1 /* SPDX-License-Identifier: GPL-2.0-only */
6 * Copyright (C) 2005-2006 Intel Corporation
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
9 * FIXME: doc: overview of the API, different parts and pointers
12 #ifndef __LINUX__UWB_H__
13 #define __LINUX__UWB_H__
15 #include <linux/limits.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/timer.h>
19 #include <linux/wait.h>
20 #include <linux/workqueue.h>
22 #include "include/spec.h"
31 * struct uwb_dev - a UWB Device
32 * @rc: UWB Radio Controller that discovered the device (kind of its
34 * @bce: a beacon cache entry for this device; or NULL if the device
35 * is a local radio controller.
36 * @mac_addr: the EUI-48 address of this device.
37 * @dev_addr: the current DevAddr used by this device.
38 * @beacon_slot: the slot number the beacon is using.
39 * @streams: bitmap of streams allocated to reservations targeted at
40 * this device. For an RC, this is the streams allocated for
41 * reservations targeted at DevAddrs.
43 * A UWB device may either by a neighbor or part of a local radio
48 struct list_head list_node
;
50 struct uwb_rc
*rc
; /* radio controller */
51 struct uwb_beca_e
*bce
; /* Beacon Cache Entry */
53 struct uwb_mac_addr mac_addr
;
54 struct uwb_dev_addr dev_addr
;
56 DECLARE_BITMAP(streams
, UWB_NUM_STREAMS
);
57 DECLARE_BITMAP(last_availability_bm
, UWB_NUM_MAS
);
59 #define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
62 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
64 * RC[CE]Bs have a 'context ID' field that matches the command with
65 * the event received to confirm it.
67 * Maximum number of context IDs
69 enum { UWB_RC_CTX_MAX
= 256 };
72 /** Notification chain head for UWB generated events to listeners */
73 struct uwb_notifs_chain
{
74 struct list_head list
;
78 /* Beacon cache list */
80 struct list_head list
;
85 /* Event handling thread. */
88 struct task_struct
*task
;
90 struct list_head event_list
;
91 spinlock_t event_list_lock
;
95 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
96 * @bm: a bitmap of length #UWB_NUM_MAS
99 DECLARE_BITMAP(bm
, UWB_NUM_MAS
);
100 DECLARE_BITMAP(unsafe_bm
, UWB_NUM_MAS
);
106 * uwb_rsv_state - UWB Reservation state.
108 * NONE - reservation is not active (no DRP IE being transmitted).
110 * Owner reservation states:
112 * INITIATED - owner has sent an initial DRP request.
113 * PENDING - target responded with pending Reason Code.
114 * MODIFIED - reservation manager is modifying an established
115 * reservation with a different MAS allocation.
116 * ESTABLISHED - the reservation has been successfully negotiated.
118 * Target reservation states:
120 * DENIED - request is denied.
121 * ACCEPTED - request is accepted.
122 * PENDING - PAL has yet to make a decision to whether to accept or
125 * FIXME: further target states TBD.
128 UWB_RSV_STATE_NONE
= 0,
129 UWB_RSV_STATE_O_INITIATED
,
130 UWB_RSV_STATE_O_PENDING
,
131 UWB_RSV_STATE_O_MODIFIED
,
132 UWB_RSV_STATE_O_ESTABLISHED
,
133 UWB_RSV_STATE_O_TO_BE_MOVED
,
134 UWB_RSV_STATE_O_MOVE_EXPANDING
,
135 UWB_RSV_STATE_O_MOVE_COMBINING
,
136 UWB_RSV_STATE_O_MOVE_REDUCING
,
137 UWB_RSV_STATE_T_ACCEPTED
,
138 UWB_RSV_STATE_T_DENIED
,
139 UWB_RSV_STATE_T_CONFLICT
,
140 UWB_RSV_STATE_T_PENDING
,
141 UWB_RSV_STATE_T_EXPANDING_ACCEPTED
,
142 UWB_RSV_STATE_T_EXPANDING_CONFLICT
,
143 UWB_RSV_STATE_T_EXPANDING_PENDING
,
144 UWB_RSV_STATE_T_EXPANDING_DENIED
,
145 UWB_RSV_STATE_T_RESIZED
,
150 enum uwb_rsv_target_type
{
152 UWB_RSV_TARGET_DEVADDR
,
156 * struct uwb_rsv_target - the target of a reservation.
158 * Reservations unicast and targeted at a single device
159 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
160 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
162 struct uwb_rsv_target
{
163 enum uwb_rsv_target_type type
;
166 struct uwb_dev_addr devaddr
;
170 struct uwb_rsv_move
{
171 struct uwb_mas_bm final_mas
;
172 struct uwb_ie_drp
*companion_drp_ie
;
173 struct uwb_mas_bm companion_mas
;
177 * Number of streams reserved for reservations targeted at DevAddrs.
179 #define UWB_NUM_GLOBAL_STREAMS 1
181 typedef void (*uwb_rsv_cb_f
)(struct uwb_rsv
*rsv
);
184 * struct uwb_rsv - a DRP reservation
186 * Data structure management:
188 * @rc: the radio controller this reservation is for
189 * (as target or owner)
190 * @rc_node: a list node for the RC
191 * @pal_node: a list node for the PAL
193 * Owner and target parameters:
195 * @owner: the UWB device owning this reservation
196 * @target: the target UWB device
197 * @type: reservation type
201 * @max_mas: maxiumum number of MAS
202 * @min_mas: minimum number of MAS
203 * @sparsity: owner selected sparsity
204 * @is_multicast: true iff multicast
206 * @callback: callback function when the reservation completes
207 * @pal_priv: private data for the PAL making the reservation
209 * Reservation status:
211 * @status: negotiation status
212 * @stream: stream index allocated for this reservation
213 * @tiebreaker: conflict tiebreaker for this reservation
215 * @drp_ie: the DRP IE
216 * @ie_valid: true iff the DRP IE matches the reservation parameters
218 * DRP reservations are uniquely identified by the owner, target and
219 * stream index. However, when using a DevAddr as a target (e.g., for
220 * a WUSB cluster reservation) the responses may be received from
221 * devices with different DevAddrs. In this case, reservations are
222 * uniquely identified by just the stream index. A number of stream
223 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
227 struct list_head rc_node
;
228 struct list_head pal_node
;
231 struct uwb_dev
*owner
;
232 struct uwb_rsv_target target
;
233 enum uwb_drp_type type
;
239 uwb_rsv_cb_f callback
;
242 enum uwb_rsv_state state
;
243 bool needs_release_companion_mas
;
246 struct uwb_mas_bm mas
;
247 struct uwb_ie_drp
*drp_ie
;
248 struct uwb_rsv_move mv
;
250 struct timer_list timer
;
251 struct work_struct handle_timeout_work
;
255 struct uwb_mas_bm uwb_mas_bm_zero
= { .bm
= { 0 } };
257 static inline void uwb_mas_bm_copy_le(void *dst
, const struct uwb_mas_bm
*mas
)
259 bitmap_copy_le(dst
, mas
->bm
, UWB_NUM_MAS
);
263 * struct uwb_drp_avail - a radio controller's view of MAS usage
264 * @global: MAS unused by neighbors (excluding reservations targeted
265 * or owned by the local radio controller) or the beaon period
266 * @local: MAS unused by local established reservations
267 * @pending: MAS unused by local pending reservations
268 * @ie: DRP Availability IE to be included in the beacon
269 * @ie_valid: true iff @ie is valid and does not need to regenerated from
272 * Each radio controller maintains a view of MAS usage or
273 * availability. MAS available for a new reservation are determined
274 * from the intersection of @global, @local, and @pending.
276 * The radio controller must transmit a DRP Availability IE that's the
277 * intersection of @global and @local.
279 * A set bit indicates the MAS is unused and available.
281 * rc->rsvs_mutex should be held before accessing this data structure.
283 * [ECMA-368] section 17.4.3.
285 struct uwb_drp_avail
{
286 DECLARE_BITMAP(global
, UWB_NUM_MAS
);
287 DECLARE_BITMAP(local
, UWB_NUM_MAS
);
288 DECLARE_BITMAP(pending
, UWB_NUM_MAS
);
289 struct uwb_ie_drp_avail ie
;
293 struct uwb_drp_backoff_win
{
297 struct timer_list timer
;
298 bool can_reserve_extra_mases
;
301 const char *uwb_rsv_state_str(enum uwb_rsv_state state
);
302 const char *uwb_rsv_type_str(enum uwb_drp_type type
);
304 struct uwb_rsv
*uwb_rsv_create(struct uwb_rc
*rc
, uwb_rsv_cb_f cb
,
306 void uwb_rsv_destroy(struct uwb_rsv
*rsv
);
308 int uwb_rsv_establish(struct uwb_rsv
*rsv
);
309 int uwb_rsv_modify(struct uwb_rsv
*rsv
,
310 int max_mas
, int min_mas
, int sparsity
);
311 void uwb_rsv_terminate(struct uwb_rsv
*rsv
);
313 void uwb_rsv_accept(struct uwb_rsv
*rsv
, uwb_rsv_cb_f cb
, void *pal_priv
);
315 void uwb_rsv_get_usable_mas(struct uwb_rsv
*orig_rsv
, struct uwb_mas_bm
*mas
);
318 * Radio Control Interface instance
321 * Life cycle rules: those of the UWB Device.
323 * @index: an index number for this radio controller, as used in the
325 * @version: version of protocol supported by this device
326 * @priv: Backend implementation; rw with uwb_dev.dev.sem taken.
327 * @cmd: Backend implementation to execute commands; rw and call
328 * only with uwb_dev.dev.sem taken.
329 * @reset: Hardware reset of radio controller and any PAL controllers.
330 * @filter: Backend implementation to manipulate data to and from device
331 * to be compliant to specification assumed by driver (WHCI
334 * uwb_dev.dev.mutex is used to execute commands and update
335 * the corresponding structures; can't use a spinlock
336 * because rc->cmd() can sleep.
337 * @ies: This is a dynamically allocated array cacheing the
338 * IEs (settable by the host) that the beacon of this
339 * radio controller is currently sending.
341 * In reality, we store here the full command we set to
342 * the radio controller (which is basically a command
343 * prefix followed by all the IEs the beacon currently
344 * contains). This way we don't have to realloc and
345 * memcpy when setting it.
347 * We set this up in uwb_rc_ie_setup(), where we alloc
348 * this struct, call get_ie() [so we know which IEs are
349 * currently being sent, if any].
351 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
352 * amount used is given by sizeof(*ies) plus ies->wIELength
353 * (which is a little endian quantity all the time).
354 * @ies_mutex: protect the IE cache
355 * @dbg: information for the debug interface
358 struct uwb_dev uwb_dev
;
362 struct module
*owner
;
364 int (*start
)(struct uwb_rc
*rc
);
365 void (*stop
)(struct uwb_rc
*rc
);
366 int (*cmd
)(struct uwb_rc
*, const struct uwb_rccb
*, size_t);
367 int (*reset
)(struct uwb_rc
*rc
);
368 int (*filter_cmd
)(struct uwb_rc
*, struct uwb_rccb
**, size_t *);
369 int (*filter_event
)(struct uwb_rc
*, struct uwb_rceb
**, const size_t,
372 spinlock_t neh_lock
; /* protects neh_* and ctx_* */
373 struct list_head neh_list
; /* Open NE handles */
374 unsigned long ctx_bm
[UWB_RC_CTX_MAX
/ 8 / sizeof(unsigned long)];
377 int beaconing
; /* Beaconing state [channel number] */
378 int beaconing_forced
;
380 enum uwb_scan_type scan_type
:3;
382 struct uwb_notifs_chain notifs_chain
;
383 struct uwb_beca uwb_beca
;
387 struct uwb_drp_backoff_win bow
;
388 struct uwb_drp_avail drp_avail
;
389 struct list_head reservations
;
390 struct list_head cnflt_alien_list
;
391 struct uwb_mas_bm cnflt_alien_bitmap
;
392 struct mutex rsvs_mutex
;
393 spinlock_t rsvs_lock
;
394 struct workqueue_struct
*rsv_workq
;
396 struct delayed_work rsv_update_work
;
397 struct delayed_work rsv_alien_bp_work
;
398 int set_drp_ie_pending
;
399 struct mutex ies_mutex
;
400 struct uwb_rc_cmd_set_ie
*ies
;
403 struct list_head pals
;
411 * struct uwb_pal - a UWB PAL
412 * @name: descriptive name for this PAL (wusbhc, wlp, etc.).
413 * @device: a device for the PAL. Used to link the PAL and the radio
414 * controller in sysfs.
415 * @rc: the radio controller the PAL uses.
416 * @channel_changed: called when the channel used by the radio changes.
417 * A channel of -1 means the channel has been stopped.
418 * @new_rsv: called when a peer requests a reservation (may be NULL if
419 * the PAL cannot accept reservation requests).
420 * @channel: channel being used by the PAL; 0 if the PAL isn't using
421 * the radio; -1 if the PAL wishes to use the radio but
423 * @debugfs_dir: a debugfs directory which the PAL can use for its own
426 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
427 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
429 * The PALs using a radio controller must register themselves to
430 * permit the UWB stack to coordinate usage of the radio between the
431 * various PALs or to allow PALs to response to certain requests from
434 * A struct uwb_pal should be embedded in a containing structure
435 * belonging to the PAL and initialized with uwb_pal_init()). Fields
436 * should be set appropriately by the PAL before registering the PAL
437 * with uwb_pal_register().
440 struct list_head node
;
442 struct device
*device
;
445 void (*channel_changed
)(struct uwb_pal
*pal
, int channel
);
446 void (*new_rsv
)(struct uwb_pal
*pal
, struct uwb_rsv
*rsv
);
449 struct dentry
*debugfs_dir
;
452 void uwb_pal_init(struct uwb_pal
*pal
);
453 int uwb_pal_register(struct uwb_pal
*pal
);
454 void uwb_pal_unregister(struct uwb_pal
*pal
);
456 int uwb_radio_start(struct uwb_pal
*pal
);
457 void uwb_radio_stop(struct uwb_pal
*pal
);
462 * This API can be used by UWB device drivers or by those implementing
463 * UWB Radio Controllers
465 struct uwb_dev
*uwb_dev_get_by_devaddr(struct uwb_rc
*rc
,
466 const struct uwb_dev_addr
*devaddr
);
467 struct uwb_dev
*uwb_dev_get_by_rc(struct uwb_dev
*, struct uwb_rc
*);
468 static inline void uwb_dev_get(struct uwb_dev
*uwb_dev
)
470 get_device(&uwb_dev
->dev
);
472 static inline void uwb_dev_put(struct uwb_dev
*uwb_dev
)
474 put_device(&uwb_dev
->dev
);
476 struct uwb_dev
*uwb_dev_try_get(struct uwb_rc
*rc
, struct uwb_dev
*uwb_dev
);
479 * Callback function for 'uwb_{dev,rc}_foreach()'.
481 * @dev: Linux device instance
482 * 'uwb_dev = container_of(dev, struct uwb_dev, dev)'
483 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
485 * @returns: 0 to continue the iterations, any other val to stop
486 * iterating and return the value to the caller of
489 typedef int (*uwb_dev_for_each_f
)(struct device
*dev
, void *priv
);
490 int uwb_dev_for_each(struct uwb_rc
*rc
, uwb_dev_for_each_f func
, void *priv
);
492 struct uwb_rc
*uwb_rc_alloc(void);
493 struct uwb_rc
*uwb_rc_get_by_dev(const struct uwb_dev_addr
*);
494 struct uwb_rc
*uwb_rc_get_by_grandpa(const struct device
*);
495 void uwb_rc_put(struct uwb_rc
*rc
);
497 typedef void (*uwb_rc_cmd_cb_f
)(struct uwb_rc
*rc
, void *arg
,
498 struct uwb_rceb
*reply
, ssize_t reply_size
);
500 int uwb_rc_cmd_async(struct uwb_rc
*rc
, const char *cmd_name
,
501 struct uwb_rccb
*cmd
, size_t cmd_size
,
502 u8 expected_type
, u16 expected_event
,
503 uwb_rc_cmd_cb_f cb
, void *arg
);
504 ssize_t
uwb_rc_cmd(struct uwb_rc
*rc
, const char *cmd_name
,
505 struct uwb_rccb
*cmd
, size_t cmd_size
,
506 struct uwb_rceb
*reply
, size_t reply_size
);
507 ssize_t
uwb_rc_vcmd(struct uwb_rc
*rc
, const char *cmd_name
,
508 struct uwb_rccb
*cmd
, size_t cmd_size
,
509 u8 expected_type
, u16 expected_event
,
510 struct uwb_rceb
**preply
);
512 size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
514 int uwb_rc_dev_addr_set(struct uwb_rc
*, const struct uwb_dev_addr
*);
515 int uwb_rc_dev_addr_get(struct uwb_rc
*, struct uwb_dev_addr
*);
516 int uwb_rc_mac_addr_set(struct uwb_rc
*, const struct uwb_mac_addr
*);
517 int uwb_rc_mac_addr_get(struct uwb_rc
*, struct uwb_mac_addr
*);
518 int __uwb_mac_addr_assigned_check(struct device
*, void *);
519 int __uwb_dev_addr_assigned_check(struct device
*, void *);
521 /* Print in @buf a pretty repr of @addr */
522 static inline size_t uwb_dev_addr_print(char *buf
, size_t buf_size
,
523 const struct uwb_dev_addr
*addr
)
525 return __uwb_addr_print(buf
, buf_size
, addr
->data
, 0);
528 /* Print in @buf a pretty repr of @addr */
529 static inline size_t uwb_mac_addr_print(char *buf
, size_t buf_size
,
530 const struct uwb_mac_addr
*addr
)
532 return __uwb_addr_print(buf
, buf_size
, addr
->data
, 1);
535 /* @returns 0 if device addresses @addr2 and @addr1 are equal */
536 static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr
*addr1
,
537 const struct uwb_dev_addr
*addr2
)
539 return memcmp(addr1
, addr2
, sizeof(*addr1
));
542 /* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
543 static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr
*addr1
,
544 const struct uwb_mac_addr
*addr2
)
546 return memcmp(addr1
, addr2
, sizeof(*addr1
));
549 /* @returns !0 if a MAC @addr is a broadcast address */
550 static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr
*addr
)
552 struct uwb_mac_addr bcast
= {
553 .data
= { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
555 return !uwb_mac_addr_cmp(addr
, &bcast
);
558 /* @returns !0 if a MAC @addr is all zeroes*/
559 static inline int uwb_mac_addr_unset(const struct uwb_mac_addr
*addr
)
561 struct uwb_mac_addr unset
= {
562 .data
= { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
564 return !uwb_mac_addr_cmp(addr
, &unset
);
567 /* @returns !0 if the address is in use. */
568 static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc
*rc
,
569 struct uwb_dev_addr
*addr
)
571 return uwb_dev_for_each(rc
, __uwb_dev_addr_assigned_check
, addr
);
575 * UWB Radio Controller API
577 * This API is used (in addition to the general API) to implement UWB
580 void uwb_rc_init(struct uwb_rc
*);
581 int uwb_rc_add(struct uwb_rc
*, struct device
*dev
, void *rc_priv
);
582 void uwb_rc_rm(struct uwb_rc
*);
583 void uwb_rc_neh_grok(struct uwb_rc
*, void *, size_t);
584 void uwb_rc_neh_error(struct uwb_rc
*, int);
585 void uwb_rc_reset_all(struct uwb_rc
*rc
);
586 void uwb_rc_pre_reset(struct uwb_rc
*rc
);
587 int uwb_rc_post_reset(struct uwb_rc
*rc
);
590 * uwb_rsv_is_owner - is the owner of this reservation the RC?
591 * @rsv: the reservation
593 static inline bool uwb_rsv_is_owner(struct uwb_rsv
*rsv
)
595 return rsv
->owner
== &rsv
->rc
->uwb_dev
;
599 * enum uwb_notifs - UWB events that can be passed to any listeners
600 * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
601 * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
603 * Higher layers can register callback functions with the radio
604 * controller using uwb_notifs_register(). The radio controller
605 * maintains a list of all registered handlers and will notify all
606 * nodes when an event occurs.
613 /* Callback function registered with UWB */
614 struct uwb_notifs_handler
{
615 struct list_head list_node
;
616 void (*cb
)(void *, struct uwb_dev
*, enum uwb_notifs
);
620 int uwb_notifs_register(struct uwb_rc
*, struct uwb_notifs_handler
*);
621 int uwb_notifs_deregister(struct uwb_rc
*, struct uwb_notifs_handler
*);
625 * UWB radio controller Event Size Entry (for creating entry tables)
627 * WUSB and WHCI define events and notifications, and they might have
628 * fixed or variable size.
630 * Each event/notification has a size which is not necessarily known
631 * in advance based on the event code. As well, vendor specific
632 * events/notifications will have a size impossible to determine
633 * unless we know about the device's specific details.
635 * It was way too smart of the spec writers not to think that it would
636 * be impossible for a generic driver to skip over vendor specific
637 * events/notifications if there are no LENGTH fields in the HEADER of
638 * each message...the transaction size cannot be counted on as the
639 * spec does not forbid to pack more than one event in a single
642 * Thus, we guess sizes with tables (or for events, when you know the
643 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
644 * register tables with the known events and their sizes, and then we
645 * traverse those tables. For those with variable length, we provide a
646 * way to lookup the size inside the event/notification's
647 * payload. This allows device-specific event size tables to be
650 * @size: Size of the payload
652 * @offset: if != 0, at offset @offset-1 starts a field with a length
653 * that has to be added to @size. The format of the field is
656 * @type: Type and length of the offset field. Most common is LE 16
657 * bits (that's why that is zero); others are there mostly to
658 * cover for bugs and weirdos.
660 struct uwb_est_entry
{
663 enum { UWB_EST_16
= 0, UWB_EST_8
= 1 } type
;
666 int uwb_est_register(u8 type
, u8 code_high
, u16 vendor
, u16 product
,
667 const struct uwb_est_entry
*, size_t entries
);
668 int uwb_est_unregister(u8 type
, u8 code_high
, u16 vendor
, u16 product
,
669 const struct uwb_est_entry
*, size_t entries
);
670 ssize_t
uwb_est_find_size(struct uwb_rc
*rc
, const struct uwb_rceb
*rceb
,
677 EDC_ERROR_TIMEFRAME
= HZ
,
680 /* error density counter */
682 unsigned long timestart
;
687 void edc_init(struct edc
*edc
)
689 edc
->timestart
= jiffies
;
692 /* Called when an error occurred.
693 * This is way to determine if the number of acceptable errors per time
694 * period has been exceeded. It is not accurate as there are cases in which
695 * this scheme will not work, for example if there are periodic occurrences
696 * of errors that straddle updates to the start time. This scheme is
697 * sufficient for our usage.
699 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
701 static inline int edc_inc(struct edc
*err_hist
, u16 max_err
, u16 timeframe
)
706 if (now
- err_hist
->timestart
> timeframe
) {
707 err_hist
->errorcount
= 1;
708 err_hist
->timestart
= now
;
709 } else if (++err_hist
->errorcount
> max_err
) {
710 err_hist
->errorcount
= 0;
711 err_hist
->timestart
= now
;
718 /* Information Element handling */
720 struct uwb_ie_hdr
*uwb_ie_next(void **ptr
, size_t *len
);
721 int uwb_rc_ie_add(struct uwb_rc
*uwb_rc
, const struct uwb_ie_hdr
*ies
, size_t size
);
722 int uwb_rc_ie_rm(struct uwb_rc
*uwb_rc
, enum uwb_ie element_id
);
725 * Transmission statistics
727 * UWB uses LQI and RSSI (one byte values) for reporting radio signal
728 * strength and line quality indication. We do quick and dirty
729 * averages of those. They are signed values, btw.
731 * For 8 bit quantities, we keep the min, the max, an accumulator
732 * (@sigma) and a # of samples. When @samples gets to 255, we compute
733 * the average (@sigma / @samples), place it in @sigma and reset
734 * @samples to 1 (so we use it as the first sample).
736 * Now, statistically speaking, probably I am kicking the kidneys of
737 * some books I have in my shelves collecting dust, but I just want to
738 * get an approx, not the Nobel.
740 * LOCKING: there is no locking per se, but we try to keep a lockless
741 * schema. Only _add_samples() modifies the values--as long as you
742 * have other locking on top that makes sure that no two calls of
743 * _add_sample() happen at the same time, then we are fine. Now, for
744 * resetting the values we just set @samples to 0 and that makes the
745 * next _add_sample() to start with defaults. Reading the values in
746 * _show() currently can race, so you need to make sure the calls are
747 * under the same lock that protects calls to _add_sample(). FIXME:
748 * currently unlocked (It is not ultraprecise but does the trick. Bite
758 void stats_init(struct stats
*stats
)
760 atomic_set(&stats
->samples
, 0);
765 void stats_add_sample(struct stats
*stats
, s8 sample
)
769 unsigned samples
= atomic_read(&stats
->samples
);
770 if (samples
== 0) { /* it was zero before, so we initialize */
777 sigma
= stats
->sigma
;
780 if (sample
< min
) /* compute new values */
782 else if (sample
> max
)
786 stats
->min
= min
; /* commit */
788 stats
->sigma
= sigma
;
789 if (atomic_add_return(1, &stats
->samples
) > 255) {
790 /* wrapped around! reset */
791 stats
->sigma
= sigma
/ 256;
792 atomic_set(&stats
->samples
, 1);
796 static inline ssize_t
stats_show(struct stats
*stats
, char *buf
)
799 int samples
= atomic_read(&stats
->samples
);
805 avg
= stats
->sigma
/ samples
;
807 return scnprintf(buf
, PAGE_SIZE
, "%d %d %d\n", min
, max
, avg
);
810 static inline ssize_t
stats_store(struct stats
*stats
, const char *buf
,
817 #endif /* #ifndef __LINUX__UWB_H__ */