treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / spi / spi-stm32.c
blobe041f9c4ec47e861e75ca8fe60f5a3ced663124f
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/spi/spi.h>
20 #define DRIVER_NAME "spi_stm32"
22 /* STM32F4 SPI registers */
23 #define STM32F4_SPI_CR1 0x00
24 #define STM32F4_SPI_CR2 0x04
25 #define STM32F4_SPI_SR 0x08
26 #define STM32F4_SPI_DR 0x0C
27 #define STM32F4_SPI_I2SCFGR 0x1C
29 /* STM32F4_SPI_CR1 bit fields */
30 #define STM32F4_SPI_CR1_CPHA BIT(0)
31 #define STM32F4_SPI_CR1_CPOL BIT(1)
32 #define STM32F4_SPI_CR1_MSTR BIT(2)
33 #define STM32F4_SPI_CR1_BR_SHIFT 3
34 #define STM32F4_SPI_CR1_BR GENMASK(5, 3)
35 #define STM32F4_SPI_CR1_SPE BIT(6)
36 #define STM32F4_SPI_CR1_LSBFRST BIT(7)
37 #define STM32F4_SPI_CR1_SSI BIT(8)
38 #define STM32F4_SPI_CR1_SSM BIT(9)
39 #define STM32F4_SPI_CR1_RXONLY BIT(10)
40 #define STM32F4_SPI_CR1_DFF BIT(11)
41 #define STM32F4_SPI_CR1_CRCNEXT BIT(12)
42 #define STM32F4_SPI_CR1_CRCEN BIT(13)
43 #define STM32F4_SPI_CR1_BIDIOE BIT(14)
44 #define STM32F4_SPI_CR1_BIDIMODE BIT(15)
45 #define STM32F4_SPI_CR1_BR_MIN 0
46 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
48 /* STM32F4_SPI_CR2 bit fields */
49 #define STM32F4_SPI_CR2_RXDMAEN BIT(0)
50 #define STM32F4_SPI_CR2_TXDMAEN BIT(1)
51 #define STM32F4_SPI_CR2_SSOE BIT(2)
52 #define STM32F4_SPI_CR2_FRF BIT(4)
53 #define STM32F4_SPI_CR2_ERRIE BIT(5)
54 #define STM32F4_SPI_CR2_RXNEIE BIT(6)
55 #define STM32F4_SPI_CR2_TXEIE BIT(7)
57 /* STM32F4_SPI_SR bit fields */
58 #define STM32F4_SPI_SR_RXNE BIT(0)
59 #define STM32F4_SPI_SR_TXE BIT(1)
60 #define STM32F4_SPI_SR_CHSIDE BIT(2)
61 #define STM32F4_SPI_SR_UDR BIT(3)
62 #define STM32F4_SPI_SR_CRCERR BIT(4)
63 #define STM32F4_SPI_SR_MODF BIT(5)
64 #define STM32F4_SPI_SR_OVR BIT(6)
65 #define STM32F4_SPI_SR_BSY BIT(7)
66 #define STM32F4_SPI_SR_FRE BIT(8)
68 /* STM32F4_SPI_I2SCFGR bit fields */
69 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
71 /* STM32F4 SPI Baud Rate min/max divisor */
72 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
73 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
75 /* STM32H7 SPI registers */
76 #define STM32H7_SPI_CR1 0x00
77 #define STM32H7_SPI_CR2 0x04
78 #define STM32H7_SPI_CFG1 0x08
79 #define STM32H7_SPI_CFG2 0x0C
80 #define STM32H7_SPI_IER 0x10
81 #define STM32H7_SPI_SR 0x14
82 #define STM32H7_SPI_IFCR 0x18
83 #define STM32H7_SPI_TXDR 0x20
84 #define STM32H7_SPI_RXDR 0x30
85 #define STM32H7_SPI_I2SCFGR 0x50
87 /* STM32H7_SPI_CR1 bit fields */
88 #define STM32H7_SPI_CR1_SPE BIT(0)
89 #define STM32H7_SPI_CR1_MASRX BIT(8)
90 #define STM32H7_SPI_CR1_CSTART BIT(9)
91 #define STM32H7_SPI_CR1_CSUSP BIT(10)
92 #define STM32H7_SPI_CR1_HDDIR BIT(11)
93 #define STM32H7_SPI_CR1_SSI BIT(12)
95 /* STM32H7_SPI_CR2 bit fields */
96 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0
97 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
99 /* STM32H7_SPI_CFG1 bit fields */
100 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
101 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
102 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
103 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
106 #define STM32H7_SPI_CFG1_MBR_SHIFT 28
107 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
108 #define STM32H7_SPI_CFG1_MBR_MIN 0
109 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4
113 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
114 #define STM32H7_SPI_CFG2_COMM_SHIFT 17
115 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
116 #define STM32H7_SPI_CFG2_SP_SHIFT 19
117 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
118 #define STM32H7_SPI_CFG2_MASTER BIT(22)
119 #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
120 #define STM32H7_SPI_CFG2_CPHA BIT(24)
121 #define STM32H7_SPI_CFG2_CPOL BIT(25)
122 #define STM32H7_SPI_CFG2_SSM BIT(26)
123 #define STM32H7_SPI_CFG2_AFCNTR BIT(31)
125 /* STM32H7_SPI_IER bit fields */
126 #define STM32H7_SPI_IER_RXPIE BIT(0)
127 #define STM32H7_SPI_IER_TXPIE BIT(1)
128 #define STM32H7_SPI_IER_DXPIE BIT(2)
129 #define STM32H7_SPI_IER_EOTIE BIT(3)
130 #define STM32H7_SPI_IER_TXTFIE BIT(4)
131 #define STM32H7_SPI_IER_OVRIE BIT(6)
132 #define STM32H7_SPI_IER_MODFIE BIT(9)
133 #define STM32H7_SPI_IER_ALL GENMASK(10, 0)
135 /* STM32H7_SPI_SR bit fields */
136 #define STM32H7_SPI_SR_RXP BIT(0)
137 #define STM32H7_SPI_SR_TXP BIT(1)
138 #define STM32H7_SPI_SR_EOT BIT(3)
139 #define STM32H7_SPI_SR_OVR BIT(6)
140 #define STM32H7_SPI_SR_MODF BIT(9)
141 #define STM32H7_SPI_SR_SUSP BIT(11)
142 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13
143 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
144 #define STM32H7_SPI_SR_RXWNE BIT(15)
146 /* STM32H7_SPI_IFCR bit fields */
147 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
149 /* STM32H7_SPI_I2SCFGR bit fields */
150 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
152 /* STM32H7 SPI Master Baud Rate min/max divisor */
153 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
154 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
156 /* STM32H7 SPI Communication mode */
157 #define STM32H7_SPI_FULL_DUPLEX 0
158 #define STM32H7_SPI_SIMPLEX_TX 1
159 #define STM32H7_SPI_SIMPLEX_RX 2
160 #define STM32H7_SPI_HALF_DUPLEX 3
162 /* SPI Communication type */
163 #define SPI_FULL_DUPLEX 0
164 #define SPI_SIMPLEX_TX 1
165 #define SPI_SIMPLEX_RX 2
166 #define SPI_3WIRE_TX 3
167 #define SPI_3WIRE_RX 4
169 #define SPI_1HZ_NS 1000000000
172 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
173 * without fifo buffers.
175 #define SPI_DMA_MIN_BYTES 16
178 * stm32_spi_reg - stm32 SPI register & bitfield desc
179 * @reg: register offset
180 * @mask: bitfield mask
181 * @shift: left shift
183 struct stm32_spi_reg {
184 int reg;
185 int mask;
186 int shift;
190 * stm32_spi_regspec - stm32 registers definition, compatible dependent data
191 * en: enable register and SPI enable bit
192 * dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
193 * dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
194 * cpol: clock polarity register and polarity bit
195 * cpha: clock phase register and phase bit
196 * lsb_first: LSB transmitted first register and bit
197 * br: baud rate register and bitfields
198 * rx: SPI RX data register
199 * tx: SPI TX data register
201 struct stm32_spi_regspec {
202 const struct stm32_spi_reg en;
203 const struct stm32_spi_reg dma_rx_en;
204 const struct stm32_spi_reg dma_tx_en;
205 const struct stm32_spi_reg cpol;
206 const struct stm32_spi_reg cpha;
207 const struct stm32_spi_reg lsb_first;
208 const struct stm32_spi_reg br;
209 const struct stm32_spi_reg rx;
210 const struct stm32_spi_reg tx;
213 struct stm32_spi;
216 * stm32_spi_cfg - stm32 compatible configuration data
217 * @regs: registers descriptions
218 * @get_fifo_size: routine to get fifo size
219 * @get_bpw_mask: routine to get bits per word mask
220 * @disable: routine to disable controller
221 * @config: routine to configure controller as SPI Master
222 * @set_bpw: routine to configure registers to for bits per word
223 * @set_mode: routine to configure registers to desired mode
224 * @set_data_idleness: optional routine to configure registers to desired idle
225 * time between frames (if driver has this functionality)
226 * set_number_of_data: optional routine to configure registers to desired
227 * number of data (if driver has this functionality)
228 * @can_dma: routine to determine if the transfer is eligible for DMA use
229 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
230 * using DMA
231 * @dma_rx cb: routine to call after DMA RX channel operation is complete
232 * @dma_tx cb: routine to call after DMA TX channel operation is complete
233 * @transfer_one_irq: routine to configure interrupts for driver
234 * @irq_handler_event: Interrupt handler for SPI controller events
235 * @irq_handler_thread: thread of interrupt handler for SPI controller
236 * @baud_rate_div_min: minimum baud rate divisor
237 * @baud_rate_div_max: maximum baud rate divisor
238 * @has_fifo: boolean to know if fifo is used for driver
239 * @has_startbit: boolean to know if start bit is used to start transfer
241 struct stm32_spi_cfg {
242 const struct stm32_spi_regspec *regs;
243 int (*get_fifo_size)(struct stm32_spi *spi);
244 int (*get_bpw_mask)(struct stm32_spi *spi);
245 void (*disable)(struct stm32_spi *spi);
246 int (*config)(struct stm32_spi *spi);
247 void (*set_bpw)(struct stm32_spi *spi);
248 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
249 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
250 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
251 void (*transfer_one_dma_start)(struct stm32_spi *spi);
252 void (*dma_rx_cb)(void *data);
253 void (*dma_tx_cb)(void *data);
254 int (*transfer_one_irq)(struct stm32_spi *spi);
255 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
256 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
257 unsigned int baud_rate_div_min;
258 unsigned int baud_rate_div_max;
259 bool has_fifo;
263 * struct stm32_spi - private data of the SPI controller
264 * @dev: driver model representation of the controller
265 * @master: controller master interface
266 * @cfg: compatible configuration data
267 * @base: virtual memory area
268 * @clk: hw kernel clock feeding the SPI clock generator
269 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
270 * @rst: SPI controller reset line
271 * @lock: prevent I/O concurrent access
272 * @irq: SPI controller interrupt line
273 * @fifo_size: size of the embedded fifo in bytes
274 * @cur_midi: master inter-data idleness in ns
275 * @cur_speed: speed configured in Hz
276 * @cur_bpw: number of bits in a single SPI data frame
277 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
278 * @cur_comm: SPI communication mode
279 * @cur_xferlen: current transfer length in bytes
280 * @cur_usedma: boolean to know if dma is used in current transfer
281 * @tx_buf: data to be written, or NULL
282 * @rx_buf: data to be read, or NULL
283 * @tx_len: number of data to be written in bytes
284 * @rx_len: number of data to be read in bytes
285 * @dma_tx: dma channel for TX transfer
286 * @dma_rx: dma channel for RX transfer
287 * @phys_addr: SPI registers physical base address
289 struct stm32_spi {
290 struct device *dev;
291 struct spi_master *master;
292 const struct stm32_spi_cfg *cfg;
293 void __iomem *base;
294 struct clk *clk;
295 u32 clk_rate;
296 struct reset_control *rst;
297 spinlock_t lock; /* prevent I/O concurrent access */
298 int irq;
299 unsigned int fifo_size;
301 unsigned int cur_midi;
302 unsigned int cur_speed;
303 unsigned int cur_bpw;
304 unsigned int cur_fthlv;
305 unsigned int cur_comm;
306 unsigned int cur_xferlen;
307 bool cur_usedma;
309 const void *tx_buf;
310 void *rx_buf;
311 int tx_len;
312 int rx_len;
313 struct dma_chan *dma_tx;
314 struct dma_chan *dma_rx;
315 dma_addr_t phys_addr;
318 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
319 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
322 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
325 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
326 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
327 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329 .rx = { STM32F4_SPI_DR },
330 .tx = { STM32F4_SPI_DR },
333 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
334 /* SPI data transfer is enabled but spi_ker_ck is idle.
335 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
340 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
343 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
344 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
345 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
346 STM32H7_SPI_CFG1_MBR_SHIFT },
348 .rx = { STM32H7_SPI_RXDR },
349 .tx = { STM32H7_SPI_TXDR },
352 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
353 u32 offset, u32 bits)
355 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
356 spi->base + offset);
359 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
360 u32 offset, u32 bits)
362 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
363 spi->base + offset);
367 * stm32h7_spi_get_fifo_size - Return fifo size
368 * @spi: pointer to the spi controller data structure
370 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 unsigned long flags;
373 u32 count = 0;
375 spin_lock_irqsave(&spi->lock, flags);
377 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
380 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384 spin_unlock_irqrestore(&spi->lock, flags);
386 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388 return count;
392 * stm32f4_spi_get_bpw_mask - Return bits per word mask
393 * @spi: pointer to the spi controller data structure
395 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
398 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
402 * stm32h7_spi_get_bpw_mask - Return bits per word mask
403 * @spi: pointer to the spi controller data structure
405 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 unsigned long flags;
408 u32 cfg1, max_bpw;
410 spin_lock_irqsave(&spi->lock, flags);
413 * The most significant bit at DSIZE bit field is reserved when the
414 * maximum data size of periperal instances is limited to 16-bit
416 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
419 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
420 STM32H7_SPI_CFG1_DSIZE_SHIFT;
421 max_bpw += 1;
423 spin_unlock_irqrestore(&spi->lock, flags);
425 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427 return SPI_BPW_RANGE_MASK(4, max_bpw);
431 * stm32_spi_prepare_mbr - Determine baud rate divisor value
432 * @spi: pointer to the spi controller data structure
433 * @speed_hz: requested speed
434 * @min_div: minimum baud rate divisor
435 * @max_div: maximum baud rate divisor
437 * Return baud rate divisor value in case of success or -EINVAL
439 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
440 u32 min_div, u32 max_div)
442 u32 div, mbrdiv;
444 div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
447 * SPI framework set xfer->speed_hz to master->max_speed_hz if
448 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
449 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
450 * no need to check it there.
451 * However, we need to ensure the following calculations.
453 if ((div < min_div) || (div > max_div))
454 return -EINVAL;
456 /* Determine the first power of 2 greater than or equal to div */
457 if (div & (div - 1))
458 mbrdiv = fls(div);
459 else
460 mbrdiv = fls(div) - 1;
462 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
464 return mbrdiv - 1;
468 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
469 * @spi: pointer to the spi controller data structure
471 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
473 u32 fthlv, half_fifo;
475 /* data packet should not exceed 1/2 of fifo space */
476 half_fifo = (spi->fifo_size / 2);
478 if (spi->cur_bpw <= 8)
479 fthlv = half_fifo;
480 else if (spi->cur_bpw <= 16)
481 fthlv = half_fifo / 2;
482 else
483 fthlv = half_fifo / 4;
485 /* align packet size with data registers access */
486 if (spi->cur_bpw > 8)
487 fthlv -= (fthlv % 2); /* multiple of 2 */
488 else
489 fthlv -= (fthlv % 4); /* multiple of 4 */
491 return fthlv;
495 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
496 * @spi: pointer to the spi controller data structure
498 * Read from tx_buf depends on remaining bytes to avoid to read beyond
499 * tx_buf end.
501 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
503 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
504 STM32F4_SPI_SR_TXE)) {
505 u32 offs = spi->cur_xferlen - spi->tx_len;
507 if (spi->cur_bpw == 16) {
508 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
510 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
511 spi->tx_len -= sizeof(u16);
512 } else {
513 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
515 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
516 spi->tx_len -= sizeof(u8);
520 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
524 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
525 * @spi: pointer to the spi controller data structure
527 * Read from tx_buf depends on remaining bytes to avoid to read beyond
528 * tx_buf end.
530 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
532 while ((spi->tx_len > 0) &&
533 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
534 STM32H7_SPI_SR_TXP)) {
535 u32 offs = spi->cur_xferlen - spi->tx_len;
537 if (spi->tx_len >= sizeof(u32)) {
538 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
540 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
541 spi->tx_len -= sizeof(u32);
542 } else if (spi->tx_len >= sizeof(u16)) {
543 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
545 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
546 spi->tx_len -= sizeof(u16);
547 } else {
548 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
550 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
551 spi->tx_len -= sizeof(u8);
555 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
559 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
560 * @spi: pointer to the spi controller data structure
562 * Write in rx_buf depends on remaining bytes to avoid to write beyond
563 * rx_buf end.
565 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
567 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
568 STM32F4_SPI_SR_RXNE)) {
569 u32 offs = spi->cur_xferlen - spi->rx_len;
571 if (spi->cur_bpw == 16) {
572 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
574 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
575 spi->rx_len -= sizeof(u16);
576 } else {
577 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
579 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
580 spi->rx_len -= sizeof(u8);
584 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
588 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
589 * @spi: pointer to the spi controller data structure
591 * Write in rx_buf depends on remaining bytes to avoid to write beyond
592 * rx_buf end.
594 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
596 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
597 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
598 STM32H7_SPI_SR_RXPLVL_SHIFT;
600 while ((spi->rx_len > 0) &&
601 ((sr & STM32H7_SPI_SR_RXP) ||
602 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
603 u32 offs = spi->cur_xferlen - spi->rx_len;
605 if ((spi->rx_len >= sizeof(u32)) ||
606 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
607 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
609 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
610 spi->rx_len -= sizeof(u32);
611 } else if ((spi->rx_len >= sizeof(u16)) ||
612 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
613 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
615 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
616 spi->rx_len -= sizeof(u16);
617 } else {
618 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
620 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
621 spi->rx_len -= sizeof(u8);
624 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
625 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
626 STM32H7_SPI_SR_RXPLVL_SHIFT;
629 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
630 flush ? "(flush)" : "", spi->rx_len);
634 * stm32_spi_enable - Enable SPI controller
635 * @spi: pointer to the spi controller data structure
637 static void stm32_spi_enable(struct stm32_spi *spi)
639 dev_dbg(spi->dev, "enable controller\n");
641 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
642 spi->cfg->regs->en.mask);
646 * stm32f4_spi_disable - Disable SPI controller
647 * @spi: pointer to the spi controller data structure
649 static void stm32f4_spi_disable(struct stm32_spi *spi)
651 unsigned long flags;
652 u32 sr;
654 dev_dbg(spi->dev, "disable controller\n");
656 spin_lock_irqsave(&spi->lock, flags);
658 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
659 STM32F4_SPI_CR1_SPE)) {
660 spin_unlock_irqrestore(&spi->lock, flags);
661 return;
664 /* Disable interrupts */
665 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
666 STM32F4_SPI_CR2_RXNEIE |
667 STM32F4_SPI_CR2_ERRIE);
669 /* Wait until BSY = 0 */
670 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
671 sr, !(sr & STM32F4_SPI_SR_BSY),
672 10, 100000) < 0) {
673 dev_warn(spi->dev, "disabling condition timeout\n");
676 if (spi->cur_usedma && spi->dma_tx)
677 dmaengine_terminate_all(spi->dma_tx);
678 if (spi->cur_usedma && spi->dma_rx)
679 dmaengine_terminate_all(spi->dma_rx);
681 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
683 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
684 STM32F4_SPI_CR2_RXDMAEN);
686 /* Sequence to clear OVR flag */
687 readl_relaxed(spi->base + STM32F4_SPI_DR);
688 readl_relaxed(spi->base + STM32F4_SPI_SR);
690 spin_unlock_irqrestore(&spi->lock, flags);
694 * stm32h7_spi_disable - Disable SPI controller
695 * @spi: pointer to the spi controller data structure
697 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
698 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
699 * RX-Fifo.
700 * Normally, if TSIZE has been configured, we should relax the hardware at the
701 * reception of the EOT interrupt. But in case of error, EOT will not be
702 * raised. So the subsystem unprepare_message call allows us to properly
703 * complete the transfer from an hardware point of view.
705 static void stm32h7_spi_disable(struct stm32_spi *spi)
707 unsigned long flags;
708 u32 cr1, sr;
710 dev_dbg(spi->dev, "disable controller\n");
712 spin_lock_irqsave(&spi->lock, flags);
714 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
716 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
717 spin_unlock_irqrestore(&spi->lock, flags);
718 return;
721 /* Wait on EOT or suspend the flow */
722 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
723 sr, !(sr & STM32H7_SPI_SR_EOT),
724 10, 100000) < 0) {
725 if (cr1 & STM32H7_SPI_CR1_CSTART) {
726 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
727 spi->base + STM32H7_SPI_CR1);
728 if (readl_relaxed_poll_timeout_atomic(
729 spi->base + STM32H7_SPI_SR,
730 sr, !(sr & STM32H7_SPI_SR_SUSP),
731 10, 100000) < 0)
732 dev_warn(spi->dev,
733 "Suspend request timeout\n");
737 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
738 stm32h7_spi_read_rxfifo(spi, true);
740 if (spi->cur_usedma && spi->dma_tx)
741 dmaengine_terminate_all(spi->dma_tx);
742 if (spi->cur_usedma && spi->dma_rx)
743 dmaengine_terminate_all(spi->dma_rx);
745 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
747 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
748 STM32H7_SPI_CFG1_RXDMAEN);
750 /* Disable interrupts and clear status flags */
751 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
752 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
754 spin_unlock_irqrestore(&spi->lock, flags);
758 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
760 * If driver has fifo and the current transfer size is greater than fifo size,
761 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
763 static bool stm32_spi_can_dma(struct spi_master *master,
764 struct spi_device *spi_dev,
765 struct spi_transfer *transfer)
767 unsigned int dma_size;
768 struct stm32_spi *spi = spi_master_get_devdata(master);
770 if (spi->cfg->has_fifo)
771 dma_size = spi->fifo_size;
772 else
773 dma_size = SPI_DMA_MIN_BYTES;
775 dev_dbg(spi->dev, "%s: %s\n", __func__,
776 (transfer->len > dma_size) ? "true" : "false");
778 return (transfer->len > dma_size);
782 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
783 * @irq: interrupt line
784 * @dev_id: SPI controller master interface
786 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
788 struct spi_master *master = dev_id;
789 struct stm32_spi *spi = spi_master_get_devdata(master);
790 u32 sr, mask = 0;
791 unsigned long flags;
792 bool end = false;
794 spin_lock_irqsave(&spi->lock, flags);
796 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
798 * BSY flag is not handled in interrupt but it is normal behavior when
799 * this flag is set.
801 sr &= ~STM32F4_SPI_SR_BSY;
803 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
804 spi->cur_comm == SPI_3WIRE_TX)) {
805 /* OVR flag shouldn't be handled for TX only mode */
806 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
807 mask |= STM32F4_SPI_SR_TXE;
810 if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
811 /* TXE flag is set and is handled when RXNE flag occurs */
812 sr &= ~STM32F4_SPI_SR_TXE;
813 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
816 if (!(sr & mask)) {
817 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
818 spin_unlock_irqrestore(&spi->lock, flags);
819 return IRQ_NONE;
822 if (sr & STM32F4_SPI_SR_OVR) {
823 dev_warn(spi->dev, "Overrun: received value discarded\n");
825 /* Sequence to clear OVR flag */
826 readl_relaxed(spi->base + STM32F4_SPI_DR);
827 readl_relaxed(spi->base + STM32F4_SPI_SR);
830 * If overrun is detected, it means that something went wrong,
831 * so stop the current transfer. Transfer can wait for next
832 * RXNE but DR is already read and end never happens.
834 end = true;
835 goto end_irq;
838 if (sr & STM32F4_SPI_SR_TXE) {
839 if (spi->tx_buf)
840 stm32f4_spi_write_tx(spi);
841 if (spi->tx_len == 0)
842 end = true;
845 if (sr & STM32F4_SPI_SR_RXNE) {
846 stm32f4_spi_read_rx(spi);
847 if (spi->rx_len == 0)
848 end = true;
849 else /* Load data for discontinuous mode */
850 stm32f4_spi_write_tx(spi);
853 end_irq:
854 if (end) {
855 /* Immediately disable interrupts to do not generate new one */
856 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
857 STM32F4_SPI_CR2_TXEIE |
858 STM32F4_SPI_CR2_RXNEIE |
859 STM32F4_SPI_CR2_ERRIE);
860 spin_unlock_irqrestore(&spi->lock, flags);
861 return IRQ_WAKE_THREAD;
864 spin_unlock_irqrestore(&spi->lock, flags);
865 return IRQ_HANDLED;
869 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
870 * @irq: interrupt line
871 * @dev_id: SPI controller master interface
873 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
875 struct spi_master *master = dev_id;
876 struct stm32_spi *spi = spi_master_get_devdata(master);
878 spi_finalize_current_transfer(master);
879 stm32f4_spi_disable(spi);
881 return IRQ_HANDLED;
885 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
886 * @irq: interrupt line
887 * @dev_id: SPI controller master interface
889 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
891 struct spi_master *master = dev_id;
892 struct stm32_spi *spi = spi_master_get_devdata(master);
893 u32 sr, ier, mask;
894 unsigned long flags;
895 bool end = false;
897 spin_lock_irqsave(&spi->lock, flags);
899 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
900 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
902 mask = ier;
903 /* EOTIE is triggered on EOT, SUSP and TXC events. */
904 mask |= STM32H7_SPI_SR_SUSP;
906 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
907 * Full-Duplex, need to poll RXP event to know if there are remaining
908 * data, before disabling SPI.
910 if (spi->rx_buf && !spi->cur_usedma)
911 mask |= STM32H7_SPI_SR_RXP;
913 if (!(sr & mask)) {
914 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
915 sr, ier);
916 spin_unlock_irqrestore(&spi->lock, flags);
917 return IRQ_NONE;
920 if (sr & STM32H7_SPI_SR_SUSP) {
921 dev_warn(spi->dev, "Communication suspended\n");
922 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
923 stm32h7_spi_read_rxfifo(spi, false);
925 * If communication is suspended while using DMA, it means
926 * that something went wrong, so stop the current transfer
928 if (spi->cur_usedma)
929 end = true;
932 if (sr & STM32H7_SPI_SR_MODF) {
933 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
934 end = true;
937 if (sr & STM32H7_SPI_SR_OVR) {
938 dev_warn(spi->dev, "Overrun: received value discarded\n");
939 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
940 stm32h7_spi_read_rxfifo(spi, false);
942 * If overrun is detected while using DMA, it means that
943 * something went wrong, so stop the current transfer
945 if (spi->cur_usedma)
946 end = true;
949 if (sr & STM32H7_SPI_SR_EOT) {
950 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
951 stm32h7_spi_read_rxfifo(spi, true);
952 end = true;
955 if (sr & STM32H7_SPI_SR_TXP)
956 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
957 stm32h7_spi_write_txfifo(spi);
959 if (sr & STM32H7_SPI_SR_RXP)
960 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
961 stm32h7_spi_read_rxfifo(spi, false);
963 writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
965 spin_unlock_irqrestore(&spi->lock, flags);
967 if (end) {
968 spi_finalize_current_transfer(master);
969 stm32h7_spi_disable(spi);
972 return IRQ_HANDLED;
976 * stm32_spi_prepare_msg - set up the controller to transfer a single message
978 static int stm32_spi_prepare_msg(struct spi_master *master,
979 struct spi_message *msg)
981 struct stm32_spi *spi = spi_master_get_devdata(master);
982 struct spi_device *spi_dev = msg->spi;
983 struct device_node *np = spi_dev->dev.of_node;
984 unsigned long flags;
985 u32 clrb = 0, setb = 0;
987 /* SPI slave device may need time between data frames */
988 spi->cur_midi = 0;
989 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
990 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
992 if (spi_dev->mode & SPI_CPOL)
993 setb |= spi->cfg->regs->cpol.mask;
994 else
995 clrb |= spi->cfg->regs->cpol.mask;
997 if (spi_dev->mode & SPI_CPHA)
998 setb |= spi->cfg->regs->cpha.mask;
999 else
1000 clrb |= spi->cfg->regs->cpha.mask;
1002 if (spi_dev->mode & SPI_LSB_FIRST)
1003 setb |= spi->cfg->regs->lsb_first.mask;
1004 else
1005 clrb |= spi->cfg->regs->lsb_first.mask;
1007 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1008 spi_dev->mode & SPI_CPOL,
1009 spi_dev->mode & SPI_CPHA,
1010 spi_dev->mode & SPI_LSB_FIRST,
1011 spi_dev->mode & SPI_CS_HIGH);
1013 spin_lock_irqsave(&spi->lock, flags);
1015 /* CPOL, CPHA and LSB FIRST bits have common register */
1016 if (clrb || setb)
1017 writel_relaxed(
1018 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1019 ~clrb) | setb,
1020 spi->base + spi->cfg->regs->cpol.reg);
1022 spin_unlock_irqrestore(&spi->lock, flags);
1024 return 0;
1028 * stm32f4_spi_dma_tx_cb - dma callback
1030 * DMA callback is called when the transfer is complete for DMA TX channel.
1032 static void stm32f4_spi_dma_tx_cb(void *data)
1034 struct stm32_spi *spi = data;
1036 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1037 spi_finalize_current_transfer(spi->master);
1038 stm32f4_spi_disable(spi);
1043 * stm32f4_spi_dma_rx_cb - dma callback
1045 * DMA callback is called when the transfer is complete for DMA RX channel.
1047 static void stm32f4_spi_dma_rx_cb(void *data)
1049 struct stm32_spi *spi = data;
1051 spi_finalize_current_transfer(spi->master);
1052 stm32f4_spi_disable(spi);
1056 * stm32h7_spi_dma_cb - dma callback
1058 * DMA callback is called when the transfer is complete or when an error
1059 * occurs. If the transfer is complete, EOT flag is raised.
1061 static void stm32h7_spi_dma_cb(void *data)
1063 struct stm32_spi *spi = data;
1064 unsigned long flags;
1065 u32 sr;
1067 spin_lock_irqsave(&spi->lock, flags);
1069 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1071 spin_unlock_irqrestore(&spi->lock, flags);
1073 if (!(sr & STM32H7_SPI_SR_EOT))
1074 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1076 /* Now wait for EOT, or SUSP or OVR in case of error */
1080 * stm32_spi_dma_config - configure dma slave channel depending on current
1081 * transfer bits_per_word.
1083 static void stm32_spi_dma_config(struct stm32_spi *spi,
1084 struct dma_slave_config *dma_conf,
1085 enum dma_transfer_direction dir)
1087 enum dma_slave_buswidth buswidth;
1088 u32 maxburst;
1090 if (spi->cur_bpw <= 8)
1091 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1092 else if (spi->cur_bpw <= 16)
1093 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1094 else
1095 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1097 if (spi->cfg->has_fifo) {
1098 /* Valid for DMA Half or Full Fifo threshold */
1099 if (spi->cur_fthlv == 2)
1100 maxburst = 1;
1101 else
1102 maxburst = spi->cur_fthlv;
1103 } else {
1104 maxburst = 1;
1107 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1108 dma_conf->direction = dir;
1109 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1110 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1111 dma_conf->src_addr_width = buswidth;
1112 dma_conf->src_maxburst = maxburst;
1114 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1115 buswidth, maxburst);
1116 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1117 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1118 dma_conf->dst_addr_width = buswidth;
1119 dma_conf->dst_maxburst = maxburst;
1121 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1122 buswidth, maxburst);
1127 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1128 * interrupts
1130 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1131 * in progress.
1133 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1135 unsigned long flags;
1136 u32 cr2 = 0;
1138 /* Enable the interrupts relative to the current communication mode */
1139 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1140 cr2 |= STM32F4_SPI_CR2_TXEIE;
1141 } else if (spi->cur_comm == SPI_FULL_DUPLEX) {
1142 /* In transmit-only mode, the OVR flag is set in the SR register
1143 * since the received data are never read. Therefore set OVR
1144 * interrupt only when rx buffer is available.
1146 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1147 } else {
1148 return -EINVAL;
1151 spin_lock_irqsave(&spi->lock, flags);
1153 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1155 stm32_spi_enable(spi);
1157 /* starting data transfer when buffer is loaded */
1158 if (spi->tx_buf)
1159 stm32f4_spi_write_tx(spi);
1161 spin_unlock_irqrestore(&spi->lock, flags);
1163 return 1;
1167 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1168 * interrupts
1170 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1171 * in progress.
1173 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1175 unsigned long flags;
1176 u32 ier = 0;
1178 /* Enable the interrupts relative to the current communication mode */
1179 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1180 ier |= STM32H7_SPI_IER_DXPIE;
1181 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1182 ier |= STM32H7_SPI_IER_TXPIE;
1183 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1184 ier |= STM32H7_SPI_IER_RXPIE;
1186 /* Enable the interrupts relative to the end of transfer */
1187 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1188 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1190 spin_lock_irqsave(&spi->lock, flags);
1192 stm32_spi_enable(spi);
1194 /* Be sure to have data in fifo before starting data transfer */
1195 if (spi->tx_buf)
1196 stm32h7_spi_write_txfifo(spi);
1198 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1200 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1202 spin_unlock_irqrestore(&spi->lock, flags);
1204 return 1;
1208 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1209 * transfer using DMA
1211 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1213 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1214 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1215 spi->cur_comm == SPI_FULL_DUPLEX) {
1217 * In transmit-only mode, the OVR flag is set in the SR register
1218 * since the received data are never read. Therefore set OVR
1219 * interrupt only when rx buffer is available.
1221 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1224 stm32_spi_enable(spi);
1228 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1229 * transfer using DMA
1231 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1233 /* Enable the interrupts relative to the end of transfer */
1234 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1235 STM32H7_SPI_IER_TXTFIE |
1236 STM32H7_SPI_IER_OVRIE |
1237 STM32H7_SPI_IER_MODFIE);
1239 stm32_spi_enable(spi);
1241 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1245 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1247 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1248 * in progress.
1250 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1251 struct spi_transfer *xfer)
1253 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1254 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1255 unsigned long flags;
1257 spin_lock_irqsave(&spi->lock, flags);
1259 rx_dma_desc = NULL;
1260 if (spi->rx_buf && spi->dma_rx) {
1261 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1262 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1264 /* Enable Rx DMA request */
1265 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1266 spi->cfg->regs->dma_rx_en.mask);
1268 rx_dma_desc = dmaengine_prep_slave_sg(
1269 spi->dma_rx, xfer->rx_sg.sgl,
1270 xfer->rx_sg.nents,
1271 rx_dma_conf.direction,
1272 DMA_PREP_INTERRUPT);
1275 tx_dma_desc = NULL;
1276 if (spi->tx_buf && spi->dma_tx) {
1277 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1278 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1280 tx_dma_desc = dmaengine_prep_slave_sg(
1281 spi->dma_tx, xfer->tx_sg.sgl,
1282 xfer->tx_sg.nents,
1283 tx_dma_conf.direction,
1284 DMA_PREP_INTERRUPT);
1287 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1288 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1289 goto dma_desc_error;
1291 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1292 goto dma_desc_error;
1294 if (rx_dma_desc) {
1295 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1296 rx_dma_desc->callback_param = spi;
1298 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1299 dev_err(spi->dev, "Rx DMA submit failed\n");
1300 goto dma_desc_error;
1302 /* Enable Rx DMA channel */
1303 dma_async_issue_pending(spi->dma_rx);
1306 if (tx_dma_desc) {
1307 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1308 spi->cur_comm == SPI_3WIRE_TX) {
1309 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1310 tx_dma_desc->callback_param = spi;
1313 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1314 dev_err(spi->dev, "Tx DMA submit failed\n");
1315 goto dma_submit_error;
1317 /* Enable Tx DMA channel */
1318 dma_async_issue_pending(spi->dma_tx);
1320 /* Enable Tx DMA request */
1321 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1322 spi->cfg->regs->dma_tx_en.mask);
1325 spi->cfg->transfer_one_dma_start(spi);
1327 spin_unlock_irqrestore(&spi->lock, flags);
1329 return 1;
1331 dma_submit_error:
1332 if (spi->dma_rx)
1333 dmaengine_terminate_all(spi->dma_rx);
1335 dma_desc_error:
1336 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1337 spi->cfg->regs->dma_rx_en.mask);
1339 spin_unlock_irqrestore(&spi->lock, flags);
1341 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1343 spi->cur_usedma = false;
1344 return spi->cfg->transfer_one_irq(spi);
1348 * stm32f4_spi_set_bpw - Configure bits per word
1349 * @spi: pointer to the spi controller data structure
1351 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1353 if (spi->cur_bpw == 16)
1354 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1355 else
1356 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1360 * stm32h7_spi_set_bpw - configure bits per word
1361 * @spi: pointer to the spi controller data structure
1363 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1365 u32 bpw, fthlv;
1366 u32 cfg1_clrb = 0, cfg1_setb = 0;
1368 bpw = spi->cur_bpw - 1;
1370 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1371 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1372 STM32H7_SPI_CFG1_DSIZE;
1374 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1375 fthlv = spi->cur_fthlv - 1;
1377 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1378 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1379 STM32H7_SPI_CFG1_FTHLV;
1381 writel_relaxed(
1382 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1383 ~cfg1_clrb) | cfg1_setb,
1384 spi->base + STM32H7_SPI_CFG1);
1388 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1389 * @spi: pointer to the spi controller data structure
1390 * @mbrdiv: baud rate divisor value
1392 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1394 u32 clrb = 0, setb = 0;
1396 clrb |= spi->cfg->regs->br.mask;
1397 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1398 spi->cfg->regs->br.mask;
1400 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1401 ~clrb) | setb,
1402 spi->base + spi->cfg->regs->br.reg);
1406 * stm32_spi_communication_type - return transfer communication type
1407 * @spi_dev: pointer to the spi device
1408 * transfer: pointer to spi transfer
1410 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1411 struct spi_transfer *transfer)
1413 unsigned int type = SPI_FULL_DUPLEX;
1415 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1417 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1418 * is forbidden and unvalidated by SPI subsystem so depending
1419 * on the valid buffer, we can determine the direction of the
1420 * transfer.
1422 if (!transfer->tx_buf)
1423 type = SPI_3WIRE_RX;
1424 else
1425 type = SPI_3WIRE_TX;
1426 } else {
1427 if (!transfer->tx_buf)
1428 type = SPI_SIMPLEX_RX;
1429 else if (!transfer->rx_buf)
1430 type = SPI_SIMPLEX_TX;
1433 return type;
1437 * stm32f4_spi_set_mode - configure communication mode
1438 * @spi: pointer to the spi controller data structure
1439 * @comm_type: type of communication to configure
1441 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1443 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1444 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1445 STM32F4_SPI_CR1_BIDIMODE |
1446 STM32F4_SPI_CR1_BIDIOE);
1447 } else if (comm_type == SPI_FULL_DUPLEX) {
1448 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1449 STM32F4_SPI_CR1_BIDIMODE |
1450 STM32F4_SPI_CR1_BIDIOE);
1451 } else {
1452 return -EINVAL;
1455 return 0;
1459 * stm32h7_spi_set_mode - configure communication mode
1460 * @spi: pointer to the spi controller data structure
1461 * @comm_type: type of communication to configure
1463 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1465 u32 mode;
1466 u32 cfg2_clrb = 0, cfg2_setb = 0;
1468 if (comm_type == SPI_3WIRE_RX) {
1469 mode = STM32H7_SPI_HALF_DUPLEX;
1470 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1471 } else if (comm_type == SPI_3WIRE_TX) {
1472 mode = STM32H7_SPI_HALF_DUPLEX;
1473 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1474 } else if (comm_type == SPI_SIMPLEX_RX) {
1475 mode = STM32H7_SPI_SIMPLEX_RX;
1476 } else if (comm_type == SPI_SIMPLEX_TX) {
1477 mode = STM32H7_SPI_SIMPLEX_TX;
1478 } else {
1479 mode = STM32H7_SPI_FULL_DUPLEX;
1482 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1483 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1484 STM32H7_SPI_CFG2_COMM;
1486 writel_relaxed(
1487 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1488 ~cfg2_clrb) | cfg2_setb,
1489 spi->base + STM32H7_SPI_CFG2);
1491 return 0;
1495 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1496 * consecutive data frames in master mode
1497 * @spi: pointer to the spi controller data structure
1498 * @len: transfer len
1500 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1502 u32 cfg2_clrb = 0, cfg2_setb = 0;
1504 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1505 if ((len > 1) && (spi->cur_midi > 0)) {
1506 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1507 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1508 (u32)STM32H7_SPI_CFG2_MIDI >>
1509 STM32H7_SPI_CFG2_MIDI_SHIFT);
1511 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1512 sck_period_ns, midi, midi * sck_period_ns);
1513 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1514 STM32H7_SPI_CFG2_MIDI;
1517 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1518 ~cfg2_clrb) | cfg2_setb,
1519 spi->base + STM32H7_SPI_CFG2);
1523 * stm32h7_spi_number_of_data - configure number of data at current transfer
1524 * @spi: pointer to the spi controller data structure
1525 * @len: transfer length
1527 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1529 u32 cr2_clrb = 0, cr2_setb = 0;
1531 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1532 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1533 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1534 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1535 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1536 ~cr2_clrb) | cr2_setb,
1537 spi->base + STM32H7_SPI_CR2);
1538 } else {
1539 return -EMSGSIZE;
1542 return 0;
1546 * stm32_spi_transfer_one_setup - common setup to transfer a single
1547 * spi_transfer either using DMA or
1548 * interrupts.
1550 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1551 struct spi_device *spi_dev,
1552 struct spi_transfer *transfer)
1554 unsigned long flags;
1555 unsigned int comm_type;
1556 int nb_words, ret = 0;
1558 spin_lock_irqsave(&spi->lock, flags);
1560 if (spi->cur_bpw != transfer->bits_per_word) {
1561 spi->cur_bpw = transfer->bits_per_word;
1562 spi->cfg->set_bpw(spi);
1565 if (spi->cur_speed != transfer->speed_hz) {
1566 int mbr;
1568 /* Update spi->cur_speed with real clock speed */
1569 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1570 spi->cfg->baud_rate_div_min,
1571 spi->cfg->baud_rate_div_max);
1572 if (mbr < 0) {
1573 ret = mbr;
1574 goto out;
1577 transfer->speed_hz = spi->cur_speed;
1578 stm32_spi_set_mbr(spi, mbr);
1581 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1582 if (spi->cur_comm != comm_type) {
1583 ret = spi->cfg->set_mode(spi, comm_type);
1585 if (ret < 0)
1586 goto out;
1588 spi->cur_comm = comm_type;
1591 if (spi->cfg->set_data_idleness)
1592 spi->cfg->set_data_idleness(spi, transfer->len);
1594 if (spi->cur_bpw <= 8)
1595 nb_words = transfer->len;
1596 else if (spi->cur_bpw <= 16)
1597 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1598 else
1599 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1601 if (spi->cfg->set_number_of_data) {
1602 ret = spi->cfg->set_number_of_data(spi, nb_words);
1603 if (ret < 0)
1604 goto out;
1607 spi->cur_xferlen = transfer->len;
1609 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1610 spi->cur_comm);
1611 dev_dbg(spi->dev,
1612 "data frame of %d-bit, data packet of %d data frames\n",
1613 spi->cur_bpw, spi->cur_fthlv);
1614 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1615 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1616 spi->cur_xferlen, nb_words);
1617 dev_dbg(spi->dev, "dma %s\n",
1618 (spi->cur_usedma) ? "enabled" : "disabled");
1620 out:
1621 spin_unlock_irqrestore(&spi->lock, flags);
1623 return ret;
1627 * stm32_spi_transfer_one - transfer a single spi_transfer
1629 * It must return 0 if the transfer is finished or 1 if the transfer is still
1630 * in progress.
1632 static int stm32_spi_transfer_one(struct spi_master *master,
1633 struct spi_device *spi_dev,
1634 struct spi_transfer *transfer)
1636 struct stm32_spi *spi = spi_master_get_devdata(master);
1637 int ret;
1639 spi->tx_buf = transfer->tx_buf;
1640 spi->rx_buf = transfer->rx_buf;
1641 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1642 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1644 spi->cur_usedma = (master->can_dma &&
1645 master->can_dma(master, spi_dev, transfer));
1647 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1648 if (ret) {
1649 dev_err(spi->dev, "SPI transfer setup failed\n");
1650 return ret;
1653 if (spi->cur_usedma)
1654 return stm32_spi_transfer_one_dma(spi, transfer);
1655 else
1656 return spi->cfg->transfer_one_irq(spi);
1660 * stm32_spi_unprepare_msg - relax the hardware
1662 static int stm32_spi_unprepare_msg(struct spi_master *master,
1663 struct spi_message *msg)
1665 struct stm32_spi *spi = spi_master_get_devdata(master);
1667 spi->cfg->disable(spi);
1669 return 0;
1673 * stm32f4_spi_config - Configure SPI controller as SPI master
1675 static int stm32f4_spi_config(struct stm32_spi *spi)
1677 unsigned long flags;
1679 spin_lock_irqsave(&spi->lock, flags);
1681 /* Ensure I2SMOD bit is kept cleared */
1682 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1683 STM32F4_SPI_I2SCFGR_I2SMOD);
1686 * - SS input value high
1687 * - transmitter half duplex direction
1688 * - Set the master mode (default Motorola mode)
1689 * - Consider 1 master/n slaves configuration and
1690 * SS input value is determined by the SSI bit
1692 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1693 STM32F4_SPI_CR1_BIDIOE |
1694 STM32F4_SPI_CR1_MSTR |
1695 STM32F4_SPI_CR1_SSM);
1697 spin_unlock_irqrestore(&spi->lock, flags);
1699 return 0;
1703 * stm32h7_spi_config - Configure SPI controller as SPI master
1705 static int stm32h7_spi_config(struct stm32_spi *spi)
1707 unsigned long flags;
1709 spin_lock_irqsave(&spi->lock, flags);
1711 /* Ensure I2SMOD bit is kept cleared */
1712 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1713 STM32H7_SPI_I2SCFGR_I2SMOD);
1716 * - SS input value high
1717 * - transmitter half duplex direction
1718 * - automatic communication suspend when RX-Fifo is full
1720 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1721 STM32H7_SPI_CR1_HDDIR |
1722 STM32H7_SPI_CR1_MASRX);
1725 * - Set the master mode (default Motorola mode)
1726 * - Consider 1 master/n slaves configuration and
1727 * SS input value is determined by the SSI bit
1728 * - keep control of all associated GPIOs
1730 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1731 STM32H7_SPI_CFG2_SSM |
1732 STM32H7_SPI_CFG2_AFCNTR);
1734 spin_unlock_irqrestore(&spi->lock, flags);
1736 return 0;
1739 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1740 .regs = &stm32f4_spi_regspec,
1741 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1742 .disable = stm32f4_spi_disable,
1743 .config = stm32f4_spi_config,
1744 .set_bpw = stm32f4_spi_set_bpw,
1745 .set_mode = stm32f4_spi_set_mode,
1746 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1747 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1748 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1749 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1750 .irq_handler_event = stm32f4_spi_irq_event,
1751 .irq_handler_thread = stm32f4_spi_irq_thread,
1752 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1753 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1754 .has_fifo = false,
1757 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1758 .regs = &stm32h7_spi_regspec,
1759 .get_fifo_size = stm32h7_spi_get_fifo_size,
1760 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1761 .disable = stm32h7_spi_disable,
1762 .config = stm32h7_spi_config,
1763 .set_bpw = stm32h7_spi_set_bpw,
1764 .set_mode = stm32h7_spi_set_mode,
1765 .set_data_idleness = stm32h7_spi_data_idleness,
1766 .set_number_of_data = stm32h7_spi_number_of_data,
1767 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1768 .dma_rx_cb = stm32h7_spi_dma_cb,
1769 .dma_tx_cb = stm32h7_spi_dma_cb,
1770 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1771 .irq_handler_thread = stm32h7_spi_irq_thread,
1772 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1773 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1774 .has_fifo = true,
1777 static const struct of_device_id stm32_spi_of_match[] = {
1778 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1779 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1782 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1784 static int stm32_spi_probe(struct platform_device *pdev)
1786 struct spi_master *master;
1787 struct stm32_spi *spi;
1788 struct resource *res;
1789 int ret;
1791 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1792 if (!master) {
1793 dev_err(&pdev->dev, "spi master allocation failed\n");
1794 return -ENOMEM;
1796 platform_set_drvdata(pdev, master);
1798 spi = spi_master_get_devdata(master);
1799 spi->dev = &pdev->dev;
1800 spi->master = master;
1801 spin_lock_init(&spi->lock);
1803 spi->cfg = (const struct stm32_spi_cfg *)
1804 of_match_device(pdev->dev.driver->of_match_table,
1805 &pdev->dev)->data;
1807 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1808 spi->base = devm_ioremap_resource(&pdev->dev, res);
1809 if (IS_ERR(spi->base)) {
1810 ret = PTR_ERR(spi->base);
1811 goto err_master_put;
1814 spi->phys_addr = (dma_addr_t)res->start;
1816 spi->irq = platform_get_irq(pdev, 0);
1817 if (spi->irq <= 0) {
1818 ret = spi->irq;
1819 if (ret != -EPROBE_DEFER)
1820 dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1821 goto err_master_put;
1823 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1824 spi->cfg->irq_handler_event,
1825 spi->cfg->irq_handler_thread,
1826 IRQF_ONESHOT, pdev->name, master);
1827 if (ret) {
1828 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1829 ret);
1830 goto err_master_put;
1833 spi->clk = devm_clk_get(&pdev->dev, NULL);
1834 if (IS_ERR(spi->clk)) {
1835 ret = PTR_ERR(spi->clk);
1836 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1837 goto err_master_put;
1840 ret = clk_prepare_enable(spi->clk);
1841 if (ret) {
1842 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1843 goto err_master_put;
1845 spi->clk_rate = clk_get_rate(spi->clk);
1846 if (!spi->clk_rate) {
1847 dev_err(&pdev->dev, "clk rate = 0\n");
1848 ret = -EINVAL;
1849 goto err_clk_disable;
1852 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1853 if (!IS_ERR(spi->rst)) {
1854 reset_control_assert(spi->rst);
1855 udelay(2);
1856 reset_control_deassert(spi->rst);
1859 if (spi->cfg->has_fifo)
1860 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1862 ret = spi->cfg->config(spi);
1863 if (ret) {
1864 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1865 ret);
1866 goto err_clk_disable;
1869 master->dev.of_node = pdev->dev.of_node;
1870 master->auto_runtime_pm = true;
1871 master->bus_num = pdev->id;
1872 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1873 SPI_3WIRE;
1874 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1875 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1876 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1877 master->use_gpio_descriptors = true;
1878 master->prepare_message = stm32_spi_prepare_msg;
1879 master->transfer_one = stm32_spi_transfer_one;
1880 master->unprepare_message = stm32_spi_unprepare_msg;
1882 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1883 if (IS_ERR(spi->dma_tx)) {
1884 ret = PTR_ERR(spi->dma_tx);
1885 spi->dma_tx = NULL;
1886 if (ret == -EPROBE_DEFER)
1887 goto err_clk_disable;
1889 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1890 } else {
1891 master->dma_tx = spi->dma_tx;
1894 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1895 if (IS_ERR(spi->dma_rx)) {
1896 ret = PTR_ERR(spi->dma_rx);
1897 spi->dma_rx = NULL;
1898 if (ret == -EPROBE_DEFER)
1899 goto err_dma_release;
1901 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1902 } else {
1903 master->dma_rx = spi->dma_rx;
1906 if (spi->dma_tx || spi->dma_rx)
1907 master->can_dma = stm32_spi_can_dma;
1909 pm_runtime_set_active(&pdev->dev);
1910 pm_runtime_enable(&pdev->dev);
1912 ret = devm_spi_register_master(&pdev->dev, master);
1913 if (ret) {
1914 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1915 ret);
1916 goto err_pm_disable;
1919 if (!master->cs_gpiods) {
1920 dev_err(&pdev->dev, "no CS gpios available\n");
1921 ret = -EINVAL;
1922 goto err_pm_disable;
1925 dev_info(&pdev->dev, "driver initialized\n");
1927 return 0;
1929 err_pm_disable:
1930 pm_runtime_disable(&pdev->dev);
1931 err_dma_release:
1932 if (spi->dma_tx)
1933 dma_release_channel(spi->dma_tx);
1934 if (spi->dma_rx)
1935 dma_release_channel(spi->dma_rx);
1936 err_clk_disable:
1937 clk_disable_unprepare(spi->clk);
1938 err_master_put:
1939 spi_master_put(master);
1941 return ret;
1944 static int stm32_spi_remove(struct platform_device *pdev)
1946 struct spi_master *master = platform_get_drvdata(pdev);
1947 struct stm32_spi *spi = spi_master_get_devdata(master);
1949 spi->cfg->disable(spi);
1951 if (master->dma_tx)
1952 dma_release_channel(master->dma_tx);
1953 if (master->dma_rx)
1954 dma_release_channel(master->dma_rx);
1956 clk_disable_unprepare(spi->clk);
1958 pm_runtime_disable(&pdev->dev);
1960 return 0;
1963 #ifdef CONFIG_PM
1964 static int stm32_spi_runtime_suspend(struct device *dev)
1966 struct spi_master *master = dev_get_drvdata(dev);
1967 struct stm32_spi *spi = spi_master_get_devdata(master);
1969 clk_disable_unprepare(spi->clk);
1971 return 0;
1974 static int stm32_spi_runtime_resume(struct device *dev)
1976 struct spi_master *master = dev_get_drvdata(dev);
1977 struct stm32_spi *spi = spi_master_get_devdata(master);
1979 return clk_prepare_enable(spi->clk);
1981 #endif
1983 #ifdef CONFIG_PM_SLEEP
1984 static int stm32_spi_suspend(struct device *dev)
1986 struct spi_master *master = dev_get_drvdata(dev);
1987 int ret;
1989 ret = spi_master_suspend(master);
1990 if (ret)
1991 return ret;
1993 return pm_runtime_force_suspend(dev);
1996 static int stm32_spi_resume(struct device *dev)
1998 struct spi_master *master = dev_get_drvdata(dev);
1999 struct stm32_spi *spi = spi_master_get_devdata(master);
2000 int ret;
2002 ret = pm_runtime_force_resume(dev);
2003 if (ret)
2004 return ret;
2006 ret = spi_master_resume(master);
2007 if (ret)
2008 clk_disable_unprepare(spi->clk);
2010 return ret;
2012 #endif
2014 static const struct dev_pm_ops stm32_spi_pm_ops = {
2015 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2016 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2017 stm32_spi_runtime_resume, NULL)
2020 static struct platform_driver stm32_spi_driver = {
2021 .probe = stm32_spi_probe,
2022 .remove = stm32_spi_remove,
2023 .driver = {
2024 .name = DRIVER_NAME,
2025 .pm = &stm32_spi_pm_ops,
2026 .of_match_table = stm32_spi_of_match,
2030 module_platform_driver(stm32_spi_driver);
2032 MODULE_ALIAS("platform:" DRIVER_NAME);
2033 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2034 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2035 MODULE_LICENSE("GPL v2");