treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / soc / ti / knav_qmss_queue.c
blob1ccc9064e1eb5e051d9ccdb4ae0ff0c0d92e40f0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Keystone Queue Manager subsystem driver
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
24 #include "knav_qmss.h"
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
29 /* Queue manager register indices in DTS */
30 #define KNAV_QUEUE_PEEK_REG_INDEX 0
31 #define KNAV_QUEUE_STATUS_REG_INDEX 1
32 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
33 #define KNAV_QUEUE_REGION_REG_INDEX 3
34 #define KNAV_QUEUE_PUSH_REG_INDEX 4
35 #define KNAV_QUEUE_POP_REG_INDEX 5
37 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
38 * There are no status and vbusm push registers on this version
39 * of QMSS. Push registers are same as pop, So all indices above 1
40 * are to be re-defined
42 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
43 #define KNAV_L_QUEUE_REGION_REG_INDEX 2
44 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
46 /* PDSP register indices in DTS */
47 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
48 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
49 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
50 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
52 #define knav_queue_idx_to_inst(kdev, idx) \
53 (kdev->instances + (idx << kdev->inst_shift))
55 #define for_each_handle_rcu(qh, inst) \
56 list_for_each_entry_rcu(qh, &inst->handles, list)
58 #define for_each_instance(idx, inst, kdev) \
59 for (idx = 0, inst = kdev->instances; \
60 idx < (kdev)->num_queues_in_use; \
61 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
63 /* All firmware file names end up here. List the firmware file names below.
64 * Newest followed by older ones. Search is done from start of the array
65 * until a firmware file is found.
67 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
69 static bool device_ready;
70 bool knav_qmss_device_ready(void)
72 return device_ready;
74 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
76 /**
77 * knav_queue_notify: qmss queue notfier call
79 * @inst: qmss queue instance like accumulator
81 void knav_queue_notify(struct knav_queue_inst *inst)
83 struct knav_queue *qh;
85 if (!inst)
86 return;
88 rcu_read_lock();
89 for_each_handle_rcu(qh, inst) {
90 if (atomic_read(&qh->notifier_enabled) <= 0)
91 continue;
92 if (WARN_ON(!qh->notifier_fn))
93 continue;
94 this_cpu_inc(qh->stats->notifies);
95 qh->notifier_fn(qh->notifier_fn_arg);
97 rcu_read_unlock();
99 EXPORT_SYMBOL_GPL(knav_queue_notify);
101 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
103 struct knav_queue_inst *inst = _instdata;
105 knav_queue_notify(inst);
106 return IRQ_HANDLED;
109 static int knav_queue_setup_irq(struct knav_range_info *range,
110 struct knav_queue_inst *inst)
112 unsigned queue = inst->id - range->queue_base;
113 int ret = 0, irq;
115 if (range->flags & RANGE_HAS_IRQ) {
116 irq = range->irqs[queue].irq;
117 ret = request_irq(irq, knav_queue_int_handler, 0,
118 inst->irq_name, inst);
119 if (ret)
120 return ret;
121 disable_irq(irq);
122 if (range->irqs[queue].cpu_mask) {
123 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
124 if (ret) {
125 dev_warn(range->kdev->dev,
126 "Failed to set IRQ affinity\n");
127 return ret;
131 return ret;
134 static void knav_queue_free_irq(struct knav_queue_inst *inst)
136 struct knav_range_info *range = inst->range;
137 unsigned queue = inst->id - inst->range->queue_base;
138 int irq;
140 if (range->flags & RANGE_HAS_IRQ) {
141 irq = range->irqs[queue].irq;
142 irq_set_affinity_hint(irq, NULL);
143 free_irq(irq, inst);
147 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
149 return !list_empty(&inst->handles);
152 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
154 return inst->range->flags & RANGE_RESERVED;
157 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
159 struct knav_queue *tmp;
161 rcu_read_lock();
162 for_each_handle_rcu(tmp, inst) {
163 if (tmp->flags & KNAV_QUEUE_SHARED) {
164 rcu_read_unlock();
165 return true;
168 rcu_read_unlock();
169 return false;
172 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
173 unsigned type)
175 if ((type == KNAV_QUEUE_QPEND) &&
176 (inst->range->flags & RANGE_HAS_IRQ)) {
177 return true;
178 } else if ((type == KNAV_QUEUE_ACC) &&
179 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
180 return true;
181 } else if ((type == KNAV_QUEUE_GP) &&
182 !(inst->range->flags &
183 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
184 return true;
186 return false;
189 static inline struct knav_queue_inst *
190 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
192 struct knav_queue_inst *inst;
193 int idx;
195 for_each_instance(idx, inst, kdev) {
196 if (inst->id == id)
197 return inst;
199 return NULL;
202 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
204 if (kdev->base_id <= id &&
205 kdev->base_id + kdev->num_queues > id) {
206 id -= kdev->base_id;
207 return knav_queue_match_id_to_inst(kdev, id);
209 return NULL;
212 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
213 const char *name, unsigned flags)
215 struct knav_queue *qh;
216 unsigned id;
217 int ret = 0;
219 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
220 if (!qh)
221 return ERR_PTR(-ENOMEM);
223 qh->stats = alloc_percpu(struct knav_queue_stats);
224 if (!qh->stats) {
225 ret = -ENOMEM;
226 goto err;
229 qh->flags = flags;
230 qh->inst = inst;
231 id = inst->id - inst->qmgr->start_queue;
232 qh->reg_push = &inst->qmgr->reg_push[id];
233 qh->reg_pop = &inst->qmgr->reg_pop[id];
234 qh->reg_peek = &inst->qmgr->reg_peek[id];
236 /* first opener? */
237 if (!knav_queue_is_busy(inst)) {
238 struct knav_range_info *range = inst->range;
240 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
241 if (range->ops && range->ops->open_queue)
242 ret = range->ops->open_queue(range, inst, flags);
244 if (ret)
245 goto err;
247 list_add_tail_rcu(&qh->list, &inst->handles);
248 return qh;
250 err:
251 if (qh->stats)
252 free_percpu(qh->stats);
253 devm_kfree(inst->kdev->dev, qh);
254 return ERR_PTR(ret);
257 static struct knav_queue *
258 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
260 struct knav_queue_inst *inst;
261 struct knav_queue *qh;
263 mutex_lock(&knav_dev_lock);
265 qh = ERR_PTR(-ENODEV);
266 inst = knav_queue_find_by_id(id);
267 if (!inst)
268 goto unlock_ret;
270 qh = ERR_PTR(-EEXIST);
271 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
272 goto unlock_ret;
274 qh = ERR_PTR(-EBUSY);
275 if ((flags & KNAV_QUEUE_SHARED) &&
276 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
277 goto unlock_ret;
279 qh = __knav_queue_open(inst, name, flags);
281 unlock_ret:
282 mutex_unlock(&knav_dev_lock);
284 return qh;
287 static struct knav_queue *knav_queue_open_by_type(const char *name,
288 unsigned type, unsigned flags)
290 struct knav_queue_inst *inst;
291 struct knav_queue *qh = ERR_PTR(-EINVAL);
292 int idx;
294 mutex_lock(&knav_dev_lock);
296 for_each_instance(idx, inst, kdev) {
297 if (knav_queue_is_reserved(inst))
298 continue;
299 if (!knav_queue_match_type(inst, type))
300 continue;
301 if (knav_queue_is_busy(inst))
302 continue;
303 qh = __knav_queue_open(inst, name, flags);
304 goto unlock_ret;
307 unlock_ret:
308 mutex_unlock(&knav_dev_lock);
309 return qh;
312 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
314 struct knav_range_info *range = inst->range;
316 if (range->ops && range->ops->set_notify)
317 range->ops->set_notify(range, inst, enabled);
320 static int knav_queue_enable_notifier(struct knav_queue *qh)
322 struct knav_queue_inst *inst = qh->inst;
323 bool first;
325 if (WARN_ON(!qh->notifier_fn))
326 return -EINVAL;
328 /* Adjust the per handle notifier count */
329 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
330 if (!first)
331 return 0; /* nothing to do */
333 /* Now adjust the per instance notifier count */
334 first = (atomic_inc_return(&inst->num_notifiers) == 1);
335 if (first)
336 knav_queue_set_notify(inst, true);
338 return 0;
341 static int knav_queue_disable_notifier(struct knav_queue *qh)
343 struct knav_queue_inst *inst = qh->inst;
344 bool last;
346 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
347 if (!last)
348 return 0; /* nothing to do */
350 last = (atomic_dec_return(&inst->num_notifiers) == 0);
351 if (last)
352 knav_queue_set_notify(inst, false);
354 return 0;
357 static int knav_queue_set_notifier(struct knav_queue *qh,
358 struct knav_queue_notify_config *cfg)
360 knav_queue_notify_fn old_fn = qh->notifier_fn;
362 if (!cfg)
363 return -EINVAL;
365 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
366 return -ENOTSUPP;
368 if (!cfg->fn && old_fn)
369 knav_queue_disable_notifier(qh);
371 qh->notifier_fn = cfg->fn;
372 qh->notifier_fn_arg = cfg->fn_arg;
374 if (cfg->fn && !old_fn)
375 knav_queue_enable_notifier(qh);
377 return 0;
380 static int knav_gp_set_notify(struct knav_range_info *range,
381 struct knav_queue_inst *inst,
382 bool enabled)
384 unsigned queue;
386 if (range->flags & RANGE_HAS_IRQ) {
387 queue = inst->id - range->queue_base;
388 if (enabled)
389 enable_irq(range->irqs[queue].irq);
390 else
391 disable_irq_nosync(range->irqs[queue].irq);
393 return 0;
396 static int knav_gp_open_queue(struct knav_range_info *range,
397 struct knav_queue_inst *inst, unsigned flags)
399 return knav_queue_setup_irq(range, inst);
402 static int knav_gp_close_queue(struct knav_range_info *range,
403 struct knav_queue_inst *inst)
405 knav_queue_free_irq(inst);
406 return 0;
409 struct knav_range_ops knav_gp_range_ops = {
410 .set_notify = knav_gp_set_notify,
411 .open_queue = knav_gp_open_queue,
412 .close_queue = knav_gp_close_queue,
416 static int knav_queue_get_count(void *qhandle)
418 struct knav_queue *qh = qhandle;
419 struct knav_queue_inst *inst = qh->inst;
421 return readl_relaxed(&qh->reg_peek[0].entry_count) +
422 atomic_read(&inst->desc_count);
425 static void knav_queue_debug_show_instance(struct seq_file *s,
426 struct knav_queue_inst *inst)
428 struct knav_device *kdev = inst->kdev;
429 struct knav_queue *qh;
430 int cpu = 0;
431 int pushes = 0;
432 int pops = 0;
433 int push_errors = 0;
434 int pop_errors = 0;
435 int notifies = 0;
437 if (!knav_queue_is_busy(inst))
438 return;
440 seq_printf(s, "\tqueue id %d (%s)\n",
441 kdev->base_id + inst->id, inst->name);
442 for_each_handle_rcu(qh, inst) {
443 for_each_possible_cpu(cpu) {
444 pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
445 pops += per_cpu_ptr(qh->stats, cpu)->pops;
446 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
447 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
448 notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
451 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
453 pushes,
454 pops,
455 knav_queue_get_count(qh),
456 notifies,
457 push_errors,
458 pop_errors);
462 static int knav_queue_debug_show(struct seq_file *s, void *v)
464 struct knav_queue_inst *inst;
465 int idx;
467 mutex_lock(&knav_dev_lock);
468 seq_printf(s, "%s: %u-%u\n",
469 dev_name(kdev->dev), kdev->base_id,
470 kdev->base_id + kdev->num_queues - 1);
471 for_each_instance(idx, inst, kdev)
472 knav_queue_debug_show_instance(s, inst);
473 mutex_unlock(&knav_dev_lock);
475 return 0;
478 static int knav_queue_debug_open(struct inode *inode, struct file *file)
480 return single_open(file, knav_queue_debug_show, NULL);
483 static const struct file_operations knav_queue_debug_ops = {
484 .open = knav_queue_debug_open,
485 .read = seq_read,
486 .llseek = seq_lseek,
487 .release = single_release,
490 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
491 u32 flags)
493 unsigned long end;
494 u32 val = 0;
496 end = jiffies + msecs_to_jiffies(timeout);
497 while (time_after(end, jiffies)) {
498 val = readl_relaxed(addr);
499 if (flags)
500 val &= flags;
501 if (!val)
502 break;
503 cpu_relax();
505 return val ? -ETIMEDOUT : 0;
509 static int knav_queue_flush(struct knav_queue *qh)
511 struct knav_queue_inst *inst = qh->inst;
512 unsigned id = inst->id - inst->qmgr->start_queue;
514 atomic_set(&inst->desc_count, 0);
515 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
516 return 0;
520 * knav_queue_open() - open a hardware queue
521 * @name - name to give the queue handle
522 * @id - desired queue number if any or specifes the type
523 * of queue
524 * @flags - the following flags are applicable to queues:
525 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
526 * exclusive by default.
527 * Subsequent attempts to open a shared queue should
528 * also have this flag.
530 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
531 * to check the returned value for error codes.
533 void *knav_queue_open(const char *name, unsigned id,
534 unsigned flags)
536 struct knav_queue *qh = ERR_PTR(-EINVAL);
538 switch (id) {
539 case KNAV_QUEUE_QPEND:
540 case KNAV_QUEUE_ACC:
541 case KNAV_QUEUE_GP:
542 qh = knav_queue_open_by_type(name, id, flags);
543 break;
545 default:
546 qh = knav_queue_open_by_id(name, id, flags);
547 break;
549 return qh;
551 EXPORT_SYMBOL_GPL(knav_queue_open);
554 * knav_queue_close() - close a hardware queue handle
555 * @qh - handle to close
557 void knav_queue_close(void *qhandle)
559 struct knav_queue *qh = qhandle;
560 struct knav_queue_inst *inst = qh->inst;
562 while (atomic_read(&qh->notifier_enabled) > 0)
563 knav_queue_disable_notifier(qh);
565 mutex_lock(&knav_dev_lock);
566 list_del_rcu(&qh->list);
567 mutex_unlock(&knav_dev_lock);
568 synchronize_rcu();
569 if (!knav_queue_is_busy(inst)) {
570 struct knav_range_info *range = inst->range;
572 if (range->ops && range->ops->close_queue)
573 range->ops->close_queue(range, inst);
575 free_percpu(qh->stats);
576 devm_kfree(inst->kdev->dev, qh);
578 EXPORT_SYMBOL_GPL(knav_queue_close);
581 * knav_queue_device_control() - Perform control operations on a queue
582 * @qh - queue handle
583 * @cmd - control commands
584 * @arg - command argument
586 * Returns 0 on success, errno otherwise.
588 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
589 unsigned long arg)
591 struct knav_queue *qh = qhandle;
592 struct knav_queue_notify_config *cfg;
593 int ret;
595 switch ((int)cmd) {
596 case KNAV_QUEUE_GET_ID:
597 ret = qh->inst->kdev->base_id + qh->inst->id;
598 break;
600 case KNAV_QUEUE_FLUSH:
601 ret = knav_queue_flush(qh);
602 break;
604 case KNAV_QUEUE_SET_NOTIFIER:
605 cfg = (void *)arg;
606 ret = knav_queue_set_notifier(qh, cfg);
607 break;
609 case KNAV_QUEUE_ENABLE_NOTIFY:
610 ret = knav_queue_enable_notifier(qh);
611 break;
613 case KNAV_QUEUE_DISABLE_NOTIFY:
614 ret = knav_queue_disable_notifier(qh);
615 break;
617 case KNAV_QUEUE_GET_COUNT:
618 ret = knav_queue_get_count(qh);
619 break;
621 default:
622 ret = -ENOTSUPP;
623 break;
625 return ret;
627 EXPORT_SYMBOL_GPL(knav_queue_device_control);
632 * knav_queue_push() - push data (or descriptor) to the tail of a queue
633 * @qh - hardware queue handle
634 * @data - data to push
635 * @size - size of data to push
636 * @flags - can be used to pass additional information
638 * Returns 0 on success, errno otherwise.
640 int knav_queue_push(void *qhandle, dma_addr_t dma,
641 unsigned size, unsigned flags)
643 struct knav_queue *qh = qhandle;
644 u32 val;
646 val = (u32)dma | ((size / 16) - 1);
647 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
649 this_cpu_inc(qh->stats->pushes);
650 return 0;
652 EXPORT_SYMBOL_GPL(knav_queue_push);
655 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
656 * @qh - hardware queue handle
657 * @size - (optional) size of the data pop'ed.
659 * Returns a DMA address on success, 0 on failure.
661 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
663 struct knav_queue *qh = qhandle;
664 struct knav_queue_inst *inst = qh->inst;
665 dma_addr_t dma;
666 u32 val, idx;
668 /* are we accumulated? */
669 if (inst->descs) {
670 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
671 atomic_inc(&inst->desc_count);
672 return 0;
674 idx = atomic_inc_return(&inst->desc_head);
675 idx &= ACC_DESCS_MASK;
676 val = inst->descs[idx];
677 } else {
678 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
679 if (unlikely(!val))
680 return 0;
683 dma = val & DESC_PTR_MASK;
684 if (size)
685 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
687 this_cpu_inc(qh->stats->pops);
688 return dma;
690 EXPORT_SYMBOL_GPL(knav_queue_pop);
692 /* carve out descriptors and push into queue */
693 static void kdesc_fill_pool(struct knav_pool *pool)
695 struct knav_region *region;
696 int i;
698 region = pool->region;
699 pool->desc_size = region->desc_size;
700 for (i = 0; i < pool->num_desc; i++) {
701 int index = pool->region_offset + i;
702 dma_addr_t dma_addr;
703 unsigned dma_size;
704 dma_addr = region->dma_start + (region->desc_size * index);
705 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
706 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
707 DMA_TO_DEVICE);
708 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
712 /* pop out descriptors and close the queue */
713 static void kdesc_empty_pool(struct knav_pool *pool)
715 dma_addr_t dma;
716 unsigned size;
717 void *desc;
718 int i;
720 if (!pool->queue)
721 return;
723 for (i = 0;; i++) {
724 dma = knav_queue_pop(pool->queue, &size);
725 if (!dma)
726 break;
727 desc = knav_pool_desc_dma_to_virt(pool, dma);
728 if (!desc) {
729 dev_dbg(pool->kdev->dev,
730 "couldn't unmap desc, continuing\n");
731 continue;
734 WARN_ON(i != pool->num_desc);
735 knav_queue_close(pool->queue);
739 /* Get the DMA address of a descriptor */
740 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
742 struct knav_pool *pool = ph;
743 return pool->region->dma_start + (virt - pool->region->virt_start);
745 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
747 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
749 struct knav_pool *pool = ph;
750 return pool->region->virt_start + (dma - pool->region->dma_start);
752 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
755 * knav_pool_create() - Create a pool of descriptors
756 * @name - name to give the pool handle
757 * @num_desc - numbers of descriptors in the pool
758 * @region_id - QMSS region id from which the descriptors are to be
759 * allocated.
761 * Returns a pool handle on success.
762 * Use IS_ERR_OR_NULL() to identify error values on return.
764 void *knav_pool_create(const char *name,
765 int num_desc, int region_id)
767 struct knav_region *reg_itr, *region = NULL;
768 struct knav_pool *pool, *pi;
769 struct list_head *node;
770 unsigned last_offset;
771 bool slot_found;
772 int ret;
774 if (!kdev)
775 return ERR_PTR(-EPROBE_DEFER);
777 if (!kdev->dev)
778 return ERR_PTR(-ENODEV);
780 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
781 if (!pool) {
782 dev_err(kdev->dev, "out of memory allocating pool\n");
783 return ERR_PTR(-ENOMEM);
786 for_each_region(kdev, reg_itr) {
787 if (reg_itr->id != region_id)
788 continue;
789 region = reg_itr;
790 break;
793 if (!region) {
794 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
795 ret = -EINVAL;
796 goto err;
799 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
800 if (IS_ERR_OR_NULL(pool->queue)) {
801 dev_err(kdev->dev,
802 "failed to open queue for pool(%s), error %ld\n",
803 name, PTR_ERR(pool->queue));
804 ret = PTR_ERR(pool->queue);
805 goto err;
808 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
809 pool->kdev = kdev;
810 pool->dev = kdev->dev;
812 mutex_lock(&knav_dev_lock);
814 if (num_desc > (region->num_desc - region->used_desc)) {
815 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
816 region_id, name);
817 ret = -ENOMEM;
818 goto err_unlock;
821 /* Region maintains a sorted (by region offset) list of pools
822 * use the first free slot which is large enough to accomodate
823 * the request
825 last_offset = 0;
826 slot_found = false;
827 node = &region->pools;
828 list_for_each_entry(pi, &region->pools, region_inst) {
829 if ((pi->region_offset - last_offset) >= num_desc) {
830 slot_found = true;
831 break;
833 last_offset = pi->region_offset + pi->num_desc;
835 node = &pi->region_inst;
837 if (slot_found) {
838 pool->region = region;
839 pool->num_desc = num_desc;
840 pool->region_offset = last_offset;
841 region->used_desc += num_desc;
842 list_add_tail(&pool->list, &kdev->pools);
843 list_add_tail(&pool->region_inst, node);
844 } else {
845 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
846 name, region_id);
847 ret = -ENOMEM;
848 goto err_unlock;
851 mutex_unlock(&knav_dev_lock);
852 kdesc_fill_pool(pool);
853 return pool;
855 err_unlock:
856 mutex_unlock(&knav_dev_lock);
857 err:
858 kfree(pool->name);
859 devm_kfree(kdev->dev, pool);
860 return ERR_PTR(ret);
862 EXPORT_SYMBOL_GPL(knav_pool_create);
865 * knav_pool_destroy() - Free a pool of descriptors
866 * @pool - pool handle
868 void knav_pool_destroy(void *ph)
870 struct knav_pool *pool = ph;
872 if (!pool)
873 return;
875 if (!pool->region)
876 return;
878 kdesc_empty_pool(pool);
879 mutex_lock(&knav_dev_lock);
881 pool->region->used_desc -= pool->num_desc;
882 list_del(&pool->region_inst);
883 list_del(&pool->list);
885 mutex_unlock(&knav_dev_lock);
886 kfree(pool->name);
887 devm_kfree(kdev->dev, pool);
889 EXPORT_SYMBOL_GPL(knav_pool_destroy);
893 * knav_pool_desc_get() - Get a descriptor from the pool
894 * @pool - pool handle
896 * Returns descriptor from the pool.
898 void *knav_pool_desc_get(void *ph)
900 struct knav_pool *pool = ph;
901 dma_addr_t dma;
902 unsigned size;
903 void *data;
905 dma = knav_queue_pop(pool->queue, &size);
906 if (unlikely(!dma))
907 return ERR_PTR(-ENOMEM);
908 data = knav_pool_desc_dma_to_virt(pool, dma);
909 return data;
911 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
914 * knav_pool_desc_put() - return a descriptor to the pool
915 * @pool - pool handle
917 void knav_pool_desc_put(void *ph, void *desc)
919 struct knav_pool *pool = ph;
920 dma_addr_t dma;
921 dma = knav_pool_desc_virt_to_dma(pool, desc);
922 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
924 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
927 * knav_pool_desc_map() - Map descriptor for DMA transfer
928 * @pool - pool handle
929 * @desc - address of descriptor to map
930 * @size - size of descriptor to map
931 * @dma - DMA address return pointer
932 * @dma_sz - adjusted return pointer
934 * Returns 0 on success, errno otherwise.
936 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
937 dma_addr_t *dma, unsigned *dma_sz)
939 struct knav_pool *pool = ph;
940 *dma = knav_pool_desc_virt_to_dma(pool, desc);
941 size = min(size, pool->region->desc_size);
942 size = ALIGN(size, SMP_CACHE_BYTES);
943 *dma_sz = size;
944 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
946 /* Ensure the descriptor reaches to the memory */
947 __iowmb();
949 return 0;
951 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
954 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
955 * @pool - pool handle
956 * @dma - DMA address of descriptor to unmap
957 * @dma_sz - size of descriptor to unmap
959 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
960 * error values on return.
962 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
964 struct knav_pool *pool = ph;
965 unsigned desc_sz;
966 void *desc;
968 desc_sz = min(dma_sz, pool->region->desc_size);
969 desc = knav_pool_desc_dma_to_virt(pool, dma);
970 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
971 prefetch(desc);
972 return desc;
974 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
977 * knav_pool_count() - Get the number of descriptors in pool.
978 * @pool - pool handle
979 * Returns number of elements in the pool.
981 int knav_pool_count(void *ph)
983 struct knav_pool *pool = ph;
984 return knav_queue_get_count(pool->queue);
986 EXPORT_SYMBOL_GPL(knav_pool_count);
988 static void knav_queue_setup_region(struct knav_device *kdev,
989 struct knav_region *region)
991 unsigned hw_num_desc, hw_desc_size, size;
992 struct knav_reg_region __iomem *regs;
993 struct knav_qmgr_info *qmgr;
994 struct knav_pool *pool;
995 int id = region->id;
996 struct page *page;
998 /* unused region? */
999 if (!region->num_desc) {
1000 dev_warn(kdev->dev, "unused region %s\n", region->name);
1001 return;
1004 /* get hardware descriptor value */
1005 hw_num_desc = ilog2(region->num_desc - 1) + 1;
1007 /* did we force fit ourselves into nothingness? */
1008 if (region->num_desc < 32) {
1009 region->num_desc = 0;
1010 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1011 region->name);
1012 return;
1015 size = region->num_desc * region->desc_size;
1016 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1017 GFP_DMA32);
1018 if (!region->virt_start) {
1019 region->num_desc = 0;
1020 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1021 region->name);
1022 return;
1024 region->virt_end = region->virt_start + size;
1025 page = virt_to_page(region->virt_start);
1027 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1028 DMA_BIDIRECTIONAL);
1029 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1030 dev_err(kdev->dev, "dma map failed for region %s\n",
1031 region->name);
1032 goto fail;
1034 region->dma_end = region->dma_start + size;
1036 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1037 if (!pool) {
1038 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1039 goto fail;
1041 pool->num_desc = 0;
1042 pool->region_offset = region->num_desc;
1043 list_add(&pool->region_inst, &region->pools);
1045 dev_dbg(kdev->dev,
1046 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1047 region->name, id, region->desc_size, region->num_desc,
1048 region->link_index, &region->dma_start, &region->dma_end,
1049 region->virt_start, region->virt_end);
1051 hw_desc_size = (region->desc_size / 16) - 1;
1052 hw_num_desc -= 5;
1054 for_each_qmgr(kdev, qmgr) {
1055 regs = qmgr->reg_region + id;
1056 writel_relaxed((u32)region->dma_start, &regs->base);
1057 writel_relaxed(region->link_index, &regs->start_index);
1058 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1059 &regs->size_count);
1061 return;
1063 fail:
1064 if (region->dma_start)
1065 dma_unmap_page(kdev->dev, region->dma_start, size,
1066 DMA_BIDIRECTIONAL);
1067 if (region->virt_start)
1068 free_pages_exact(region->virt_start, size);
1069 region->num_desc = 0;
1070 return;
1073 static const char *knav_queue_find_name(struct device_node *node)
1075 const char *name;
1077 if (of_property_read_string(node, "label", &name) < 0)
1078 name = node->name;
1079 if (!name)
1080 name = "unknown";
1081 return name;
1084 static int knav_queue_setup_regions(struct knav_device *kdev,
1085 struct device_node *regions)
1087 struct device *dev = kdev->dev;
1088 struct knav_region *region;
1089 struct device_node *child;
1090 u32 temp[2];
1091 int ret;
1093 for_each_child_of_node(regions, child) {
1094 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1095 if (!region) {
1096 dev_err(dev, "out of memory allocating region\n");
1097 return -ENOMEM;
1100 region->name = knav_queue_find_name(child);
1101 of_property_read_u32(child, "id", &region->id);
1102 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1103 if (!ret) {
1104 region->num_desc = temp[0];
1105 region->desc_size = temp[1];
1106 } else {
1107 dev_err(dev, "invalid region info %s\n", region->name);
1108 devm_kfree(dev, region);
1109 continue;
1112 if (!of_get_property(child, "link-index", NULL)) {
1113 dev_err(dev, "No link info for %s\n", region->name);
1114 devm_kfree(dev, region);
1115 continue;
1117 ret = of_property_read_u32(child, "link-index",
1118 &region->link_index);
1119 if (ret) {
1120 dev_err(dev, "link index not found for %s\n",
1121 region->name);
1122 devm_kfree(dev, region);
1123 continue;
1126 INIT_LIST_HEAD(&region->pools);
1127 list_add_tail(&region->list, &kdev->regions);
1129 if (list_empty(&kdev->regions)) {
1130 dev_err(dev, "no valid region information found\n");
1131 return -ENODEV;
1134 /* Next, we run through the regions and set things up */
1135 for_each_region(kdev, region)
1136 knav_queue_setup_region(kdev, region);
1138 return 0;
1141 static int knav_get_link_ram(struct knav_device *kdev,
1142 const char *name,
1143 struct knav_link_ram_block *block)
1145 struct platform_device *pdev = to_platform_device(kdev->dev);
1146 struct device_node *node = pdev->dev.of_node;
1147 u32 temp[2];
1150 * Note: link ram resources are specified in "entry" sized units. In
1151 * reality, although entries are ~40bits in hardware, we treat them as
1152 * 64-bit entities here.
1154 * For example, to specify the internal link ram for Keystone-I class
1155 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1157 * This gets a bit weird when other link rams are used. For example,
1158 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1159 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1160 * which accounts for 64-bits per entry, for 16K entries.
1162 if (!of_property_read_u32_array(node, name , temp, 2)) {
1163 if (temp[0]) {
1165 * queue_base specified => using internal or onchip
1166 * link ram WARNING - we do not "reserve" this block
1168 block->dma = (dma_addr_t)temp[0];
1169 block->virt = NULL;
1170 block->size = temp[1];
1171 } else {
1172 block->size = temp[1];
1173 /* queue_base not specific => allocate requested size */
1174 block->virt = dmam_alloc_coherent(kdev->dev,
1175 8 * block->size, &block->dma,
1176 GFP_KERNEL);
1177 if (!block->virt) {
1178 dev_err(kdev->dev, "failed to alloc linkram\n");
1179 return -ENOMEM;
1182 } else {
1183 return -ENODEV;
1185 return 0;
1188 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1190 struct knav_link_ram_block *block;
1191 struct knav_qmgr_info *qmgr;
1193 for_each_qmgr(kdev, qmgr) {
1194 block = &kdev->link_rams[0];
1195 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1196 &block->dma, block->virt, block->size);
1197 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1198 if (kdev->version == QMSS_66AK2G)
1199 writel_relaxed(block->size,
1200 &qmgr->reg_config->link_ram_size0);
1201 else
1202 writel_relaxed(block->size - 1,
1203 &qmgr->reg_config->link_ram_size0);
1204 block++;
1205 if (!block->size)
1206 continue;
1208 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1209 &block->dma, block->virt, block->size);
1210 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1213 return 0;
1216 static int knav_setup_queue_range(struct knav_device *kdev,
1217 struct device_node *node)
1219 struct device *dev = kdev->dev;
1220 struct knav_range_info *range;
1221 struct knav_qmgr_info *qmgr;
1222 u32 temp[2], start, end, id, index;
1223 int ret, i;
1225 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1226 if (!range) {
1227 dev_err(dev, "out of memory allocating range\n");
1228 return -ENOMEM;
1231 range->kdev = kdev;
1232 range->name = knav_queue_find_name(node);
1233 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1234 if (!ret) {
1235 range->queue_base = temp[0] - kdev->base_id;
1236 range->num_queues = temp[1];
1237 } else {
1238 dev_err(dev, "invalid queue range %s\n", range->name);
1239 devm_kfree(dev, range);
1240 return -EINVAL;
1243 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1244 struct of_phandle_args oirq;
1246 if (of_irq_parse_one(node, i, &oirq))
1247 break;
1249 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1250 if (range->irqs[i].irq == IRQ_NONE)
1251 break;
1253 range->num_irqs++;
1255 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1256 unsigned long mask;
1257 int bit;
1259 range->irqs[i].cpu_mask = devm_kzalloc(dev,
1260 cpumask_size(), GFP_KERNEL);
1261 if (!range->irqs[i].cpu_mask)
1262 return -ENOMEM;
1264 mask = (oirq.args[2] & 0x0000ff00) >> 8;
1265 for_each_set_bit(bit, &mask, BITS_PER_LONG)
1266 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1270 range->num_irqs = min(range->num_irqs, range->num_queues);
1271 if (range->num_irqs)
1272 range->flags |= RANGE_HAS_IRQ;
1274 if (of_get_property(node, "qalloc-by-id", NULL))
1275 range->flags |= RANGE_RESERVED;
1277 if (of_get_property(node, "accumulator", NULL)) {
1278 ret = knav_init_acc_range(kdev, node, range);
1279 if (ret < 0) {
1280 devm_kfree(dev, range);
1281 return ret;
1283 } else {
1284 range->ops = &knav_gp_range_ops;
1287 /* set threshold to 1, and flush out the queues */
1288 for_each_qmgr(kdev, qmgr) {
1289 start = max(qmgr->start_queue, range->queue_base);
1290 end = min(qmgr->start_queue + qmgr->num_queues,
1291 range->queue_base + range->num_queues);
1292 for (id = start; id < end; id++) {
1293 index = id - qmgr->start_queue;
1294 writel_relaxed(THRESH_GTE | 1,
1295 &qmgr->reg_peek[index].ptr_size_thresh);
1296 writel_relaxed(0,
1297 &qmgr->reg_push[index].ptr_size_thresh);
1301 list_add_tail(&range->list, &kdev->queue_ranges);
1302 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1303 range->name, range->queue_base,
1304 range->queue_base + range->num_queues - 1,
1305 range->num_irqs,
1306 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1307 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1308 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1309 kdev->num_queues_in_use += range->num_queues;
1310 return 0;
1313 static int knav_setup_queue_pools(struct knav_device *kdev,
1314 struct device_node *queue_pools)
1316 struct device_node *type, *range;
1317 int ret;
1319 for_each_child_of_node(queue_pools, type) {
1320 for_each_child_of_node(type, range) {
1321 ret = knav_setup_queue_range(kdev, range);
1322 /* return value ignored, we init the rest... */
1326 /* ... and barf if they all failed! */
1327 if (list_empty(&kdev->queue_ranges)) {
1328 dev_err(kdev->dev, "no valid queue range found\n");
1329 return -ENODEV;
1331 return 0;
1334 static void knav_free_queue_range(struct knav_device *kdev,
1335 struct knav_range_info *range)
1337 if (range->ops && range->ops->free_range)
1338 range->ops->free_range(range);
1339 list_del(&range->list);
1340 devm_kfree(kdev->dev, range);
1343 static void knav_free_queue_ranges(struct knav_device *kdev)
1345 struct knav_range_info *range;
1347 for (;;) {
1348 range = first_queue_range(kdev);
1349 if (!range)
1350 break;
1351 knav_free_queue_range(kdev, range);
1355 static void knav_queue_free_regions(struct knav_device *kdev)
1357 struct knav_region *region;
1358 struct knav_pool *pool, *tmp;
1359 unsigned size;
1361 for (;;) {
1362 region = first_region(kdev);
1363 if (!region)
1364 break;
1365 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1366 knav_pool_destroy(pool);
1368 size = region->virt_end - region->virt_start;
1369 if (size)
1370 free_pages_exact(region->virt_start, size);
1371 list_del(&region->list);
1372 devm_kfree(kdev->dev, region);
1376 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1377 struct device_node *node, int index)
1379 struct resource res;
1380 void __iomem *regs;
1381 int ret;
1383 ret = of_address_to_resource(node, index, &res);
1384 if (ret) {
1385 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1386 node, index);
1387 return ERR_PTR(ret);
1390 regs = devm_ioremap_resource(kdev->dev, &res);
1391 if (IS_ERR(regs))
1392 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1393 index, node);
1394 return regs;
1397 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1398 struct device_node *qmgrs)
1400 struct device *dev = kdev->dev;
1401 struct knav_qmgr_info *qmgr;
1402 struct device_node *child;
1403 u32 temp[2];
1404 int ret;
1406 for_each_child_of_node(qmgrs, child) {
1407 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1408 if (!qmgr) {
1409 dev_err(dev, "out of memory allocating qmgr\n");
1410 return -ENOMEM;
1413 ret = of_property_read_u32_array(child, "managed-queues",
1414 temp, 2);
1415 if (!ret) {
1416 qmgr->start_queue = temp[0];
1417 qmgr->num_queues = temp[1];
1418 } else {
1419 dev_err(dev, "invalid qmgr queue range\n");
1420 devm_kfree(dev, qmgr);
1421 continue;
1424 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1425 qmgr->start_queue, qmgr->num_queues);
1427 qmgr->reg_peek =
1428 knav_queue_map_reg(kdev, child,
1429 KNAV_QUEUE_PEEK_REG_INDEX);
1431 if (kdev->version == QMSS) {
1432 qmgr->reg_status =
1433 knav_queue_map_reg(kdev, child,
1434 KNAV_QUEUE_STATUS_REG_INDEX);
1437 qmgr->reg_config =
1438 knav_queue_map_reg(kdev, child,
1439 (kdev->version == QMSS_66AK2G) ?
1440 KNAV_L_QUEUE_CONFIG_REG_INDEX :
1441 KNAV_QUEUE_CONFIG_REG_INDEX);
1442 qmgr->reg_region =
1443 knav_queue_map_reg(kdev, child,
1444 (kdev->version == QMSS_66AK2G) ?
1445 KNAV_L_QUEUE_REGION_REG_INDEX :
1446 KNAV_QUEUE_REGION_REG_INDEX);
1448 qmgr->reg_push =
1449 knav_queue_map_reg(kdev, child,
1450 (kdev->version == QMSS_66AK2G) ?
1451 KNAV_L_QUEUE_PUSH_REG_INDEX :
1452 KNAV_QUEUE_PUSH_REG_INDEX);
1454 if (kdev->version == QMSS) {
1455 qmgr->reg_pop =
1456 knav_queue_map_reg(kdev, child,
1457 KNAV_QUEUE_POP_REG_INDEX);
1460 if (IS_ERR(qmgr->reg_peek) ||
1461 ((kdev->version == QMSS) &&
1462 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1463 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1464 IS_ERR(qmgr->reg_push)) {
1465 dev_err(dev, "failed to map qmgr regs\n");
1466 if (kdev->version == QMSS) {
1467 if (!IS_ERR(qmgr->reg_status))
1468 devm_iounmap(dev, qmgr->reg_status);
1469 if (!IS_ERR(qmgr->reg_pop))
1470 devm_iounmap(dev, qmgr->reg_pop);
1472 if (!IS_ERR(qmgr->reg_peek))
1473 devm_iounmap(dev, qmgr->reg_peek);
1474 if (!IS_ERR(qmgr->reg_config))
1475 devm_iounmap(dev, qmgr->reg_config);
1476 if (!IS_ERR(qmgr->reg_region))
1477 devm_iounmap(dev, qmgr->reg_region);
1478 if (!IS_ERR(qmgr->reg_push))
1479 devm_iounmap(dev, qmgr->reg_push);
1480 devm_kfree(dev, qmgr);
1481 continue;
1484 /* Use same push register for pop as well */
1485 if (kdev->version == QMSS_66AK2G)
1486 qmgr->reg_pop = qmgr->reg_push;
1488 list_add_tail(&qmgr->list, &kdev->qmgrs);
1489 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1490 qmgr->start_queue, qmgr->num_queues,
1491 qmgr->reg_peek, qmgr->reg_status,
1492 qmgr->reg_config, qmgr->reg_region,
1493 qmgr->reg_push, qmgr->reg_pop);
1495 return 0;
1498 static int knav_queue_init_pdsps(struct knav_device *kdev,
1499 struct device_node *pdsps)
1501 struct device *dev = kdev->dev;
1502 struct knav_pdsp_info *pdsp;
1503 struct device_node *child;
1505 for_each_child_of_node(pdsps, child) {
1506 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1507 if (!pdsp) {
1508 dev_err(dev, "out of memory allocating pdsp\n");
1509 return -ENOMEM;
1511 pdsp->name = knav_queue_find_name(child);
1512 pdsp->iram =
1513 knav_queue_map_reg(kdev, child,
1514 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1515 pdsp->regs =
1516 knav_queue_map_reg(kdev, child,
1517 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1518 pdsp->intd =
1519 knav_queue_map_reg(kdev, child,
1520 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1521 pdsp->command =
1522 knav_queue_map_reg(kdev, child,
1523 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1525 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1526 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1527 dev_err(dev, "failed to map pdsp %s regs\n",
1528 pdsp->name);
1529 if (!IS_ERR(pdsp->command))
1530 devm_iounmap(dev, pdsp->command);
1531 if (!IS_ERR(pdsp->iram))
1532 devm_iounmap(dev, pdsp->iram);
1533 if (!IS_ERR(pdsp->regs))
1534 devm_iounmap(dev, pdsp->regs);
1535 if (!IS_ERR(pdsp->intd))
1536 devm_iounmap(dev, pdsp->intd);
1537 devm_kfree(dev, pdsp);
1538 continue;
1540 of_property_read_u32(child, "id", &pdsp->id);
1541 list_add_tail(&pdsp->list, &kdev->pdsps);
1542 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1543 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1544 pdsp->intd);
1546 return 0;
1549 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1550 struct knav_pdsp_info *pdsp)
1552 u32 val, timeout = 1000;
1553 int ret;
1555 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1556 writel_relaxed(val, &pdsp->regs->control);
1557 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1558 PDSP_CTRL_RUNNING);
1559 if (ret < 0) {
1560 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1561 return ret;
1563 pdsp->loaded = false;
1564 pdsp->started = false;
1565 return 0;
1568 static int knav_queue_load_pdsp(struct knav_device *kdev,
1569 struct knav_pdsp_info *pdsp)
1571 int i, ret, fwlen;
1572 const struct firmware *fw;
1573 bool found = false;
1574 u32 *fwdata;
1576 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1577 if (knav_acc_firmwares[i]) {
1578 ret = request_firmware_direct(&fw,
1579 knav_acc_firmwares[i],
1580 kdev->dev);
1581 if (!ret) {
1582 found = true;
1583 break;
1588 if (!found) {
1589 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1590 return -ENODEV;
1593 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1594 knav_acc_firmwares[i]);
1596 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1597 /* download the firmware */
1598 fwdata = (u32 *)fw->data;
1599 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1600 for (i = 0; i < fwlen; i++)
1601 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1603 release_firmware(fw);
1604 return 0;
1607 static int knav_queue_start_pdsp(struct knav_device *kdev,
1608 struct knav_pdsp_info *pdsp)
1610 u32 val, timeout = 1000;
1611 int ret;
1613 /* write a command for sync */
1614 writel_relaxed(0xffffffff, pdsp->command);
1615 while (readl_relaxed(pdsp->command) != 0xffffffff)
1616 cpu_relax();
1618 /* soft reset the PDSP */
1619 val = readl_relaxed(&pdsp->regs->control);
1620 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1621 writel_relaxed(val, &pdsp->regs->control);
1623 /* enable pdsp */
1624 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1625 writel_relaxed(val, &pdsp->regs->control);
1627 /* wait for command register to clear */
1628 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1629 if (ret < 0) {
1630 dev_err(kdev->dev,
1631 "timed out on pdsp %s command register wait\n",
1632 pdsp->name);
1633 return ret;
1635 return 0;
1638 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1640 struct knav_pdsp_info *pdsp;
1642 /* disable all pdsps */
1643 for_each_pdsp(kdev, pdsp)
1644 knav_queue_stop_pdsp(kdev, pdsp);
1647 static int knav_queue_start_pdsps(struct knav_device *kdev)
1649 struct knav_pdsp_info *pdsp;
1650 int ret;
1652 knav_queue_stop_pdsps(kdev);
1653 /* now load them all. We return success even if pdsp
1654 * is not loaded as acc channels are optional on having
1655 * firmware availability in the system. We set the loaded
1656 * and stated flag and when initialize the acc range, check
1657 * it and init the range only if pdsp is started.
1659 for_each_pdsp(kdev, pdsp) {
1660 ret = knav_queue_load_pdsp(kdev, pdsp);
1661 if (!ret)
1662 pdsp->loaded = true;
1665 for_each_pdsp(kdev, pdsp) {
1666 if (pdsp->loaded) {
1667 ret = knav_queue_start_pdsp(kdev, pdsp);
1668 if (!ret)
1669 pdsp->started = true;
1672 return 0;
1675 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1677 struct knav_qmgr_info *qmgr;
1679 for_each_qmgr(kdev, qmgr) {
1680 if ((id >= qmgr->start_queue) &&
1681 (id < qmgr->start_queue + qmgr->num_queues))
1682 return qmgr;
1684 return NULL;
1687 static int knav_queue_init_queue(struct knav_device *kdev,
1688 struct knav_range_info *range,
1689 struct knav_queue_inst *inst,
1690 unsigned id)
1692 char irq_name[KNAV_NAME_SIZE];
1693 inst->qmgr = knav_find_qmgr(id);
1694 if (!inst->qmgr)
1695 return -1;
1697 INIT_LIST_HEAD(&inst->handles);
1698 inst->kdev = kdev;
1699 inst->range = range;
1700 inst->irq_num = -1;
1701 inst->id = id;
1702 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1703 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1705 if (range->ops && range->ops->init_queue)
1706 return range->ops->init_queue(range, inst);
1707 else
1708 return 0;
1711 static int knav_queue_init_queues(struct knav_device *kdev)
1713 struct knav_range_info *range;
1714 int size, id, base_idx;
1715 int idx = 0, ret = 0;
1717 /* how much do we need for instance data? */
1718 size = sizeof(struct knav_queue_inst);
1720 /* round this up to a power of 2, keep the index to instance
1721 * arithmetic fast.
1722 * */
1723 kdev->inst_shift = order_base_2(size);
1724 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1725 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1726 if (!kdev->instances)
1727 return -ENOMEM;
1729 for_each_queue_range(kdev, range) {
1730 if (range->ops && range->ops->init_range)
1731 range->ops->init_range(range);
1732 base_idx = idx;
1733 for (id = range->queue_base;
1734 id < range->queue_base + range->num_queues; id++, idx++) {
1735 ret = knav_queue_init_queue(kdev, range,
1736 knav_queue_idx_to_inst(kdev, idx), id);
1737 if (ret < 0)
1738 return ret;
1740 range->queue_base_inst =
1741 knav_queue_idx_to_inst(kdev, base_idx);
1743 return 0;
1746 /* Match table for of_platform binding */
1747 static const struct of_device_id keystone_qmss_of_match[] = {
1749 .compatible = "ti,keystone-navigator-qmss",
1752 .compatible = "ti,66ak2g-navss-qm",
1753 .data = (void *)QMSS_66AK2G,
1757 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1759 static int knav_queue_probe(struct platform_device *pdev)
1761 struct device_node *node = pdev->dev.of_node;
1762 struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1763 const struct of_device_id *match;
1764 struct device *dev = &pdev->dev;
1765 u32 temp[2];
1766 int ret;
1768 if (!node) {
1769 dev_err(dev, "device tree info unavailable\n");
1770 return -ENODEV;
1773 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1774 if (!kdev) {
1775 dev_err(dev, "memory allocation failed\n");
1776 return -ENOMEM;
1779 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1780 if (match && match->data)
1781 kdev->version = QMSS_66AK2G;
1783 platform_set_drvdata(pdev, kdev);
1784 kdev->dev = dev;
1785 INIT_LIST_HEAD(&kdev->queue_ranges);
1786 INIT_LIST_HEAD(&kdev->qmgrs);
1787 INIT_LIST_HEAD(&kdev->pools);
1788 INIT_LIST_HEAD(&kdev->regions);
1789 INIT_LIST_HEAD(&kdev->pdsps);
1791 pm_runtime_enable(&pdev->dev);
1792 ret = pm_runtime_get_sync(&pdev->dev);
1793 if (ret < 0) {
1794 dev_err(dev, "Failed to enable QMSS\n");
1795 return ret;
1798 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1799 dev_err(dev, "queue-range not specified\n");
1800 ret = -ENODEV;
1801 goto err;
1803 kdev->base_id = temp[0];
1804 kdev->num_queues = temp[1];
1806 /* Initialize queue managers using device tree configuration */
1807 qmgrs = of_get_child_by_name(node, "qmgrs");
1808 if (!qmgrs) {
1809 dev_err(dev, "queue manager info not specified\n");
1810 ret = -ENODEV;
1811 goto err;
1813 ret = knav_queue_init_qmgrs(kdev, qmgrs);
1814 of_node_put(qmgrs);
1815 if (ret)
1816 goto err;
1818 /* get pdsp configuration values from device tree */
1819 pdsps = of_get_child_by_name(node, "pdsps");
1820 if (pdsps) {
1821 ret = knav_queue_init_pdsps(kdev, pdsps);
1822 if (ret)
1823 goto err;
1825 ret = knav_queue_start_pdsps(kdev);
1826 if (ret)
1827 goto err;
1829 of_node_put(pdsps);
1831 /* get usable queue range values from device tree */
1832 queue_pools = of_get_child_by_name(node, "queue-pools");
1833 if (!queue_pools) {
1834 dev_err(dev, "queue-pools not specified\n");
1835 ret = -ENODEV;
1836 goto err;
1838 ret = knav_setup_queue_pools(kdev, queue_pools);
1839 of_node_put(queue_pools);
1840 if (ret)
1841 goto err;
1843 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1844 if (ret) {
1845 dev_err(kdev->dev, "could not setup linking ram\n");
1846 goto err;
1849 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1850 if (ret) {
1852 * nothing really, we have one linking ram already, so we just
1853 * live within our means
1857 ret = knav_queue_setup_link_ram(kdev);
1858 if (ret)
1859 goto err;
1861 regions = of_get_child_by_name(node, "descriptor-regions");
1862 if (!regions) {
1863 dev_err(dev, "descriptor-regions not specified\n");
1864 goto err;
1866 ret = knav_queue_setup_regions(kdev, regions);
1867 of_node_put(regions);
1868 if (ret)
1869 goto err;
1871 ret = knav_queue_init_queues(kdev);
1872 if (ret < 0) {
1873 dev_err(dev, "hwqueue initialization failed\n");
1874 goto err;
1877 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1878 &knav_queue_debug_ops);
1879 device_ready = true;
1880 return 0;
1882 err:
1883 knav_queue_stop_pdsps(kdev);
1884 knav_queue_free_regions(kdev);
1885 knav_free_queue_ranges(kdev);
1886 pm_runtime_put_sync(&pdev->dev);
1887 pm_runtime_disable(&pdev->dev);
1888 return ret;
1891 static int knav_queue_remove(struct platform_device *pdev)
1893 /* TODO: Free resources */
1894 pm_runtime_put_sync(&pdev->dev);
1895 pm_runtime_disable(&pdev->dev);
1896 return 0;
1899 static struct platform_driver keystone_qmss_driver = {
1900 .probe = knav_queue_probe,
1901 .remove = knav_queue_remove,
1902 .driver = {
1903 .name = "keystone-navigator-qmss",
1904 .of_match_table = keystone_qmss_of_match,
1907 module_platform_driver(keystone_qmss_driver);
1909 MODULE_LICENSE("GPL v2");
1910 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1911 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1912 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");