1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start
);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop
);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr
);
46 static void spidev_release(struct device
*dev
)
48 struct spi_device
*spi
= to_spi_device(dev
);
50 /* spi controllers may cleanup for released devices */
51 if (spi
->controller
->cleanup
)
52 spi
->controller
->cleanup(spi
);
54 spi_controller_put(spi
->controller
);
55 kfree(spi
->driver_override
);
60 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
62 const struct spi_device
*spi
= to_spi_device(dev
);
65 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
69 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
71 static DEVICE_ATTR_RO(modalias
);
73 static ssize_t
driver_override_store(struct device
*dev
,
74 struct device_attribute
*a
,
75 const char *buf
, size_t count
)
77 struct spi_device
*spi
= to_spi_device(dev
);
78 const char *end
= memchr(buf
, '\n', count
);
79 const size_t len
= end
? end
- buf
: count
;
80 const char *driver_override
, *old
;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len
>= (PAGE_SIZE
- 1))
86 driver_override
= kstrndup(buf
, len
, GFP_KERNEL
);
91 old
= spi
->driver_override
;
93 spi
->driver_override
= driver_override
;
95 /* Empty string, disable driver override */
96 spi
->driver_override
= NULL
;
97 kfree(driver_override
);
105 static ssize_t
driver_override_show(struct device
*dev
,
106 struct device_attribute
*a
, char *buf
)
108 const struct spi_device
*spi
= to_spi_device(dev
);
112 len
= snprintf(buf
, PAGE_SIZE
, "%s\n", spi
->driver_override
? : "");
116 static DEVICE_ATTR_RW(driver_override
);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
147 unsigned long flags; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages
, "%lu");
161 SPI_STATISTICS_SHOW(transfers
, "%lu");
162 SPI_STATISTICS_SHOW(errors
, "%lu");
163 SPI_STATISTICS_SHOW(timedout
, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
167 SPI_STATISTICS_SHOW(spi_async
, "%lu");
169 SPI_STATISTICS_SHOW(bytes
, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
197 static struct attribute
*spi_dev_attrs
[] = {
198 &dev_attr_modalias
.attr
,
199 &dev_attr_driver_override
.attr
,
203 static const struct attribute_group spi_dev_group
= {
204 .attrs
= spi_dev_attrs
,
207 static struct attribute
*spi_device_statistics_attrs
[] = {
208 &dev_attr_spi_device_messages
.attr
,
209 &dev_attr_spi_device_transfers
.attr
,
210 &dev_attr_spi_device_errors
.attr
,
211 &dev_attr_spi_device_timedout
.attr
,
212 &dev_attr_spi_device_spi_sync
.attr
,
213 &dev_attr_spi_device_spi_sync_immediate
.attr
,
214 &dev_attr_spi_device_spi_async
.attr
,
215 &dev_attr_spi_device_bytes
.attr
,
216 &dev_attr_spi_device_bytes_rx
.attr
,
217 &dev_attr_spi_device_bytes_tx
.attr
,
218 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
219 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
220 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
221 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
222 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
223 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
224 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
225 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
226 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
227 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
228 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
229 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
230 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
231 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
232 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
233 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
234 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
235 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
239 static const struct attribute_group spi_device_statistics_group
= {
240 .name
= "statistics",
241 .attrs
= spi_device_statistics_attrs
,
244 static const struct attribute_group
*spi_dev_groups
[] = {
246 &spi_device_statistics_group
,
250 static struct attribute
*spi_controller_statistics_attrs
[] = {
251 &dev_attr_spi_controller_messages
.attr
,
252 &dev_attr_spi_controller_transfers
.attr
,
253 &dev_attr_spi_controller_errors
.attr
,
254 &dev_attr_spi_controller_timedout
.attr
,
255 &dev_attr_spi_controller_spi_sync
.attr
,
256 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
257 &dev_attr_spi_controller_spi_async
.attr
,
258 &dev_attr_spi_controller_bytes
.attr
,
259 &dev_attr_spi_controller_bytes_rx
.attr
,
260 &dev_attr_spi_controller_bytes_tx
.attr
,
261 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
262 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
263 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
264 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
265 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
266 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
267 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
268 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
269 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
270 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
271 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
272 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
273 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
274 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
275 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
276 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
277 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
278 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
282 static const struct attribute_group spi_controller_statistics_group
= {
283 .name
= "statistics",
284 .attrs
= spi_controller_statistics_attrs
,
287 static const struct attribute_group
*spi_master_groups
[] = {
288 &spi_controller_statistics_group
,
292 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
293 struct spi_transfer
*xfer
,
294 struct spi_controller
*ctlr
)
297 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
302 spin_lock_irqsave(&stats
->lock
, flags
);
305 stats
->transfer_bytes_histo
[l2len
]++;
307 stats
->bytes
+= xfer
->len
;
308 if ((xfer
->tx_buf
) &&
309 (xfer
->tx_buf
!= ctlr
->dummy_tx
))
310 stats
->bytes_tx
+= xfer
->len
;
311 if ((xfer
->rx_buf
) &&
312 (xfer
->rx_buf
!= ctlr
->dummy_rx
))
313 stats
->bytes_rx
+= xfer
->len
;
315 spin_unlock_irqrestore(&stats
->lock
, flags
);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
324 const struct spi_device
*sdev
)
326 while (id
->name
[0]) {
327 if (!strcmp(sdev
->modalias
, id
->name
))
334 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
336 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
338 return spi_match_id(sdrv
->id_table
, sdev
);
340 EXPORT_SYMBOL_GPL(spi_get_device_id
);
342 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
344 const struct spi_device
*spi
= to_spi_device(dev
);
345 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
347 /* Check override first, and if set, only use the named driver */
348 if (spi
->driver_override
)
349 return strcmp(spi
->driver_override
, drv
->name
) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev
, drv
))
356 if (acpi_driver_match_device(dev
, drv
))
360 return !!spi_match_id(sdrv
->id_table
, spi
);
362 return strcmp(spi
->modalias
, drv
->name
) == 0;
365 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
367 const struct spi_device
*spi
= to_spi_device(dev
);
370 rc
= acpi_device_uevent_modalias(dev
, env
);
374 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
377 struct bus_type spi_bus_type
= {
379 .dev_groups
= spi_dev_groups
,
380 .match
= spi_match_device
,
381 .uevent
= spi_uevent
,
383 EXPORT_SYMBOL_GPL(spi_bus_type
);
386 static int spi_drv_probe(struct device
*dev
)
388 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
389 struct spi_device
*spi
= to_spi_device(dev
);
392 ret
= of_clk_set_defaults(dev
->of_node
, false);
397 spi
->irq
= of_irq_get(dev
->of_node
, 0);
398 if (spi
->irq
== -EPROBE_DEFER
)
399 return -EPROBE_DEFER
;
404 ret
= dev_pm_domain_attach(dev
, true);
408 ret
= sdrv
->probe(spi
);
410 dev_pm_domain_detach(dev
, true);
415 static int spi_drv_remove(struct device
*dev
)
417 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
420 ret
= sdrv
->remove(to_spi_device(dev
));
421 dev_pm_domain_detach(dev
, true);
426 static void spi_drv_shutdown(struct device
*dev
)
428 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
430 sdrv
->shutdown(to_spi_device(dev
));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
443 sdrv
->driver
.owner
= owner
;
444 sdrv
->driver
.bus
= &spi_bus_type
;
446 sdrv
->driver
.probe
= spi_drv_probe
;
448 sdrv
->driver
.remove
= spi_drv_remove
;
450 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
451 return driver_register(&sdrv
->driver
);
453 EXPORT_SYMBOL_GPL(__spi_register_driver
);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
464 struct list_head list
;
465 struct spi_board_info board_info
;
468 static LIST_HEAD(board_list
);
469 static LIST_HEAD(spi_controller_list
);
472 * Used to protect add/del operation for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock
);
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
493 * Return: a pointer to the new device, or NULL.
495 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
497 struct spi_device
*spi
;
499 if (!spi_controller_get(ctlr
))
502 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
504 spi_controller_put(ctlr
);
508 spi
->master
= spi
->controller
= ctlr
;
509 spi
->dev
.parent
= &ctlr
->dev
;
510 spi
->dev
.bus
= &spi_bus_type
;
511 spi
->dev
.release
= spidev_release
;
512 spi
->cs_gpio
= -ENOENT
;
514 spin_lock_init(&spi
->statistics
.lock
);
516 device_initialize(&spi
->dev
);
519 EXPORT_SYMBOL_GPL(spi_alloc_device
);
521 static void spi_dev_set_name(struct spi_device
*spi
)
523 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
526 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
530 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
534 static int spi_dev_check(struct device
*dev
, void *data
)
536 struct spi_device
*spi
= to_spi_device(dev
);
537 struct spi_device
*new_spi
= data
;
539 if (spi
->controller
== new_spi
->controller
&&
540 spi
->chip_select
== new_spi
->chip_select
)
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
552 * Return: 0 on success; negative errno on failure
554 int spi_add_device(struct spi_device
*spi
)
556 static DEFINE_MUTEX(spi_add_lock
);
557 struct spi_controller
*ctlr
= spi
->controller
;
558 struct device
*dev
= ctlr
->dev
.parent
;
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi
->chip_select
>= ctlr
->num_chipselect
) {
563 dev_err(dev
, "cs%d >= max %d\n", spi
->chip_select
,
564 ctlr
->num_chipselect
);
568 /* Set the bus ID string */
569 spi_dev_set_name(spi
);
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
575 mutex_lock(&spi_add_lock
);
577 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
579 dev_err(dev
, "chipselect %d already in use\n",
584 /* Descriptors take precedence */
586 spi
->cs_gpiod
= ctlr
->cs_gpiods
[spi
->chip_select
];
587 else if (ctlr
->cs_gpios
)
588 spi
->cs_gpio
= ctlr
->cs_gpios
[spi
->chip_select
];
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
594 status
= spi_setup(spi
);
596 dev_err(dev
, "can't setup %s, status %d\n",
597 dev_name(&spi
->dev
), status
);
601 /* Device may be bound to an active driver when this returns */
602 status
= device_add(&spi
->dev
);
604 dev_err(dev
, "can't add %s, status %d\n",
605 dev_name(&spi
->dev
), status
);
607 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
610 mutex_unlock(&spi_add_lock
);
613 EXPORT_SYMBOL_GPL(spi_add_device
);
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
627 * Return: the new device, or NULL.
629 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
630 struct spi_board_info
*chip
)
632 struct spi_device
*proxy
;
635 /* NOTE: caller did any chip->bus_num checks necessary.
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
642 proxy
= spi_alloc_device(ctlr
);
646 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
648 proxy
->chip_select
= chip
->chip_select
;
649 proxy
->max_speed_hz
= chip
->max_speed_hz
;
650 proxy
->mode
= chip
->mode
;
651 proxy
->irq
= chip
->irq
;
652 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
653 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
654 proxy
->controller_data
= chip
->controller_data
;
655 proxy
->controller_state
= NULL
;
657 if (chip
->properties
) {
658 status
= device_add_properties(&proxy
->dev
, chip
->properties
);
661 "failed to add properties to '%s': %d\n",
662 chip
->modalias
, status
);
667 status
= spi_add_device(proxy
);
669 goto err_remove_props
;
674 if (chip
->properties
)
675 device_remove_properties(&proxy
->dev
);
680 EXPORT_SYMBOL_GPL(spi_new_device
);
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
689 void spi_unregister_device(struct spi_device
*spi
)
694 if (spi
->dev
.of_node
) {
695 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
696 of_node_put(spi
->dev
.of_node
);
698 if (ACPI_COMPANION(&spi
->dev
))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
700 device_unregister(&spi
->dev
);
702 EXPORT_SYMBOL_GPL(spi_unregister_device
);
704 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
705 struct spi_board_info
*bi
)
707 struct spi_device
*dev
;
709 if (ctlr
->bus_num
!= bi
->bus_num
)
712 dev
= spi_new_device(ctlr
, bi
);
714 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
738 * Return: zero on success, else a negative error code.
740 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
742 struct boardinfo
*bi
;
748 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
752 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
753 struct spi_controller
*ctlr
;
755 memcpy(&bi
->board_info
, info
, sizeof(*info
));
756 if (info
->properties
) {
757 bi
->board_info
.properties
=
758 property_entries_dup(info
->properties
);
759 if (IS_ERR(bi
->board_info
.properties
))
760 return PTR_ERR(bi
->board_info
.properties
);
763 mutex_lock(&board_lock
);
764 list_add_tail(&bi
->list
, &board_list
);
765 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
766 spi_match_controller_to_boardinfo(ctlr
,
768 mutex_unlock(&board_lock
);
774 /*-------------------------------------------------------------------------*/
776 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
778 bool enable1
= enable
;
780 if (!spi
->controller
->set_cs_timing
) {
782 spi_delay_exec(&spi
->controller
->cs_setup
, NULL
);
784 spi_delay_exec(&spi
->controller
->cs_hold
, NULL
);
787 if (spi
->mode
& SPI_CS_HIGH
)
790 if (spi
->cs_gpiod
|| gpio_is_valid(spi
->cs_gpio
)) {
792 * Honour the SPI_NO_CS flag and invert the enable line, as
793 * active low is default for SPI. Execution paths that handle
794 * polarity inversion in gpiolib (such as device tree) will
795 * enforce active high using the SPI_CS_HIGH resulting in a
796 * double inversion through the code above.
798 if (!(spi
->mode
& SPI_NO_CS
)) {
800 gpiod_set_value_cansleep(spi
->cs_gpiod
,
803 gpio_set_value_cansleep(spi
->cs_gpio
, !enable
);
805 /* Some SPI masters need both GPIO CS & slave_select */
806 if ((spi
->controller
->flags
& SPI_MASTER_GPIO_SS
) &&
807 spi
->controller
->set_cs
)
808 spi
->controller
->set_cs(spi
, !enable
);
809 } else if (spi
->controller
->set_cs
) {
810 spi
->controller
->set_cs(spi
, !enable
);
813 if (!spi
->controller
->set_cs_timing
) {
815 spi_delay_exec(&spi
->controller
->cs_inactive
, NULL
);
819 #ifdef CONFIG_HAS_DMA
820 int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
821 struct sg_table
*sgt
, void *buf
, size_t len
,
822 enum dma_data_direction dir
)
824 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
825 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
826 #ifdef CONFIG_HIGHMEM
827 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
828 (unsigned long)buf
< (PKMAP_BASE
+
829 (LAST_PKMAP
* PAGE_SIZE
)));
831 const bool kmap_buf
= false;
835 struct page
*vm_page
;
836 struct scatterlist
*sg
;
841 if (vmalloced_buf
|| kmap_buf
) {
842 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
843 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
844 } else if (virt_addr_valid(buf
)) {
845 desc_len
= min_t(int, max_seg_size
, ctlr
->max_dma_len
);
846 sgs
= DIV_ROUND_UP(len
, desc_len
);
851 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
856 for (i
= 0; i
< sgs
; i
++) {
858 if (vmalloced_buf
|| kmap_buf
) {
860 * Next scatterlist entry size is the minimum between
861 * the desc_len and the remaining buffer length that
864 min
= min_t(size_t, desc_len
,
866 PAGE_SIZE
- offset_in_page(buf
)));
868 vm_page
= vmalloc_to_page(buf
);
870 vm_page
= kmap_to_page(buf
);
875 sg_set_page(sg
, vm_page
,
876 min
, offset_in_page(buf
));
878 min
= min_t(size_t, len
, desc_len
);
880 sg_set_buf(sg
, sg_buf
, min
);
888 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
901 void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
902 struct sg_table
*sgt
, enum dma_data_direction dir
)
904 if (sgt
->orig_nents
) {
905 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
910 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
912 struct device
*tx_dev
, *rx_dev
;
913 struct spi_transfer
*xfer
;
920 tx_dev
= ctlr
->dma_tx
->device
->dev
;
922 tx_dev
= ctlr
->dev
.parent
;
925 rx_dev
= ctlr
->dma_rx
->device
->dev
;
927 rx_dev
= ctlr
->dev
.parent
;
929 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
930 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
933 if (xfer
->tx_buf
!= NULL
) {
934 ret
= spi_map_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
935 (void *)xfer
->tx_buf
, xfer
->len
,
941 if (xfer
->rx_buf
!= NULL
) {
942 ret
= spi_map_buf(ctlr
, rx_dev
, &xfer
->rx_sg
,
943 xfer
->rx_buf
, xfer
->len
,
946 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
953 ctlr
->cur_msg_mapped
= true;
958 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
960 struct spi_transfer
*xfer
;
961 struct device
*tx_dev
, *rx_dev
;
963 if (!ctlr
->cur_msg_mapped
|| !ctlr
->can_dma
)
967 tx_dev
= ctlr
->dma_tx
->device
->dev
;
969 tx_dev
= ctlr
->dev
.parent
;
972 rx_dev
= ctlr
->dma_rx
->device
->dev
;
974 rx_dev
= ctlr
->dev
.parent
;
976 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
977 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
980 spi_unmap_buf(ctlr
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
981 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
986 #else /* !CONFIG_HAS_DMA */
987 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
988 struct spi_message
*msg
)
993 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
994 struct spi_message
*msg
)
998 #endif /* !CONFIG_HAS_DMA */
1000 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
1001 struct spi_message
*msg
)
1003 struct spi_transfer
*xfer
;
1005 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1007 * Restore the original value of tx_buf or rx_buf if they are
1010 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
1011 xfer
->tx_buf
= NULL
;
1012 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
1013 xfer
->rx_buf
= NULL
;
1016 return __spi_unmap_msg(ctlr
, msg
);
1019 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1021 struct spi_transfer
*xfer
;
1023 unsigned int max_tx
, max_rx
;
1025 if (ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
)) {
1029 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1030 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
1032 max_tx
= max(xfer
->len
, max_tx
);
1033 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
1035 max_rx
= max(xfer
->len
, max_rx
);
1039 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
1040 GFP_KERNEL
| GFP_DMA
);
1043 ctlr
->dummy_tx
= tmp
;
1044 memset(tmp
, 0, max_tx
);
1048 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
1049 GFP_KERNEL
| GFP_DMA
);
1052 ctlr
->dummy_rx
= tmp
;
1055 if (max_tx
|| max_rx
) {
1056 list_for_each_entry(xfer
, &msg
->transfers
,
1061 xfer
->tx_buf
= ctlr
->dummy_tx
;
1063 xfer
->rx_buf
= ctlr
->dummy_rx
;
1068 return __spi_map_msg(ctlr
, msg
);
1071 static int spi_transfer_wait(struct spi_controller
*ctlr
,
1072 struct spi_message
*msg
,
1073 struct spi_transfer
*xfer
)
1075 struct spi_statistics
*statm
= &ctlr
->statistics
;
1076 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1077 unsigned long long ms
= 1;
1079 if (spi_controller_is_slave(ctlr
)) {
1080 if (wait_for_completion_interruptible(&ctlr
->xfer_completion
)) {
1081 dev_dbg(&msg
->spi
->dev
, "SPI transfer interrupted\n");
1085 ms
= 8LL * 1000LL * xfer
->len
;
1086 do_div(ms
, xfer
->speed_hz
);
1087 ms
+= ms
+ 200; /* some tolerance */
1092 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1093 msecs_to_jiffies(ms
));
1096 SPI_STATISTICS_INCREMENT_FIELD(statm
, timedout
);
1097 SPI_STATISTICS_INCREMENT_FIELD(stats
, timedout
);
1098 dev_err(&msg
->spi
->dev
,
1099 "SPI transfer timed out\n");
1107 static void _spi_transfer_delay_ns(u32 ns
)
1114 u32 us
= DIV_ROUND_UP(ns
, 1000);
1119 usleep_range(us
, us
+ DIV_ROUND_UP(us
, 10));
1123 int spi_delay_to_ns(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1125 u32 delay
= _delay
->value
;
1126 u32 unit
= _delay
->unit
;
1133 case SPI_DELAY_UNIT_USECS
:
1136 case SPI_DELAY_UNIT_NSECS
: /* nothing to do here */
1138 case SPI_DELAY_UNIT_SCK
:
1139 /* clock cycles need to be obtained from spi_transfer */
1142 /* if there is no effective speed know, then approximate
1143 * by underestimating with half the requested hz
1145 hz
= xfer
->effective_speed_hz
?: xfer
->speed_hz
/ 2;
1148 delay
*= DIV_ROUND_UP(1000000000, hz
);
1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns
);
1158 int spi_delay_exec(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1165 delay
= spi_delay_to_ns(_delay
, xfer
);
1169 _spi_transfer_delay_ns(delay
);
1173 EXPORT_SYMBOL_GPL(spi_delay_exec
);
1175 static void _spi_transfer_cs_change_delay(struct spi_message
*msg
,
1176 struct spi_transfer
*xfer
)
1178 u32 delay
= xfer
->cs_change_delay
.value
;
1179 u32 unit
= xfer
->cs_change_delay
.unit
;
1182 /* return early on "fast" mode - for everything but USECS */
1184 if (unit
== SPI_DELAY_UNIT_USECS
)
1185 _spi_transfer_delay_ns(10000);
1189 ret
= spi_delay_exec(&xfer
->cs_change_delay
, xfer
);
1191 dev_err_once(&msg
->spi
->dev
,
1192 "Use of unsupported delay unit %i, using default of 10us\n",
1194 _spi_transfer_delay_ns(10000);
1199 * spi_transfer_one_message - Default implementation of transfer_one_message()
1201 * This is a standard implementation of transfer_one_message() for
1202 * drivers which implement a transfer_one() operation. It provides
1203 * standard handling of delays and chip select management.
1205 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1206 struct spi_message
*msg
)
1208 struct spi_transfer
*xfer
;
1209 bool keep_cs
= false;
1211 struct spi_statistics
*statm
= &ctlr
->statistics
;
1212 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1214 spi_set_cs(msg
->spi
, true);
1216 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1217 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1219 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1220 trace_spi_transfer_start(msg
, xfer
);
1222 spi_statistics_add_transfer_stats(statm
, xfer
, ctlr
);
1223 spi_statistics_add_transfer_stats(stats
, xfer
, ctlr
);
1225 if (!ctlr
->ptp_sts_supported
) {
1226 xfer
->ptp_sts_word_pre
= 0;
1227 ptp_read_system_prets(xfer
->ptp_sts
);
1230 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
1231 reinit_completion(&ctlr
->xfer_completion
);
1233 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1235 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1237 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1239 dev_err(&msg
->spi
->dev
,
1240 "SPI transfer failed: %d\n", ret
);
1245 ret
= spi_transfer_wait(ctlr
, msg
, xfer
);
1251 dev_err(&msg
->spi
->dev
,
1252 "Bufferless transfer has length %u\n",
1256 if (!ctlr
->ptp_sts_supported
) {
1257 ptp_read_system_postts(xfer
->ptp_sts
);
1258 xfer
->ptp_sts_word_post
= xfer
->len
;
1261 trace_spi_transfer_stop(msg
, xfer
);
1263 if (msg
->status
!= -EINPROGRESS
)
1266 spi_transfer_delay_exec(xfer
);
1268 if (xfer
->cs_change
) {
1269 if (list_is_last(&xfer
->transfer_list
,
1273 spi_set_cs(msg
->spi
, false);
1274 _spi_transfer_cs_change_delay(msg
, xfer
);
1275 spi_set_cs(msg
->spi
, true);
1279 msg
->actual_length
+= xfer
->len
;
1283 if (ret
!= 0 || !keep_cs
)
1284 spi_set_cs(msg
->spi
, false);
1286 if (msg
->status
== -EINPROGRESS
)
1289 if (msg
->status
&& ctlr
->handle_err
)
1290 ctlr
->handle_err(ctlr
, msg
);
1292 spi_res_release(ctlr
, msg
);
1294 spi_finalize_current_message(ctlr
);
1300 * spi_finalize_current_transfer - report completion of a transfer
1301 * @ctlr: the controller reporting completion
1303 * Called by SPI drivers using the core transfer_one_message()
1304 * implementation to notify it that the current interrupt driven
1305 * transfer has finished and the next one may be scheduled.
1307 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1309 complete(&ctlr
->xfer_completion
);
1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1314 * __spi_pump_messages - function which processes spi message queue
1315 * @ctlr: controller to process queue for
1316 * @in_kthread: true if we are in the context of the message pump thread
1318 * This function checks if there is any spi message in the queue that
1319 * needs processing and if so call out to the driver to initialize hardware
1320 * and transfer each message.
1322 * Note that it is called both from the kthread itself and also from
1323 * inside spi_sync(); the queue extraction handling at the top of the
1324 * function should deal with this safely.
1326 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1328 struct spi_transfer
*xfer
;
1329 struct spi_message
*msg
;
1330 bool was_busy
= false;
1331 unsigned long flags
;
1335 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1337 /* Make sure we are not already running a message */
1338 if (ctlr
->cur_msg
) {
1339 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1343 /* If another context is idling the device then defer */
1345 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1346 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1350 /* Check if the queue is idle */
1351 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1353 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1357 /* Only do teardown in the thread */
1359 kthread_queue_work(&ctlr
->kworker
,
1360 &ctlr
->pump_messages
);
1361 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1366 ctlr
->idling
= true;
1367 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1369 kfree(ctlr
->dummy_rx
);
1370 ctlr
->dummy_rx
= NULL
;
1371 kfree(ctlr
->dummy_tx
);
1372 ctlr
->dummy_tx
= NULL
;
1373 if (ctlr
->unprepare_transfer_hardware
&&
1374 ctlr
->unprepare_transfer_hardware(ctlr
))
1376 "failed to unprepare transfer hardware\n");
1377 if (ctlr
->auto_runtime_pm
) {
1378 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1379 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1381 trace_spi_controller_idle(ctlr
);
1383 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1384 ctlr
->idling
= false;
1385 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1389 /* Extract head of queue */
1390 msg
= list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1391 ctlr
->cur_msg
= msg
;
1393 list_del_init(&msg
->queue
);
1398 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1400 mutex_lock(&ctlr
->io_mutex
);
1402 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1403 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1405 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1406 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1408 mutex_unlock(&ctlr
->io_mutex
);
1414 trace_spi_controller_busy(ctlr
);
1416 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1417 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1420 "failed to prepare transfer hardware: %d\n",
1423 if (ctlr
->auto_runtime_pm
)
1424 pm_runtime_put(ctlr
->dev
.parent
);
1427 spi_finalize_current_message(ctlr
);
1429 mutex_unlock(&ctlr
->io_mutex
);
1434 trace_spi_message_start(msg
);
1436 if (ctlr
->prepare_message
) {
1437 ret
= ctlr
->prepare_message(ctlr
, msg
);
1439 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1442 spi_finalize_current_message(ctlr
);
1445 ctlr
->cur_msg_prepared
= true;
1448 ret
= spi_map_msg(ctlr
, msg
);
1451 spi_finalize_current_message(ctlr
);
1455 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1456 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1457 xfer
->ptp_sts_word_pre
= 0;
1458 ptp_read_system_prets(xfer
->ptp_sts
);
1462 ret
= ctlr
->transfer_one_message(ctlr
, msg
);
1465 "failed to transfer one message from queue\n");
1470 mutex_unlock(&ctlr
->io_mutex
);
1472 /* Prod the scheduler in case transfer_one() was busy waiting */
1478 * spi_pump_messages - kthread work function which processes spi message queue
1479 * @work: pointer to kthread work struct contained in the controller struct
1481 static void spi_pump_messages(struct kthread_work
*work
)
1483 struct spi_controller
*ctlr
=
1484 container_of(work
, struct spi_controller
, pump_messages
);
1486 __spi_pump_messages(ctlr
, true);
1490 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1491 * TX timestamp for the requested byte from the SPI
1492 * transfer. The frequency with which this function
1493 * must be called (once per word, once for the whole
1494 * transfer, once per batch of words etc) is arbitrary
1495 * as long as the @tx buffer offset is greater than or
1496 * equal to the requested byte at the time of the
1497 * call. The timestamp is only taken once, at the
1498 * first such call. It is assumed that the driver
1499 * advances its @tx buffer pointer monotonically.
1500 * @ctlr: Pointer to the spi_controller structure of the driver
1501 * @xfer: Pointer to the transfer being timestamped
1502 * @progress: How many words (not bytes) have been transferred so far
1503 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1504 * transfer, for less jitter in time measurement. Only compatible
1505 * with PIO drivers. If true, must follow up with
1506 * spi_take_timestamp_post or otherwise system will crash.
1507 * WARNING: for fully predictable results, the CPU frequency must
1508 * also be under control (governor).
1510 void spi_take_timestamp_pre(struct spi_controller
*ctlr
,
1511 struct spi_transfer
*xfer
,
1512 size_t progress
, bool irqs_off
)
1517 if (xfer
->timestamped_pre
)
1520 if (progress
< xfer
->ptp_sts_word_pre
)
1523 /* Capture the resolution of the timestamp */
1524 xfer
->ptp_sts_word_pre
= progress
;
1526 xfer
->timestamped_pre
= true;
1529 local_irq_save(ctlr
->irq_flags
);
1533 ptp_read_system_prets(xfer
->ptp_sts
);
1535 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre
);
1538 * spi_take_timestamp_post - helper for drivers to collect the end of the
1539 * TX timestamp for the requested byte from the SPI
1540 * transfer. Can be called with an arbitrary
1541 * frequency: only the first call where @tx exceeds
1542 * or is equal to the requested word will be
1544 * @ctlr: Pointer to the spi_controller structure of the driver
1545 * @xfer: Pointer to the transfer being timestamped
1546 * @progress: How many words (not bytes) have been transferred so far
1547 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1549 void spi_take_timestamp_post(struct spi_controller
*ctlr
,
1550 struct spi_transfer
*xfer
,
1551 size_t progress
, bool irqs_off
)
1556 if (xfer
->timestamped_post
)
1559 if (progress
< xfer
->ptp_sts_word_post
)
1562 ptp_read_system_postts(xfer
->ptp_sts
);
1565 local_irq_restore(ctlr
->irq_flags
);
1569 /* Capture the resolution of the timestamp */
1570 xfer
->ptp_sts_word_post
= progress
;
1572 xfer
->timestamped_post
= true;
1574 EXPORT_SYMBOL_GPL(spi_take_timestamp_post
);
1577 * spi_set_thread_rt - set the controller to pump at realtime priority
1578 * @ctlr: controller to boost priority of
1580 * This can be called because the controller requested realtime priority
1581 * (by setting the ->rt value before calling spi_register_controller()) or
1582 * because a device on the bus said that its transfers needed realtime
1585 * NOTE: at the moment if any device on a bus says it needs realtime then
1586 * the thread will be at realtime priority for all transfers on that
1587 * controller. If this eventually becomes a problem we may see if we can
1588 * find a way to boost the priority only temporarily during relevant
1591 static void spi_set_thread_rt(struct spi_controller
*ctlr
)
1593 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
/ 2 };
1595 dev_info(&ctlr
->dev
,
1596 "will run message pump with realtime priority\n");
1597 sched_setscheduler(ctlr
->kworker_task
, SCHED_FIFO
, ¶m
);
1600 static int spi_init_queue(struct spi_controller
*ctlr
)
1602 ctlr
->running
= false;
1605 kthread_init_worker(&ctlr
->kworker
);
1606 ctlr
->kworker_task
= kthread_run(kthread_worker_fn
, &ctlr
->kworker
,
1607 "%s", dev_name(&ctlr
->dev
));
1608 if (IS_ERR(ctlr
->kworker_task
)) {
1609 dev_err(&ctlr
->dev
, "failed to create message pump task\n");
1610 return PTR_ERR(ctlr
->kworker_task
);
1612 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
1615 * Controller config will indicate if this controller should run the
1616 * message pump with high (realtime) priority to reduce the transfer
1617 * latency on the bus by minimising the delay between a transfer
1618 * request and the scheduling of the message pump thread. Without this
1619 * setting the message pump thread will remain at default priority.
1622 spi_set_thread_rt(ctlr
);
1628 * spi_get_next_queued_message() - called by driver to check for queued
1630 * @ctlr: the controller to check for queued messages
1632 * If there are more messages in the queue, the next message is returned from
1635 * Return: the next message in the queue, else NULL if the queue is empty.
1637 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
1639 struct spi_message
*next
;
1640 unsigned long flags
;
1642 /* get a pointer to the next message, if any */
1643 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1644 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
1646 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1650 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1653 * spi_finalize_current_message() - the current message is complete
1654 * @ctlr: the controller to return the message to
1656 * Called by the driver to notify the core that the message in the front of the
1657 * queue is complete and can be removed from the queue.
1659 void spi_finalize_current_message(struct spi_controller
*ctlr
)
1661 struct spi_transfer
*xfer
;
1662 struct spi_message
*mesg
;
1663 unsigned long flags
;
1666 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1667 mesg
= ctlr
->cur_msg
;
1668 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1670 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1671 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
) {
1672 ptp_read_system_postts(xfer
->ptp_sts
);
1673 xfer
->ptp_sts_word_post
= xfer
->len
;
1677 if (unlikely(ctlr
->ptp_sts_supported
)) {
1678 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
) {
1679 WARN_ON_ONCE(xfer
->ptp_sts
&& !xfer
->timestamped_pre
);
1680 WARN_ON_ONCE(xfer
->ptp_sts
&& !xfer
->timestamped_post
);
1684 spi_unmap_msg(ctlr
, mesg
);
1686 if (ctlr
->cur_msg_prepared
&& ctlr
->unprepare_message
) {
1687 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
1689 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
1694 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1695 ctlr
->cur_msg
= NULL
;
1696 ctlr
->cur_msg_prepared
= false;
1697 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1698 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1700 trace_spi_message_done(mesg
);
1704 mesg
->complete(mesg
->context
);
1706 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1708 static int spi_start_queue(struct spi_controller
*ctlr
)
1710 unsigned long flags
;
1712 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1714 if (ctlr
->running
|| ctlr
->busy
) {
1715 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1719 ctlr
->running
= true;
1720 ctlr
->cur_msg
= NULL
;
1721 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1723 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1728 static int spi_stop_queue(struct spi_controller
*ctlr
)
1730 unsigned long flags
;
1731 unsigned limit
= 500;
1734 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1737 * This is a bit lame, but is optimized for the common execution path.
1738 * A wait_queue on the ctlr->busy could be used, but then the common
1739 * execution path (pump_messages) would be required to call wake_up or
1740 * friends on every SPI message. Do this instead.
1742 while ((!list_empty(&ctlr
->queue
) || ctlr
->busy
) && limit
--) {
1743 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1744 usleep_range(10000, 11000);
1745 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1748 if (!list_empty(&ctlr
->queue
) || ctlr
->busy
)
1751 ctlr
->running
= false;
1753 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1756 dev_warn(&ctlr
->dev
, "could not stop message queue\n");
1762 static int spi_destroy_queue(struct spi_controller
*ctlr
)
1766 ret
= spi_stop_queue(ctlr
);
1769 * kthread_flush_worker will block until all work is done.
1770 * If the reason that stop_queue timed out is that the work will never
1771 * finish, then it does no good to call flush/stop thread, so
1775 dev_err(&ctlr
->dev
, "problem destroying queue\n");
1779 kthread_flush_worker(&ctlr
->kworker
);
1780 kthread_stop(ctlr
->kworker_task
);
1785 static int __spi_queued_transfer(struct spi_device
*spi
,
1786 struct spi_message
*msg
,
1789 struct spi_controller
*ctlr
= spi
->controller
;
1790 unsigned long flags
;
1792 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1794 if (!ctlr
->running
) {
1795 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1798 msg
->actual_length
= 0;
1799 msg
->status
= -EINPROGRESS
;
1801 list_add_tail(&msg
->queue
, &ctlr
->queue
);
1802 if (!ctlr
->busy
&& need_pump
)
1803 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1805 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1810 * spi_queued_transfer - transfer function for queued transfers
1811 * @spi: spi device which is requesting transfer
1812 * @msg: spi message which is to handled is queued to driver queue
1814 * Return: zero on success, else a negative error code.
1816 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1818 return __spi_queued_transfer(spi
, msg
, true);
1821 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
1825 ctlr
->transfer
= spi_queued_transfer
;
1826 if (!ctlr
->transfer_one_message
)
1827 ctlr
->transfer_one_message
= spi_transfer_one_message
;
1829 /* Initialize and start queue */
1830 ret
= spi_init_queue(ctlr
);
1832 dev_err(&ctlr
->dev
, "problem initializing queue\n");
1833 goto err_init_queue
;
1835 ctlr
->queued
= true;
1836 ret
= spi_start_queue(ctlr
);
1838 dev_err(&ctlr
->dev
, "problem starting queue\n");
1839 goto err_start_queue
;
1845 spi_destroy_queue(ctlr
);
1851 * spi_flush_queue - Send all pending messages in the queue from the callers'
1853 * @ctlr: controller to process queue for
1855 * This should be used when one wants to ensure all pending messages have been
1856 * sent before doing something. Is used by the spi-mem code to make sure SPI
1857 * memory operations do not preempt regular SPI transfers that have been queued
1858 * before the spi-mem operation.
1860 void spi_flush_queue(struct spi_controller
*ctlr
)
1862 if (ctlr
->transfer
== spi_queued_transfer
)
1863 __spi_pump_messages(ctlr
, false);
1866 /*-------------------------------------------------------------------------*/
1868 #if defined(CONFIG_OF)
1869 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
1870 struct device_node
*nc
)
1875 /* Mode (clock phase/polarity/etc.) */
1876 if (of_property_read_bool(nc
, "spi-cpha"))
1877 spi
->mode
|= SPI_CPHA
;
1878 if (of_property_read_bool(nc
, "spi-cpol"))
1879 spi
->mode
|= SPI_CPOL
;
1880 if (of_property_read_bool(nc
, "spi-3wire"))
1881 spi
->mode
|= SPI_3WIRE
;
1882 if (of_property_read_bool(nc
, "spi-lsb-first"))
1883 spi
->mode
|= SPI_LSB_FIRST
;
1884 if (of_property_read_bool(nc
, "spi-cs-high"))
1885 spi
->mode
|= SPI_CS_HIGH
;
1887 /* Device DUAL/QUAD mode */
1888 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1893 spi
->mode
|= SPI_TX_DUAL
;
1896 spi
->mode
|= SPI_TX_QUAD
;
1899 spi
->mode
|= SPI_TX_OCTAL
;
1902 dev_warn(&ctlr
->dev
,
1903 "spi-tx-bus-width %d not supported\n",
1909 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1914 spi
->mode
|= SPI_RX_DUAL
;
1917 spi
->mode
|= SPI_RX_QUAD
;
1920 spi
->mode
|= SPI_RX_OCTAL
;
1923 dev_warn(&ctlr
->dev
,
1924 "spi-rx-bus-width %d not supported\n",
1930 if (spi_controller_is_slave(ctlr
)) {
1931 if (!of_node_name_eq(nc
, "slave")) {
1932 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
1939 /* Device address */
1940 rc
= of_property_read_u32(nc
, "reg", &value
);
1942 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
1946 spi
->chip_select
= value
;
1949 * For descriptors associated with the device, polarity inversion is
1950 * handled in the gpiolib, so all gpio chip selects are "active high"
1951 * in the logical sense, the gpiolib will invert the line if need be.
1953 if ((ctlr
->use_gpio_descriptors
) && ctlr
->cs_gpiods
&&
1954 ctlr
->cs_gpiods
[spi
->chip_select
])
1955 spi
->mode
|= SPI_CS_HIGH
;
1958 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1961 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc
, rc
);
1964 spi
->max_speed_hz
= value
;
1969 static struct spi_device
*
1970 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
1972 struct spi_device
*spi
;
1975 /* Alloc an spi_device */
1976 spi
= spi_alloc_device(ctlr
);
1978 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
1983 /* Select device driver */
1984 rc
= of_modalias_node(nc
, spi
->modalias
,
1985 sizeof(spi
->modalias
));
1987 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
1991 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
1995 /* Store a pointer to the node in the device structure */
1997 spi
->dev
.of_node
= nc
;
1999 /* Register the new device */
2000 rc
= spi_add_device(spi
);
2002 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
2003 goto err_of_node_put
;
2016 * of_register_spi_devices() - Register child devices onto the SPI bus
2017 * @ctlr: Pointer to spi_controller device
2019 * Registers an spi_device for each child node of controller node which
2020 * represents a valid SPI slave.
2022 static void of_register_spi_devices(struct spi_controller
*ctlr
)
2024 struct spi_device
*spi
;
2025 struct device_node
*nc
;
2027 if (!ctlr
->dev
.of_node
)
2030 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
2031 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
2033 spi
= of_register_spi_device(ctlr
, nc
);
2035 dev_warn(&ctlr
->dev
,
2036 "Failed to create SPI device for %pOF\n", nc
);
2037 of_node_clear_flag(nc
, OF_POPULATED
);
2042 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
2046 struct acpi_spi_lookup
{
2047 struct spi_controller
*ctlr
;
2055 static void acpi_spi_parse_apple_properties(struct acpi_device
*dev
,
2056 struct acpi_spi_lookup
*lookup
)
2058 const union acpi_object
*obj
;
2060 if (!x86_apple_machine
)
2063 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
2064 && obj
->buffer
.length
>= 4)
2065 lookup
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
2067 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
2068 && obj
->buffer
.length
== 8)
2069 lookup
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
2071 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
2072 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
2073 lookup
->mode
|= SPI_LSB_FIRST
;
2075 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
2076 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2077 lookup
->mode
|= SPI_CPOL
;
2079 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
2080 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2081 lookup
->mode
|= SPI_CPHA
;
2084 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
2086 struct acpi_spi_lookup
*lookup
= data
;
2087 struct spi_controller
*ctlr
= lookup
->ctlr
;
2089 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
2090 struct acpi_resource_spi_serialbus
*sb
;
2091 acpi_handle parent_handle
;
2094 sb
= &ares
->data
.spi_serial_bus
;
2095 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
2097 status
= acpi_get_handle(NULL
,
2098 sb
->resource_source
.string_ptr
,
2101 if (ACPI_FAILURE(status
) ||
2102 ACPI_HANDLE(ctlr
->dev
.parent
) != parent_handle
)
2106 * ACPI DeviceSelection numbering is handled by the
2107 * host controller driver in Windows and can vary
2108 * from driver to driver. In Linux we always expect
2109 * 0 .. max - 1 so we need to ask the driver to
2110 * translate between the two schemes.
2112 if (ctlr
->fw_translate_cs
) {
2113 int cs
= ctlr
->fw_translate_cs(ctlr
,
2114 sb
->device_selection
);
2117 lookup
->chip_select
= cs
;
2119 lookup
->chip_select
= sb
->device_selection
;
2122 lookup
->max_speed_hz
= sb
->connection_speed
;
2124 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
2125 lookup
->mode
|= SPI_CPHA
;
2126 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
2127 lookup
->mode
|= SPI_CPOL
;
2128 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
2129 lookup
->mode
|= SPI_CS_HIGH
;
2131 } else if (lookup
->irq
< 0) {
2134 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
2135 lookup
->irq
= r
.start
;
2138 /* Always tell the ACPI core to skip this resource */
2142 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
2143 struct acpi_device
*adev
)
2145 acpi_handle parent_handle
= NULL
;
2146 struct list_head resource_list
;
2147 struct acpi_spi_lookup lookup
= {};
2148 struct spi_device
*spi
;
2151 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
2152 acpi_device_enumerated(adev
))
2158 INIT_LIST_HEAD(&resource_list
);
2159 ret
= acpi_dev_get_resources(adev
, &resource_list
,
2160 acpi_spi_add_resource
, &lookup
);
2161 acpi_dev_free_resource_list(&resource_list
);
2164 /* found SPI in _CRS but it points to another controller */
2167 if (!lookup
.max_speed_hz
&&
2168 !ACPI_FAILURE(acpi_get_parent(adev
->handle
, &parent_handle
)) &&
2169 ACPI_HANDLE(ctlr
->dev
.parent
) == parent_handle
) {
2170 /* Apple does not use _CRS but nested devices for SPI slaves */
2171 acpi_spi_parse_apple_properties(adev
, &lookup
);
2174 if (!lookup
.max_speed_hz
)
2177 spi
= spi_alloc_device(ctlr
);
2179 dev_err(&ctlr
->dev
, "failed to allocate SPI device for %s\n",
2180 dev_name(&adev
->dev
));
2181 return AE_NO_MEMORY
;
2184 ACPI_COMPANION_SET(&spi
->dev
, adev
);
2185 spi
->max_speed_hz
= lookup
.max_speed_hz
;
2186 spi
->mode
= lookup
.mode
;
2187 spi
->irq
= lookup
.irq
;
2188 spi
->bits_per_word
= lookup
.bits_per_word
;
2189 spi
->chip_select
= lookup
.chip_select
;
2191 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
2192 sizeof(spi
->modalias
));
2195 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
2197 acpi_device_set_enumerated(adev
);
2199 adev
->power
.flags
.ignore_parent
= true;
2200 if (spi_add_device(spi
)) {
2201 adev
->power
.flags
.ignore_parent
= false;
2202 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
2203 dev_name(&adev
->dev
));
2210 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
2211 void *data
, void **return_value
)
2213 struct spi_controller
*ctlr
= data
;
2214 struct acpi_device
*adev
;
2216 if (acpi_bus_get_device(handle
, &adev
))
2219 return acpi_register_spi_device(ctlr
, adev
);
2222 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2224 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
2229 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
2233 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, ACPI_ROOT_OBJECT
,
2234 SPI_ACPI_ENUMERATE_MAX_DEPTH
,
2235 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
2236 if (ACPI_FAILURE(status
))
2237 dev_warn(&ctlr
->dev
, "failed to enumerate SPI slaves\n");
2240 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
2241 #endif /* CONFIG_ACPI */
2243 static void spi_controller_release(struct device
*dev
)
2245 struct spi_controller
*ctlr
;
2247 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2251 static struct class spi_master_class
= {
2252 .name
= "spi_master",
2253 .owner
= THIS_MODULE
,
2254 .dev_release
= spi_controller_release
,
2255 .dev_groups
= spi_master_groups
,
2258 #ifdef CONFIG_SPI_SLAVE
2260 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2262 * @spi: device used for the current transfer
2264 int spi_slave_abort(struct spi_device
*spi
)
2266 struct spi_controller
*ctlr
= spi
->controller
;
2268 if (spi_controller_is_slave(ctlr
) && ctlr
->slave_abort
)
2269 return ctlr
->slave_abort(ctlr
);
2273 EXPORT_SYMBOL_GPL(spi_slave_abort
);
2275 static int match_true(struct device
*dev
, void *data
)
2280 static ssize_t
slave_show(struct device
*dev
, struct device_attribute
*attr
,
2283 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2285 struct device
*child
;
2287 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2288 return sprintf(buf
, "%s\n",
2289 child
? to_spi_device(child
)->modalias
: NULL
);
2292 static ssize_t
slave_store(struct device
*dev
, struct device_attribute
*attr
,
2293 const char *buf
, size_t count
)
2295 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2297 struct spi_device
*spi
;
2298 struct device
*child
;
2302 rc
= sscanf(buf
, "%31s", name
);
2303 if (rc
!= 1 || !name
[0])
2306 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2308 /* Remove registered slave */
2309 device_unregister(child
);
2313 if (strcmp(name
, "(null)")) {
2314 /* Register new slave */
2315 spi
= spi_alloc_device(ctlr
);
2319 strlcpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
2321 rc
= spi_add_device(spi
);
2331 static DEVICE_ATTR_RW(slave
);
2333 static struct attribute
*spi_slave_attrs
[] = {
2334 &dev_attr_slave
.attr
,
2338 static const struct attribute_group spi_slave_group
= {
2339 .attrs
= spi_slave_attrs
,
2342 static const struct attribute_group
*spi_slave_groups
[] = {
2343 &spi_controller_statistics_group
,
2348 static struct class spi_slave_class
= {
2349 .name
= "spi_slave",
2350 .owner
= THIS_MODULE
,
2351 .dev_release
= spi_controller_release
,
2352 .dev_groups
= spi_slave_groups
,
2355 extern struct class spi_slave_class
; /* dummy */
2359 * __spi_alloc_controller - allocate an SPI master or slave controller
2360 * @dev: the controller, possibly using the platform_bus
2361 * @size: how much zeroed driver-private data to allocate; the pointer to this
2362 * memory is in the driver_data field of the returned device, accessible
2363 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2364 * drivers granting DMA access to portions of their private data need to
2365 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2366 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2367 * slave (true) controller
2368 * Context: can sleep
2370 * This call is used only by SPI controller drivers, which are the
2371 * only ones directly touching chip registers. It's how they allocate
2372 * an spi_controller structure, prior to calling spi_register_controller().
2374 * This must be called from context that can sleep.
2376 * The caller is responsible for assigning the bus number and initializing the
2377 * controller's methods before calling spi_register_controller(); and (after
2378 * errors adding the device) calling spi_controller_put() to prevent a memory
2381 * Return: the SPI controller structure on success, else NULL.
2383 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
2384 unsigned int size
, bool slave
)
2386 struct spi_controller
*ctlr
;
2387 size_t ctlr_size
= ALIGN(sizeof(*ctlr
), dma_get_cache_alignment());
2392 ctlr
= kzalloc(size
+ ctlr_size
, GFP_KERNEL
);
2396 device_initialize(&ctlr
->dev
);
2398 ctlr
->num_chipselect
= 1;
2399 ctlr
->slave
= slave
;
2400 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && slave
)
2401 ctlr
->dev
.class = &spi_slave_class
;
2403 ctlr
->dev
.class = &spi_master_class
;
2404 ctlr
->dev
.parent
= dev
;
2405 pm_suspend_ignore_children(&ctlr
->dev
, true);
2406 spi_controller_set_devdata(ctlr
, (void *)ctlr
+ ctlr_size
);
2410 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
2413 static int of_spi_get_gpio_numbers(struct spi_controller
*ctlr
)
2416 struct device_node
*np
= ctlr
->dev
.of_node
;
2421 nb
= of_gpio_named_count(np
, "cs-gpios");
2422 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2424 /* Return error only for an incorrectly formed cs-gpios property */
2425 if (nb
== 0 || nb
== -ENOENT
)
2430 cs
= devm_kcalloc(&ctlr
->dev
, ctlr
->num_chipselect
, sizeof(int),
2432 ctlr
->cs_gpios
= cs
;
2434 if (!ctlr
->cs_gpios
)
2437 for (i
= 0; i
< ctlr
->num_chipselect
; i
++)
2440 for (i
= 0; i
< nb
; i
++)
2441 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
2446 static int of_spi_get_gpio_numbers(struct spi_controller
*ctlr
)
2453 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2454 * @ctlr: The SPI master to grab GPIO descriptors for
2456 static int spi_get_gpio_descs(struct spi_controller
*ctlr
)
2459 struct gpio_desc
**cs
;
2460 struct device
*dev
= &ctlr
->dev
;
2461 unsigned long native_cs_mask
= 0;
2462 unsigned int num_cs_gpios
= 0;
2464 nb
= gpiod_count(dev
, "cs");
2465 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2467 /* No GPIOs at all is fine, else return the error */
2468 if (nb
== 0 || nb
== -ENOENT
)
2473 cs
= devm_kcalloc(dev
, ctlr
->num_chipselect
, sizeof(*cs
),
2477 ctlr
->cs_gpiods
= cs
;
2479 for (i
= 0; i
< nb
; i
++) {
2481 * Most chipselects are active low, the inverted
2482 * semantics are handled by special quirks in gpiolib,
2483 * so initializing them GPIOD_OUT_LOW here means
2484 * "unasserted", in most cases this will drive the physical
2487 cs
[i
] = devm_gpiod_get_index_optional(dev
, "cs", i
,
2490 return PTR_ERR(cs
[i
]);
2494 * If we find a CS GPIO, name it after the device and
2499 gpioname
= devm_kasprintf(dev
, GFP_KERNEL
, "%s CS%d",
2503 gpiod_set_consumer_name(cs
[i
], gpioname
);
2508 if (ctlr
->max_native_cs
&& i
>= ctlr
->max_native_cs
) {
2509 dev_err(dev
, "Invalid native chip select %d\n", i
);
2512 native_cs_mask
|= BIT(i
);
2515 ctlr
->unused_native_cs
= ffz(native_cs_mask
);
2516 if (num_cs_gpios
&& ctlr
->max_native_cs
&&
2517 ctlr
->unused_native_cs
>= ctlr
->max_native_cs
) {
2518 dev_err(dev
, "No unused native chip select available\n");
2525 static int spi_controller_check_ops(struct spi_controller
*ctlr
)
2528 * The controller may implement only the high-level SPI-memory like
2529 * operations if it does not support regular SPI transfers, and this is
2531 * If ->mem_ops is NULL, we request that at least one of the
2532 * ->transfer_xxx() method be implemented.
2534 if (ctlr
->mem_ops
) {
2535 if (!ctlr
->mem_ops
->exec_op
)
2537 } else if (!ctlr
->transfer
&& !ctlr
->transfer_one
&&
2538 !ctlr
->transfer_one_message
) {
2546 * spi_register_controller - register SPI master or slave controller
2547 * @ctlr: initialized master, originally from spi_alloc_master() or
2549 * Context: can sleep
2551 * SPI controllers connect to their drivers using some non-SPI bus,
2552 * such as the platform bus. The final stage of probe() in that code
2553 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2555 * SPI controllers use board specific (often SOC specific) bus numbers,
2556 * and board-specific addressing for SPI devices combines those numbers
2557 * with chip select numbers. Since SPI does not directly support dynamic
2558 * device identification, boards need configuration tables telling which
2559 * chip is at which address.
2561 * This must be called from context that can sleep. It returns zero on
2562 * success, else a negative error code (dropping the controller's refcount).
2563 * After a successful return, the caller is responsible for calling
2564 * spi_unregister_controller().
2566 * Return: zero on success, else a negative error code.
2568 int spi_register_controller(struct spi_controller
*ctlr
)
2570 struct device
*dev
= ctlr
->dev
.parent
;
2571 struct boardinfo
*bi
;
2573 int id
, first_dynamic
;
2579 * Make sure all necessary hooks are implemented before registering
2580 * the SPI controller.
2582 status
= spi_controller_check_ops(ctlr
);
2586 if (ctlr
->bus_num
>= 0) {
2587 /* devices with a fixed bus num must check-in with the num */
2588 mutex_lock(&board_lock
);
2589 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2590 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2591 mutex_unlock(&board_lock
);
2592 if (WARN(id
< 0, "couldn't get idr"))
2593 return id
== -ENOSPC
? -EBUSY
: id
;
2595 } else if (ctlr
->dev
.of_node
) {
2596 /* allocate dynamic bus number using Linux idr */
2597 id
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
2600 mutex_lock(&board_lock
);
2601 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2602 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2603 mutex_unlock(&board_lock
);
2604 if (WARN(id
< 0, "couldn't get idr"))
2605 return id
== -ENOSPC
? -EBUSY
: id
;
2608 if (ctlr
->bus_num
< 0) {
2609 first_dynamic
= of_alias_get_highest_id("spi");
2610 if (first_dynamic
< 0)
2615 mutex_lock(&board_lock
);
2616 id
= idr_alloc(&spi_master_idr
, ctlr
, first_dynamic
,
2618 mutex_unlock(&board_lock
);
2619 if (WARN(id
< 0, "couldn't get idr"))
2623 INIT_LIST_HEAD(&ctlr
->queue
);
2624 spin_lock_init(&ctlr
->queue_lock
);
2625 spin_lock_init(&ctlr
->bus_lock_spinlock
);
2626 mutex_init(&ctlr
->bus_lock_mutex
);
2627 mutex_init(&ctlr
->io_mutex
);
2628 ctlr
->bus_lock_flag
= 0;
2629 init_completion(&ctlr
->xfer_completion
);
2630 if (!ctlr
->max_dma_len
)
2631 ctlr
->max_dma_len
= INT_MAX
;
2633 /* register the device, then userspace will see it.
2634 * registration fails if the bus ID is in use.
2636 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
2638 if (!spi_controller_is_slave(ctlr
)) {
2639 if (ctlr
->use_gpio_descriptors
) {
2640 status
= spi_get_gpio_descs(ctlr
);
2644 * A controller using GPIO descriptors always
2645 * supports SPI_CS_HIGH if need be.
2647 ctlr
->mode_bits
|= SPI_CS_HIGH
;
2649 /* Legacy code path for GPIOs from DT */
2650 status
= of_spi_get_gpio_numbers(ctlr
);
2657 * Even if it's just one always-selected device, there must
2658 * be at least one chipselect.
2660 if (!ctlr
->num_chipselect
)
2663 status
= device_add(&ctlr
->dev
);
2666 mutex_lock(&board_lock
);
2667 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2668 mutex_unlock(&board_lock
);
2671 dev_dbg(dev
, "registered %s %s\n",
2672 spi_controller_is_slave(ctlr
) ? "slave" : "master",
2673 dev_name(&ctlr
->dev
));
2676 * If we're using a queued driver, start the queue. Note that we don't
2677 * need the queueing logic if the driver is only supporting high-level
2678 * memory operations.
2680 if (ctlr
->transfer
) {
2681 dev_info(dev
, "controller is unqueued, this is deprecated\n");
2682 } else if (ctlr
->transfer_one
|| ctlr
->transfer_one_message
) {
2683 status
= spi_controller_initialize_queue(ctlr
);
2685 device_del(&ctlr
->dev
);
2687 mutex_lock(&board_lock
);
2688 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2689 mutex_unlock(&board_lock
);
2693 /* add statistics */
2694 spin_lock_init(&ctlr
->statistics
.lock
);
2696 mutex_lock(&board_lock
);
2697 list_add_tail(&ctlr
->list
, &spi_controller_list
);
2698 list_for_each_entry(bi
, &board_list
, list
)
2699 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
2700 mutex_unlock(&board_lock
);
2702 /* Register devices from the device tree and ACPI */
2703 of_register_spi_devices(ctlr
);
2704 acpi_register_spi_devices(ctlr
);
2708 EXPORT_SYMBOL_GPL(spi_register_controller
);
2710 static void devm_spi_unregister(struct device
*dev
, void *res
)
2712 spi_unregister_controller(*(struct spi_controller
**)res
);
2716 * devm_spi_register_controller - register managed SPI master or slave
2718 * @dev: device managing SPI controller
2719 * @ctlr: initialized controller, originally from spi_alloc_master() or
2721 * Context: can sleep
2723 * Register a SPI device as with spi_register_controller() which will
2724 * automatically be unregistered and freed.
2726 * Return: zero on success, else a negative error code.
2728 int devm_spi_register_controller(struct device
*dev
,
2729 struct spi_controller
*ctlr
)
2731 struct spi_controller
**ptr
;
2734 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
2738 ret
= spi_register_controller(ctlr
);
2741 devres_add(dev
, ptr
);
2748 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
2750 static int __unregister(struct device
*dev
, void *null
)
2752 spi_unregister_device(to_spi_device(dev
));
2757 * spi_unregister_controller - unregister SPI master or slave controller
2758 * @ctlr: the controller being unregistered
2759 * Context: can sleep
2761 * This call is used only by SPI controller drivers, which are the
2762 * only ones directly touching chip registers.
2764 * This must be called from context that can sleep.
2766 * Note that this function also drops a reference to the controller.
2768 void spi_unregister_controller(struct spi_controller
*ctlr
)
2770 struct spi_controller
*found
;
2771 int id
= ctlr
->bus_num
;
2773 /* First make sure that this controller was ever added */
2774 mutex_lock(&board_lock
);
2775 found
= idr_find(&spi_master_idr
, id
);
2776 mutex_unlock(&board_lock
);
2778 if (spi_destroy_queue(ctlr
))
2779 dev_err(&ctlr
->dev
, "queue remove failed\n");
2781 mutex_lock(&board_lock
);
2782 list_del(&ctlr
->list
);
2783 mutex_unlock(&board_lock
);
2785 device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
2786 device_unregister(&ctlr
->dev
);
2788 mutex_lock(&board_lock
);
2790 idr_remove(&spi_master_idr
, id
);
2791 mutex_unlock(&board_lock
);
2793 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
2795 int spi_controller_suspend(struct spi_controller
*ctlr
)
2799 /* Basically no-ops for non-queued controllers */
2803 ret
= spi_stop_queue(ctlr
);
2805 dev_err(&ctlr
->dev
, "queue stop failed\n");
2809 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
2811 int spi_controller_resume(struct spi_controller
*ctlr
)
2818 ret
= spi_start_queue(ctlr
);
2820 dev_err(&ctlr
->dev
, "queue restart failed\n");
2824 EXPORT_SYMBOL_GPL(spi_controller_resume
);
2826 static int __spi_controller_match(struct device
*dev
, const void *data
)
2828 struct spi_controller
*ctlr
;
2829 const u16
*bus_num
= data
;
2831 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2832 return ctlr
->bus_num
== *bus_num
;
2836 * spi_busnum_to_master - look up master associated with bus_num
2837 * @bus_num: the master's bus number
2838 * Context: can sleep
2840 * This call may be used with devices that are registered after
2841 * arch init time. It returns a refcounted pointer to the relevant
2842 * spi_controller (which the caller must release), or NULL if there is
2843 * no such master registered.
2845 * Return: the SPI master structure on success, else NULL.
2847 struct spi_controller
*spi_busnum_to_master(u16 bus_num
)
2850 struct spi_controller
*ctlr
= NULL
;
2852 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2853 __spi_controller_match
);
2855 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2856 /* reference got in class_find_device */
2859 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2861 /*-------------------------------------------------------------------------*/
2863 /* Core methods for SPI resource management */
2866 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2867 * during the processing of a spi_message while using
2869 * @spi: the spi device for which we allocate memory
2870 * @release: the release code to execute for this resource
2871 * @size: size to alloc and return
2872 * @gfp: GFP allocation flags
2874 * Return: the pointer to the allocated data
2876 * This may get enhanced in the future to allocate from a memory pool
2877 * of the @spi_device or @spi_controller to avoid repeated allocations.
2879 void *spi_res_alloc(struct spi_device
*spi
,
2880 spi_res_release_t release
,
2881 size_t size
, gfp_t gfp
)
2883 struct spi_res
*sres
;
2885 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2889 INIT_LIST_HEAD(&sres
->entry
);
2890 sres
->release
= release
;
2894 EXPORT_SYMBOL_GPL(spi_res_alloc
);
2897 * spi_res_free - free an spi resource
2898 * @res: pointer to the custom data of a resource
2901 void spi_res_free(void *res
)
2903 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2908 WARN_ON(!list_empty(&sres
->entry
));
2911 EXPORT_SYMBOL_GPL(spi_res_free
);
2914 * spi_res_add - add a spi_res to the spi_message
2915 * @message: the spi message
2916 * @res: the spi_resource
2918 void spi_res_add(struct spi_message
*message
, void *res
)
2920 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2922 WARN_ON(!list_empty(&sres
->entry
));
2923 list_add_tail(&sres
->entry
, &message
->resources
);
2925 EXPORT_SYMBOL_GPL(spi_res_add
);
2928 * spi_res_release - release all spi resources for this message
2929 * @ctlr: the @spi_controller
2930 * @message: the @spi_message
2932 void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
2934 struct spi_res
*res
, *tmp
;
2936 list_for_each_entry_safe_reverse(res
, tmp
, &message
->resources
, entry
) {
2938 res
->release(ctlr
, message
, res
->data
);
2940 list_del(&res
->entry
);
2945 EXPORT_SYMBOL_GPL(spi_res_release
);
2947 /*-------------------------------------------------------------------------*/
2949 /* Core methods for spi_message alterations */
2951 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
2952 struct spi_message
*msg
,
2955 struct spi_replaced_transfers
*rxfer
= res
;
2958 /* call extra callback if requested */
2960 rxfer
->release(ctlr
, msg
, res
);
2962 /* insert replaced transfers back into the message */
2963 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
2965 /* remove the formerly inserted entries */
2966 for (i
= 0; i
< rxfer
->inserted
; i
++)
2967 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
2971 * spi_replace_transfers - replace transfers with several transfers
2972 * and register change with spi_message.resources
2973 * @msg: the spi_message we work upon
2974 * @xfer_first: the first spi_transfer we want to replace
2975 * @remove: number of transfers to remove
2976 * @insert: the number of transfers we want to insert instead
2977 * @release: extra release code necessary in some circumstances
2978 * @extradatasize: extra data to allocate (with alignment guarantees
2979 * of struct @spi_transfer)
2982 * Returns: pointer to @spi_replaced_transfers,
2983 * PTR_ERR(...) in case of errors.
2985 struct spi_replaced_transfers
*spi_replace_transfers(
2986 struct spi_message
*msg
,
2987 struct spi_transfer
*xfer_first
,
2990 spi_replaced_release_t release
,
2991 size_t extradatasize
,
2994 struct spi_replaced_transfers
*rxfer
;
2995 struct spi_transfer
*xfer
;
2998 /* allocate the structure using spi_res */
2999 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
3000 struct_size(rxfer
, inserted_transfers
, insert
)
3004 return ERR_PTR(-ENOMEM
);
3006 /* the release code to invoke before running the generic release */
3007 rxfer
->release
= release
;
3009 /* assign extradata */
3012 &rxfer
->inserted_transfers
[insert
];
3014 /* init the replaced_transfers list */
3015 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
3017 /* assign the list_entry after which we should reinsert
3018 * the @replaced_transfers - it may be spi_message.messages!
3020 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
3022 /* remove the requested number of transfers */
3023 for (i
= 0; i
< remove
; i
++) {
3024 /* if the entry after replaced_after it is msg->transfers
3025 * then we have been requested to remove more transfers
3026 * than are in the list
3028 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
3029 dev_err(&msg
->spi
->dev
,
3030 "requested to remove more spi_transfers than are available\n");
3031 /* insert replaced transfers back into the message */
3032 list_splice(&rxfer
->replaced_transfers
,
3033 rxfer
->replaced_after
);
3035 /* free the spi_replace_transfer structure */
3036 spi_res_free(rxfer
);
3038 /* and return with an error */
3039 return ERR_PTR(-EINVAL
);
3042 /* remove the entry after replaced_after from list of
3043 * transfers and add it to list of replaced_transfers
3045 list_move_tail(rxfer
->replaced_after
->next
,
3046 &rxfer
->replaced_transfers
);
3049 /* create copy of the given xfer with identical settings
3050 * based on the first transfer to get removed
3052 for (i
= 0; i
< insert
; i
++) {
3053 /* we need to run in reverse order */
3054 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
3056 /* copy all spi_transfer data */
3057 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
3060 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
3062 /* clear cs_change and delay for all but the last */
3064 xfer
->cs_change
= false;
3065 xfer
->delay_usecs
= 0;
3066 xfer
->delay
.value
= 0;
3070 /* set up inserted */
3071 rxfer
->inserted
= insert
;
3073 /* and register it with spi_res/spi_message */
3074 spi_res_add(msg
, rxfer
);
3078 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
3080 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
3081 struct spi_message
*msg
,
3082 struct spi_transfer
**xferp
,
3086 struct spi_transfer
*xfer
= *xferp
, *xfers
;
3087 struct spi_replaced_transfers
*srt
;
3091 /* calculate how many we have to replace */
3092 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
3094 /* create replacement */
3095 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
3097 return PTR_ERR(srt
);
3098 xfers
= srt
->inserted_transfers
;
3100 /* now handle each of those newly inserted spi_transfers
3101 * note that the replacements spi_transfers all are preset
3102 * to the same values as *xferp, so tx_buf, rx_buf and len
3103 * are all identical (as well as most others)
3104 * so we just have to fix up len and the pointers.
3106 * this also includes support for the depreciated
3107 * spi_message.is_dma_mapped interface
3110 /* the first transfer just needs the length modified, so we
3111 * run it outside the loop
3113 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
3115 /* all the others need rx_buf/tx_buf also set */
3116 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
3117 /* update rx_buf, tx_buf and dma */
3118 if (xfers
[i
].rx_buf
)
3119 xfers
[i
].rx_buf
+= offset
;
3120 if (xfers
[i
].rx_dma
)
3121 xfers
[i
].rx_dma
+= offset
;
3122 if (xfers
[i
].tx_buf
)
3123 xfers
[i
].tx_buf
+= offset
;
3124 if (xfers
[i
].tx_dma
)
3125 xfers
[i
].tx_dma
+= offset
;
3128 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
3131 /* we set up xferp to the last entry we have inserted,
3132 * so that we skip those already split transfers
3134 *xferp
= &xfers
[count
- 1];
3136 /* increment statistics counters */
3137 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3138 transfers_split_maxsize
);
3139 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
3140 transfers_split_maxsize
);
3146 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3147 * when an individual transfer exceeds a
3149 * @ctlr: the @spi_controller for this transfer
3150 * @msg: the @spi_message to transform
3151 * @maxsize: the maximum when to apply this
3152 * @gfp: GFP allocation flags
3154 * Return: status of transformation
3156 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
3157 struct spi_message
*msg
,
3161 struct spi_transfer
*xfer
;
3164 /* iterate over the transfer_list,
3165 * but note that xfer is advanced to the last transfer inserted
3166 * to avoid checking sizes again unnecessarily (also xfer does
3167 * potentiall belong to a different list by the time the
3168 * replacement has happened
3170 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
3171 if (xfer
->len
> maxsize
) {
3172 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
3181 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
3183 /*-------------------------------------------------------------------------*/
3185 /* Core methods for SPI controller protocol drivers. Some of the
3186 * other core methods are currently defined as inline functions.
3189 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
3192 if (ctlr
->bits_per_word_mask
) {
3193 /* Only 32 bits fit in the mask */
3194 if (bits_per_word
> 32)
3196 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
3204 * spi_setup - setup SPI mode and clock rate
3205 * @spi: the device whose settings are being modified
3206 * Context: can sleep, and no requests are queued to the device
3208 * SPI protocol drivers may need to update the transfer mode if the
3209 * device doesn't work with its default. They may likewise need
3210 * to update clock rates or word sizes from initial values. This function
3211 * changes those settings, and must be called from a context that can sleep.
3212 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3213 * effect the next time the device is selected and data is transferred to
3214 * or from it. When this function returns, the spi device is deselected.
3216 * Note that this call will fail if the protocol driver specifies an option
3217 * that the underlying controller or its driver does not support. For
3218 * example, not all hardware supports wire transfers using nine bit words,
3219 * LSB-first wire encoding, or active-high chipselects.
3221 * Return: zero on success, else a negative error code.
3223 int spi_setup(struct spi_device
*spi
)
3225 unsigned bad_bits
, ugly_bits
;
3228 /* check mode to prevent that DUAL and QUAD set at the same time
3230 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
3231 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
3233 "setup: can not select dual and quad at the same time\n");
3236 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3238 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
3239 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3240 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
)))
3242 /* help drivers fail *cleanly* when they need options
3243 * that aren't supported with their current controller
3244 * SPI_CS_WORD has a fallback software implementation,
3245 * so it is ignored here.
3247 bad_bits
= spi
->mode
& ~(spi
->controller
->mode_bits
| SPI_CS_WORD
);
3248 /* nothing prevents from working with active-high CS in case if it
3249 * is driven by GPIO.
3251 if (gpio_is_valid(spi
->cs_gpio
))
3252 bad_bits
&= ~SPI_CS_HIGH
;
3253 ugly_bits
= bad_bits
&
3254 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3255 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
);
3258 "setup: ignoring unsupported mode bits %x\n",
3260 spi
->mode
&= ~ugly_bits
;
3261 bad_bits
&= ~ugly_bits
;
3264 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
3269 if (!spi
->bits_per_word
)
3270 spi
->bits_per_word
= 8;
3272 status
= __spi_validate_bits_per_word(spi
->controller
,
3273 spi
->bits_per_word
);
3277 if (!spi
->max_speed_hz
)
3278 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
3280 if (spi
->controller
->setup
)
3281 status
= spi
->controller
->setup(spi
);
3283 if (spi
->controller
->auto_runtime_pm
&& spi
->controller
->set_cs
) {
3284 status
= pm_runtime_get_sync(spi
->controller
->dev
.parent
);
3286 pm_runtime_put_noidle(spi
->controller
->dev
.parent
);
3287 dev_err(&spi
->controller
->dev
, "Failed to power device: %d\n",
3293 * We do not want to return positive value from pm_runtime_get,
3294 * there are many instances of devices calling spi_setup() and
3295 * checking for a non-zero return value instead of a negative
3300 spi_set_cs(spi
, false);
3301 pm_runtime_mark_last_busy(spi
->controller
->dev
.parent
);
3302 pm_runtime_put_autosuspend(spi
->controller
->dev
.parent
);
3304 spi_set_cs(spi
, false);
3307 if (spi
->rt
&& !spi
->controller
->rt
) {
3308 spi
->controller
->rt
= true;
3309 spi_set_thread_rt(spi
->controller
);
3312 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3313 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
3314 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
3315 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
3316 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
3317 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
3318 spi
->bits_per_word
, spi
->max_speed_hz
,
3323 EXPORT_SYMBOL_GPL(spi_setup
);
3326 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3327 * @spi: the device that requires specific CS timing configuration
3328 * @setup: CS setup time specified via @spi_delay
3329 * @hold: CS hold time specified via @spi_delay
3330 * @inactive: CS inactive delay between transfers specified via @spi_delay
3332 * Return: zero on success, else a negative error code.
3334 int spi_set_cs_timing(struct spi_device
*spi
, struct spi_delay
*setup
,
3335 struct spi_delay
*hold
, struct spi_delay
*inactive
)
3339 if (spi
->controller
->set_cs_timing
)
3340 return spi
->controller
->set_cs_timing(spi
, setup
, hold
,
3343 if ((setup
&& setup
->unit
== SPI_DELAY_UNIT_SCK
) ||
3344 (hold
&& hold
->unit
== SPI_DELAY_UNIT_SCK
) ||
3345 (inactive
&& inactive
->unit
== SPI_DELAY_UNIT_SCK
)) {
3347 "Clock-cycle delays for CS not supported in SW mode\n");
3351 len
= sizeof(struct spi_delay
);
3353 /* copy delays to controller */
3355 memcpy(&spi
->controller
->cs_setup
, setup
, len
);
3357 memset(&spi
->controller
->cs_setup
, 0, len
);
3360 memcpy(&spi
->controller
->cs_hold
, hold
, len
);
3362 memset(&spi
->controller
->cs_hold
, 0, len
);
3365 memcpy(&spi
->controller
->cs_inactive
, inactive
, len
);
3367 memset(&spi
->controller
->cs_inactive
, 0, len
);
3371 EXPORT_SYMBOL_GPL(spi_set_cs_timing
);
3373 static int _spi_xfer_word_delay_update(struct spi_transfer
*xfer
,
3374 struct spi_device
*spi
)
3378 delay1
= spi_delay_to_ns(&xfer
->word_delay
, xfer
);
3382 delay2
= spi_delay_to_ns(&spi
->word_delay
, xfer
);
3386 if (delay1
< delay2
)
3387 memcpy(&xfer
->word_delay
, &spi
->word_delay
,
3388 sizeof(xfer
->word_delay
));
3393 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
3395 struct spi_controller
*ctlr
= spi
->controller
;
3396 struct spi_transfer
*xfer
;
3399 if (list_empty(&message
->transfers
))
3402 /* If an SPI controller does not support toggling the CS line on each
3403 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3404 * for the CS line, we can emulate the CS-per-word hardware function by
3405 * splitting transfers into one-word transfers and ensuring that
3406 * cs_change is set for each transfer.
3408 if ((spi
->mode
& SPI_CS_WORD
) && (!(ctlr
->mode_bits
& SPI_CS_WORD
) ||
3410 gpio_is_valid(spi
->cs_gpio
))) {
3414 maxsize
= (spi
->bits_per_word
+ 7) / 8;
3416 /* spi_split_transfers_maxsize() requires message->spi */
3419 ret
= spi_split_transfers_maxsize(ctlr
, message
, maxsize
,
3424 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3425 /* don't change cs_change on the last entry in the list */
3426 if (list_is_last(&xfer
->transfer_list
, &message
->transfers
))
3428 xfer
->cs_change
= 1;
3432 /* Half-duplex links include original MicroWire, and ones with
3433 * only one data pin like SPI_3WIRE (switches direction) or where
3434 * either MOSI or MISO is missing. They can also be caused by
3435 * software limitations.
3437 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
3438 (spi
->mode
& SPI_3WIRE
)) {
3439 unsigned flags
= ctlr
->flags
;
3441 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3442 if (xfer
->rx_buf
&& xfer
->tx_buf
)
3444 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
3446 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
3452 * Set transfer bits_per_word and max speed as spi device default if
3453 * it is not set for this transfer.
3454 * Set transfer tx_nbits and rx_nbits as single transfer default
3455 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3456 * Ensure transfer word_delay is at least as long as that required by
3459 message
->frame_length
= 0;
3460 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3461 xfer
->effective_speed_hz
= 0;
3462 message
->frame_length
+= xfer
->len
;
3463 if (!xfer
->bits_per_word
)
3464 xfer
->bits_per_word
= spi
->bits_per_word
;
3466 if (!xfer
->speed_hz
)
3467 xfer
->speed_hz
= spi
->max_speed_hz
;
3469 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
3470 xfer
->speed_hz
= ctlr
->max_speed_hz
;
3472 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
3476 * SPI transfer length should be multiple of SPI word size
3477 * where SPI word size should be power-of-two multiple
3479 if (xfer
->bits_per_word
<= 8)
3481 else if (xfer
->bits_per_word
<= 16)
3486 /* No partial transfers accepted */
3487 if (xfer
->len
% w_size
)
3490 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
3491 xfer
->speed_hz
< ctlr
->min_speed_hz
)
3494 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
3495 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
3496 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
3497 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
3498 /* check transfer tx/rx_nbits:
3499 * 1. check the value matches one of single, dual and quad
3500 * 2. check tx/rx_nbits match the mode in spi_device
3503 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
3504 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
3505 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
3507 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
3508 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
3510 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
3511 !(spi
->mode
& SPI_TX_QUAD
))
3514 /* check transfer rx_nbits */
3516 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
3517 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
3518 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
3520 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
3521 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
3523 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
3524 !(spi
->mode
& SPI_RX_QUAD
))
3528 if (_spi_xfer_word_delay_update(xfer
, spi
))
3532 message
->status
= -EINPROGRESS
;
3537 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3539 struct spi_controller
*ctlr
= spi
->controller
;
3540 struct spi_transfer
*xfer
;
3543 * Some controllers do not support doing regular SPI transfers. Return
3544 * ENOTSUPP when this is the case.
3546 if (!ctlr
->transfer
)
3551 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_async
);
3552 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
3554 trace_spi_message_submit(message
);
3556 if (!ctlr
->ptp_sts_supported
) {
3557 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3558 xfer
->ptp_sts_word_pre
= 0;
3559 ptp_read_system_prets(xfer
->ptp_sts
);
3563 return ctlr
->transfer(spi
, message
);
3567 * spi_async - asynchronous SPI transfer
3568 * @spi: device with which data will be exchanged
3569 * @message: describes the data transfers, including completion callback
3570 * Context: any (irqs may be blocked, etc)
3572 * This call may be used in_irq and other contexts which can't sleep,
3573 * as well as from task contexts which can sleep.
3575 * The completion callback is invoked in a context which can't sleep.
3576 * Before that invocation, the value of message->status is undefined.
3577 * When the callback is issued, message->status holds either zero (to
3578 * indicate complete success) or a negative error code. After that
3579 * callback returns, the driver which issued the transfer request may
3580 * deallocate the associated memory; it's no longer in use by any SPI
3581 * core or controller driver code.
3583 * Note that although all messages to a spi_device are handled in
3584 * FIFO order, messages may go to different devices in other orders.
3585 * Some device might be higher priority, or have various "hard" access
3586 * time requirements, for example.
3588 * On detection of any fault during the transfer, processing of
3589 * the entire message is aborted, and the device is deselected.
3590 * Until returning from the associated message completion callback,
3591 * no other spi_message queued to that device will be processed.
3592 * (This rule applies equally to all the synchronous transfer calls,
3593 * which are wrappers around this core asynchronous primitive.)
3595 * Return: zero on success, else a negative error code.
3597 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3599 struct spi_controller
*ctlr
= spi
->controller
;
3601 unsigned long flags
;
3603 ret
= __spi_validate(spi
, message
);
3607 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3609 if (ctlr
->bus_lock_flag
)
3612 ret
= __spi_async(spi
, message
);
3614 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3618 EXPORT_SYMBOL_GPL(spi_async
);
3621 * spi_async_locked - version of spi_async with exclusive bus usage
3622 * @spi: device with which data will be exchanged
3623 * @message: describes the data transfers, including completion callback
3624 * Context: any (irqs may be blocked, etc)
3626 * This call may be used in_irq and other contexts which can't sleep,
3627 * as well as from task contexts which can sleep.
3629 * The completion callback is invoked in a context which can't sleep.
3630 * Before that invocation, the value of message->status is undefined.
3631 * When the callback is issued, message->status holds either zero (to
3632 * indicate complete success) or a negative error code. After that
3633 * callback returns, the driver which issued the transfer request may
3634 * deallocate the associated memory; it's no longer in use by any SPI
3635 * core or controller driver code.
3637 * Note that although all messages to a spi_device are handled in
3638 * FIFO order, messages may go to different devices in other orders.
3639 * Some device might be higher priority, or have various "hard" access
3640 * time requirements, for example.
3642 * On detection of any fault during the transfer, processing of
3643 * the entire message is aborted, and the device is deselected.
3644 * Until returning from the associated message completion callback,
3645 * no other spi_message queued to that device will be processed.
3646 * (This rule applies equally to all the synchronous transfer calls,
3647 * which are wrappers around this core asynchronous primitive.)
3649 * Return: zero on success, else a negative error code.
3651 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
3653 struct spi_controller
*ctlr
= spi
->controller
;
3655 unsigned long flags
;
3657 ret
= __spi_validate(spi
, message
);
3661 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3663 ret
= __spi_async(spi
, message
);
3665 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3670 EXPORT_SYMBOL_GPL(spi_async_locked
);
3672 /*-------------------------------------------------------------------------*/
3674 /* Utility methods for SPI protocol drivers, layered on
3675 * top of the core. Some other utility methods are defined as
3679 static void spi_complete(void *arg
)
3684 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3686 DECLARE_COMPLETION_ONSTACK(done
);
3688 struct spi_controller
*ctlr
= spi
->controller
;
3689 unsigned long flags
;
3691 status
= __spi_validate(spi
, message
);
3695 message
->complete
= spi_complete
;
3696 message
->context
= &done
;
3699 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_sync
);
3700 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
3702 /* If we're not using the legacy transfer method then we will
3703 * try to transfer in the calling context so special case.
3704 * This code would be less tricky if we could remove the
3705 * support for driver implemented message queues.
3707 if (ctlr
->transfer
== spi_queued_transfer
) {
3708 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3710 trace_spi_message_submit(message
);
3712 status
= __spi_queued_transfer(spi
, message
, false);
3714 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3716 status
= spi_async_locked(spi
, message
);
3720 /* Push out the messages in the calling context if we
3723 if (ctlr
->transfer
== spi_queued_transfer
) {
3724 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3725 spi_sync_immediate
);
3726 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
3727 spi_sync_immediate
);
3728 __spi_pump_messages(ctlr
, false);
3731 wait_for_completion(&done
);
3732 status
= message
->status
;
3734 message
->context
= NULL
;
3739 * spi_sync - blocking/synchronous SPI data transfers
3740 * @spi: device with which data will be exchanged
3741 * @message: describes the data transfers
3742 * Context: can sleep
3744 * This call may only be used from a context that may sleep. The sleep
3745 * is non-interruptible, and has no timeout. Low-overhead controller
3746 * drivers may DMA directly into and out of the message buffers.
3748 * Note that the SPI device's chip select is active during the message,
3749 * and then is normally disabled between messages. Drivers for some
3750 * frequently-used devices may want to minimize costs of selecting a chip,
3751 * by leaving it selected in anticipation that the next message will go
3752 * to the same chip. (That may increase power usage.)
3754 * Also, the caller is guaranteeing that the memory associated with the
3755 * message will not be freed before this call returns.
3757 * Return: zero on success, else a negative error code.
3759 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3763 mutex_lock(&spi
->controller
->bus_lock_mutex
);
3764 ret
= __spi_sync(spi
, message
);
3765 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
3769 EXPORT_SYMBOL_GPL(spi_sync
);
3772 * spi_sync_locked - version of spi_sync with exclusive bus usage
3773 * @spi: device with which data will be exchanged
3774 * @message: describes the data transfers
3775 * Context: can sleep
3777 * This call may only be used from a context that may sleep. The sleep
3778 * is non-interruptible, and has no timeout. Low-overhead controller
3779 * drivers may DMA directly into and out of the message buffers.
3781 * This call should be used by drivers that require exclusive access to the
3782 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3783 * be released by a spi_bus_unlock call when the exclusive access is over.
3785 * Return: zero on success, else a negative error code.
3787 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
3789 return __spi_sync(spi
, message
);
3791 EXPORT_SYMBOL_GPL(spi_sync_locked
);
3794 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3795 * @ctlr: SPI bus master that should be locked for exclusive bus access
3796 * Context: can sleep
3798 * This call may only be used from a context that may sleep. The sleep
3799 * is non-interruptible, and has no timeout.
3801 * This call should be used by drivers that require exclusive access to the
3802 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3803 * exclusive access is over. Data transfer must be done by spi_sync_locked
3804 * and spi_async_locked calls when the SPI bus lock is held.
3806 * Return: always zero.
3808 int spi_bus_lock(struct spi_controller
*ctlr
)
3810 unsigned long flags
;
3812 mutex_lock(&ctlr
->bus_lock_mutex
);
3814 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3815 ctlr
->bus_lock_flag
= 1;
3816 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3818 /* mutex remains locked until spi_bus_unlock is called */
3822 EXPORT_SYMBOL_GPL(spi_bus_lock
);
3825 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3826 * @ctlr: SPI bus master that was locked for exclusive bus access
3827 * Context: can sleep
3829 * This call may only be used from a context that may sleep. The sleep
3830 * is non-interruptible, and has no timeout.
3832 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3835 * Return: always zero.
3837 int spi_bus_unlock(struct spi_controller
*ctlr
)
3839 ctlr
->bus_lock_flag
= 0;
3841 mutex_unlock(&ctlr
->bus_lock_mutex
);
3845 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
3847 /* portable code must never pass more than 32 bytes */
3848 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3853 * spi_write_then_read - SPI synchronous write followed by read
3854 * @spi: device with which data will be exchanged
3855 * @txbuf: data to be written (need not be dma-safe)
3856 * @n_tx: size of txbuf, in bytes
3857 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3858 * @n_rx: size of rxbuf, in bytes
3859 * Context: can sleep
3861 * This performs a half duplex MicroWire style transaction with the
3862 * device, sending txbuf and then reading rxbuf. The return value
3863 * is zero for success, else a negative errno status code.
3864 * This call may only be used from a context that may sleep.
3866 * Parameters to this routine are always copied using a small buffer;
3867 * portable code should never use this for more than 32 bytes.
3868 * Performance-sensitive or bulk transfer code should instead use
3869 * spi_{async,sync}() calls with dma-safe buffers.
3871 * Return: zero on success, else a negative error code.
3873 int spi_write_then_read(struct spi_device
*spi
,
3874 const void *txbuf
, unsigned n_tx
,
3875 void *rxbuf
, unsigned n_rx
)
3877 static DEFINE_MUTEX(lock
);
3880 struct spi_message message
;
3881 struct spi_transfer x
[2];
3884 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3885 * copying here, (as a pure convenience thing), but we can
3886 * keep heap costs out of the hot path unless someone else is
3887 * using the pre-allocated buffer or the transfer is too large.
3889 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
3890 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
3891 GFP_KERNEL
| GFP_DMA
);
3898 spi_message_init(&message
);
3899 memset(x
, 0, sizeof(x
));
3902 spi_message_add_tail(&x
[0], &message
);
3906 spi_message_add_tail(&x
[1], &message
);
3909 memcpy(local_buf
, txbuf
, n_tx
);
3910 x
[0].tx_buf
= local_buf
;
3911 x
[1].rx_buf
= local_buf
+ n_tx
;
3914 status
= spi_sync(spi
, &message
);
3916 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
3918 if (x
[0].tx_buf
== buf
)
3919 mutex_unlock(&lock
);
3925 EXPORT_SYMBOL_GPL(spi_write_then_read
);
3927 /*-------------------------------------------------------------------------*/
3929 #if IS_ENABLED(CONFIG_OF)
3930 /* must call put_device() when done with returned spi_device device */
3931 struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
3933 struct device
*dev
= bus_find_device_by_of_node(&spi_bus_type
, node
);
3935 return dev
? to_spi_device(dev
) : NULL
;
3937 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node
);
3938 #endif /* IS_ENABLED(CONFIG_OF) */
3940 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3941 /* the spi controllers are not using spi_bus, so we find it with another way */
3942 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
3946 dev
= class_find_device_by_of_node(&spi_master_class
, node
);
3947 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3948 dev
= class_find_device_by_of_node(&spi_slave_class
, node
);
3952 /* reference got in class_find_device */
3953 return container_of(dev
, struct spi_controller
, dev
);
3956 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
3959 struct of_reconfig_data
*rd
= arg
;
3960 struct spi_controller
*ctlr
;
3961 struct spi_device
*spi
;
3963 switch (of_reconfig_get_state_change(action
, arg
)) {
3964 case OF_RECONFIG_CHANGE_ADD
:
3965 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
3967 return NOTIFY_OK
; /* not for us */
3969 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
3970 put_device(&ctlr
->dev
);
3974 spi
= of_register_spi_device(ctlr
, rd
->dn
);
3975 put_device(&ctlr
->dev
);
3978 pr_err("%s: failed to create for '%pOF'\n",
3980 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
3981 return notifier_from_errno(PTR_ERR(spi
));
3985 case OF_RECONFIG_CHANGE_REMOVE
:
3986 /* already depopulated? */
3987 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
3990 /* find our device by node */
3991 spi
= of_find_spi_device_by_node(rd
->dn
);
3993 return NOTIFY_OK
; /* no? not meant for us */
3995 /* unregister takes one ref away */
3996 spi_unregister_device(spi
);
3998 /* and put the reference of the find */
3999 put_device(&spi
->dev
);
4006 static struct notifier_block spi_of_notifier
= {
4007 .notifier_call
= of_spi_notify
,
4009 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4010 extern struct notifier_block spi_of_notifier
;
4011 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4013 #if IS_ENABLED(CONFIG_ACPI)
4014 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
4016 return ACPI_COMPANION(dev
->parent
) == data
;
4019 static struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
4023 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
4024 spi_acpi_controller_match
);
4025 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4026 dev
= class_find_device(&spi_slave_class
, NULL
, adev
,
4027 spi_acpi_controller_match
);
4031 return container_of(dev
, struct spi_controller
, dev
);
4034 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
4038 dev
= bus_find_device_by_acpi_dev(&spi_bus_type
, adev
);
4039 return dev
? to_spi_device(dev
) : NULL
;
4042 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
4045 struct acpi_device
*adev
= arg
;
4046 struct spi_controller
*ctlr
;
4047 struct spi_device
*spi
;
4050 case ACPI_RECONFIG_DEVICE_ADD
:
4051 ctlr
= acpi_spi_find_controller_by_adev(adev
->parent
);
4055 acpi_register_spi_device(ctlr
, adev
);
4056 put_device(&ctlr
->dev
);
4058 case ACPI_RECONFIG_DEVICE_REMOVE
:
4059 if (!acpi_device_enumerated(adev
))
4062 spi
= acpi_spi_find_device_by_adev(adev
);
4066 spi_unregister_device(spi
);
4067 put_device(&spi
->dev
);
4074 static struct notifier_block spi_acpi_notifier
= {
4075 .notifier_call
= acpi_spi_notify
,
4078 extern struct notifier_block spi_acpi_notifier
;
4081 static int __init
spi_init(void)
4085 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
4091 status
= bus_register(&spi_bus_type
);
4095 status
= class_register(&spi_master_class
);
4099 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
4100 status
= class_register(&spi_slave_class
);
4105 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
4106 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
4107 if (IS_ENABLED(CONFIG_ACPI
))
4108 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
4113 class_unregister(&spi_master_class
);
4115 bus_unregister(&spi_bus_type
);
4123 /* board_info is normally registered in arch_initcall(),
4124 * but even essential drivers wait till later
4126 * REVISIT only boardinfo really needs static linking. the rest (device and
4127 * driver registration) _could_ be dynamically linked (modular) ... costs
4128 * include needing to have boardinfo data structures be much more public.
4130 postcore_initcall(spi_init
);