pdsp
), GFP_KERNEL
);
1508 dev_err(dev
, "out of memory allocating pdsp\n");
1511 pdsp
->name
= knav_queue_find_name(child
);
1513 knav_queue_map_reg(kdev
, child
,
1514 KNAV_QUEUE_PDSP_IRAM_REG_INDEX
);
1516 knav_queue_map_reg(kdev
, child
,
1517 KNAV_QUEUE_PDSP_REGS_REG_INDEX
);
1519 knav_queue_map_reg(kdev
, child
,
1520 KNAV_QUEUE_PDSP_INTD_REG_INDEX
);
1522 knav_queue_map_reg(kdev
, child
,
1523 KNAV_QUEUE_PDSP_CMD_REG_INDEX
);
1525 if (IS_ERR(pdsp
->command
) || IS_ERR(pdsp
->iram
) ||
1526 IS_ERR(pdsp
->regs
) || IS_ERR(pdsp
->intd
)) {
1527 dev_err(dev
, "failed to map pdsp %s regs\n",
1529 if (!IS_ERR(pdsp
->command
))
1530 devm_iounmap(dev
, pdsp
->command
);
1531 if (!IS_ERR(pdsp
->iram
))
1532 devm_iounmap(dev
, pdsp
->iram
);
1533 if (!IS_ERR(pdsp
->regs
))
1534 devm_iounmap(dev
, pdsp
->regs
);
1535 if (!IS_ERR(pdsp
->intd
))
1536 devm_iounmap(dev
, pdsp
->intd
);
1537 devm_kfree(dev
, pdsp
);
1540 of_property_read_u32(child
, "id", &pdsp
->id
);
1541 list_add_tail(&pdsp
->list
, &kdev
->pdsps
);
1542 dev_dbg(dev
, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1543 pdsp
->name
, pdsp
->command
, pdsp
->iram
, pdsp
->regs
,
1549 static int knav_queue_stop_pdsp(struct knav_device
*kdev
,
1550 struct knav_pdsp_info
*pdsp
)
1552 u32 val
, timeout
= 1000;
1555 val
= readl_relaxed(&pdsp
->regs
->control
) & ~PDSP_CTRL_ENABLE
;
1556 writel_relaxed(val
, &pdsp
->regs
->control
);
1557 ret
= knav_queue_pdsp_wait(&pdsp
->regs
->control
, timeout
,
1560 dev_err(kdev
->dev
, "timed out on pdsp %s stop\n", pdsp
->name
);
1563 pdsp
->loaded
= false;
1564 pdsp
->started
= false;
1568 static int knav_queue_load_pdsp(struct knav_device
*kdev
,
1569 struct knav_pdsp_info
*pdsp
)
1572 const struct firmware
*fw
;
1576 for (i
= 0; i
< ARRAY_SIZE(knav_acc_firmwares
); i
++) {
1577 if (knav_acc_firmwares
[i
]) {
1578 ret
= request_firmware_direct(&fw
,
1579 knav_acc_firmwares
[i
],
1589 dev_err(kdev
->dev
, "failed to get firmware for pdsp\n");
1593 dev_info(kdev
->dev
, "firmware file %s downloaded for PDSP\n",
1594 knav_acc_firmwares
[i
]);
1596 writel_relaxed(pdsp
->id
+ 1, pdsp
->command
+ 0x18);
1597 /* download the firmware */
1598 fwdata
= (u32
*)fw
->data
;
1599 fwlen
= (fw
->size
+ sizeof(u32
) - 1) / sizeof(u32
);
1600 for (i
= 0; i
< fwlen
; i
++)
1601 writel_relaxed(be32_to_cpu(fwdata
[i
]), pdsp
->iram
+ i
);
1603 release_firmware(fw
);
1607 static int knav_queue_start_pdsp(struct knav_device
*kdev
,
1608 struct knav_pdsp_info
*pdsp
)
1610 u32 val
, timeout
= 1000;
1613 /* write a command for sync */
1614 writel_relaxed(0xffffffff, pdsp
->command
);
1615 while (readl_relaxed(pdsp
->command
) != 0xffffffff)
1618 /* soft reset the PDSP */
1619 val
= readl_relaxed(&pdsp
->regs
->control
);
1620 val
&= ~(PDSP_CTRL_PC_MASK
| PDSP_CTRL_SOFT_RESET
);
1621 writel_relaxed(val
, &pdsp
->regs
->control
);
1624 val
= readl_relaxed(&pdsp
->regs
->control
) | PDSP_CTRL_ENABLE
;
1625 writel_relaxed(val
, &pdsp
->regs
->control
);
1627 /* wait for command register to clear */
1628 ret
= knav_queue_pdsp_wait(pdsp
->command
, timeout
, 0);
1631 "timed out on pdsp %s command register wait\n",
1638 static void knav_queue_stop_pdsps(struct knav_device
*kdev
)
1640 struct knav_pdsp_info
*pdsp
;
1642 /* disable all pdsps */
1643 for_each_pdsp(kdev
, pdsp
)
1644 knav_queue_stop_pdsp(kdev
, pdsp
);
1647 static int knav_queue_start_pdsps(struct knav_device
*kdev
)
1649 struct knav_pdsp_info
*pdsp
;
1652 knav_queue_stop_pdsps(kdev
);
1653 /* now load them all. We return success even if pdsp
1654 * is not loaded as acc channels are optional on having
1655 * firmware availability in the system. We set the loaded
1656 * and stated flag and when initialize the acc range, check
1657 * it and init the range only if pdsp is started.
1659 for_each_pdsp(kdev
, pdsp
) {
1660 ret
= knav_queue_load_pdsp(kdev
, pdsp
);
1662 pdsp
->loaded
= true;
1665 for_each_pdsp(kdev
, pdsp
) {
1667 ret
= knav_queue_start_pdsp(kdev
, pdsp
);
1669 pdsp
->started
= true;
1675 static inline struct knav_qmgr_info
*knav_find_qmgr(unsigned id
)
1677 struct knav_qmgr_info
*qmgr
;
1679 for_each_qmgr(kdev
, qmgr
) {
1680 if ((id
>= qmgr
->start_queue
) &&
1681 (id
< qmgr
->start_queue
+ qmgr
->num_queues
))
1687 static int knav_queue_init_queue(struct knav_device
*kdev
,
1688 struct knav_range_info
*range
,
1689 struct knav_queue_inst
*inst
,
1692 char irq_name
[KNAV_NAME_SIZE
];
1693 inst
->qmgr
= knav_find_qmgr(id
);
1697 INIT_LIST_HEAD(&inst
->handles
);
1699 inst
->range
= range
;
1702 scnprintf(irq_name
, sizeof(irq_name
), "hwqueue-%d", id
);
1703 inst
->irq_name
= kstrndup(irq_name
, sizeof(irq_name
), GFP_KERNEL
);
1705 if (range
->ops
&& range
->ops
->init_queue
)
1706 return range
->ops
->init_queue(range
, inst
);
1711 static int knav_queue_init_queues(struct knav_device
*kdev
)
1713 struct knav_range_info
*range
;
1714 int size
, id
, base_idx
;
1715 int idx
= 0, ret
= 0;
1717 /* how much do we need for instance data? */
1718 size
= sizeof(struct knav_queue_inst
);
1720 /* round this up to a power of 2, keep the index to instance
1723 kdev
->inst_shift
= order_base_2(size
);
1724 size
= (1 << kdev
->inst_shift
) * kdev
->num_queues_in_use
;
1725 kdev
->instances
= devm_kzalloc(kdev
->dev
, size
, GFP_KERNEL
);
1726 if (!kdev
->instances
)
1729 for_each_queue_range(kdev
, range
) {
1730 if (range
->ops
&& range
->ops
->init_range
)
1731 range
->ops
->init_range(range
);
1733 for (id
= range
->queue_base
;
1734 id
< range
->queue_base
+ range
->num_queues
; id
++, idx
++) {
1735 ret
= knav_queue_init_queue(kdev
, range
,
1736 knav_queue_idx_to_inst(kdev
, idx
), id
);
1740 range
->queue_base_inst
=
1741 knav_queue_idx_to_inst(kdev
, base_idx
);
1746 /* Match table for of_platform binding */
1747 static const struct of_device_id keystone_qmss_of_match
[] = {
1749 .compatible
= "ti,keystone-navigator-qmss",
1752 .compatible
= "ti,66ak2g-navss-qm",
1753 .data
= (void *)QMSS_66AK2G
,
1757 MODULE_DEVICE_TABLE(of
, keystone_qmss_of_match
);
1759 static int knav_queue_probe(struct platform_device
*pdev
)
1761 struct device_node
*node
= pdev
->dev
.of_node
;
1762 struct device_node
*qmgrs
, *queue_pools
, *regions
, *pdsps
;
1763 const struct of_device_id
*match
;
1764 struct device
*dev
= &pdev
->dev
;
1769 dev_err(dev
, "device tree info unavailable\n");
1773 kdev
= devm_kzalloc(dev
, sizeof(struct knav_device
), GFP_KERNEL
);
1775 dev_err(dev
, "memory allocation failed\n");
1779 match
= of_match_device(of_match_ptr(keystone_qmss_of_match
), dev
);
1780 if (match
&& match
->data
)
1781 kdev
->version
= QMSS_66AK2G
;
1783 platform_set_drvdata(pdev
, kdev
);
1785 INIT_LIST_HEAD(&kdev
->queue_ranges
);
1786 INIT_LIST_HEAD(&kdev
->qmgrs
);
1787 INIT_LIST_HEAD(&kdev
->pools
);
1788 INIT_LIST_HEAD(&kdev
->regions
);
1789 INIT_LIST_HEAD(&kdev
->pdsps
);
1791 pm_runtime_enable(&pdev
->dev
);
1792 ret
= pm_runtime_get_sync(&pdev
->dev
);
1794 dev_err(dev
, "Failed to enable QMSS\n");
1798 if (of_property_read_u32_array(node
, "queue-range", temp
, 2)) {
1799 dev_err(dev
, "queue-range not specified\n");
1803 kdev
->base_id
= temp
[0];
1804 kdev
->num_queues
= temp
[1];
1806 /* Initialize queue managers using device tree configuration */
1807 qmgrs
= of_get_child_by_name(node
, "qmgrs");
1809 dev_err(dev
, "queue manager info not specified\n");
1813 ret
= knav_queue_init_qmgrs(kdev
, qmgrs
);
1818 /* get pdsp configuration values from device tree */
1819 pdsps
= of_get_child_by_name(node
, "pdsps");
1821 ret
= knav_queue_init_pdsps(kdev
, pdsps
);
1825 ret
= knav_queue_start_pdsps(kdev
);
1831 /* get usable queue range values from device tree */
1832 queue_pools
= of_get_child_by_name(node
, "queue-pools");
1834 dev_err(dev
, "queue-pools not specified\n");
1838 ret
= knav_setup_queue_pools(kdev
, queue_pools
);
1839 of_node_put(queue_pools
);
1843 ret
= knav_get_link_ram(kdev
, "linkram0", &kdev
->link_rams
[0]);
1845 dev_err(kdev
->dev
, "could not setup linking ram\n");
1849 ret
= knav_get_link_ram(kdev
, "linkram1", &kdev
->link_rams
[1]);
1852 * nothing really, we have one linking ram already, so we just
1853 * live within our means
1857 ret
= knav_queue_setup_link_ram(kdev
);
1861 regions
= of_get_child_by_name(node
, "descriptor-regions");
1863 dev_err(dev
, "descriptor-regions not specified\n");
1866 ret
= knav_queue_setup_regions(kdev
, regions
);
1867 of_node_put(regions
);
1871 ret
= knav_queue_init_queues(kdev
);
1873 dev_err(dev
, "hwqueue initialization failed\n");
1877 debugfs_create_file("qmss", S_IFREG
| S_IRUGO
, NULL
, NULL
,
1878 &knav_queue_debug_ops
);
1879 device_ready
= true;
1883 knav_queue_stop_pdsps(kdev
);
1884 knav_queue_free_regions(kdev
);
1885 knav_free_queue_ranges(kdev
);
1886 pm_runtime_put_sync(&pdev
->dev
);
1887 pm_runtime_disable(&pdev
->dev
);
1891 static int knav_queue_remove(struct platform_device
*pdev
)
1893 /* TODO: Free resources */
1894 pm_runtime_put_sync(&pdev
->dev
);
1895 pm_runtime_disable(&pdev
->dev
);
1899 static struct platform_driver keystone_qmss_driver
= {
1900 .probe
= knav_queue_probe
,
1901 .remove
= knav_queue_remove
,
1903 .name
= "keystone-navigator-qmss",
1904 .of_match_table
= keystone_qmss_of_match
,
1907 module_platform_driver(keystone_qmss_driver
);
1909 MODULE_LICENSE("GPL v2");
1910 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1911 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1912 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");