treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / spi / spi-rspi.c
blob85575d45901cee1b90c9c3dc2f1c41eeaf920e14
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SH RSPI driver
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_dma.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/rspi.h>
28 #define RSPI_SPCR 0x00 /* Control Register */
29 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
30 #define RSPI_SPPCR 0x02 /* Pin Control Register */
31 #define RSPI_SPSR 0x03 /* Status Register */
32 #define RSPI_SPDR 0x04 /* Data Register */
33 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
34 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
35 #define RSPI_SPBR 0x0a /* Bit Rate Register */
36 #define RSPI_SPDCR 0x0b /* Data Control Register */
37 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
38 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
39 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
40 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
41 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
42 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
43 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
44 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
45 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
46 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
47 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
48 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
49 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
50 #define RSPI_NUM_SPCMD 8
51 #define RSPI_RZ_NUM_SPCMD 4
52 #define QSPI_NUM_SPCMD 4
54 /* RSPI on RZ only */
55 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
56 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
58 /* QSPI only */
59 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
60 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
61 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
62 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
63 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
64 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
65 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
67 /* SPCR - Control Register */
68 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
69 #define SPCR_SPE 0x40 /* Function Enable */
70 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
71 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
72 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
73 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
74 /* RSPI on SH only */
75 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
76 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
77 /* QSPI on R-Car Gen2 only */
78 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
79 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
81 /* SSLP - Slave Select Polarity Register */
82 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
83 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM 0x04
89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
95 /* SPSR - Status Register */
96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97 #define SPSR_TEND 0x40 /* Transmit End */
98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF 0x08 /* Parity Error Flag */
100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD SPDCR_SPLW1
117 #define SPDCR_SPLBYTE SPDCR_SPLW0
118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1 0x08
121 #define SPDCR_SLSEL0 0x04
122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1 0x02
124 #define SPDCR_SPFC0 0x01
125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE 0x01 /* Parity Enable */
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146 #define SPCMD_LSBF 0x1000 /* LSB First */
147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150 #define SPCMD_SPB_16BIT 0x0100
151 #define SPCMD_SPB_20BIT 0x0000
152 #define SPCMD_SPB_24BIT 0x0100
153 #define SPCMD_SPB_32BIT 0x0200
154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1 0x0040
157 #define SPCMD_SPIMOD0 0x0020
158 #define SPCMD_SPIMOD_SINGLE 0
159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
165 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
167 /* SPBFCR - Buffer Control Register */
168 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
169 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
170 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
171 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
172 /* QSPI on R-Car Gen2 */
173 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
174 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
175 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
176 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
178 #define QSPI_BUFFER_SIZE 32u
180 struct rspi_data {
181 void __iomem *addr;
182 u32 max_speed_hz;
183 struct spi_controller *ctlr;
184 wait_queue_head_t wait;
185 struct clk *clk;
186 u16 spcmd;
187 u8 spsr;
188 u8 sppcr;
189 int rx_irq, tx_irq;
190 const struct spi_ops *ops;
192 unsigned dma_callbacked:1;
193 unsigned byte_access:1;
196 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
198 iowrite8(data, rspi->addr + offset);
201 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
203 iowrite16(data, rspi->addr + offset);
206 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
208 iowrite32(data, rspi->addr + offset);
211 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
213 return ioread8(rspi->addr + offset);
216 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
218 return ioread16(rspi->addr + offset);
221 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
223 if (rspi->byte_access)
224 rspi_write8(rspi, data, RSPI_SPDR);
225 else /* 16 bit */
226 rspi_write16(rspi, data, RSPI_SPDR);
229 static u16 rspi_read_data(const struct rspi_data *rspi)
231 if (rspi->byte_access)
232 return rspi_read8(rspi, RSPI_SPDR);
233 else /* 16 bit */
234 return rspi_read16(rspi, RSPI_SPDR);
237 /* optional functions */
238 struct spi_ops {
239 int (*set_config_register)(struct rspi_data *rspi, int access_size);
240 int (*transfer_one)(struct spi_controller *ctlr,
241 struct spi_device *spi, struct spi_transfer *xfer);
242 u16 mode_bits;
243 u16 flags;
244 u16 fifo_size;
245 u8 num_hw_ss;
249 * functions for RSPI on legacy SH
251 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
253 int spbr;
255 /* Sets output mode, MOSI signal, and (optionally) loopback */
256 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
258 /* Sets transfer bit rate */
259 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
260 2 * rspi->max_speed_hz) - 1;
261 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
263 /* Disable dummy transmission, set 16-bit word access, 1 frame */
264 rspi_write8(rspi, 0, RSPI_SPDCR);
265 rspi->byte_access = 0;
267 /* Sets RSPCK, SSL, next-access delay value */
268 rspi_write8(rspi, 0x00, RSPI_SPCKD);
269 rspi_write8(rspi, 0x00, RSPI_SSLND);
270 rspi_write8(rspi, 0x00, RSPI_SPND);
272 /* Sets parity, interrupt mask */
273 rspi_write8(rspi, 0x00, RSPI_SPCR2);
275 /* Resets sequencer */
276 rspi_write8(rspi, 0, RSPI_SPSCR);
277 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
278 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
280 /* Sets RSPI mode */
281 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
283 return 0;
287 * functions for RSPI on RZ
289 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
291 int spbr;
292 int div = 0;
293 unsigned long clksrc;
295 /* Sets output mode, MOSI signal, and (optionally) loopback */
296 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
298 clksrc = clk_get_rate(rspi->clk);
299 while (div < 3) {
300 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
301 break;
302 div++;
303 clksrc /= 2;
306 /* Sets transfer bit rate */
307 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
308 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
309 rspi->spcmd |= div << 2;
311 /* Disable dummy transmission, set byte access */
312 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
313 rspi->byte_access = 1;
315 /* Sets RSPCK, SSL, next-access delay value */
316 rspi_write8(rspi, 0x00, RSPI_SPCKD);
317 rspi_write8(rspi, 0x00, RSPI_SSLND);
318 rspi_write8(rspi, 0x00, RSPI_SPND);
320 /* Resets sequencer */
321 rspi_write8(rspi, 0, RSPI_SPSCR);
322 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
323 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
325 /* Sets RSPI mode */
326 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
328 return 0;
332 * functions for QSPI
334 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
336 int spbr;
338 /* Sets output mode, MOSI signal, and (optionally) loopback */
339 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
341 /* Sets transfer bit rate */
342 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
343 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
345 /* Disable dummy transmission, set byte access */
346 rspi_write8(rspi, 0, RSPI_SPDCR);
347 rspi->byte_access = 1;
349 /* Sets RSPCK, SSL, next-access delay value */
350 rspi_write8(rspi, 0x00, RSPI_SPCKD);
351 rspi_write8(rspi, 0x00, RSPI_SSLND);
352 rspi_write8(rspi, 0x00, RSPI_SPND);
354 /* Data Length Setting */
355 if (access_size == 8)
356 rspi->spcmd |= SPCMD_SPB_8BIT;
357 else if (access_size == 16)
358 rspi->spcmd |= SPCMD_SPB_16BIT;
359 else
360 rspi->spcmd |= SPCMD_SPB_32BIT;
362 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
364 /* Resets transfer data length */
365 rspi_write32(rspi, 0, QSPI_SPBMUL0);
367 /* Resets transmit and receive buffer */
368 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
369 /* Sets buffer to allow normal operation */
370 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
372 /* Resets sequencer */
373 rspi_write8(rspi, 0, RSPI_SPSCR);
374 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
376 /* Sets RSPI mode */
377 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
379 return 0;
382 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
384 u8 data;
386 data = rspi_read8(rspi, reg);
387 data &= ~mask;
388 data |= (val & mask);
389 rspi_write8(rspi, data, reg);
392 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
393 unsigned int len)
395 unsigned int n;
397 n = min(len, QSPI_BUFFER_SIZE);
399 if (len >= QSPI_BUFFER_SIZE) {
400 /* sets triggering number to 32 bytes */
401 qspi_update(rspi, SPBFCR_TXTRG_MASK,
402 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
403 } else {
404 /* sets triggering number to 1 byte */
405 qspi_update(rspi, SPBFCR_TXTRG_MASK,
406 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
409 return n;
412 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
414 unsigned int n;
416 n = min(len, QSPI_BUFFER_SIZE);
418 if (len >= QSPI_BUFFER_SIZE) {
419 /* sets triggering number to 32 bytes */
420 qspi_update(rspi, SPBFCR_RXTRG_MASK,
421 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
422 } else {
423 /* sets triggering number to 1 byte */
424 qspi_update(rspi, SPBFCR_RXTRG_MASK,
425 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
427 return n;
430 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
432 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
435 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
437 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
440 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
441 u8 enable_bit)
443 int ret;
445 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
446 if (rspi->spsr & wait_mask)
447 return 0;
449 rspi_enable_irq(rspi, enable_bit);
450 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
451 if (ret == 0 && !(rspi->spsr & wait_mask))
452 return -ETIMEDOUT;
454 return 0;
457 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
459 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
462 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
464 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
467 static int rspi_data_out(struct rspi_data *rspi, u8 data)
469 int error = rspi_wait_for_tx_empty(rspi);
470 if (error < 0) {
471 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
472 return error;
474 rspi_write_data(rspi, data);
475 return 0;
478 static int rspi_data_in(struct rspi_data *rspi)
480 int error;
481 u8 data;
483 error = rspi_wait_for_rx_full(rspi);
484 if (error < 0) {
485 dev_err(&rspi->ctlr->dev, "receive timeout\n");
486 return error;
488 data = rspi_read_data(rspi);
489 return data;
492 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
493 unsigned int n)
495 while (n-- > 0) {
496 if (tx) {
497 int ret = rspi_data_out(rspi, *tx++);
498 if (ret < 0)
499 return ret;
501 if (rx) {
502 int ret = rspi_data_in(rspi);
503 if (ret < 0)
504 return ret;
505 *rx++ = ret;
509 return 0;
512 static void rspi_dma_complete(void *arg)
514 struct rspi_data *rspi = arg;
516 rspi->dma_callbacked = 1;
517 wake_up_interruptible(&rspi->wait);
520 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
521 struct sg_table *rx)
523 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
524 u8 irq_mask = 0;
525 unsigned int other_irq = 0;
526 dma_cookie_t cookie;
527 int ret;
529 /* First prepare and submit the DMA request(s), as this may fail */
530 if (rx) {
531 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
532 rx->nents, DMA_DEV_TO_MEM,
533 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
534 if (!desc_rx) {
535 ret = -EAGAIN;
536 goto no_dma_rx;
539 desc_rx->callback = rspi_dma_complete;
540 desc_rx->callback_param = rspi;
541 cookie = dmaengine_submit(desc_rx);
542 if (dma_submit_error(cookie)) {
543 ret = cookie;
544 goto no_dma_rx;
547 irq_mask |= SPCR_SPRIE;
550 if (tx) {
551 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
552 tx->nents, DMA_MEM_TO_DEV,
553 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
554 if (!desc_tx) {
555 ret = -EAGAIN;
556 goto no_dma_tx;
559 if (rx) {
560 /* No callback */
561 desc_tx->callback = NULL;
562 } else {
563 desc_tx->callback = rspi_dma_complete;
564 desc_tx->callback_param = rspi;
566 cookie = dmaengine_submit(desc_tx);
567 if (dma_submit_error(cookie)) {
568 ret = cookie;
569 goto no_dma_tx;
572 irq_mask |= SPCR_SPTIE;
576 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
577 * called. So, this driver disables the IRQ while DMA transfer.
579 if (tx)
580 disable_irq(other_irq = rspi->tx_irq);
581 if (rx && rspi->rx_irq != other_irq)
582 disable_irq(rspi->rx_irq);
584 rspi_enable_irq(rspi, irq_mask);
585 rspi->dma_callbacked = 0;
587 /* Now start DMA */
588 if (rx)
589 dma_async_issue_pending(rspi->ctlr->dma_rx);
590 if (tx)
591 dma_async_issue_pending(rspi->ctlr->dma_tx);
593 ret = wait_event_interruptible_timeout(rspi->wait,
594 rspi->dma_callbacked, HZ);
595 if (ret > 0 && rspi->dma_callbacked) {
596 ret = 0;
597 } else {
598 if (!ret) {
599 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
600 ret = -ETIMEDOUT;
602 if (tx)
603 dmaengine_terminate_all(rspi->ctlr->dma_tx);
604 if (rx)
605 dmaengine_terminate_all(rspi->ctlr->dma_rx);
608 rspi_disable_irq(rspi, irq_mask);
610 if (tx)
611 enable_irq(rspi->tx_irq);
612 if (rx && rspi->rx_irq != other_irq)
613 enable_irq(rspi->rx_irq);
615 return ret;
617 no_dma_tx:
618 if (rx)
619 dmaengine_terminate_all(rspi->ctlr->dma_rx);
620 no_dma_rx:
621 if (ret == -EAGAIN) {
622 dev_warn_once(&rspi->ctlr->dev,
623 "DMA not available, falling back to PIO\n");
625 return ret;
628 static void rspi_receive_init(const struct rspi_data *rspi)
630 u8 spsr;
632 spsr = rspi_read8(rspi, RSPI_SPSR);
633 if (spsr & SPSR_SPRF)
634 rspi_read_data(rspi); /* dummy read */
635 if (spsr & SPSR_OVRF)
636 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
637 RSPI_SPSR);
640 static void rspi_rz_receive_init(const struct rspi_data *rspi)
642 rspi_receive_init(rspi);
643 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
644 rspi_write8(rspi, 0, RSPI_SPBFCR);
647 static void qspi_receive_init(const struct rspi_data *rspi)
649 u8 spsr;
651 spsr = rspi_read8(rspi, RSPI_SPSR);
652 if (spsr & SPSR_SPRF)
653 rspi_read_data(rspi); /* dummy read */
654 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
655 rspi_write8(rspi, 0, QSPI_SPBFCR);
658 static bool __rspi_can_dma(const struct rspi_data *rspi,
659 const struct spi_transfer *xfer)
661 return xfer->len > rspi->ops->fifo_size;
664 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
665 struct spi_transfer *xfer)
667 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
669 return __rspi_can_dma(rspi, xfer);
672 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
673 struct spi_transfer *xfer)
675 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
676 return -EAGAIN;
678 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
679 return rspi_dma_transfer(rspi, &xfer->tx_sg,
680 xfer->rx_buf ? &xfer->rx_sg : NULL);
683 static int rspi_common_transfer(struct rspi_data *rspi,
684 struct spi_transfer *xfer)
686 int ret;
688 ret = rspi_dma_check_then_transfer(rspi, xfer);
689 if (ret != -EAGAIN)
690 return ret;
692 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
693 if (ret < 0)
694 return ret;
696 /* Wait for the last transmission */
697 rspi_wait_for_tx_empty(rspi);
699 return 0;
702 static int rspi_transfer_one(struct spi_controller *ctlr,
703 struct spi_device *spi, struct spi_transfer *xfer)
705 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
706 u8 spcr;
708 spcr = rspi_read8(rspi, RSPI_SPCR);
709 if (xfer->rx_buf) {
710 rspi_receive_init(rspi);
711 spcr &= ~SPCR_TXMD;
712 } else {
713 spcr |= SPCR_TXMD;
715 rspi_write8(rspi, spcr, RSPI_SPCR);
717 return rspi_common_transfer(rspi, xfer);
720 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
721 struct spi_device *spi,
722 struct spi_transfer *xfer)
724 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
726 rspi_rz_receive_init(rspi);
728 return rspi_common_transfer(rspi, xfer);
731 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
732 u8 *rx, unsigned int len)
734 unsigned int i, n;
735 int ret;
737 while (len > 0) {
738 n = qspi_set_send_trigger(rspi, len);
739 qspi_set_receive_trigger(rspi, len);
740 ret = rspi_wait_for_tx_empty(rspi);
741 if (ret < 0) {
742 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
743 return ret;
745 for (i = 0; i < n; i++)
746 rspi_write_data(rspi, *tx++);
748 ret = rspi_wait_for_rx_full(rspi);
749 if (ret < 0) {
750 dev_err(&rspi->ctlr->dev, "receive timeout\n");
751 return ret;
753 for (i = 0; i < n; i++)
754 *rx++ = rspi_read_data(rspi);
756 len -= n;
759 return 0;
762 static int qspi_transfer_out_in(struct rspi_data *rspi,
763 struct spi_transfer *xfer)
765 int ret;
767 qspi_receive_init(rspi);
769 ret = rspi_dma_check_then_transfer(rspi, xfer);
770 if (ret != -EAGAIN)
771 return ret;
773 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
774 xfer->rx_buf, xfer->len);
777 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
779 const u8 *tx = xfer->tx_buf;
780 unsigned int n = xfer->len;
781 unsigned int i, len;
782 int ret;
784 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
785 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
786 if (ret != -EAGAIN)
787 return ret;
790 while (n > 0) {
791 len = qspi_set_send_trigger(rspi, n);
792 ret = rspi_wait_for_tx_empty(rspi);
793 if (ret < 0) {
794 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
795 return ret;
797 for (i = 0; i < len; i++)
798 rspi_write_data(rspi, *tx++);
800 n -= len;
803 /* Wait for the last transmission */
804 rspi_wait_for_tx_empty(rspi);
806 return 0;
809 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
811 u8 *rx = xfer->rx_buf;
812 unsigned int n = xfer->len;
813 unsigned int i, len;
814 int ret;
816 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
817 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
818 if (ret != -EAGAIN)
819 return ret;
822 while (n > 0) {
823 len = qspi_set_receive_trigger(rspi, n);
824 ret = rspi_wait_for_rx_full(rspi);
825 if (ret < 0) {
826 dev_err(&rspi->ctlr->dev, "receive timeout\n");
827 return ret;
829 for (i = 0; i < len; i++)
830 *rx++ = rspi_read_data(rspi);
832 n -= len;
835 return 0;
838 static int qspi_transfer_one(struct spi_controller *ctlr,
839 struct spi_device *spi, struct spi_transfer *xfer)
841 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
843 if (spi->mode & SPI_LOOP) {
844 return qspi_transfer_out_in(rspi, xfer);
845 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
846 /* Quad or Dual SPI Write */
847 return qspi_transfer_out(rspi, xfer);
848 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
849 /* Quad or Dual SPI Read */
850 return qspi_transfer_in(rspi, xfer);
851 } else {
852 /* Single SPI Transfer */
853 return qspi_transfer_out_in(rspi, xfer);
857 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
859 if (xfer->tx_buf)
860 switch (xfer->tx_nbits) {
861 case SPI_NBITS_QUAD:
862 return SPCMD_SPIMOD_QUAD;
863 case SPI_NBITS_DUAL:
864 return SPCMD_SPIMOD_DUAL;
865 default:
866 return 0;
868 if (xfer->rx_buf)
869 switch (xfer->rx_nbits) {
870 case SPI_NBITS_QUAD:
871 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
872 case SPI_NBITS_DUAL:
873 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
874 default:
875 return 0;
878 return 0;
881 static int qspi_setup_sequencer(struct rspi_data *rspi,
882 const struct spi_message *msg)
884 const struct spi_transfer *xfer;
885 unsigned int i = 0, len = 0;
886 u16 current_mode = 0xffff, mode;
888 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
889 mode = qspi_transfer_mode(xfer);
890 if (mode == current_mode) {
891 len += xfer->len;
892 continue;
895 /* Transfer mode change */
896 if (i) {
897 /* Set transfer data length of previous transfer */
898 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
901 if (i >= QSPI_NUM_SPCMD) {
902 dev_err(&msg->spi->dev,
903 "Too many different transfer modes");
904 return -EINVAL;
907 /* Program transfer mode for this transfer */
908 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
909 current_mode = mode;
910 len = xfer->len;
911 i++;
913 if (i) {
914 /* Set final transfer data length and sequence length */
915 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
916 rspi_write8(rspi, i - 1, RSPI_SPSCR);
919 return 0;
922 static int rspi_prepare_message(struct spi_controller *ctlr,
923 struct spi_message *msg)
925 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
926 struct spi_device *spi = msg->spi;
927 int ret;
929 rspi->max_speed_hz = spi->max_speed_hz;
931 rspi->spcmd = SPCMD_SSLKP;
932 if (spi->mode & SPI_CPOL)
933 rspi->spcmd |= SPCMD_CPOL;
934 if (spi->mode & SPI_CPHA)
935 rspi->spcmd |= SPCMD_CPHA;
937 /* Configure slave signal to assert */
938 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
939 : spi->chip_select);
941 /* CMOS output mode and MOSI signal from previous transfer */
942 rspi->sppcr = 0;
943 if (spi->mode & SPI_LOOP)
944 rspi->sppcr |= SPPCR_SPLP;
946 rspi->ops->set_config_register(rspi, 8);
948 if (msg->spi->mode &
949 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
950 /* Setup sequencer for messages with multiple transfer modes */
951 ret = qspi_setup_sequencer(rspi, msg);
952 if (ret < 0)
953 return ret;
956 /* Enable SPI function in master mode */
957 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
958 return 0;
961 static int rspi_unprepare_message(struct spi_controller *ctlr,
962 struct spi_message *msg)
964 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
966 /* Disable SPI function */
967 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
969 /* Reset sequencer for Single SPI Transfers */
970 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
971 rspi_write8(rspi, 0, RSPI_SPSCR);
972 return 0;
975 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
977 struct rspi_data *rspi = _sr;
978 u8 spsr;
979 irqreturn_t ret = IRQ_NONE;
980 u8 disable_irq = 0;
982 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
983 if (spsr & SPSR_SPRF)
984 disable_irq |= SPCR_SPRIE;
985 if (spsr & SPSR_SPTEF)
986 disable_irq |= SPCR_SPTIE;
988 if (disable_irq) {
989 ret = IRQ_HANDLED;
990 rspi_disable_irq(rspi, disable_irq);
991 wake_up(&rspi->wait);
994 return ret;
997 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
999 struct rspi_data *rspi = _sr;
1000 u8 spsr;
1002 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1003 if (spsr & SPSR_SPRF) {
1004 rspi_disable_irq(rspi, SPCR_SPRIE);
1005 wake_up(&rspi->wait);
1006 return IRQ_HANDLED;
1009 return 0;
1012 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1014 struct rspi_data *rspi = _sr;
1015 u8 spsr;
1017 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1018 if (spsr & SPSR_SPTEF) {
1019 rspi_disable_irq(rspi, SPCR_SPTIE);
1020 wake_up(&rspi->wait);
1021 return IRQ_HANDLED;
1024 return 0;
1027 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1028 enum dma_transfer_direction dir,
1029 unsigned int id,
1030 dma_addr_t port_addr)
1032 dma_cap_mask_t mask;
1033 struct dma_chan *chan;
1034 struct dma_slave_config cfg;
1035 int ret;
1037 dma_cap_zero(mask);
1038 dma_cap_set(DMA_SLAVE, mask);
1040 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1041 (void *)(unsigned long)id, dev,
1042 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1043 if (!chan) {
1044 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1045 return NULL;
1048 memset(&cfg, 0, sizeof(cfg));
1049 cfg.direction = dir;
1050 if (dir == DMA_MEM_TO_DEV) {
1051 cfg.dst_addr = port_addr;
1052 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1053 } else {
1054 cfg.src_addr = port_addr;
1055 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1058 ret = dmaengine_slave_config(chan, &cfg);
1059 if (ret) {
1060 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1061 dma_release_channel(chan);
1062 return NULL;
1065 return chan;
1068 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1069 const struct resource *res)
1071 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1072 unsigned int dma_tx_id, dma_rx_id;
1074 if (dev->of_node) {
1075 /* In the OF case we will get the slave IDs from the DT */
1076 dma_tx_id = 0;
1077 dma_rx_id = 0;
1078 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1079 dma_tx_id = rspi_pd->dma_tx_id;
1080 dma_rx_id = rspi_pd->dma_rx_id;
1081 } else {
1082 /* The driver assumes no error. */
1083 return 0;
1086 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1087 res->start + RSPI_SPDR);
1088 if (!ctlr->dma_tx)
1089 return -ENODEV;
1091 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1092 res->start + RSPI_SPDR);
1093 if (!ctlr->dma_rx) {
1094 dma_release_channel(ctlr->dma_tx);
1095 ctlr->dma_tx = NULL;
1096 return -ENODEV;
1099 ctlr->can_dma = rspi_can_dma;
1100 dev_info(dev, "DMA available");
1101 return 0;
1104 static void rspi_release_dma(struct spi_controller *ctlr)
1106 if (ctlr->dma_tx)
1107 dma_release_channel(ctlr->dma_tx);
1108 if (ctlr->dma_rx)
1109 dma_release_channel(ctlr->dma_rx);
1112 static int rspi_remove(struct platform_device *pdev)
1114 struct rspi_data *rspi = platform_get_drvdata(pdev);
1116 rspi_release_dma(rspi->ctlr);
1117 pm_runtime_disable(&pdev->dev);
1119 return 0;
1122 static const struct spi_ops rspi_ops = {
1123 .set_config_register = rspi_set_config_register,
1124 .transfer_one = rspi_transfer_one,
1125 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1126 .flags = SPI_CONTROLLER_MUST_TX,
1127 .fifo_size = 8,
1128 .num_hw_ss = 2,
1131 static const struct spi_ops rspi_rz_ops = {
1132 .set_config_register = rspi_rz_set_config_register,
1133 .transfer_one = rspi_rz_transfer_one,
1134 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1135 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1136 .fifo_size = 8, /* 8 for TX, 32 for RX */
1137 .num_hw_ss = 1,
1140 static const struct spi_ops qspi_ops = {
1141 .set_config_register = qspi_set_config_register,
1142 .transfer_one = qspi_transfer_one,
1143 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1144 SPI_TX_DUAL | SPI_TX_QUAD |
1145 SPI_RX_DUAL | SPI_RX_QUAD,
1146 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1147 .fifo_size = 32,
1148 .num_hw_ss = 1,
1151 #ifdef CONFIG_OF
1152 static const struct of_device_id rspi_of_match[] = {
1153 /* RSPI on legacy SH */
1154 { .compatible = "renesas,rspi", .data = &rspi_ops },
1155 /* RSPI on RZ/A1H */
1156 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1157 /* QSPI on R-Car Gen2 */
1158 { .compatible = "renesas,qspi", .data = &qspi_ops },
1159 { /* sentinel */ }
1162 MODULE_DEVICE_TABLE(of, rspi_of_match);
1164 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1166 u32 num_cs;
1167 int error;
1169 /* Parse DT properties */
1170 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1171 if (error) {
1172 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1173 return error;
1176 ctlr->num_chipselect = num_cs;
1177 return 0;
1179 #else
1180 #define rspi_of_match NULL
1181 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1183 return -EINVAL;
1185 #endif /* CONFIG_OF */
1187 static int rspi_request_irq(struct device *dev, unsigned int irq,
1188 irq_handler_t handler, const char *suffix,
1189 void *dev_id)
1191 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1192 dev_name(dev), suffix);
1193 if (!name)
1194 return -ENOMEM;
1196 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1199 static int rspi_probe(struct platform_device *pdev)
1201 struct resource *res;
1202 struct spi_controller *ctlr;
1203 struct rspi_data *rspi;
1204 int ret;
1205 const struct rspi_plat_data *rspi_pd;
1206 const struct spi_ops *ops;
1208 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1209 if (ctlr == NULL)
1210 return -ENOMEM;
1212 ops = of_device_get_match_data(&pdev->dev);
1213 if (ops) {
1214 ret = rspi_parse_dt(&pdev->dev, ctlr);
1215 if (ret)
1216 goto error1;
1217 } else {
1218 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1219 rspi_pd = dev_get_platdata(&pdev->dev);
1220 if (rspi_pd && rspi_pd->num_chipselect)
1221 ctlr->num_chipselect = rspi_pd->num_chipselect;
1222 else
1223 ctlr->num_chipselect = 2; /* default */
1226 /* ops parameter check */
1227 if (!ops->set_config_register) {
1228 dev_err(&pdev->dev, "there is no set_config_register\n");
1229 ret = -ENODEV;
1230 goto error1;
1233 rspi = spi_controller_get_devdata(ctlr);
1234 platform_set_drvdata(pdev, rspi);
1235 rspi->ops = ops;
1236 rspi->ctlr = ctlr;
1238 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1239 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1240 if (IS_ERR(rspi->addr)) {
1241 ret = PTR_ERR(rspi->addr);
1242 goto error1;
1245 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1246 if (IS_ERR(rspi->clk)) {
1247 dev_err(&pdev->dev, "cannot get clock\n");
1248 ret = PTR_ERR(rspi->clk);
1249 goto error1;
1252 pm_runtime_enable(&pdev->dev);
1254 init_waitqueue_head(&rspi->wait);
1256 ctlr->bus_num = pdev->id;
1257 ctlr->auto_runtime_pm = true;
1258 ctlr->transfer_one = ops->transfer_one;
1259 ctlr->prepare_message = rspi_prepare_message;
1260 ctlr->unprepare_message = rspi_unprepare_message;
1261 ctlr->mode_bits = ops->mode_bits;
1262 ctlr->flags = ops->flags;
1263 ctlr->dev.of_node = pdev->dev.of_node;
1264 ctlr->use_gpio_descriptors = true;
1265 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1267 ret = platform_get_irq_byname_optional(pdev, "rx");
1268 if (ret < 0) {
1269 ret = platform_get_irq_byname_optional(pdev, "mux");
1270 if (ret < 0)
1271 ret = platform_get_irq(pdev, 0);
1272 if (ret >= 0)
1273 rspi->rx_irq = rspi->tx_irq = ret;
1274 } else {
1275 rspi->rx_irq = ret;
1276 ret = platform_get_irq_byname(pdev, "tx");
1277 if (ret >= 0)
1278 rspi->tx_irq = ret;
1281 if (rspi->rx_irq == rspi->tx_irq) {
1282 /* Single multiplexed interrupt */
1283 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1284 "mux", rspi);
1285 } else {
1286 /* Multi-interrupt mode, only SPRI and SPTI are used */
1287 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1288 "rx", rspi);
1289 if (!ret)
1290 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1291 rspi_irq_tx, "tx", rspi);
1293 if (ret < 0) {
1294 dev_err(&pdev->dev, "request_irq error\n");
1295 goto error2;
1298 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1299 if (ret < 0)
1300 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1302 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1303 if (ret < 0) {
1304 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1305 goto error3;
1308 dev_info(&pdev->dev, "probed\n");
1310 return 0;
1312 error3:
1313 rspi_release_dma(ctlr);
1314 error2:
1315 pm_runtime_disable(&pdev->dev);
1316 error1:
1317 spi_controller_put(ctlr);
1319 return ret;
1322 static const struct platform_device_id spi_driver_ids[] = {
1323 { "rspi", (kernel_ulong_t)&rspi_ops },
1327 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1329 #ifdef CONFIG_PM_SLEEP
1330 static int rspi_suspend(struct device *dev)
1332 struct rspi_data *rspi = dev_get_drvdata(dev);
1334 return spi_controller_suspend(rspi->ctlr);
1337 static int rspi_resume(struct device *dev)
1339 struct rspi_data *rspi = dev_get_drvdata(dev);
1341 return spi_controller_resume(rspi->ctlr);
1344 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1345 #define DEV_PM_OPS &rspi_pm_ops
1346 #else
1347 #define DEV_PM_OPS NULL
1348 #endif /* CONFIG_PM_SLEEP */
1350 static struct platform_driver rspi_driver = {
1351 .probe = rspi_probe,
1352 .remove = rspi_remove,
1353 .id_table = spi_driver_ids,
1354 .driver = {
1355 .name = "renesas_spi",
1356 .pm = DEV_PM_OPS,
1357 .of_match_table = of_match_ptr(rspi_of_match),
1360 module_platform_driver(rspi_driver);
1362 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1363 MODULE_LICENSE("GPL v2");
1364 MODULE_AUTHOR("Yoshihiro Shimoda");
1365 MODULE_ALIAS("platform:rspi");