1 // SPDX-License-Identifier: GPL-2.0+
3 // Copyright 2013 Freescale Semiconductor, Inc.
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
21 #define DRIVER_NAME "fsl-dspi"
24 #define DSPI_FIFO_SIZE 16
26 #define DSPI_FIFO_SIZE 4
28 #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
31 #define SPI_MCR_MASTER BIT(31)
32 #define SPI_MCR_PCSIS (0x3F << 16)
33 #define SPI_MCR_CLR_TXF BIT(11)
34 #define SPI_MCR_CLR_RXF BIT(10)
35 #define SPI_MCR_XSPI BIT(3)
38 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
40 #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
41 #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
42 #define SPI_CTAR_CPOL BIT(26)
43 #define SPI_CTAR_CPHA BIT(25)
44 #define SPI_CTAR_LSBFE BIT(24)
45 #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
46 #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
47 #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
48 #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
49 #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
50 #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
51 #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
52 #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
53 #define SPI_CTAR_SCALE_BITS 0xf
55 #define SPI_CTAR0_SLAVE 0x0c
58 #define SPI_SR_TCFQF BIT(31)
59 #define SPI_SR_EOQF BIT(28)
60 #define SPI_SR_TFUF BIT(27)
61 #define SPI_SR_TFFF BIT(25)
62 #define SPI_SR_CMDTCF BIT(23)
63 #define SPI_SR_SPEF BIT(21)
64 #define SPI_SR_RFOF BIT(19)
65 #define SPI_SR_TFIWF BIT(18)
66 #define SPI_SR_RFDF BIT(17)
67 #define SPI_SR_CMDFFF BIT(16)
68 #define SPI_SR_CLEAR (SPI_SR_TCFQF | SPI_SR_EOQF | \
69 SPI_SR_TFUF | SPI_SR_TFFF | \
70 SPI_SR_CMDTCF | SPI_SR_SPEF | \
71 SPI_SR_RFOF | SPI_SR_TFIWF | \
72 SPI_SR_RFDF | SPI_SR_CMDFFF)
74 #define SPI_RSER_TFFFE BIT(25)
75 #define SPI_RSER_TFFFD BIT(24)
76 #define SPI_RSER_RFDFE BIT(17)
77 #define SPI_RSER_RFDFD BIT(16)
80 #define SPI_RSER_TCFQE BIT(31)
81 #define SPI_RSER_EOQFE BIT(28)
83 #define SPI_PUSHR 0x34
84 #define SPI_PUSHR_CMD_CONT BIT(15)
85 #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
86 #define SPI_PUSHR_CMD_EOQ BIT(11)
87 #define SPI_PUSHR_CMD_CTCNT BIT(10)
88 #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
90 #define SPI_PUSHR_SLAVE 0x34
94 #define SPI_TXFR0 0x3c
95 #define SPI_TXFR1 0x40
96 #define SPI_TXFR2 0x44
97 #define SPI_TXFR3 0x48
98 #define SPI_RXFR0 0x7c
99 #define SPI_RXFR1 0x80
100 #define SPI_RXFR2 0x84
101 #define SPI_RXFR3 0x88
103 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
104 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
105 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
107 #define SPI_SREX 0x13c
109 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
112 /* Register offsets for regmap_pushr */
113 #define PUSHR_CMD 0x0
116 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
123 enum dspi_trans_mode
{
129 struct fsl_dspi_devtype_data
{
130 enum dspi_trans_mode trans_mode
;
132 bool ptp_sts_supported
;
136 static const struct fsl_dspi_devtype_data vf610_data
= {
137 .trans_mode
= DSPI_DMA_MODE
,
138 .max_clock_factor
= 2,
141 static const struct fsl_dspi_devtype_data ls1021a_v1_data
= {
142 .trans_mode
= DSPI_TCFQ_MODE
,
143 .max_clock_factor
= 8,
144 .ptp_sts_supported
= true,
148 static const struct fsl_dspi_devtype_data ls2085a_data
= {
149 .trans_mode
= DSPI_TCFQ_MODE
,
150 .max_clock_factor
= 8,
151 .ptp_sts_supported
= true,
154 static const struct fsl_dspi_devtype_data coldfire_data
= {
155 .trans_mode
= DSPI_EOQ_MODE
,
156 .max_clock_factor
= 8,
159 struct fsl_dspi_dma
{
160 /* Length of transfer in words of DSPI_FIFO_SIZE */
164 struct dma_chan
*chan_tx
;
165 dma_addr_t tx_dma_phys
;
166 struct completion cmd_tx_complete
;
167 struct dma_async_tx_descriptor
*tx_desc
;
170 struct dma_chan
*chan_rx
;
171 dma_addr_t rx_dma_phys
;
172 struct completion cmd_rx_complete
;
173 struct dma_async_tx_descriptor
*rx_desc
;
177 struct spi_controller
*ctlr
;
178 struct platform_device
*pdev
;
180 struct regmap
*regmap
;
181 struct regmap
*regmap_pushr
;
185 struct spi_transfer
*cur_transfer
;
186 struct spi_message
*cur_msg
;
187 struct chip_data
*cur_chip
;
197 const struct fsl_dspi_devtype_data
*devtype_data
;
199 wait_queue_head_t waitq
;
202 struct fsl_dspi_dma
*dma
;
205 static u32
dspi_pop_tx(struct fsl_dspi
*dspi
)
210 if (dspi
->bytes_per_word
== 1)
211 txdata
= *(u8
*)dspi
->tx
;
212 else if (dspi
->bytes_per_word
== 2)
213 txdata
= *(u16
*)dspi
->tx
;
214 else /* dspi->bytes_per_word == 4 */
215 txdata
= *(u32
*)dspi
->tx
;
216 dspi
->tx
+= dspi
->bytes_per_word
;
218 dspi
->len
-= dspi
->bytes_per_word
;
222 static u32
dspi_pop_tx_pushr(struct fsl_dspi
*dspi
)
224 u16 cmd
= dspi
->tx_cmd
, data
= dspi_pop_tx(dspi
);
226 if (spi_controller_is_slave(dspi
->ctlr
))
230 cmd
|= SPI_PUSHR_CMD_CONT
;
231 return cmd
<< 16 | data
;
234 static void dspi_push_rx(struct fsl_dspi
*dspi
, u32 rxdata
)
239 /* Mask off undefined bits */
240 rxdata
&= (1 << dspi
->bits_per_word
) - 1;
242 if (dspi
->bytes_per_word
== 1)
243 *(u8
*)dspi
->rx
= rxdata
;
244 else if (dspi
->bytes_per_word
== 2)
245 *(u16
*)dspi
->rx
= rxdata
;
246 else /* dspi->bytes_per_word == 4 */
247 *(u32
*)dspi
->rx
= rxdata
;
248 dspi
->rx
+= dspi
->bytes_per_word
;
251 static void dspi_tx_dma_callback(void *arg
)
253 struct fsl_dspi
*dspi
= arg
;
254 struct fsl_dspi_dma
*dma
= dspi
->dma
;
256 complete(&dma
->cmd_tx_complete
);
259 static void dspi_rx_dma_callback(void *arg
)
261 struct fsl_dspi
*dspi
= arg
;
262 struct fsl_dspi_dma
*dma
= dspi
->dma
;
266 for (i
= 0; i
< dma
->curr_xfer_len
; i
++)
267 dspi_push_rx(dspi
, dspi
->dma
->rx_dma_buf
[i
]);
270 complete(&dma
->cmd_rx_complete
);
273 static int dspi_next_xfer_dma_submit(struct fsl_dspi
*dspi
)
275 struct device
*dev
= &dspi
->pdev
->dev
;
276 struct fsl_dspi_dma
*dma
= dspi
->dma
;
280 for (i
= 0; i
< dma
->curr_xfer_len
; i
++)
281 dspi
->dma
->tx_dma_buf
[i
] = dspi_pop_tx_pushr(dspi
);
283 dma
->tx_desc
= dmaengine_prep_slave_single(dma
->chan_tx
,
286 DMA_SLAVE_BUSWIDTH_4_BYTES
,
288 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
290 dev_err(dev
, "Not able to get desc for DMA xfer\n");
294 dma
->tx_desc
->callback
= dspi_tx_dma_callback
;
295 dma
->tx_desc
->callback_param
= dspi
;
296 if (dma_submit_error(dmaengine_submit(dma
->tx_desc
))) {
297 dev_err(dev
, "DMA submit failed\n");
301 dma
->rx_desc
= dmaengine_prep_slave_single(dma
->chan_rx
,
304 DMA_SLAVE_BUSWIDTH_4_BYTES
,
306 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
308 dev_err(dev
, "Not able to get desc for DMA xfer\n");
312 dma
->rx_desc
->callback
= dspi_rx_dma_callback
;
313 dma
->rx_desc
->callback_param
= dspi
;
314 if (dma_submit_error(dmaengine_submit(dma
->rx_desc
))) {
315 dev_err(dev
, "DMA submit failed\n");
319 reinit_completion(&dspi
->dma
->cmd_rx_complete
);
320 reinit_completion(&dspi
->dma
->cmd_tx_complete
);
322 dma_async_issue_pending(dma
->chan_rx
);
323 dma_async_issue_pending(dma
->chan_tx
);
325 if (spi_controller_is_slave(dspi
->ctlr
)) {
326 wait_for_completion_interruptible(&dspi
->dma
->cmd_rx_complete
);
330 time_left
= wait_for_completion_timeout(&dspi
->dma
->cmd_tx_complete
,
331 DMA_COMPLETION_TIMEOUT
);
332 if (time_left
== 0) {
333 dev_err(dev
, "DMA tx timeout\n");
334 dmaengine_terminate_all(dma
->chan_tx
);
335 dmaengine_terminate_all(dma
->chan_rx
);
339 time_left
= wait_for_completion_timeout(&dspi
->dma
->cmd_rx_complete
,
340 DMA_COMPLETION_TIMEOUT
);
341 if (time_left
== 0) {
342 dev_err(dev
, "DMA rx timeout\n");
343 dmaengine_terminate_all(dma
->chan_tx
);
344 dmaengine_terminate_all(dma
->chan_rx
);
351 static int dspi_dma_xfer(struct fsl_dspi
*dspi
)
353 struct spi_message
*message
= dspi
->cur_msg
;
354 struct device
*dev
= &dspi
->pdev
->dev
;
355 struct fsl_dspi_dma
*dma
= dspi
->dma
;
356 int curr_remaining_bytes
;
357 int bytes_per_buffer
;
360 curr_remaining_bytes
= dspi
->len
;
361 bytes_per_buffer
= DSPI_DMA_BUFSIZE
/ DSPI_FIFO_SIZE
;
362 while (curr_remaining_bytes
) {
363 /* Check if current transfer fits the DMA buffer */
364 dma
->curr_xfer_len
= curr_remaining_bytes
365 / dspi
->bytes_per_word
;
366 if (dma
->curr_xfer_len
> bytes_per_buffer
)
367 dma
->curr_xfer_len
= bytes_per_buffer
;
369 ret
= dspi_next_xfer_dma_submit(dspi
);
371 dev_err(dev
, "DMA transfer failed\n");
376 dma
->curr_xfer_len
* dspi
->bytes_per_word
;
377 curr_remaining_bytes
-= len
;
378 message
->actual_length
+= len
;
379 if (curr_remaining_bytes
< 0)
380 curr_remaining_bytes
= 0;
388 static int dspi_request_dma(struct fsl_dspi
*dspi
, phys_addr_t phy_addr
)
390 struct device
*dev
= &dspi
->pdev
->dev
;
391 struct dma_slave_config cfg
;
392 struct fsl_dspi_dma
*dma
;
395 dma
= devm_kzalloc(dev
, sizeof(*dma
), GFP_KERNEL
);
399 dma
->chan_rx
= dma_request_chan(dev
, "rx");
400 if (IS_ERR(dma
->chan_rx
)) {
401 dev_err(dev
, "rx dma channel not available\n");
402 ret
= PTR_ERR(dma
->chan_rx
);
406 dma
->chan_tx
= dma_request_chan(dev
, "tx");
407 if (IS_ERR(dma
->chan_tx
)) {
408 dev_err(dev
, "tx dma channel not available\n");
409 ret
= PTR_ERR(dma
->chan_tx
);
413 dma
->tx_dma_buf
= dma_alloc_coherent(dev
, DSPI_DMA_BUFSIZE
,
414 &dma
->tx_dma_phys
, GFP_KERNEL
);
415 if (!dma
->tx_dma_buf
) {
420 dma
->rx_dma_buf
= dma_alloc_coherent(dev
, DSPI_DMA_BUFSIZE
,
421 &dma
->rx_dma_phys
, GFP_KERNEL
);
422 if (!dma
->rx_dma_buf
) {
427 cfg
.src_addr
= phy_addr
+ SPI_POPR
;
428 cfg
.dst_addr
= phy_addr
+ SPI_PUSHR
;
429 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
430 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
431 cfg
.src_maxburst
= 1;
432 cfg
.dst_maxburst
= 1;
434 cfg
.direction
= DMA_DEV_TO_MEM
;
435 ret
= dmaengine_slave_config(dma
->chan_rx
, &cfg
);
437 dev_err(dev
, "can't configure rx dma channel\n");
439 goto err_slave_config
;
442 cfg
.direction
= DMA_MEM_TO_DEV
;
443 ret
= dmaengine_slave_config(dma
->chan_tx
, &cfg
);
445 dev_err(dev
, "can't configure tx dma channel\n");
447 goto err_slave_config
;
451 init_completion(&dma
->cmd_tx_complete
);
452 init_completion(&dma
->cmd_rx_complete
);
457 dma_free_coherent(dev
, DSPI_DMA_BUFSIZE
,
458 dma
->rx_dma_buf
, dma
->rx_dma_phys
);
460 dma_free_coherent(dev
, DSPI_DMA_BUFSIZE
,
461 dma
->tx_dma_buf
, dma
->tx_dma_phys
);
463 dma_release_channel(dma
->chan_tx
);
465 dma_release_channel(dma
->chan_rx
);
467 devm_kfree(dev
, dma
);
473 static void dspi_release_dma(struct fsl_dspi
*dspi
)
475 struct fsl_dspi_dma
*dma
= dspi
->dma
;
476 struct device
*dev
= &dspi
->pdev
->dev
;
482 dma_unmap_single(dev
, dma
->tx_dma_phys
,
483 DSPI_DMA_BUFSIZE
, DMA_TO_DEVICE
);
484 dma_release_channel(dma
->chan_tx
);
488 dma_unmap_single(dev
, dma
->rx_dma_phys
,
489 DSPI_DMA_BUFSIZE
, DMA_FROM_DEVICE
);
490 dma_release_channel(dma
->chan_rx
);
494 static void hz_to_spi_baud(char *pbr
, char *br
, int speed_hz
,
495 unsigned long clkrate
)
497 /* Valid baud rate pre-scaler values */
498 int pbr_tbl
[4] = {2, 3, 5, 7};
499 int brs
[16] = { 2, 4, 6, 8,
501 256, 512, 1024, 2048,
502 4096, 8192, 16384, 32768 };
503 int scale_needed
, scale
, minscale
= INT_MAX
;
506 scale_needed
= clkrate
/ speed_hz
;
507 if (clkrate
% speed_hz
)
510 for (i
= 0; i
< ARRAY_SIZE(brs
); i
++)
511 for (j
= 0; j
< ARRAY_SIZE(pbr_tbl
); j
++) {
512 scale
= brs
[i
] * pbr_tbl
[j
];
513 if (scale
>= scale_needed
) {
514 if (scale
< minscale
) {
523 if (minscale
== INT_MAX
) {
524 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
526 *pbr
= ARRAY_SIZE(pbr_tbl
) - 1;
527 *br
= ARRAY_SIZE(brs
) - 1;
531 static void ns_delay_scale(char *psc
, char *sc
, int delay_ns
,
532 unsigned long clkrate
)
534 int scale_needed
, scale
, minscale
= INT_MAX
;
535 int pscale_tbl
[4] = {1, 3, 5, 7};
539 scale_needed
= div_u64_rem((u64
)delay_ns
* clkrate
, NSEC_PER_SEC
,
544 for (i
= 0; i
< ARRAY_SIZE(pscale_tbl
); i
++)
545 for (j
= 0; j
<= SPI_CTAR_SCALE_BITS
; j
++) {
546 scale
= pscale_tbl
[i
] * (2 << j
);
547 if (scale
>= scale_needed
) {
548 if (scale
< minscale
) {
557 if (minscale
== INT_MAX
) {
558 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
560 *psc
= ARRAY_SIZE(pscale_tbl
) - 1;
561 *sc
= SPI_CTAR_SCALE_BITS
;
565 static void fifo_write(struct fsl_dspi
*dspi
)
567 regmap_write(dspi
->regmap
, SPI_PUSHR
, dspi_pop_tx_pushr(dspi
));
570 static void cmd_fifo_write(struct fsl_dspi
*dspi
)
572 u16 cmd
= dspi
->tx_cmd
;
575 cmd
|= SPI_PUSHR_CMD_CONT
;
576 regmap_write(dspi
->regmap_pushr
, PUSHR_CMD
, cmd
);
579 static void tx_fifo_write(struct fsl_dspi
*dspi
, u16 txdata
)
581 regmap_write(dspi
->regmap_pushr
, PUSHR_TX
, txdata
);
584 static void dspi_tcfq_write(struct fsl_dspi
*dspi
)
586 /* Clear transfer count */
587 dspi
->tx_cmd
|= SPI_PUSHR_CMD_CTCNT
;
589 if (dspi
->devtype_data
->xspi_mode
&& dspi
->bits_per_word
> 16) {
590 /* Write the CMD FIFO entry first, and then the two
591 * corresponding TX FIFO entries.
593 u32 data
= dspi_pop_tx(dspi
);
595 cmd_fifo_write(dspi
);
596 tx_fifo_write(dspi
, data
& 0xFFFF);
597 tx_fifo_write(dspi
, data
>> 16);
599 /* Write one entry to both TX FIFO and CMD FIFO
606 static u32
fifo_read(struct fsl_dspi
*dspi
)
610 regmap_read(dspi
->regmap
, SPI_POPR
, &rxdata
);
614 static void dspi_tcfq_read(struct fsl_dspi
*dspi
)
616 dspi_push_rx(dspi
, fifo_read(dspi
));
619 static void dspi_eoq_write(struct fsl_dspi
*dspi
)
621 int fifo_size
= DSPI_FIFO_SIZE
;
622 u16 xfer_cmd
= dspi
->tx_cmd
;
624 /* Fill TX FIFO with as many transfers as possible */
625 while (dspi
->len
&& fifo_size
--) {
626 dspi
->tx_cmd
= xfer_cmd
;
627 /* Request EOQF for last transfer in FIFO */
628 if (dspi
->len
== dspi
->bytes_per_word
|| fifo_size
== 0)
629 dspi
->tx_cmd
|= SPI_PUSHR_CMD_EOQ
;
630 /* Clear transfer count for first transfer in FIFO */
631 if (fifo_size
== (DSPI_FIFO_SIZE
- 1))
632 dspi
->tx_cmd
|= SPI_PUSHR_CMD_CTCNT
;
633 /* Write combined TX FIFO and CMD FIFO entry */
638 static void dspi_eoq_read(struct fsl_dspi
*dspi
)
640 int fifo_size
= DSPI_FIFO_SIZE
;
642 /* Read one FIFO entry and push to rx buffer */
643 while ((dspi
->rx
< dspi
->rx_end
) && fifo_size
--)
644 dspi_push_rx(dspi
, fifo_read(dspi
));
647 static int dspi_rxtx(struct fsl_dspi
*dspi
)
649 struct spi_message
*msg
= dspi
->cur_msg
;
650 enum dspi_trans_mode trans_mode
;
654 spi_take_timestamp_post(dspi
->ctlr
, dspi
->cur_transfer
,
655 dspi
->progress
, !dspi
->irq
);
657 /* Get transfer counter (in number of SPI transfers). It was
658 * reset to 0 when transfer(s) were started.
660 regmap_read(dspi
->regmap
, SPI_TCR
, &spi_tcr
);
661 spi_tcnt
= SPI_TCR_GET_TCNT(spi_tcr
);
662 /* Update total number of bytes that were transferred */
663 msg
->actual_length
+= spi_tcnt
* dspi
->bytes_per_word
;
664 dspi
->progress
+= spi_tcnt
;
666 trans_mode
= dspi
->devtype_data
->trans_mode
;
667 if (trans_mode
== DSPI_EOQ_MODE
)
669 else if (trans_mode
== DSPI_TCFQ_MODE
)
670 dspi_tcfq_read(dspi
);
676 spi_take_timestamp_pre(dspi
->ctlr
, dspi
->cur_transfer
,
677 dspi
->progress
, !dspi
->irq
);
679 if (trans_mode
== DSPI_EOQ_MODE
)
680 dspi_eoq_write(dspi
);
681 else if (trans_mode
== DSPI_TCFQ_MODE
)
682 dspi_tcfq_write(dspi
);
687 static int dspi_poll(struct fsl_dspi
*dspi
)
693 regmap_read(dspi
->regmap
, SPI_SR
, &spi_sr
);
694 regmap_write(dspi
->regmap
, SPI_SR
, spi_sr
);
696 if (spi_sr
& (SPI_SR_EOQF
| SPI_SR_TCFQF
))
703 return dspi_rxtx(dspi
);
706 static irqreturn_t
dspi_interrupt(int irq
, void *dev_id
)
708 struct fsl_dspi
*dspi
= (struct fsl_dspi
*)dev_id
;
711 regmap_read(dspi
->regmap
, SPI_SR
, &spi_sr
);
712 regmap_write(dspi
->regmap
, SPI_SR
, spi_sr
);
714 if (!(spi_sr
& SPI_SR_EOQF
))
717 if (dspi_rxtx(dspi
) == 0) {
719 wake_up_interruptible(&dspi
->waitq
);
725 static int dspi_transfer_one_message(struct spi_controller
*ctlr
,
726 struct spi_message
*message
)
728 struct fsl_dspi
*dspi
= spi_controller_get_devdata(ctlr
);
729 struct spi_device
*spi
= message
->spi
;
730 enum dspi_trans_mode trans_mode
;
731 struct spi_transfer
*transfer
;
734 message
->actual_length
= 0;
736 list_for_each_entry(transfer
, &message
->transfers
, transfer_list
) {
737 dspi
->cur_transfer
= transfer
;
738 dspi
->cur_msg
= message
;
739 dspi
->cur_chip
= spi_get_ctldata(spi
);
740 /* Prepare command word for CMD FIFO */
741 dspi
->tx_cmd
= SPI_PUSHR_CMD_CTAS(0) |
742 SPI_PUSHR_CMD_PCS(spi
->chip_select
);
743 if (list_is_last(&dspi
->cur_transfer
->transfer_list
,
744 &dspi
->cur_msg
->transfers
)) {
745 /* Leave PCS activated after last transfer when
748 if (transfer
->cs_change
)
749 dspi
->tx_cmd
|= SPI_PUSHR_CMD_CONT
;
751 /* Keep PCS active between transfers in same message
752 * when cs_change is not set, and de-activate PCS
753 * between transfers in the same message when
756 if (!transfer
->cs_change
)
757 dspi
->tx_cmd
|= SPI_PUSHR_CMD_CONT
;
760 dspi
->void_write_data
= dspi
->cur_chip
->void_write_data
;
762 dspi
->tx
= transfer
->tx_buf
;
763 dspi
->rx
= transfer
->rx_buf
;
764 dspi
->rx_end
= dspi
->rx
+ transfer
->len
;
765 dspi
->len
= transfer
->len
;
767 /* Validated transfer specific frame size (defaults applied) */
768 dspi
->bits_per_word
= transfer
->bits_per_word
;
769 if (transfer
->bits_per_word
<= 8)
770 dspi
->bytes_per_word
= 1;
771 else if (transfer
->bits_per_word
<= 16)
772 dspi
->bytes_per_word
= 2;
774 dspi
->bytes_per_word
= 4;
776 regmap_update_bits(dspi
->regmap
, SPI_MCR
,
777 SPI_MCR_CLR_TXF
| SPI_MCR_CLR_RXF
,
778 SPI_MCR_CLR_TXF
| SPI_MCR_CLR_RXF
);
779 regmap_write(dspi
->regmap
, SPI_CTAR(0),
780 dspi
->cur_chip
->ctar_val
|
781 SPI_FRAME_BITS(transfer
->bits_per_word
));
782 if (dspi
->devtype_data
->xspi_mode
)
783 regmap_write(dspi
->regmap
, SPI_CTARE(0),
784 SPI_FRAME_EBITS(transfer
->bits_per_word
) |
787 spi_take_timestamp_pre(dspi
->ctlr
, dspi
->cur_transfer
,
788 dspi
->progress
, !dspi
->irq
);
790 trans_mode
= dspi
->devtype_data
->trans_mode
;
791 switch (trans_mode
) {
793 regmap_write(dspi
->regmap
, SPI_RSER
, SPI_RSER_EOQFE
);
794 dspi_eoq_write(dspi
);
797 regmap_write(dspi
->regmap
, SPI_RSER
, SPI_RSER_TCFQE
);
798 dspi_tcfq_write(dspi
);
801 regmap_write(dspi
->regmap
, SPI_RSER
,
802 SPI_RSER_TFFFE
| SPI_RSER_TFFFD
|
803 SPI_RSER_RFDFE
| SPI_RSER_RFDFD
);
804 status
= dspi_dma_xfer(dspi
);
807 dev_err(&dspi
->pdev
->dev
, "unsupported trans_mode %u\n",
815 status
= dspi_poll(dspi
);
816 } while (status
== -EINPROGRESS
);
817 } else if (trans_mode
!= DSPI_DMA_MODE
) {
818 status
= wait_event_interruptible(dspi
->waitq
,
823 dev_err(&dspi
->pdev
->dev
,
824 "Waiting for transfer to complete failed!\n");
826 spi_transfer_delay_exec(transfer
);
830 message
->status
= status
;
831 spi_finalize_current_message(ctlr
);
836 static int dspi_setup(struct spi_device
*spi
)
838 struct fsl_dspi
*dspi
= spi_controller_get_devdata(spi
->controller
);
839 unsigned char br
= 0, pbr
= 0, pcssck
= 0, cssck
= 0;
840 u32 cs_sck_delay
= 0, sck_cs_delay
= 0;
841 struct fsl_dspi_platform_data
*pdata
;
842 unsigned char pasc
= 0, asc
= 0;
843 struct chip_data
*chip
;
844 unsigned long clkrate
;
846 /* Only alloc on first setup */
847 chip
= spi_get_ctldata(spi
);
849 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
854 pdata
= dev_get_platdata(&dspi
->pdev
->dev
);
857 of_property_read_u32(spi
->dev
.of_node
, "fsl,spi-cs-sck-delay",
860 of_property_read_u32(spi
->dev
.of_node
, "fsl,spi-sck-cs-delay",
863 cs_sck_delay
= pdata
->cs_sck_delay
;
864 sck_cs_delay
= pdata
->sck_cs_delay
;
867 chip
->void_write_data
= 0;
869 clkrate
= clk_get_rate(dspi
->clk
);
870 hz_to_spi_baud(&pbr
, &br
, spi
->max_speed_hz
, clkrate
);
872 /* Set PCS to SCK delay scale values */
873 ns_delay_scale(&pcssck
, &cssck
, cs_sck_delay
, clkrate
);
875 /* Set After SCK delay scale values */
876 ns_delay_scale(&pasc
, &asc
, sck_cs_delay
, clkrate
);
879 if (spi
->mode
& SPI_CPOL
)
880 chip
->ctar_val
|= SPI_CTAR_CPOL
;
881 if (spi
->mode
& SPI_CPHA
)
882 chip
->ctar_val
|= SPI_CTAR_CPHA
;
884 if (!spi_controller_is_slave(dspi
->ctlr
)) {
885 chip
->ctar_val
|= SPI_CTAR_PCSSCK(pcssck
) |
886 SPI_CTAR_CSSCK(cssck
) |
887 SPI_CTAR_PASC(pasc
) |
892 if (spi
->mode
& SPI_LSB_FIRST
)
893 chip
->ctar_val
|= SPI_CTAR_LSBFE
;
896 spi_set_ctldata(spi
, chip
);
901 static void dspi_cleanup(struct spi_device
*spi
)
903 struct chip_data
*chip
= spi_get_ctldata((struct spi_device
*)spi
);
905 dev_dbg(&spi
->dev
, "spi_device %u.%u cleanup\n",
906 spi
->controller
->bus_num
, spi
->chip_select
);
911 static const struct of_device_id fsl_dspi_dt_ids
[] = {
912 { .compatible
= "fsl,vf610-dspi", .data
= &vf610_data
, },
913 { .compatible
= "fsl,ls1021a-v1.0-dspi", .data
= &ls1021a_v1_data
, },
914 { .compatible
= "fsl,ls2085a-dspi", .data
= &ls2085a_data
, },
917 MODULE_DEVICE_TABLE(of
, fsl_dspi_dt_ids
);
919 #ifdef CONFIG_PM_SLEEP
920 static int dspi_suspend(struct device
*dev
)
922 struct spi_controller
*ctlr
= dev_get_drvdata(dev
);
923 struct fsl_dspi
*dspi
= spi_controller_get_devdata(ctlr
);
925 spi_controller_suspend(ctlr
);
926 clk_disable_unprepare(dspi
->clk
);
928 pinctrl_pm_select_sleep_state(dev
);
933 static int dspi_resume(struct device
*dev
)
935 struct spi_controller
*ctlr
= dev_get_drvdata(dev
);
936 struct fsl_dspi
*dspi
= spi_controller_get_devdata(ctlr
);
939 pinctrl_pm_select_default_state(dev
);
941 ret
= clk_prepare_enable(dspi
->clk
);
944 spi_controller_resume(ctlr
);
948 #endif /* CONFIG_PM_SLEEP */
950 static SIMPLE_DEV_PM_OPS(dspi_pm
, dspi_suspend
, dspi_resume
);
952 static const struct regmap_range dspi_volatile_ranges
[] = {
953 regmap_reg_range(SPI_MCR
, SPI_TCR
),
954 regmap_reg_range(SPI_SR
, SPI_SR
),
955 regmap_reg_range(SPI_PUSHR
, SPI_RXFR3
),
958 static const struct regmap_access_table dspi_volatile_table
= {
959 .yes_ranges
= dspi_volatile_ranges
,
960 .n_yes_ranges
= ARRAY_SIZE(dspi_volatile_ranges
),
963 static const struct regmap_config dspi_regmap_config
= {
967 .max_register
= 0x88,
968 .volatile_table
= &dspi_volatile_table
,
971 static const struct regmap_range dspi_xspi_volatile_ranges
[] = {
972 regmap_reg_range(SPI_MCR
, SPI_TCR
),
973 regmap_reg_range(SPI_SR
, SPI_SR
),
974 regmap_reg_range(SPI_PUSHR
, SPI_RXFR3
),
975 regmap_reg_range(SPI_SREX
, SPI_SREX
),
978 static const struct regmap_access_table dspi_xspi_volatile_table
= {
979 .yes_ranges
= dspi_xspi_volatile_ranges
,
980 .n_yes_ranges
= ARRAY_SIZE(dspi_xspi_volatile_ranges
),
983 static const struct regmap_config dspi_xspi_regmap_config
[] = {
988 .max_register
= 0x13c,
989 .volatile_table
= &dspi_xspi_volatile_table
,
1000 static void dspi_init(struct fsl_dspi
*dspi
)
1002 unsigned int mcr
= SPI_MCR_PCSIS
;
1004 if (dspi
->devtype_data
->xspi_mode
)
1005 mcr
|= SPI_MCR_XSPI
;
1006 if (!spi_controller_is_slave(dspi
->ctlr
))
1007 mcr
|= SPI_MCR_MASTER
;
1009 regmap_write(dspi
->regmap
, SPI_MCR
, mcr
);
1010 regmap_write(dspi
->regmap
, SPI_SR
, SPI_SR_CLEAR
);
1011 if (dspi
->devtype_data
->xspi_mode
)
1012 regmap_write(dspi
->regmap
, SPI_CTARE(0),
1013 SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1016 static int dspi_slave_abort(struct spi_master
*master
)
1018 struct fsl_dspi
*dspi
= spi_master_get_devdata(master
);
1021 * Terminate all pending DMA transactions for the SPI working
1024 dmaengine_terminate_sync(dspi
->dma
->chan_rx
);
1025 dmaengine_terminate_sync(dspi
->dma
->chan_tx
);
1027 /* Clear the internal DSPI RX and TX FIFO buffers */
1028 regmap_update_bits(dspi
->regmap
, SPI_MCR
,
1029 SPI_MCR_CLR_TXF
| SPI_MCR_CLR_RXF
,
1030 SPI_MCR_CLR_TXF
| SPI_MCR_CLR_RXF
);
1035 static int dspi_probe(struct platform_device
*pdev
)
1037 struct device_node
*np
= pdev
->dev
.of_node
;
1038 const struct regmap_config
*regmap_config
;
1039 struct fsl_dspi_platform_data
*pdata
;
1040 struct spi_controller
*ctlr
;
1041 int ret
, cs_num
, bus_num
;
1042 struct fsl_dspi
*dspi
;
1043 struct resource
*res
;
1046 ctlr
= spi_alloc_master(&pdev
->dev
, sizeof(struct fsl_dspi
));
1050 dspi
= spi_controller_get_devdata(ctlr
);
1054 ctlr
->setup
= dspi_setup
;
1055 ctlr
->transfer_one_message
= dspi_transfer_one_message
;
1056 ctlr
->dev
.of_node
= pdev
->dev
.of_node
;
1058 ctlr
->cleanup
= dspi_cleanup
;
1059 ctlr
->slave_abort
= dspi_slave_abort
;
1060 ctlr
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_LSB_FIRST
;
1062 pdata
= dev_get_platdata(&pdev
->dev
);
1064 ctlr
->num_chipselect
= pdata
->cs_num
;
1065 ctlr
->bus_num
= pdata
->bus_num
;
1067 dspi
->devtype_data
= &coldfire_data
;
1070 ret
= of_property_read_u32(np
, "spi-num-chipselects", &cs_num
);
1072 dev_err(&pdev
->dev
, "can't get spi-num-chipselects\n");
1075 ctlr
->num_chipselect
= cs_num
;
1077 ret
= of_property_read_u32(np
, "bus-num", &bus_num
);
1079 dev_err(&pdev
->dev
, "can't get bus-num\n");
1082 ctlr
->bus_num
= bus_num
;
1084 if (of_property_read_bool(np
, "spi-slave"))
1087 dspi
->devtype_data
= of_device_get_match_data(&pdev
->dev
);
1088 if (!dspi
->devtype_data
) {
1089 dev_err(&pdev
->dev
, "can't get devtype_data\n");
1095 if (dspi
->devtype_data
->xspi_mode
)
1096 ctlr
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1098 ctlr
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1100 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1101 base
= devm_ioremap_resource(&pdev
->dev
, res
);
1103 ret
= PTR_ERR(base
);
1107 if (dspi
->devtype_data
->xspi_mode
)
1108 regmap_config
= &dspi_xspi_regmap_config
[0];
1110 regmap_config
= &dspi_regmap_config
;
1111 dspi
->regmap
= devm_regmap_init_mmio(&pdev
->dev
, base
, regmap_config
);
1112 if (IS_ERR(dspi
->regmap
)) {
1113 dev_err(&pdev
->dev
, "failed to init regmap: %ld\n",
1114 PTR_ERR(dspi
->regmap
));
1115 ret
= PTR_ERR(dspi
->regmap
);
1119 if (dspi
->devtype_data
->xspi_mode
) {
1120 dspi
->regmap_pushr
= devm_regmap_init_mmio(
1121 &pdev
->dev
, base
+ SPI_PUSHR
,
1122 &dspi_xspi_regmap_config
[1]);
1123 if (IS_ERR(dspi
->regmap_pushr
)) {
1125 "failed to init pushr regmap: %ld\n",
1126 PTR_ERR(dspi
->regmap_pushr
));
1127 ret
= PTR_ERR(dspi
->regmap_pushr
);
1132 dspi
->clk
= devm_clk_get(&pdev
->dev
, "dspi");
1133 if (IS_ERR(dspi
->clk
)) {
1134 ret
= PTR_ERR(dspi
->clk
);
1135 dev_err(&pdev
->dev
, "unable to get clock\n");
1138 ret
= clk_prepare_enable(dspi
->clk
);
1144 if (dspi
->devtype_data
->trans_mode
== DSPI_TCFQ_MODE
)
1147 dspi
->irq
= platform_get_irq(pdev
, 0);
1148 if (dspi
->irq
<= 0) {
1149 dev_info(&pdev
->dev
,
1150 "can't get platform irq, using poll mode\n");
1155 ret
= devm_request_irq(&pdev
->dev
, dspi
->irq
, dspi_interrupt
,
1156 IRQF_SHARED
, pdev
->name
, dspi
);
1158 dev_err(&pdev
->dev
, "Unable to attach DSPI interrupt\n");
1162 init_waitqueue_head(&dspi
->waitq
);
1166 if (dspi
->devtype_data
->trans_mode
== DSPI_DMA_MODE
) {
1167 ret
= dspi_request_dma(dspi
, res
->start
);
1169 dev_err(&pdev
->dev
, "can't get dma channels\n");
1174 ctlr
->max_speed_hz
=
1175 clk_get_rate(dspi
->clk
) / dspi
->devtype_data
->max_clock_factor
;
1177 ctlr
->ptp_sts_supported
= dspi
->devtype_data
->ptp_sts_supported
;
1179 platform_set_drvdata(pdev
, ctlr
);
1181 ret
= spi_register_controller(ctlr
);
1183 dev_err(&pdev
->dev
, "Problem registering DSPI ctlr\n");
1190 clk_disable_unprepare(dspi
->clk
);
1192 spi_controller_put(ctlr
);
1197 static int dspi_remove(struct platform_device
*pdev
)
1199 struct spi_controller
*ctlr
= platform_get_drvdata(pdev
);
1200 struct fsl_dspi
*dspi
= spi_controller_get_devdata(ctlr
);
1202 /* Disconnect from the SPI framework */
1203 dspi_release_dma(dspi
);
1204 clk_disable_unprepare(dspi
->clk
);
1205 spi_unregister_controller(dspi
->ctlr
);
1210 static struct platform_driver fsl_dspi_driver
= {
1211 .driver
.name
= DRIVER_NAME
,
1212 .driver
.of_match_table
= fsl_dspi_dt_ids
,
1213 .driver
.owner
= THIS_MODULE
,
1214 .driver
.pm
= &dspi_pm
,
1215 .probe
= dspi_probe
,
1216 .remove
= dspi_remove
,
1218 module_platform_driver(fsl_dspi_driver
);
1220 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1221 MODULE_LICENSE("GPL");
1222 MODULE_ALIAS("platform:" DRIVER_NAME
);