treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / spi / spi-fsl-dspi.c
blob6ec2dcb8c57a6e969b59a5b5bd14d9dfe03f6f70
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
21 #define DRIVER_NAME "fsl-dspi"
23 #ifdef CONFIG_M5441x
24 #define DSPI_FIFO_SIZE 16
25 #else
26 #define DSPI_FIFO_SIZE 4
27 #endif
28 #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
30 #define SPI_MCR 0x00
31 #define SPI_MCR_MASTER BIT(31)
32 #define SPI_MCR_PCSIS (0x3F << 16)
33 #define SPI_MCR_CLR_TXF BIT(11)
34 #define SPI_MCR_CLR_RXF BIT(10)
35 #define SPI_MCR_XSPI BIT(3)
37 #define SPI_TCR 0x08
38 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
40 #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
41 #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
42 #define SPI_CTAR_CPOL BIT(26)
43 #define SPI_CTAR_CPHA BIT(25)
44 #define SPI_CTAR_LSBFE BIT(24)
45 #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
46 #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
47 #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
48 #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
49 #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
50 #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
51 #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
52 #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
53 #define SPI_CTAR_SCALE_BITS 0xf
55 #define SPI_CTAR0_SLAVE 0x0c
57 #define SPI_SR 0x2c
58 #define SPI_SR_TCFQF BIT(31)
59 #define SPI_SR_EOQF BIT(28)
60 #define SPI_SR_TFUF BIT(27)
61 #define SPI_SR_TFFF BIT(25)
62 #define SPI_SR_CMDTCF BIT(23)
63 #define SPI_SR_SPEF BIT(21)
64 #define SPI_SR_RFOF BIT(19)
65 #define SPI_SR_TFIWF BIT(18)
66 #define SPI_SR_RFDF BIT(17)
67 #define SPI_SR_CMDFFF BIT(16)
68 #define SPI_SR_CLEAR (SPI_SR_TCFQF | SPI_SR_EOQF | \
69 SPI_SR_TFUF | SPI_SR_TFFF | \
70 SPI_SR_CMDTCF | SPI_SR_SPEF | \
71 SPI_SR_RFOF | SPI_SR_TFIWF | \
72 SPI_SR_RFDF | SPI_SR_CMDFFF)
74 #define SPI_RSER_TFFFE BIT(25)
75 #define SPI_RSER_TFFFD BIT(24)
76 #define SPI_RSER_RFDFE BIT(17)
77 #define SPI_RSER_RFDFD BIT(16)
79 #define SPI_RSER 0x30
80 #define SPI_RSER_TCFQE BIT(31)
81 #define SPI_RSER_EOQFE BIT(28)
83 #define SPI_PUSHR 0x34
84 #define SPI_PUSHR_CMD_CONT BIT(15)
85 #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
86 #define SPI_PUSHR_CMD_EOQ BIT(11)
87 #define SPI_PUSHR_CMD_CTCNT BIT(10)
88 #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
90 #define SPI_PUSHR_SLAVE 0x34
92 #define SPI_POPR 0x38
94 #define SPI_TXFR0 0x3c
95 #define SPI_TXFR1 0x40
96 #define SPI_TXFR2 0x44
97 #define SPI_TXFR3 0x48
98 #define SPI_RXFR0 0x7c
99 #define SPI_RXFR1 0x80
100 #define SPI_RXFR2 0x84
101 #define SPI_RXFR3 0x88
103 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
104 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
105 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
107 #define SPI_SREX 0x13c
109 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
112 /* Register offsets for regmap_pushr */
113 #define PUSHR_CMD 0x0
114 #define PUSHR_TX 0x2
116 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
118 struct chip_data {
119 u32 ctar_val;
120 u16 void_write_data;
123 enum dspi_trans_mode {
124 DSPI_EOQ_MODE = 0,
125 DSPI_TCFQ_MODE,
126 DSPI_DMA_MODE,
129 struct fsl_dspi_devtype_data {
130 enum dspi_trans_mode trans_mode;
131 u8 max_clock_factor;
132 bool ptp_sts_supported;
133 bool xspi_mode;
136 static const struct fsl_dspi_devtype_data vf610_data = {
137 .trans_mode = DSPI_DMA_MODE,
138 .max_clock_factor = 2,
141 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
142 .trans_mode = DSPI_TCFQ_MODE,
143 .max_clock_factor = 8,
144 .ptp_sts_supported = true,
145 .xspi_mode = true,
148 static const struct fsl_dspi_devtype_data ls2085a_data = {
149 .trans_mode = DSPI_TCFQ_MODE,
150 .max_clock_factor = 8,
151 .ptp_sts_supported = true,
154 static const struct fsl_dspi_devtype_data coldfire_data = {
155 .trans_mode = DSPI_EOQ_MODE,
156 .max_clock_factor = 8,
159 struct fsl_dspi_dma {
160 /* Length of transfer in words of DSPI_FIFO_SIZE */
161 u32 curr_xfer_len;
163 u32 *tx_dma_buf;
164 struct dma_chan *chan_tx;
165 dma_addr_t tx_dma_phys;
166 struct completion cmd_tx_complete;
167 struct dma_async_tx_descriptor *tx_desc;
169 u32 *rx_dma_buf;
170 struct dma_chan *chan_rx;
171 dma_addr_t rx_dma_phys;
172 struct completion cmd_rx_complete;
173 struct dma_async_tx_descriptor *rx_desc;
176 struct fsl_dspi {
177 struct spi_controller *ctlr;
178 struct platform_device *pdev;
180 struct regmap *regmap;
181 struct regmap *regmap_pushr;
182 int irq;
183 struct clk *clk;
185 struct spi_transfer *cur_transfer;
186 struct spi_message *cur_msg;
187 struct chip_data *cur_chip;
188 size_t progress;
189 size_t len;
190 const void *tx;
191 void *rx;
192 void *rx_end;
193 u16 void_write_data;
194 u16 tx_cmd;
195 u8 bits_per_word;
196 u8 bytes_per_word;
197 const struct fsl_dspi_devtype_data *devtype_data;
199 wait_queue_head_t waitq;
200 u32 waitflags;
202 struct fsl_dspi_dma *dma;
205 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
207 u32 txdata = 0;
209 if (dspi->tx) {
210 if (dspi->bytes_per_word == 1)
211 txdata = *(u8 *)dspi->tx;
212 else if (dspi->bytes_per_word == 2)
213 txdata = *(u16 *)dspi->tx;
214 else /* dspi->bytes_per_word == 4 */
215 txdata = *(u32 *)dspi->tx;
216 dspi->tx += dspi->bytes_per_word;
218 dspi->len -= dspi->bytes_per_word;
219 return txdata;
222 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
224 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
226 if (spi_controller_is_slave(dspi->ctlr))
227 return data;
229 if (dspi->len > 0)
230 cmd |= SPI_PUSHR_CMD_CONT;
231 return cmd << 16 | data;
234 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
236 if (!dspi->rx)
237 return;
239 /* Mask off undefined bits */
240 rxdata &= (1 << dspi->bits_per_word) - 1;
242 if (dspi->bytes_per_word == 1)
243 *(u8 *)dspi->rx = rxdata;
244 else if (dspi->bytes_per_word == 2)
245 *(u16 *)dspi->rx = rxdata;
246 else /* dspi->bytes_per_word == 4 */
247 *(u32 *)dspi->rx = rxdata;
248 dspi->rx += dspi->bytes_per_word;
251 static void dspi_tx_dma_callback(void *arg)
253 struct fsl_dspi *dspi = arg;
254 struct fsl_dspi_dma *dma = dspi->dma;
256 complete(&dma->cmd_tx_complete);
259 static void dspi_rx_dma_callback(void *arg)
261 struct fsl_dspi *dspi = arg;
262 struct fsl_dspi_dma *dma = dspi->dma;
263 int i;
265 if (dspi->rx) {
266 for (i = 0; i < dma->curr_xfer_len; i++)
267 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
270 complete(&dma->cmd_rx_complete);
273 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
275 struct device *dev = &dspi->pdev->dev;
276 struct fsl_dspi_dma *dma = dspi->dma;
277 int time_left;
278 int i;
280 for (i = 0; i < dma->curr_xfer_len; i++)
281 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
283 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
284 dma->tx_dma_phys,
285 dma->curr_xfer_len *
286 DMA_SLAVE_BUSWIDTH_4_BYTES,
287 DMA_MEM_TO_DEV,
288 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
289 if (!dma->tx_desc) {
290 dev_err(dev, "Not able to get desc for DMA xfer\n");
291 return -EIO;
294 dma->tx_desc->callback = dspi_tx_dma_callback;
295 dma->tx_desc->callback_param = dspi;
296 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
297 dev_err(dev, "DMA submit failed\n");
298 return -EINVAL;
301 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
302 dma->rx_dma_phys,
303 dma->curr_xfer_len *
304 DMA_SLAVE_BUSWIDTH_4_BYTES,
305 DMA_DEV_TO_MEM,
306 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
307 if (!dma->rx_desc) {
308 dev_err(dev, "Not able to get desc for DMA xfer\n");
309 return -EIO;
312 dma->rx_desc->callback = dspi_rx_dma_callback;
313 dma->rx_desc->callback_param = dspi;
314 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
315 dev_err(dev, "DMA submit failed\n");
316 return -EINVAL;
319 reinit_completion(&dspi->dma->cmd_rx_complete);
320 reinit_completion(&dspi->dma->cmd_tx_complete);
322 dma_async_issue_pending(dma->chan_rx);
323 dma_async_issue_pending(dma->chan_tx);
325 if (spi_controller_is_slave(dspi->ctlr)) {
326 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
327 return 0;
330 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
331 DMA_COMPLETION_TIMEOUT);
332 if (time_left == 0) {
333 dev_err(dev, "DMA tx timeout\n");
334 dmaengine_terminate_all(dma->chan_tx);
335 dmaengine_terminate_all(dma->chan_rx);
336 return -ETIMEDOUT;
339 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
340 DMA_COMPLETION_TIMEOUT);
341 if (time_left == 0) {
342 dev_err(dev, "DMA rx timeout\n");
343 dmaengine_terminate_all(dma->chan_tx);
344 dmaengine_terminate_all(dma->chan_rx);
345 return -ETIMEDOUT;
348 return 0;
351 static int dspi_dma_xfer(struct fsl_dspi *dspi)
353 struct spi_message *message = dspi->cur_msg;
354 struct device *dev = &dspi->pdev->dev;
355 struct fsl_dspi_dma *dma = dspi->dma;
356 int curr_remaining_bytes;
357 int bytes_per_buffer;
358 int ret = 0;
360 curr_remaining_bytes = dspi->len;
361 bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
362 while (curr_remaining_bytes) {
363 /* Check if current transfer fits the DMA buffer */
364 dma->curr_xfer_len = curr_remaining_bytes
365 / dspi->bytes_per_word;
366 if (dma->curr_xfer_len > bytes_per_buffer)
367 dma->curr_xfer_len = bytes_per_buffer;
369 ret = dspi_next_xfer_dma_submit(dspi);
370 if (ret) {
371 dev_err(dev, "DMA transfer failed\n");
372 goto exit;
374 } else {
375 const int len =
376 dma->curr_xfer_len * dspi->bytes_per_word;
377 curr_remaining_bytes -= len;
378 message->actual_length += len;
379 if (curr_remaining_bytes < 0)
380 curr_remaining_bytes = 0;
384 exit:
385 return ret;
388 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
390 struct device *dev = &dspi->pdev->dev;
391 struct dma_slave_config cfg;
392 struct fsl_dspi_dma *dma;
393 int ret;
395 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
396 if (!dma)
397 return -ENOMEM;
399 dma->chan_rx = dma_request_chan(dev, "rx");
400 if (IS_ERR(dma->chan_rx)) {
401 dev_err(dev, "rx dma channel not available\n");
402 ret = PTR_ERR(dma->chan_rx);
403 return ret;
406 dma->chan_tx = dma_request_chan(dev, "tx");
407 if (IS_ERR(dma->chan_tx)) {
408 dev_err(dev, "tx dma channel not available\n");
409 ret = PTR_ERR(dma->chan_tx);
410 goto err_tx_channel;
413 dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
414 &dma->tx_dma_phys, GFP_KERNEL);
415 if (!dma->tx_dma_buf) {
416 ret = -ENOMEM;
417 goto err_tx_dma_buf;
420 dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
421 &dma->rx_dma_phys, GFP_KERNEL);
422 if (!dma->rx_dma_buf) {
423 ret = -ENOMEM;
424 goto err_rx_dma_buf;
427 cfg.src_addr = phy_addr + SPI_POPR;
428 cfg.dst_addr = phy_addr + SPI_PUSHR;
429 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
430 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
431 cfg.src_maxburst = 1;
432 cfg.dst_maxburst = 1;
434 cfg.direction = DMA_DEV_TO_MEM;
435 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
436 if (ret) {
437 dev_err(dev, "can't configure rx dma channel\n");
438 ret = -EINVAL;
439 goto err_slave_config;
442 cfg.direction = DMA_MEM_TO_DEV;
443 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
444 if (ret) {
445 dev_err(dev, "can't configure tx dma channel\n");
446 ret = -EINVAL;
447 goto err_slave_config;
450 dspi->dma = dma;
451 init_completion(&dma->cmd_tx_complete);
452 init_completion(&dma->cmd_rx_complete);
454 return 0;
456 err_slave_config:
457 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
458 dma->rx_dma_buf, dma->rx_dma_phys);
459 err_rx_dma_buf:
460 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
461 dma->tx_dma_buf, dma->tx_dma_phys);
462 err_tx_dma_buf:
463 dma_release_channel(dma->chan_tx);
464 err_tx_channel:
465 dma_release_channel(dma->chan_rx);
467 devm_kfree(dev, dma);
468 dspi->dma = NULL;
470 return ret;
473 static void dspi_release_dma(struct fsl_dspi *dspi)
475 struct fsl_dspi_dma *dma = dspi->dma;
476 struct device *dev = &dspi->pdev->dev;
478 if (!dma)
479 return;
481 if (dma->chan_tx) {
482 dma_unmap_single(dev, dma->tx_dma_phys,
483 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
484 dma_release_channel(dma->chan_tx);
487 if (dma->chan_rx) {
488 dma_unmap_single(dev, dma->rx_dma_phys,
489 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
490 dma_release_channel(dma->chan_rx);
494 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
495 unsigned long clkrate)
497 /* Valid baud rate pre-scaler values */
498 int pbr_tbl[4] = {2, 3, 5, 7};
499 int brs[16] = { 2, 4, 6, 8,
500 16, 32, 64, 128,
501 256, 512, 1024, 2048,
502 4096, 8192, 16384, 32768 };
503 int scale_needed, scale, minscale = INT_MAX;
504 int i, j;
506 scale_needed = clkrate / speed_hz;
507 if (clkrate % speed_hz)
508 scale_needed++;
510 for (i = 0; i < ARRAY_SIZE(brs); i++)
511 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
512 scale = brs[i] * pbr_tbl[j];
513 if (scale >= scale_needed) {
514 if (scale < minscale) {
515 minscale = scale;
516 *br = i;
517 *pbr = j;
519 break;
523 if (minscale == INT_MAX) {
524 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
525 speed_hz, clkrate);
526 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
527 *br = ARRAY_SIZE(brs) - 1;
531 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
532 unsigned long clkrate)
534 int scale_needed, scale, minscale = INT_MAX;
535 int pscale_tbl[4] = {1, 3, 5, 7};
536 u32 remainder;
537 int i, j;
539 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
540 &remainder);
541 if (remainder)
542 scale_needed++;
544 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
545 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
546 scale = pscale_tbl[i] * (2 << j);
547 if (scale >= scale_needed) {
548 if (scale < minscale) {
549 minscale = scale;
550 *psc = i;
551 *sc = j;
553 break;
557 if (minscale == INT_MAX) {
558 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
559 delay_ns, clkrate);
560 *psc = ARRAY_SIZE(pscale_tbl) - 1;
561 *sc = SPI_CTAR_SCALE_BITS;
565 static void fifo_write(struct fsl_dspi *dspi)
567 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
570 static void cmd_fifo_write(struct fsl_dspi *dspi)
572 u16 cmd = dspi->tx_cmd;
574 if (dspi->len > 0)
575 cmd |= SPI_PUSHR_CMD_CONT;
576 regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
579 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
581 regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
584 static void dspi_tcfq_write(struct fsl_dspi *dspi)
586 /* Clear transfer count */
587 dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
589 if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
590 /* Write the CMD FIFO entry first, and then the two
591 * corresponding TX FIFO entries.
593 u32 data = dspi_pop_tx(dspi);
595 cmd_fifo_write(dspi);
596 tx_fifo_write(dspi, data & 0xFFFF);
597 tx_fifo_write(dspi, data >> 16);
598 } else {
599 /* Write one entry to both TX FIFO and CMD FIFO
600 * simultaneously.
602 fifo_write(dspi);
606 static u32 fifo_read(struct fsl_dspi *dspi)
608 u32 rxdata = 0;
610 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
611 return rxdata;
614 static void dspi_tcfq_read(struct fsl_dspi *dspi)
616 dspi_push_rx(dspi, fifo_read(dspi));
619 static void dspi_eoq_write(struct fsl_dspi *dspi)
621 int fifo_size = DSPI_FIFO_SIZE;
622 u16 xfer_cmd = dspi->tx_cmd;
624 /* Fill TX FIFO with as many transfers as possible */
625 while (dspi->len && fifo_size--) {
626 dspi->tx_cmd = xfer_cmd;
627 /* Request EOQF for last transfer in FIFO */
628 if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
629 dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
630 /* Clear transfer count for first transfer in FIFO */
631 if (fifo_size == (DSPI_FIFO_SIZE - 1))
632 dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
633 /* Write combined TX FIFO and CMD FIFO entry */
634 fifo_write(dspi);
638 static void dspi_eoq_read(struct fsl_dspi *dspi)
640 int fifo_size = DSPI_FIFO_SIZE;
642 /* Read one FIFO entry and push to rx buffer */
643 while ((dspi->rx < dspi->rx_end) && fifo_size--)
644 dspi_push_rx(dspi, fifo_read(dspi));
647 static int dspi_rxtx(struct fsl_dspi *dspi)
649 struct spi_message *msg = dspi->cur_msg;
650 enum dspi_trans_mode trans_mode;
651 u16 spi_tcnt;
652 u32 spi_tcr;
654 spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
655 dspi->progress, !dspi->irq);
657 /* Get transfer counter (in number of SPI transfers). It was
658 * reset to 0 when transfer(s) were started.
660 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
661 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
662 /* Update total number of bytes that were transferred */
663 msg->actual_length += spi_tcnt * dspi->bytes_per_word;
664 dspi->progress += spi_tcnt;
666 trans_mode = dspi->devtype_data->trans_mode;
667 if (trans_mode == DSPI_EOQ_MODE)
668 dspi_eoq_read(dspi);
669 else if (trans_mode == DSPI_TCFQ_MODE)
670 dspi_tcfq_read(dspi);
672 if (!dspi->len)
673 /* Success! */
674 return 0;
676 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
677 dspi->progress, !dspi->irq);
679 if (trans_mode == DSPI_EOQ_MODE)
680 dspi_eoq_write(dspi);
681 else if (trans_mode == DSPI_TCFQ_MODE)
682 dspi_tcfq_write(dspi);
684 return -EINPROGRESS;
687 static int dspi_poll(struct fsl_dspi *dspi)
689 int tries = 1000;
690 u32 spi_sr;
692 do {
693 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
694 regmap_write(dspi->regmap, SPI_SR, spi_sr);
696 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF))
697 break;
698 } while (--tries);
700 if (!tries)
701 return -ETIMEDOUT;
703 return dspi_rxtx(dspi);
706 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
708 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
709 u32 spi_sr;
711 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
712 regmap_write(dspi->regmap, SPI_SR, spi_sr);
714 if (!(spi_sr & SPI_SR_EOQF))
715 return IRQ_NONE;
717 if (dspi_rxtx(dspi) == 0) {
718 dspi->waitflags = 1;
719 wake_up_interruptible(&dspi->waitq);
722 return IRQ_HANDLED;
725 static int dspi_transfer_one_message(struct spi_controller *ctlr,
726 struct spi_message *message)
728 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
729 struct spi_device *spi = message->spi;
730 enum dspi_trans_mode trans_mode;
731 struct spi_transfer *transfer;
732 int status = 0;
734 message->actual_length = 0;
736 list_for_each_entry(transfer, &message->transfers, transfer_list) {
737 dspi->cur_transfer = transfer;
738 dspi->cur_msg = message;
739 dspi->cur_chip = spi_get_ctldata(spi);
740 /* Prepare command word for CMD FIFO */
741 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
742 SPI_PUSHR_CMD_PCS(spi->chip_select);
743 if (list_is_last(&dspi->cur_transfer->transfer_list,
744 &dspi->cur_msg->transfers)) {
745 /* Leave PCS activated after last transfer when
746 * cs_change is set.
748 if (transfer->cs_change)
749 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
750 } else {
751 /* Keep PCS active between transfers in same message
752 * when cs_change is not set, and de-activate PCS
753 * between transfers in the same message when
754 * cs_change is set.
756 if (!transfer->cs_change)
757 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
760 dspi->void_write_data = dspi->cur_chip->void_write_data;
762 dspi->tx = transfer->tx_buf;
763 dspi->rx = transfer->rx_buf;
764 dspi->rx_end = dspi->rx + transfer->len;
765 dspi->len = transfer->len;
766 dspi->progress = 0;
767 /* Validated transfer specific frame size (defaults applied) */
768 dspi->bits_per_word = transfer->bits_per_word;
769 if (transfer->bits_per_word <= 8)
770 dspi->bytes_per_word = 1;
771 else if (transfer->bits_per_word <= 16)
772 dspi->bytes_per_word = 2;
773 else
774 dspi->bytes_per_word = 4;
776 regmap_update_bits(dspi->regmap, SPI_MCR,
777 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
778 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
779 regmap_write(dspi->regmap, SPI_CTAR(0),
780 dspi->cur_chip->ctar_val |
781 SPI_FRAME_BITS(transfer->bits_per_word));
782 if (dspi->devtype_data->xspi_mode)
783 regmap_write(dspi->regmap, SPI_CTARE(0),
784 SPI_FRAME_EBITS(transfer->bits_per_word) |
785 SPI_CTARE_DTCP(1));
787 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
788 dspi->progress, !dspi->irq);
790 trans_mode = dspi->devtype_data->trans_mode;
791 switch (trans_mode) {
792 case DSPI_EOQ_MODE:
793 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
794 dspi_eoq_write(dspi);
795 break;
796 case DSPI_TCFQ_MODE:
797 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
798 dspi_tcfq_write(dspi);
799 break;
800 case DSPI_DMA_MODE:
801 regmap_write(dspi->regmap, SPI_RSER,
802 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
803 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
804 status = dspi_dma_xfer(dspi);
805 break;
806 default:
807 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
808 trans_mode);
809 status = -EINVAL;
810 goto out;
813 if (!dspi->irq) {
814 do {
815 status = dspi_poll(dspi);
816 } while (status == -EINPROGRESS);
817 } else if (trans_mode != DSPI_DMA_MODE) {
818 status = wait_event_interruptible(dspi->waitq,
819 dspi->waitflags);
820 dspi->waitflags = 0;
822 if (status)
823 dev_err(&dspi->pdev->dev,
824 "Waiting for transfer to complete failed!\n");
826 spi_transfer_delay_exec(transfer);
829 out:
830 message->status = status;
831 spi_finalize_current_message(ctlr);
833 return status;
836 static int dspi_setup(struct spi_device *spi)
838 struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
839 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
840 u32 cs_sck_delay = 0, sck_cs_delay = 0;
841 struct fsl_dspi_platform_data *pdata;
842 unsigned char pasc = 0, asc = 0;
843 struct chip_data *chip;
844 unsigned long clkrate;
846 /* Only alloc on first setup */
847 chip = spi_get_ctldata(spi);
848 if (chip == NULL) {
849 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
850 if (!chip)
851 return -ENOMEM;
854 pdata = dev_get_platdata(&dspi->pdev->dev);
856 if (!pdata) {
857 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
858 &cs_sck_delay);
860 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
861 &sck_cs_delay);
862 } else {
863 cs_sck_delay = pdata->cs_sck_delay;
864 sck_cs_delay = pdata->sck_cs_delay;
867 chip->void_write_data = 0;
869 clkrate = clk_get_rate(dspi->clk);
870 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
872 /* Set PCS to SCK delay scale values */
873 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
875 /* Set After SCK delay scale values */
876 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
878 chip->ctar_val = 0;
879 if (spi->mode & SPI_CPOL)
880 chip->ctar_val |= SPI_CTAR_CPOL;
881 if (spi->mode & SPI_CPHA)
882 chip->ctar_val |= SPI_CTAR_CPHA;
884 if (!spi_controller_is_slave(dspi->ctlr)) {
885 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
886 SPI_CTAR_CSSCK(cssck) |
887 SPI_CTAR_PASC(pasc) |
888 SPI_CTAR_ASC(asc) |
889 SPI_CTAR_PBR(pbr) |
890 SPI_CTAR_BR(br);
892 if (spi->mode & SPI_LSB_FIRST)
893 chip->ctar_val |= SPI_CTAR_LSBFE;
896 spi_set_ctldata(spi, chip);
898 return 0;
901 static void dspi_cleanup(struct spi_device *spi)
903 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
905 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
906 spi->controller->bus_num, spi->chip_select);
908 kfree(chip);
911 static const struct of_device_id fsl_dspi_dt_ids[] = {
912 { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
913 { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
914 { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
915 { /* sentinel */ }
917 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
919 #ifdef CONFIG_PM_SLEEP
920 static int dspi_suspend(struct device *dev)
922 struct spi_controller *ctlr = dev_get_drvdata(dev);
923 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
925 spi_controller_suspend(ctlr);
926 clk_disable_unprepare(dspi->clk);
928 pinctrl_pm_select_sleep_state(dev);
930 return 0;
933 static int dspi_resume(struct device *dev)
935 struct spi_controller *ctlr = dev_get_drvdata(dev);
936 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
937 int ret;
939 pinctrl_pm_select_default_state(dev);
941 ret = clk_prepare_enable(dspi->clk);
942 if (ret)
943 return ret;
944 spi_controller_resume(ctlr);
946 return 0;
948 #endif /* CONFIG_PM_SLEEP */
950 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
952 static const struct regmap_range dspi_volatile_ranges[] = {
953 regmap_reg_range(SPI_MCR, SPI_TCR),
954 regmap_reg_range(SPI_SR, SPI_SR),
955 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
958 static const struct regmap_access_table dspi_volatile_table = {
959 .yes_ranges = dspi_volatile_ranges,
960 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
963 static const struct regmap_config dspi_regmap_config = {
964 .reg_bits = 32,
965 .val_bits = 32,
966 .reg_stride = 4,
967 .max_register = 0x88,
968 .volatile_table = &dspi_volatile_table,
971 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
972 regmap_reg_range(SPI_MCR, SPI_TCR),
973 regmap_reg_range(SPI_SR, SPI_SR),
974 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
975 regmap_reg_range(SPI_SREX, SPI_SREX),
978 static const struct regmap_access_table dspi_xspi_volatile_table = {
979 .yes_ranges = dspi_xspi_volatile_ranges,
980 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
983 static const struct regmap_config dspi_xspi_regmap_config[] = {
985 .reg_bits = 32,
986 .val_bits = 32,
987 .reg_stride = 4,
988 .max_register = 0x13c,
989 .volatile_table = &dspi_xspi_volatile_table,
992 .name = "pushr",
993 .reg_bits = 16,
994 .val_bits = 16,
995 .reg_stride = 2,
996 .max_register = 0x2,
1000 static void dspi_init(struct fsl_dspi *dspi)
1002 unsigned int mcr = SPI_MCR_PCSIS;
1004 if (dspi->devtype_data->xspi_mode)
1005 mcr |= SPI_MCR_XSPI;
1006 if (!spi_controller_is_slave(dspi->ctlr))
1007 mcr |= SPI_MCR_MASTER;
1009 regmap_write(dspi->regmap, SPI_MCR, mcr);
1010 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1011 if (dspi->devtype_data->xspi_mode)
1012 regmap_write(dspi->regmap, SPI_CTARE(0),
1013 SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1016 static int dspi_slave_abort(struct spi_master *master)
1018 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1021 * Terminate all pending DMA transactions for the SPI working
1022 * in SLAVE mode.
1024 dmaengine_terminate_sync(dspi->dma->chan_rx);
1025 dmaengine_terminate_sync(dspi->dma->chan_tx);
1027 /* Clear the internal DSPI RX and TX FIFO buffers */
1028 regmap_update_bits(dspi->regmap, SPI_MCR,
1029 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1030 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1032 return 0;
1035 static int dspi_probe(struct platform_device *pdev)
1037 struct device_node *np = pdev->dev.of_node;
1038 const struct regmap_config *regmap_config;
1039 struct fsl_dspi_platform_data *pdata;
1040 struct spi_controller *ctlr;
1041 int ret, cs_num, bus_num;
1042 struct fsl_dspi *dspi;
1043 struct resource *res;
1044 void __iomem *base;
1046 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1047 if (!ctlr)
1048 return -ENOMEM;
1050 dspi = spi_controller_get_devdata(ctlr);
1051 dspi->pdev = pdev;
1052 dspi->ctlr = ctlr;
1054 ctlr->setup = dspi_setup;
1055 ctlr->transfer_one_message = dspi_transfer_one_message;
1056 ctlr->dev.of_node = pdev->dev.of_node;
1058 ctlr->cleanup = dspi_cleanup;
1059 ctlr->slave_abort = dspi_slave_abort;
1060 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1062 pdata = dev_get_platdata(&pdev->dev);
1063 if (pdata) {
1064 ctlr->num_chipselect = pdata->cs_num;
1065 ctlr->bus_num = pdata->bus_num;
1067 dspi->devtype_data = &coldfire_data;
1068 } else {
1070 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1071 if (ret < 0) {
1072 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1073 goto out_ctlr_put;
1075 ctlr->num_chipselect = cs_num;
1077 ret = of_property_read_u32(np, "bus-num", &bus_num);
1078 if (ret < 0) {
1079 dev_err(&pdev->dev, "can't get bus-num\n");
1080 goto out_ctlr_put;
1082 ctlr->bus_num = bus_num;
1084 if (of_property_read_bool(np, "spi-slave"))
1085 ctlr->slave = true;
1087 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1088 if (!dspi->devtype_data) {
1089 dev_err(&pdev->dev, "can't get devtype_data\n");
1090 ret = -EFAULT;
1091 goto out_ctlr_put;
1095 if (dspi->devtype_data->xspi_mode)
1096 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1097 else
1098 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1100 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1101 base = devm_ioremap_resource(&pdev->dev, res);
1102 if (IS_ERR(base)) {
1103 ret = PTR_ERR(base);
1104 goto out_ctlr_put;
1107 if (dspi->devtype_data->xspi_mode)
1108 regmap_config = &dspi_xspi_regmap_config[0];
1109 else
1110 regmap_config = &dspi_regmap_config;
1111 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1112 if (IS_ERR(dspi->regmap)) {
1113 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1114 PTR_ERR(dspi->regmap));
1115 ret = PTR_ERR(dspi->regmap);
1116 goto out_ctlr_put;
1119 if (dspi->devtype_data->xspi_mode) {
1120 dspi->regmap_pushr = devm_regmap_init_mmio(
1121 &pdev->dev, base + SPI_PUSHR,
1122 &dspi_xspi_regmap_config[1]);
1123 if (IS_ERR(dspi->regmap_pushr)) {
1124 dev_err(&pdev->dev,
1125 "failed to init pushr regmap: %ld\n",
1126 PTR_ERR(dspi->regmap_pushr));
1127 ret = PTR_ERR(dspi->regmap_pushr);
1128 goto out_ctlr_put;
1132 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1133 if (IS_ERR(dspi->clk)) {
1134 ret = PTR_ERR(dspi->clk);
1135 dev_err(&pdev->dev, "unable to get clock\n");
1136 goto out_ctlr_put;
1138 ret = clk_prepare_enable(dspi->clk);
1139 if (ret)
1140 goto out_ctlr_put;
1142 dspi_init(dspi);
1144 if (dspi->devtype_data->trans_mode == DSPI_TCFQ_MODE)
1145 goto poll_mode;
1147 dspi->irq = platform_get_irq(pdev, 0);
1148 if (dspi->irq <= 0) {
1149 dev_info(&pdev->dev,
1150 "can't get platform irq, using poll mode\n");
1151 dspi->irq = 0;
1152 goto poll_mode;
1155 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1156 IRQF_SHARED, pdev->name, dspi);
1157 if (ret < 0) {
1158 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1159 goto out_clk_put;
1162 init_waitqueue_head(&dspi->waitq);
1164 poll_mode:
1166 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1167 ret = dspi_request_dma(dspi, res->start);
1168 if (ret < 0) {
1169 dev_err(&pdev->dev, "can't get dma channels\n");
1170 goto out_clk_put;
1174 ctlr->max_speed_hz =
1175 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1177 ctlr->ptp_sts_supported = dspi->devtype_data->ptp_sts_supported;
1179 platform_set_drvdata(pdev, ctlr);
1181 ret = spi_register_controller(ctlr);
1182 if (ret != 0) {
1183 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1184 goto out_clk_put;
1187 return ret;
1189 out_clk_put:
1190 clk_disable_unprepare(dspi->clk);
1191 out_ctlr_put:
1192 spi_controller_put(ctlr);
1194 return ret;
1197 static int dspi_remove(struct platform_device *pdev)
1199 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1200 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1202 /* Disconnect from the SPI framework */
1203 dspi_release_dma(dspi);
1204 clk_disable_unprepare(dspi->clk);
1205 spi_unregister_controller(dspi->ctlr);
1207 return 0;
1210 static struct platform_driver fsl_dspi_driver = {
1211 .driver.name = DRIVER_NAME,
1212 .driver.of_match_table = fsl_dspi_dt_ids,
1213 .driver.owner = THIS_MODULE,
1214 .driver.pm = &dspi_pm,
1215 .probe = dspi_probe,
1216 .remove = dspi_remove,
1218 module_platform_driver(fsl_dspi_driver);
1220 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1221 MODULE_LICENSE("GPL");
1222 MODULE_ALIAS("platform:" DRIVER_NAME);