1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
31 #include "spi-pxa2xx.h"
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
38 #define TIMOUT_DFLT 1000
41 * for testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the pxa270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 dev man says all bits without really meaning the
45 * service and interrupt enables
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
55 | QUARK_X1000_SSCR1_EFWR \
56 | QUARK_X1000_SSCR1_RFT \
57 | QUARK_X1000_SSCR1_TFT \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT 9
71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
74 /* LPSS offset from drv_data->ioaddr */
76 /* Register offsets from drv_data->lpss_base or -1 */
85 /* Chip select control */
86 unsigned cs_sel_shift
;
91 /* Keep these sorted with enum pxa_ssp_type */
92 static const struct lpss_config lpss_platforms
[] = {
98 .reg_capabilities
= -1,
100 .tx_threshold_lo
= 160,
101 .tx_threshold_hi
= 224,
108 .reg_capabilities
= -1,
110 .tx_threshold_lo
= 160,
111 .tx_threshold_hi
= 224,
118 .reg_capabilities
= -1,
120 .tx_threshold_lo
= 160,
121 .tx_threshold_hi
= 224,
123 .cs_sel_mask
= 1 << 2,
131 .reg_capabilities
= -1,
133 .tx_threshold_lo
= 32,
134 .tx_threshold_hi
= 56,
141 .reg_capabilities
= 0xfc,
143 .tx_threshold_lo
= 16,
144 .tx_threshold_hi
= 48,
146 .cs_sel_mask
= 3 << 8,
153 .reg_capabilities
= 0xfc,
155 .tx_threshold_lo
= 32,
156 .tx_threshold_hi
= 56,
158 .cs_sel_mask
= 3 << 8,
162 static inline const struct lpss_config
163 *lpss_get_config(const struct driver_data
*drv_data
)
165 return &lpss_platforms
[drv_data
->ssp_type
- LPSS_LPT_SSP
];
168 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
170 switch (drv_data
->ssp_type
) {
183 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
185 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
188 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
190 switch (drv_data
->ssp_type
) {
191 case QUARK_X1000_SSP
:
192 return QUARK_X1000_SSCR1_CHANGE_MASK
;
194 return CE4100_SSCR1_CHANGE_MASK
;
196 return SSCR1_CHANGE_MASK
;
201 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
203 switch (drv_data
->ssp_type
) {
204 case QUARK_X1000_SSP
:
205 return RX_THRESH_QUARK_X1000_DFLT
;
207 return RX_THRESH_CE4100_DFLT
;
209 return RX_THRESH_DFLT
;
213 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
217 switch (drv_data
->ssp_type
) {
218 case QUARK_X1000_SSP
:
219 mask
= QUARK_X1000_SSSR_TFL_MASK
;
222 mask
= CE4100_SSSR_TFL_MASK
;
225 mask
= SSSR_TFL_MASK
;
229 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
232 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
237 switch (drv_data
->ssp_type
) {
238 case QUARK_X1000_SSP
:
239 mask
= QUARK_X1000_SSCR1_RFT
;
242 mask
= CE4100_SSCR1_RFT
;
251 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
252 u32
*sccr1_reg
, u32 threshold
)
254 switch (drv_data
->ssp_type
) {
255 case QUARK_X1000_SSP
:
256 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
259 *sccr1_reg
|= CE4100_SSCR1_RxTresh(threshold
);
262 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
267 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
268 u32 clk_div
, u8 bits
)
270 switch (drv_data
->ssp_type
) {
271 case QUARK_X1000_SSP
:
273 | QUARK_X1000_SSCR0_Motorola
274 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
279 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
281 | (bits
> 16 ? SSCR0_EDSS
: 0);
286 * Read and write LPSS SSP private registers. Caller must first check that
287 * is_lpss_ssp() returns true before these can be called.
289 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
291 WARN_ON(!drv_data
->lpss_base
);
292 return readl(drv_data
->lpss_base
+ offset
);
295 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
296 unsigned offset
, u32 value
)
298 WARN_ON(!drv_data
->lpss_base
);
299 writel(value
, drv_data
->lpss_base
+ offset
);
303 * lpss_ssp_setup - perform LPSS SSP specific setup
304 * @drv_data: pointer to the driver private data
306 * Perform LPSS SSP specific setup. This function must be called first if
307 * one is going to use LPSS SSP private registers.
309 static void lpss_ssp_setup(struct driver_data
*drv_data
)
311 const struct lpss_config
*config
;
314 config
= lpss_get_config(drv_data
);
315 drv_data
->lpss_base
= drv_data
->ioaddr
+ config
->offset
;
317 /* Enable software chip select control */
318 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
319 value
&= ~(LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
);
320 value
|= LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
;
321 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
323 /* Enable multiblock DMA transfers */
324 if (drv_data
->controller_info
->enable_dma
) {
325 __lpss_ssp_write_priv(drv_data
, config
->reg_ssp
, 1);
327 if (config
->reg_general
>= 0) {
328 value
= __lpss_ssp_read_priv(drv_data
,
329 config
->reg_general
);
330 value
|= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
331 __lpss_ssp_write_priv(drv_data
,
332 config
->reg_general
, value
);
337 static void lpss_ssp_select_cs(struct spi_device
*spi
,
338 const struct lpss_config
*config
)
340 struct driver_data
*drv_data
=
341 spi_controller_get_devdata(spi
->controller
);
344 if (!config
->cs_sel_mask
)
347 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
349 cs
= spi
->chip_select
;
350 cs
<<= config
->cs_sel_shift
;
351 if (cs
!= (value
& config
->cs_sel_mask
)) {
353 * When switching another chip select output active the
354 * output must be selected first and wait 2 ssp_clk cycles
355 * before changing state to active. Otherwise a short
356 * glitch will occur on the previous chip select since
357 * output select is latched but state control is not.
359 value
&= ~config
->cs_sel_mask
;
361 __lpss_ssp_write_priv(drv_data
,
362 config
->reg_cs_ctrl
, value
);
364 (drv_data
->controller
->max_speed_hz
/ 2));
368 static void lpss_ssp_cs_control(struct spi_device
*spi
, bool enable
)
370 struct driver_data
*drv_data
=
371 spi_controller_get_devdata(spi
->controller
);
372 const struct lpss_config
*config
;
375 config
= lpss_get_config(drv_data
);
378 lpss_ssp_select_cs(spi
, config
);
380 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
382 value
&= ~LPSS_CS_CONTROL_CS_HIGH
;
384 value
|= LPSS_CS_CONTROL_CS_HIGH
;
385 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
388 static void cs_assert(struct spi_device
*spi
)
390 struct chip_data
*chip
= spi_get_ctldata(spi
);
391 struct driver_data
*drv_data
=
392 spi_controller_get_devdata(spi
->controller
);
394 if (drv_data
->ssp_type
== CE4100_SSP
) {
395 pxa2xx_spi_write(drv_data
, SSSR
, chip
->frm
);
399 if (chip
->cs_control
) {
400 chip
->cs_control(PXA2XX_CS_ASSERT
);
404 if (chip
->gpiod_cs
) {
405 gpiod_set_value(chip
->gpiod_cs
, chip
->gpio_cs_inverted
);
409 if (is_lpss_ssp(drv_data
))
410 lpss_ssp_cs_control(spi
, true);
413 static void cs_deassert(struct spi_device
*spi
)
415 struct chip_data
*chip
= spi_get_ctldata(spi
);
416 struct driver_data
*drv_data
=
417 spi_controller_get_devdata(spi
->controller
);
418 unsigned long timeout
;
420 if (drv_data
->ssp_type
== CE4100_SSP
)
423 /* Wait until SSP becomes idle before deasserting the CS */
424 timeout
= jiffies
+ msecs_to_jiffies(10);
425 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
&&
426 !time_after(jiffies
, timeout
))
429 if (chip
->cs_control
) {
430 chip
->cs_control(PXA2XX_CS_DEASSERT
);
434 if (chip
->gpiod_cs
) {
435 gpiod_set_value(chip
->gpiod_cs
, !chip
->gpio_cs_inverted
);
439 if (is_lpss_ssp(drv_data
))
440 lpss_ssp_cs_control(spi
, false);
443 static void pxa2xx_spi_set_cs(struct spi_device
*spi
, bool level
)
451 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
453 unsigned long limit
= loops_per_jiffy
<< 1;
456 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
457 pxa2xx_spi_read(drv_data
, SSDR
);
458 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
459 write_SSSR_CS(drv_data
, SSSR_ROR
);
464 static void pxa2xx_spi_off(struct driver_data
*drv_data
)
466 /* On MMP, disabling SSE seems to corrupt the rx fifo */
467 if (drv_data
->ssp_type
== MMP2_SSP
)
470 pxa2xx_spi_write(drv_data
, SSCR0
,
471 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
474 static int null_writer(struct driver_data
*drv_data
)
476 u8 n_bytes
= drv_data
->n_bytes
;
478 if (pxa2xx_spi_txfifo_full(drv_data
)
479 || (drv_data
->tx
== drv_data
->tx_end
))
482 pxa2xx_spi_write(drv_data
, SSDR
, 0);
483 drv_data
->tx
+= n_bytes
;
488 static int null_reader(struct driver_data
*drv_data
)
490 u8 n_bytes
= drv_data
->n_bytes
;
492 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
493 && (drv_data
->rx
< drv_data
->rx_end
)) {
494 pxa2xx_spi_read(drv_data
, SSDR
);
495 drv_data
->rx
+= n_bytes
;
498 return drv_data
->rx
== drv_data
->rx_end
;
501 static int u8_writer(struct driver_data
*drv_data
)
503 if (pxa2xx_spi_txfifo_full(drv_data
)
504 || (drv_data
->tx
== drv_data
->tx_end
))
507 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
513 static int u8_reader(struct driver_data
*drv_data
)
515 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
516 && (drv_data
->rx
< drv_data
->rx_end
)) {
517 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
521 return drv_data
->rx
== drv_data
->rx_end
;
524 static int u16_writer(struct driver_data
*drv_data
)
526 if (pxa2xx_spi_txfifo_full(drv_data
)
527 || (drv_data
->tx
== drv_data
->tx_end
))
530 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
536 static int u16_reader(struct driver_data
*drv_data
)
538 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
539 && (drv_data
->rx
< drv_data
->rx_end
)) {
540 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
544 return drv_data
->rx
== drv_data
->rx_end
;
547 static int u32_writer(struct driver_data
*drv_data
)
549 if (pxa2xx_spi_txfifo_full(drv_data
)
550 || (drv_data
->tx
== drv_data
->tx_end
))
553 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
559 static int u32_reader(struct driver_data
*drv_data
)
561 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
562 && (drv_data
->rx
< drv_data
->rx_end
)) {
563 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
567 return drv_data
->rx
== drv_data
->rx_end
;
570 static void reset_sccr1(struct driver_data
*drv_data
)
572 struct chip_data
*chip
=
573 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
576 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
577 switch (drv_data
->ssp_type
) {
578 case QUARK_X1000_SSP
:
579 sccr1_reg
&= ~QUARK_X1000_SSCR1_RFT
;
582 sccr1_reg
&= ~CE4100_SSCR1_RFT
;
585 sccr1_reg
&= ~SSCR1_RFT
;
588 sccr1_reg
|= chip
->threshold
;
589 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
592 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
594 /* Stop and reset SSP */
595 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
596 reset_sccr1(drv_data
);
597 if (!pxa25x_ssp_comp(drv_data
))
598 pxa2xx_spi_write(drv_data
, SSTO
, 0);
599 pxa2xx_spi_flush(drv_data
);
600 pxa2xx_spi_off(drv_data
);
602 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
604 drv_data
->controller
->cur_msg
->status
= -EIO
;
605 spi_finalize_current_transfer(drv_data
->controller
);
608 static void int_transfer_complete(struct driver_data
*drv_data
)
610 /* Clear and disable interrupts */
611 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
612 reset_sccr1(drv_data
);
613 if (!pxa25x_ssp_comp(drv_data
))
614 pxa2xx_spi_write(drv_data
, SSTO
, 0);
616 spi_finalize_current_transfer(drv_data
->controller
);
619 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
621 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
622 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
624 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
626 if (irq_status
& SSSR_ROR
) {
627 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
631 if (irq_status
& SSSR_TUR
) {
632 int_error_stop(drv_data
, "interrupt_transfer: fifo underrun");
636 if (irq_status
& SSSR_TINT
) {
637 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
638 if (drv_data
->read(drv_data
)) {
639 int_transfer_complete(drv_data
);
644 /* Drain rx fifo, Fill tx fifo and prevent overruns */
646 if (drv_data
->read(drv_data
)) {
647 int_transfer_complete(drv_data
);
650 } while (drv_data
->write(drv_data
));
652 if (drv_data
->read(drv_data
)) {
653 int_transfer_complete(drv_data
);
657 if (drv_data
->tx
== drv_data
->tx_end
) {
661 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
662 sccr1_reg
&= ~SSCR1_TIE
;
665 * PXA25x_SSP has no timeout, set up rx threshould for the
666 * remaining RX bytes.
668 if (pxa25x_ssp_comp(drv_data
)) {
671 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
673 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
674 switch (drv_data
->n_bytes
) {
683 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
684 if (rx_thre
> bytes_left
)
685 rx_thre
= bytes_left
;
687 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
689 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
692 /* We did something */
696 static void handle_bad_msg(struct driver_data
*drv_data
)
698 pxa2xx_spi_off(drv_data
);
699 pxa2xx_spi_write(drv_data
, SSCR1
,
700 pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
);
701 if (!pxa25x_ssp_comp(drv_data
))
702 pxa2xx_spi_write(drv_data
, SSTO
, 0);
703 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
705 dev_err(&drv_data
->pdev
->dev
,
706 "bad message state in interrupt handler\n");
709 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
711 struct driver_data
*drv_data
= dev_id
;
713 u32 mask
= drv_data
->mask_sr
;
717 * The IRQ might be shared with other peripherals so we must first
718 * check that are we RPM suspended or not. If we are we assume that
719 * the IRQ was not for us (we shouldn't be RPM suspended when the
720 * interrupt is enabled).
722 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
726 * If the device is not yet in RPM suspended state and we get an
727 * interrupt that is meant for another device, check if status bits
728 * are all set to one. That means that the device is already
731 status
= pxa2xx_spi_read(drv_data
, SSSR
);
735 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
737 /* Ignore possible writes if we don't need to write */
738 if (!(sccr1_reg
& SSCR1_TIE
))
741 /* Ignore RX timeout interrupt if it is disabled */
742 if (!(sccr1_reg
& SSCR1_TINTE
))
745 if (!(status
& mask
))
748 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
& ~drv_data
->int_cr1
);
749 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
751 if (!drv_data
->controller
->cur_msg
) {
752 handle_bad_msg(drv_data
);
757 return drv_data
->transfer_handler(drv_data
);
761 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
762 * input frequency by fractions of 2^24. It also has a divider by 5.
764 * There are formulas to get baud rate value for given input frequency and
765 * divider parameters, such as DDS_CLK_RATE and SCR:
769 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
770 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
772 * DDS_CLK_RATE either 2^n or 2^n / 5.
773 * SCR is in range 0 .. 255
775 * Divisor = 5^i * 2^j * 2 * k
776 * i = [0, 1] i = 1 iff j = 0 or j > 3
777 * j = [0, 23] j = 0 iff i = 1
779 * Special case: j = 0, i = 1: Divisor = 2 / 5
781 * Accordingly to the specification the recommended values for DDS_CLK_RATE
783 * Case 1: 2^n, n = [0, 23]
784 * Case 2: 2^24 * 2 / 5 (0x666666)
785 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
787 * In all cases the lowest possible value is better.
789 * The function calculates parameters for all cases and chooses the one closest
790 * to the asked baud rate.
792 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
794 unsigned long xtal
= 200000000;
795 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
798 unsigned long fref1
= fref
/ 2; /* case 1 */
799 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
801 unsigned long q
, q1
, q2
;
807 /* Set initial value for DDS_CLK_RATE */
808 mul
= (1 << 24) >> 1;
810 /* Calculate initial quot */
811 q1
= DIV_ROUND_UP(fref1
, rate
);
813 /* Scale q1 if it's too big */
815 /* Scale q1 to range [1, 512] */
816 scale
= fls_long(q1
- 1);
822 /* Round the result if we have a remainder */
826 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
831 /* Get the remainder */
832 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
836 q2
= DIV_ROUND_UP(fref2
, rate
);
837 r2
= abs(fref2
/ q2
- rate
);
840 * Choose the best between two: less remainder we have the better. We
841 * can't go case 2 if q2 is greater than 256 since SCR register can
842 * hold only values 0 .. 255.
844 if (r2
>= r1
|| q2
> 256) {
845 /* case 1 is better */
849 /* case 2 is better */
852 mul
= (1 << 24) * 2 / 5;
855 /* Check case 3 only if the divisor is big enough */
856 if (fref
/ rate
>= 80) {
860 /* Calculate initial quot */
861 q1
= DIV_ROUND_UP(fref
, rate
);
864 /* Get the remainder */
865 fssp
= (u64
)fref
* m
;
866 do_div(fssp
, 1 << 24);
867 r1
= abs(fssp
- rate
);
869 /* Choose this one if it suits better */
871 /* case 3 is better */
881 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
883 unsigned long ssp_clk
= drv_data
->controller
->max_speed_hz
;
884 const struct ssp_device
*ssp
= drv_data
->ssp
;
886 rate
= min_t(int, ssp_clk
, rate
);
889 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
890 * that the SSP transmission rate can be greater than the device rate
892 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
893 return (DIV_ROUND_UP(ssp_clk
, 2 * rate
) - 1) & 0xff;
895 return (DIV_ROUND_UP(ssp_clk
, rate
) - 1) & 0xfff;
898 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
901 struct chip_data
*chip
=
902 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
903 unsigned int clk_div
;
905 switch (drv_data
->ssp_type
) {
906 case QUARK_X1000_SSP
:
907 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
910 clk_div
= ssp_get_clk_div(drv_data
, rate
);
916 static bool pxa2xx_spi_can_dma(struct spi_controller
*controller
,
917 struct spi_device
*spi
,
918 struct spi_transfer
*xfer
)
920 struct chip_data
*chip
= spi_get_ctldata(spi
);
922 return chip
->enable_dma
&&
923 xfer
->len
<= MAX_DMA_LEN
&&
924 xfer
->len
>= chip
->dma_burst_size
;
927 static int pxa2xx_spi_transfer_one(struct spi_controller
*controller
,
928 struct spi_device
*spi
,
929 struct spi_transfer
*transfer
)
931 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
932 struct spi_message
*message
= controller
->cur_msg
;
933 struct chip_data
*chip
= spi_get_ctldata(spi
);
934 u32 dma_thresh
= chip
->dma_threshold
;
935 u32 dma_burst
= chip
->dma_burst_size
;
936 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
945 /* Check if we can DMA this transfer */
946 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
948 /* reject already-mapped transfers; PIO won't always work */
949 if (message
->is_dma_mapped
950 || transfer
->rx_dma
|| transfer
->tx_dma
) {
952 "Mapped transfer length of %u is greater than %d\n",
953 transfer
->len
, MAX_DMA_LEN
);
957 /* warn ... we force this to PIO mode */
958 dev_warn_ratelimited(&spi
->dev
,
959 "DMA disabled for transfer length %ld greater than %d\n",
960 (long)transfer
->len
, MAX_DMA_LEN
);
963 /* Setup the transfer state based on the type of transfer */
964 if (pxa2xx_spi_flush(drv_data
) == 0) {
965 dev_err(&spi
->dev
, "Flush failed\n");
968 drv_data
->n_bytes
= chip
->n_bytes
;
969 drv_data
->tx
= (void *)transfer
->tx_buf
;
970 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
971 drv_data
->rx
= transfer
->rx_buf
;
972 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
973 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
974 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
976 /* Change speed and bit per word on a per transfer */
977 bits
= transfer
->bits_per_word
;
978 speed
= transfer
->speed_hz
;
980 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, speed
);
983 drv_data
->n_bytes
= 1;
984 drv_data
->read
= drv_data
->read
!= null_reader
?
985 u8_reader
: null_reader
;
986 drv_data
->write
= drv_data
->write
!= null_writer
?
987 u8_writer
: null_writer
;
988 } else if (bits
<= 16) {
989 drv_data
->n_bytes
= 2;
990 drv_data
->read
= drv_data
->read
!= null_reader
?
991 u16_reader
: null_reader
;
992 drv_data
->write
= drv_data
->write
!= null_writer
?
993 u16_writer
: null_writer
;
994 } else if (bits
<= 32) {
995 drv_data
->n_bytes
= 4;
996 drv_data
->read
= drv_data
->read
!= null_reader
?
997 u32_reader
: null_reader
;
998 drv_data
->write
= drv_data
->write
!= null_writer
?
999 u32_writer
: null_writer
;
1002 * if bits/word is changed in dma mode, then must check the
1003 * thresholds and burst also
1005 if (chip
->enable_dma
) {
1006 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
1010 dev_warn_ratelimited(&spi
->dev
,
1011 "DMA burst size reduced to match bits_per_word\n");
1014 dma_mapped
= controller
->can_dma
&&
1015 controller
->can_dma(controller
, spi
, transfer
) &&
1016 controller
->cur_msg_mapped
;
1019 /* Ensure we have the correct interrupt handler */
1020 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
1022 err
= pxa2xx_spi_dma_prepare(drv_data
, transfer
);
1026 /* Clear status and start DMA engine */
1027 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1028 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
1030 pxa2xx_spi_dma_start(drv_data
);
1032 /* Ensure we have the correct interrupt handler */
1033 drv_data
->transfer_handler
= interrupt_transfer
;
1036 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1037 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1040 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1041 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
1042 if (!pxa25x_ssp_comp(drv_data
))
1043 dev_dbg(&spi
->dev
, "%u Hz actual, %s\n",
1044 controller
->max_speed_hz
1045 / (1 + ((cr0
& SSCR0_SCR(0xfff)) >> 8)),
1046 dma_mapped
? "DMA" : "PIO");
1048 dev_dbg(&spi
->dev
, "%u Hz actual, %s\n",
1049 controller
->max_speed_hz
/ 2
1050 / (1 + ((cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1051 dma_mapped
? "DMA" : "PIO");
1053 if (is_lpss_ssp(drv_data
)) {
1054 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
1055 != chip
->lpss_rx_threshold
)
1056 pxa2xx_spi_write(drv_data
, SSIRF
,
1057 chip
->lpss_rx_threshold
);
1058 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
1059 != chip
->lpss_tx_threshold
)
1060 pxa2xx_spi_write(drv_data
, SSITF
,
1061 chip
->lpss_tx_threshold
);
1064 if (is_quark_x1000_ssp(drv_data
) &&
1065 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
1066 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
1068 /* see if we need to reload the config registers */
1069 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
1070 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
1071 != (cr1
& change_mask
)) {
1072 /* stop the SSP, and update the other bits */
1073 if (drv_data
->ssp_type
!= MMP2_SSP
)
1074 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
1075 if (!pxa25x_ssp_comp(drv_data
))
1076 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1077 /* first set CR1 without interrupt and service enables */
1078 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
1079 /* restart the SSP */
1080 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
1083 if (!pxa25x_ssp_comp(drv_data
))
1084 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1087 if (drv_data
->ssp_type
== MMP2_SSP
) {
1088 u8 tx_level
= (pxa2xx_spi_read(drv_data
, SSSR
)
1089 & SSSR_TFL_MASK
) >> 8;
1092 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1093 dev_warn(&spi
->dev
, "%d bytes of garbage in TXFIFO!\n",
1095 if (tx_level
> transfer
->len
)
1096 tx_level
= transfer
->len
;
1097 drv_data
->tx
+= tx_level
;
1101 if (spi_controller_is_slave(controller
)) {
1102 while (drv_data
->write(drv_data
))
1104 if (drv_data
->gpiod_ready
) {
1105 gpiod_set_value(drv_data
->gpiod_ready
, 1);
1107 gpiod_set_value(drv_data
->gpiod_ready
, 0);
1112 * Release the data by enabling service requests and interrupts,
1113 * without changing any mode bits
1115 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1120 static int pxa2xx_spi_slave_abort(struct spi_controller
*controller
)
1122 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1124 /* Stop and reset SSP */
1125 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1126 reset_sccr1(drv_data
);
1127 if (!pxa25x_ssp_comp(drv_data
))
1128 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1129 pxa2xx_spi_flush(drv_data
);
1130 pxa2xx_spi_off(drv_data
);
1132 dev_dbg(&drv_data
->pdev
->dev
, "transfer aborted\n");
1134 drv_data
->controller
->cur_msg
->status
= -EINTR
;
1135 spi_finalize_current_transfer(drv_data
->controller
);
1140 static void pxa2xx_spi_handle_err(struct spi_controller
*controller
,
1141 struct spi_message
*msg
)
1143 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1145 /* Disable the SSP */
1146 pxa2xx_spi_off(drv_data
);
1147 /* Clear and disable interrupts and service requests */
1148 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1149 pxa2xx_spi_write(drv_data
, SSCR1
,
1150 pxa2xx_spi_read(drv_data
, SSCR1
)
1151 & ~(drv_data
->int_cr1
| drv_data
->dma_cr1
));
1152 if (!pxa25x_ssp_comp(drv_data
))
1153 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1156 * Stop the DMA if running. Note DMA callback handler may have unset
1157 * the dma_running already, which is fine as stopping is not needed
1158 * then but we shouldn't rely this flag for anything else than
1159 * stopping. For instance to differentiate between PIO and DMA
1162 if (atomic_read(&drv_data
->dma_running
))
1163 pxa2xx_spi_dma_stop(drv_data
);
1166 static int pxa2xx_spi_unprepare_transfer(struct spi_controller
*controller
)
1168 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1170 /* Disable the SSP now */
1171 pxa2xx_spi_off(drv_data
);
1176 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1177 struct pxa2xx_spi_chip
*chip_info
)
1179 struct driver_data
*drv_data
=
1180 spi_controller_get_devdata(spi
->controller
);
1181 struct gpio_desc
*gpiod
;
1187 if (drv_data
->cs_gpiods
) {
1188 gpiod
= drv_data
->cs_gpiods
[spi
->chip_select
];
1190 chip
->gpiod_cs
= gpiod
;
1191 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1192 gpiod_set_value(gpiod
, chip
->gpio_cs_inverted
);
1198 if (chip_info
== NULL
)
1201 /* NOTE: setup() can be called multiple times, possibly with
1202 * different chip_info, release previously requested GPIO
1204 if (chip
->gpiod_cs
) {
1205 gpiod_put(chip
->gpiod_cs
);
1206 chip
->gpiod_cs
= NULL
;
1209 /* If (*cs_control) is provided, ignore GPIO chip select */
1210 if (chip_info
->cs_control
) {
1211 chip
->cs_control
= chip_info
->cs_control
;
1215 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1216 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1218 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1219 chip_info
->gpio_cs
);
1223 gpiod
= gpio_to_desc(chip_info
->gpio_cs
);
1224 chip
->gpiod_cs
= gpiod
;
1225 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1227 err
= gpiod_direction_output(gpiod
, !chip
->gpio_cs_inverted
);
1233 static int setup(struct spi_device
*spi
)
1235 struct pxa2xx_spi_chip
*chip_info
;
1236 struct chip_data
*chip
;
1237 const struct lpss_config
*config
;
1238 struct driver_data
*drv_data
=
1239 spi_controller_get_devdata(spi
->controller
);
1240 uint tx_thres
, tx_hi_thres
, rx_thres
;
1242 switch (drv_data
->ssp_type
) {
1243 case QUARK_X1000_SSP
:
1244 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1246 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1249 tx_thres
= TX_THRESH_CE4100_DFLT
;
1251 rx_thres
= RX_THRESH_CE4100_DFLT
;
1259 config
= lpss_get_config(drv_data
);
1260 tx_thres
= config
->tx_threshold_lo
;
1261 tx_hi_thres
= config
->tx_threshold_hi
;
1262 rx_thres
= config
->rx_threshold
;
1266 if (spi_controller_is_slave(drv_data
->controller
)) {
1270 tx_thres
= TX_THRESH_DFLT
;
1271 rx_thres
= RX_THRESH_DFLT
;
1276 /* Only alloc on first setup */
1277 chip
= spi_get_ctldata(spi
);
1279 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1283 if (drv_data
->ssp_type
== CE4100_SSP
) {
1284 if (spi
->chip_select
> 4) {
1286 "failed setup: cs number must not be > 4.\n");
1291 chip
->frm
= spi
->chip_select
;
1293 chip
->enable_dma
= drv_data
->controller_info
->enable_dma
;
1294 chip
->timeout
= TIMOUT_DFLT
;
1297 /* protocol drivers may change the chip settings, so...
1298 * if chip_info exists, use it */
1299 chip_info
= spi
->controller_data
;
1301 /* chip_info isn't always needed */
1304 if (chip_info
->timeout
)
1305 chip
->timeout
= chip_info
->timeout
;
1306 if (chip_info
->tx_threshold
)
1307 tx_thres
= chip_info
->tx_threshold
;
1308 if (chip_info
->tx_hi_threshold
)
1309 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1310 if (chip_info
->rx_threshold
)
1311 rx_thres
= chip_info
->rx_threshold
;
1312 chip
->dma_threshold
= 0;
1313 if (chip_info
->enable_loopback
)
1314 chip
->cr1
= SSCR1_LBM
;
1316 if (spi_controller_is_slave(drv_data
->controller
)) {
1317 chip
->cr1
|= SSCR1_SCFR
;
1318 chip
->cr1
|= SSCR1_SCLKDIR
;
1319 chip
->cr1
|= SSCR1_SFRMDIR
;
1320 chip
->cr1
|= SSCR1_SPH
;
1323 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1324 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1325 | SSITF_TxHiThresh(tx_hi_thres
);
1327 /* set dma burst and threshold outside of chip_info path so that if
1328 * chip_info goes away after setting chip->enable_dma, the
1329 * burst and threshold can still respond to changes in bits_per_word */
1330 if (chip
->enable_dma
) {
1331 /* set up legal burst and threshold for dma */
1332 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1334 &chip
->dma_burst_size
,
1335 &chip
->dma_threshold
)) {
1337 "in setup: DMA burst size reduced to match bits_per_word\n");
1340 "in setup: DMA burst size set to %u\n",
1341 chip
->dma_burst_size
);
1344 switch (drv_data
->ssp_type
) {
1345 case QUARK_X1000_SSP
:
1346 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1347 & QUARK_X1000_SSCR1_RFT
)
1348 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1349 & QUARK_X1000_SSCR1_TFT
);
1352 chip
->threshold
= (CE4100_SSCR1_RxTresh(rx_thres
) & CE4100_SSCR1_RFT
) |
1353 (CE4100_SSCR1_TxTresh(tx_thres
) & CE4100_SSCR1_TFT
);
1356 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1357 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1361 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1362 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1363 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1365 if (spi
->mode
& SPI_LOOP
)
1366 chip
->cr1
|= SSCR1_LBM
;
1368 if (spi
->bits_per_word
<= 8) {
1370 chip
->read
= u8_reader
;
1371 chip
->write
= u8_writer
;
1372 } else if (spi
->bits_per_word
<= 16) {
1374 chip
->read
= u16_reader
;
1375 chip
->write
= u16_writer
;
1376 } else if (spi
->bits_per_word
<= 32) {
1378 chip
->read
= u32_reader
;
1379 chip
->write
= u32_writer
;
1382 spi_set_ctldata(spi
, chip
);
1384 if (drv_data
->ssp_type
== CE4100_SSP
)
1387 return setup_cs(spi
, chip
, chip_info
);
1390 static void cleanup(struct spi_device
*spi
)
1392 struct chip_data
*chip
= spi_get_ctldata(spi
);
1393 struct driver_data
*drv_data
=
1394 spi_controller_get_devdata(spi
->controller
);
1399 if (drv_data
->ssp_type
!= CE4100_SSP
&& !drv_data
->cs_gpiods
&&
1401 gpiod_put(chip
->gpiod_cs
);
1406 static const struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1407 { "INT33C0", LPSS_LPT_SSP
},
1408 { "INT33C1", LPSS_LPT_SSP
},
1409 { "INT3430", LPSS_LPT_SSP
},
1410 { "INT3431", LPSS_LPT_SSP
},
1411 { "80860F0E", LPSS_BYT_SSP
},
1412 { "8086228E", LPSS_BSW_SSP
},
1415 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1418 * PCI IDs of compound devices that integrate both host controller and private
1419 * integrated DMA engine. Please note these are not used in module
1420 * autoloading and probing in this module but matching the LPSS SSP type.
1422 static const struct pci_device_id pxa2xx_spi_pci_compound_match
[] = {
1424 { PCI_VDEVICE(INTEL
, 0x9d29), LPSS_SPT_SSP
},
1425 { PCI_VDEVICE(INTEL
, 0x9d2a), LPSS_SPT_SSP
},
1427 { PCI_VDEVICE(INTEL
, 0xa129), LPSS_SPT_SSP
},
1428 { PCI_VDEVICE(INTEL
, 0xa12a), LPSS_SPT_SSP
},
1430 { PCI_VDEVICE(INTEL
, 0xa2a9), LPSS_SPT_SSP
},
1431 { PCI_VDEVICE(INTEL
, 0xa2aa), LPSS_SPT_SSP
},
1433 { PCI_VDEVICE(INTEL
, 0xa3a9), LPSS_SPT_SSP
},
1434 { PCI_VDEVICE(INTEL
, 0xa3aa), LPSS_SPT_SSP
},
1436 { PCI_VDEVICE(INTEL
, 0x0ac2), LPSS_BXT_SSP
},
1437 { PCI_VDEVICE(INTEL
, 0x0ac4), LPSS_BXT_SSP
},
1438 { PCI_VDEVICE(INTEL
, 0x0ac6), LPSS_BXT_SSP
},
1440 { PCI_VDEVICE(INTEL
, 0x1ac2), LPSS_BXT_SSP
},
1441 { PCI_VDEVICE(INTEL
, 0x1ac4), LPSS_BXT_SSP
},
1442 { PCI_VDEVICE(INTEL
, 0x1ac6), LPSS_BXT_SSP
},
1444 { PCI_VDEVICE(INTEL
, 0x31c2), LPSS_BXT_SSP
},
1445 { PCI_VDEVICE(INTEL
, 0x31c4), LPSS_BXT_SSP
},
1446 { PCI_VDEVICE(INTEL
, 0x31c6), LPSS_BXT_SSP
},
1448 { PCI_VDEVICE(INTEL
, 0x34aa), LPSS_CNL_SSP
},
1449 { PCI_VDEVICE(INTEL
, 0x34ab), LPSS_CNL_SSP
},
1450 { PCI_VDEVICE(INTEL
, 0x34fb), LPSS_CNL_SSP
},
1452 { PCI_VDEVICE(INTEL
, 0x4b2a), LPSS_BXT_SSP
},
1453 { PCI_VDEVICE(INTEL
, 0x4b2b), LPSS_BXT_SSP
},
1454 { PCI_VDEVICE(INTEL
, 0x4b37), LPSS_BXT_SSP
},
1456 { PCI_VDEVICE(INTEL
, 0x4daa), LPSS_CNL_SSP
},
1457 { PCI_VDEVICE(INTEL
, 0x4dab), LPSS_CNL_SSP
},
1458 { PCI_VDEVICE(INTEL
, 0x4dfb), LPSS_CNL_SSP
},
1460 { PCI_VDEVICE(INTEL
, 0x5ac2), LPSS_BXT_SSP
},
1461 { PCI_VDEVICE(INTEL
, 0x5ac4), LPSS_BXT_SSP
},
1462 { PCI_VDEVICE(INTEL
, 0x5ac6), LPSS_BXT_SSP
},
1464 { PCI_VDEVICE(INTEL
, 0x9daa), LPSS_CNL_SSP
},
1465 { PCI_VDEVICE(INTEL
, 0x9dab), LPSS_CNL_SSP
},
1466 { PCI_VDEVICE(INTEL
, 0x9dfb), LPSS_CNL_SSP
},
1468 { PCI_VDEVICE(INTEL
, 0xa32a), LPSS_CNL_SSP
},
1469 { PCI_VDEVICE(INTEL
, 0xa32b), LPSS_CNL_SSP
},
1470 { PCI_VDEVICE(INTEL
, 0xa37b), LPSS_CNL_SSP
},
1472 { PCI_VDEVICE(INTEL
, 0x02aa), LPSS_CNL_SSP
},
1473 { PCI_VDEVICE(INTEL
, 0x02ab), LPSS_CNL_SSP
},
1474 { PCI_VDEVICE(INTEL
, 0x02fb), LPSS_CNL_SSP
},
1476 { PCI_VDEVICE(INTEL
, 0x06aa), LPSS_CNL_SSP
},
1477 { PCI_VDEVICE(INTEL
, 0x06ab), LPSS_CNL_SSP
},
1478 { PCI_VDEVICE(INTEL
, 0x06fb), LPSS_CNL_SSP
},
1480 { PCI_VDEVICE(INTEL
, 0xa0aa), LPSS_CNL_SSP
},
1481 { PCI_VDEVICE(INTEL
, 0xa0ab), LPSS_CNL_SSP
},
1482 { PCI_VDEVICE(INTEL
, 0xa0de), LPSS_CNL_SSP
},
1483 { PCI_VDEVICE(INTEL
, 0xa0df), LPSS_CNL_SSP
},
1484 { PCI_VDEVICE(INTEL
, 0xa0fb), LPSS_CNL_SSP
},
1485 { PCI_VDEVICE(INTEL
, 0xa0fd), LPSS_CNL_SSP
},
1486 { PCI_VDEVICE(INTEL
, 0xa0fe), LPSS_CNL_SSP
},
1490 static const struct of_device_id pxa2xx_spi_of_match
[] = {
1491 { .compatible
= "marvell,mmp2-ssp", .data
= (void *)MMP2_SSP
},
1494 MODULE_DEVICE_TABLE(of
, pxa2xx_spi_of_match
);
1498 static int pxa2xx_spi_get_port_id(struct device
*dev
)
1500 struct acpi_device
*adev
;
1504 adev
= ACPI_COMPANION(dev
);
1505 if (adev
&& adev
->pnp
.unique_id
&&
1506 !kstrtouint(adev
->pnp
.unique_id
, 0, &devid
))
1511 #else /* !CONFIG_ACPI */
1513 static int pxa2xx_spi_get_port_id(struct device
*dev
)
1518 #endif /* CONFIG_ACPI */
1523 static bool pxa2xx_spi_idma_filter(struct dma_chan
*chan
, void *param
)
1525 return param
== chan
->device
->dev
;
1528 #endif /* CONFIG_PCI */
1530 static struct pxa2xx_spi_controller
*
1531 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1533 struct pxa2xx_spi_controller
*pdata
;
1534 struct ssp_device
*ssp
;
1535 struct resource
*res
;
1536 struct device
*parent
= pdev
->dev
.parent
;
1537 struct pci_dev
*pcidev
= dev_is_pci(parent
) ? to_pci_dev(parent
) : NULL
;
1538 const struct pci_device_id
*pcidev_id
= NULL
;
1539 enum pxa_ssp_type type
;
1543 pcidev_id
= pci_match_id(pxa2xx_spi_pci_compound_match
, pcidev
);
1545 match
= device_get_match_data(&pdev
->dev
);
1547 type
= (enum pxa_ssp_type
)match
;
1549 type
= (enum pxa_ssp_type
)pcidev_id
->driver_data
;
1553 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1559 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1560 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1561 if (IS_ERR(ssp
->mmio_base
))
1564 ssp
->phys_base
= res
->start
;
1568 pdata
->tx_param
= parent
;
1569 pdata
->rx_param
= parent
;
1570 pdata
->dma_filter
= pxa2xx_spi_idma_filter
;
1574 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1575 if (IS_ERR(ssp
->clk
))
1578 ssp
->irq
= platform_get_irq(pdev
, 0);
1583 ssp
->dev
= &pdev
->dev
;
1584 ssp
->port_id
= pxa2xx_spi_get_port_id(&pdev
->dev
);
1586 pdata
->is_slave
= device_property_read_bool(&pdev
->dev
, "spi-slave");
1587 pdata
->num_chipselect
= 1;
1588 pdata
->enable_dma
= true;
1589 pdata
->dma_burst_size
= 1;
1594 static int pxa2xx_spi_fw_translate_cs(struct spi_controller
*controller
,
1597 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1599 if (has_acpi_companion(&drv_data
->pdev
->dev
)) {
1600 switch (drv_data
->ssp_type
) {
1602 * For Atoms the ACPI DeviceSelection used by the Windows
1603 * driver starts from 1 instead of 0 so translate it here
1604 * to match what Linux expects.
1618 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device
*spi
)
1623 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1625 struct device
*dev
= &pdev
->dev
;
1626 struct pxa2xx_spi_controller
*platform_info
;
1627 struct spi_controller
*controller
;
1628 struct driver_data
*drv_data
;
1629 struct ssp_device
*ssp
;
1630 const struct lpss_config
*config
;
1634 platform_info
= dev_get_platdata(dev
);
1635 if (!platform_info
) {
1636 platform_info
= pxa2xx_spi_init_pdata(pdev
);
1637 if (!platform_info
) {
1638 dev_err(&pdev
->dev
, "missing platform data\n");
1643 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1645 ssp
= &platform_info
->ssp
;
1647 if (!ssp
->mmio_base
) {
1648 dev_err(&pdev
->dev
, "failed to get ssp\n");
1652 if (platform_info
->is_slave
)
1653 controller
= spi_alloc_slave(dev
, sizeof(struct driver_data
));
1655 controller
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1658 dev_err(&pdev
->dev
, "cannot alloc spi_controller\n");
1662 drv_data
= spi_controller_get_devdata(controller
);
1663 drv_data
->controller
= controller
;
1664 drv_data
->controller_info
= platform_info
;
1665 drv_data
->pdev
= pdev
;
1666 drv_data
->ssp
= ssp
;
1668 controller
->dev
.of_node
= pdev
->dev
.of_node
;
1669 /* the spi->mode bits understood by this driver: */
1670 controller
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1672 controller
->bus_num
= ssp
->port_id
;
1673 controller
->dma_alignment
= DMA_ALIGNMENT
;
1674 controller
->cleanup
= cleanup
;
1675 controller
->setup
= setup
;
1676 controller
->set_cs
= pxa2xx_spi_set_cs
;
1677 controller
->transfer_one
= pxa2xx_spi_transfer_one
;
1678 controller
->slave_abort
= pxa2xx_spi_slave_abort
;
1679 controller
->handle_err
= pxa2xx_spi_handle_err
;
1680 controller
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1681 controller
->fw_translate_cs
= pxa2xx_spi_fw_translate_cs
;
1682 controller
->auto_runtime_pm
= true;
1683 controller
->flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
;
1685 drv_data
->ssp_type
= ssp
->type
;
1687 drv_data
->ioaddr
= ssp
->mmio_base
;
1688 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1689 if (pxa25x_ssp_comp(drv_data
)) {
1690 switch (drv_data
->ssp_type
) {
1691 case QUARK_X1000_SSP
:
1692 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1695 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1699 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1700 drv_data
->dma_cr1
= 0;
1701 drv_data
->clear_sr
= SSSR_ROR
;
1702 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1704 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1705 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1706 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1707 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1708 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
1709 | SSSR_ROR
| SSSR_TUR
;
1712 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1715 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1716 goto out_error_controller_alloc
;
1719 /* Setup DMA if requested */
1720 if (platform_info
->enable_dma
) {
1721 status
= pxa2xx_spi_dma_setup(drv_data
);
1723 dev_warn(dev
, "no DMA channels available, using PIO\n");
1724 platform_info
->enable_dma
= false;
1726 controller
->can_dma
= pxa2xx_spi_can_dma
;
1727 controller
->max_dma_len
= MAX_DMA_LEN
;
1728 controller
->max_transfer_size
=
1729 pxa2xx_spi_max_dma_transfer_size
;
1733 /* Enable SOC clock */
1734 status
= clk_prepare_enable(ssp
->clk
);
1736 goto out_error_dma_irq_alloc
;
1738 controller
->max_speed_hz
= clk_get_rate(ssp
->clk
);
1740 * Set minimum speed for all other platforms than Intel Quark which is
1741 * able do under 1 Hz transfers.
1743 if (!pxa25x_ssp_comp(drv_data
))
1744 controller
->min_speed_hz
=
1745 DIV_ROUND_UP(controller
->max_speed_hz
, 4096);
1746 else if (!is_quark_x1000_ssp(drv_data
))
1747 controller
->min_speed_hz
=
1748 DIV_ROUND_UP(controller
->max_speed_hz
, 512);
1750 /* Load default SSP configuration */
1751 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1752 switch (drv_data
->ssp_type
) {
1753 case QUARK_X1000_SSP
:
1754 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
) |
1755 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1756 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1758 /* using the Motorola SPI protocol and use 8 bit frame */
1759 tmp
= QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(8);
1760 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1763 tmp
= CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT
) |
1764 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT
);
1765 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1766 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1767 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1771 if (spi_controller_is_slave(controller
)) {
1779 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1780 SSCR1_TxTresh(TX_THRESH_DFLT
);
1782 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1783 tmp
= SSCR0_Motorola
| SSCR0_DataSize(8);
1784 if (!spi_controller_is_slave(controller
))
1785 tmp
|= SSCR0_SCR(2);
1786 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1790 if (!pxa25x_ssp_comp(drv_data
))
1791 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1793 if (!is_quark_x1000_ssp(drv_data
))
1794 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1796 if (is_lpss_ssp(drv_data
)) {
1797 lpss_ssp_setup(drv_data
);
1798 config
= lpss_get_config(drv_data
);
1799 if (config
->reg_capabilities
>= 0) {
1800 tmp
= __lpss_ssp_read_priv(drv_data
,
1801 config
->reg_capabilities
);
1802 tmp
&= LPSS_CAPS_CS_EN_MASK
;
1803 tmp
>>= LPSS_CAPS_CS_EN_SHIFT
;
1804 platform_info
->num_chipselect
= ffz(tmp
);
1805 } else if (config
->cs_num
) {
1806 platform_info
->num_chipselect
= config
->cs_num
;
1809 controller
->num_chipselect
= platform_info
->num_chipselect
;
1811 count
= gpiod_count(&pdev
->dev
, "cs");
1815 controller
->num_chipselect
= max_t(int, count
,
1816 controller
->num_chipselect
);
1818 drv_data
->cs_gpiods
= devm_kcalloc(&pdev
->dev
,
1819 controller
->num_chipselect
, sizeof(struct gpio_desc
*),
1821 if (!drv_data
->cs_gpiods
) {
1823 goto out_error_clock_enabled
;
1826 for (i
= 0; i
< controller
->num_chipselect
; i
++) {
1827 struct gpio_desc
*gpiod
;
1829 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1830 if (IS_ERR(gpiod
)) {
1831 /* Means use native chip select */
1832 if (PTR_ERR(gpiod
) == -ENOENT
)
1835 status
= PTR_ERR(gpiod
);
1836 goto out_error_clock_enabled
;
1838 drv_data
->cs_gpiods
[i
] = gpiod
;
1843 if (platform_info
->is_slave
) {
1844 drv_data
->gpiod_ready
= devm_gpiod_get_optional(dev
,
1845 "ready", GPIOD_OUT_LOW
);
1846 if (IS_ERR(drv_data
->gpiod_ready
)) {
1847 status
= PTR_ERR(drv_data
->gpiod_ready
);
1848 goto out_error_clock_enabled
;
1852 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1853 pm_runtime_use_autosuspend(&pdev
->dev
);
1854 pm_runtime_set_active(&pdev
->dev
);
1855 pm_runtime_enable(&pdev
->dev
);
1857 /* Register with the SPI framework */
1858 platform_set_drvdata(pdev
, drv_data
);
1859 status
= devm_spi_register_controller(&pdev
->dev
, controller
);
1861 dev_err(&pdev
->dev
, "problem registering spi controller\n");
1862 goto out_error_pm_runtime_enabled
;
1867 out_error_pm_runtime_enabled
:
1868 pm_runtime_put_noidle(&pdev
->dev
);
1869 pm_runtime_disable(&pdev
->dev
);
1871 out_error_clock_enabled
:
1872 clk_disable_unprepare(ssp
->clk
);
1874 out_error_dma_irq_alloc
:
1875 pxa2xx_spi_dma_release(drv_data
);
1876 free_irq(ssp
->irq
, drv_data
);
1878 out_error_controller_alloc
:
1879 spi_controller_put(controller
);
1884 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1886 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1887 struct ssp_device
*ssp
;
1891 ssp
= drv_data
->ssp
;
1893 pm_runtime_get_sync(&pdev
->dev
);
1895 /* Disable the SSP at the peripheral and SOC level */
1896 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1897 clk_disable_unprepare(ssp
->clk
);
1900 if (drv_data
->controller_info
->enable_dma
)
1901 pxa2xx_spi_dma_release(drv_data
);
1903 pm_runtime_put_noidle(&pdev
->dev
);
1904 pm_runtime_disable(&pdev
->dev
);
1907 free_irq(ssp
->irq
, drv_data
);
1915 #ifdef CONFIG_PM_SLEEP
1916 static int pxa2xx_spi_suspend(struct device
*dev
)
1918 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1919 struct ssp_device
*ssp
= drv_data
->ssp
;
1922 status
= spi_controller_suspend(drv_data
->controller
);
1925 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1927 if (!pm_runtime_suspended(dev
))
1928 clk_disable_unprepare(ssp
->clk
);
1933 static int pxa2xx_spi_resume(struct device
*dev
)
1935 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1936 struct ssp_device
*ssp
= drv_data
->ssp
;
1939 /* Enable the SSP clock */
1940 if (!pm_runtime_suspended(dev
)) {
1941 status
= clk_prepare_enable(ssp
->clk
);
1946 /* Start the queue running */
1947 return spi_controller_resume(drv_data
->controller
);
1952 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1954 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1956 clk_disable_unprepare(drv_data
->ssp
->clk
);
1960 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1962 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1965 status
= clk_prepare_enable(drv_data
->ssp
->clk
);
1970 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1971 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
1972 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
1973 pxa2xx_spi_runtime_resume
, NULL
)
1976 static struct platform_driver driver
= {
1978 .name
= "pxa2xx-spi",
1979 .pm
= &pxa2xx_spi_pm_ops
,
1980 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
1981 .of_match_table
= of_match_ptr(pxa2xx_spi_of_match
),
1983 .probe
= pxa2xx_spi_probe
,
1984 .remove
= pxa2xx_spi_remove
,
1987 static int __init
pxa2xx_spi_init(void)
1989 return platform_driver_register(&driver
);
1991 subsys_initcall(pxa2xx_spi_init
);
1993 static void __exit
pxa2xx_spi_exit(void)
1995 platform_driver_unregister(&driver
);
1997 module_exit(pxa2xx_spi_exit
);
1999 MODULE_SOFTDEP("pre: dw_dmac");