1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
5 * This file contains the Generic Target Engine Core.
7 * (c) Copyright 2002-2013 Datera, Inc.
9 * Nicholas A. Bellinger <nab@kernel.org>
11 ******************************************************************************/
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
43 static struct workqueue_struct
*target_completion_wq
;
44 static struct kmem_cache
*se_sess_cache
;
45 struct kmem_cache
*se_ua_cache
;
46 struct kmem_cache
*t10_pr_reg_cache
;
47 struct kmem_cache
*t10_alua_lu_gp_cache
;
48 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
49 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
50 struct kmem_cache
*t10_alua_lba_map_cache
;
51 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
53 static void transport_complete_task_attr(struct se_cmd
*cmd
);
54 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
);
55 static void transport_handle_queue_full(struct se_cmd
*cmd
,
56 struct se_device
*dev
, int err
, bool write_pending
);
57 static void target_complete_ok_work(struct work_struct
*work
);
59 int init_se_kmem_caches(void)
61 se_sess_cache
= kmem_cache_create("se_sess_cache",
62 sizeof(struct se_session
), __alignof__(struct se_session
),
65 pr_err("kmem_cache_create() for struct se_session"
69 se_ua_cache
= kmem_cache_create("se_ua_cache",
70 sizeof(struct se_ua
), __alignof__(struct se_ua
),
73 pr_err("kmem_cache_create() for struct se_ua failed\n");
74 goto out_free_sess_cache
;
76 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
77 sizeof(struct t10_pr_registration
),
78 __alignof__(struct t10_pr_registration
), 0, NULL
);
79 if (!t10_pr_reg_cache
) {
80 pr_err("kmem_cache_create() for struct t10_pr_registration"
82 goto out_free_ua_cache
;
84 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
85 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
87 if (!t10_alua_lu_gp_cache
) {
88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 goto out_free_pr_reg_cache
;
92 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
93 sizeof(struct t10_alua_lu_gp_member
),
94 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
95 if (!t10_alua_lu_gp_mem_cache
) {
96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 goto out_free_lu_gp_cache
;
100 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
101 sizeof(struct t10_alua_tg_pt_gp
),
102 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
103 if (!t10_alua_tg_pt_gp_cache
) {
104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 goto out_free_lu_gp_mem_cache
;
108 t10_alua_lba_map_cache
= kmem_cache_create(
109 "t10_alua_lba_map_cache",
110 sizeof(struct t10_alua_lba_map
),
111 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
112 if (!t10_alua_lba_map_cache
) {
113 pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 goto out_free_tg_pt_gp_cache
;
117 t10_alua_lba_map_mem_cache
= kmem_cache_create(
118 "t10_alua_lba_map_mem_cache",
119 sizeof(struct t10_alua_lba_map_member
),
120 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
121 if (!t10_alua_lba_map_mem_cache
) {
122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 goto out_free_lba_map_cache
;
127 target_completion_wq
= alloc_workqueue("target_completion",
129 if (!target_completion_wq
)
130 goto out_free_lba_map_mem_cache
;
134 out_free_lba_map_mem_cache
:
135 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
136 out_free_lba_map_cache
:
137 kmem_cache_destroy(t10_alua_lba_map_cache
);
138 out_free_tg_pt_gp_cache
:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
140 out_free_lu_gp_mem_cache
:
141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
142 out_free_lu_gp_cache
:
143 kmem_cache_destroy(t10_alua_lu_gp_cache
);
144 out_free_pr_reg_cache
:
145 kmem_cache_destroy(t10_pr_reg_cache
);
147 kmem_cache_destroy(se_ua_cache
);
149 kmem_cache_destroy(se_sess_cache
);
154 void release_se_kmem_caches(void)
156 destroy_workqueue(target_completion_wq
);
157 kmem_cache_destroy(se_sess_cache
);
158 kmem_cache_destroy(se_ua_cache
);
159 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(t10_alua_lu_gp_cache
);
161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
163 kmem_cache_destroy(t10_alua_lba_map_cache
);
164 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
169 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
172 * Allocate a new row index for the entry type specified
174 u32
scsi_get_new_index(scsi_index_t type
)
178 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
180 spin_lock(&scsi_mib_index_lock
);
181 new_index
= ++scsi_mib_index
[type
];
182 spin_unlock(&scsi_mib_index_lock
);
187 void transport_subsystem_check_init(void)
190 static int sub_api_initialized
;
192 if (sub_api_initialized
)
195 ret
= IS_ENABLED(CONFIG_TCM_IBLOCK
) && request_module("target_core_iblock");
197 pr_err("Unable to load target_core_iblock\n");
199 ret
= IS_ENABLED(CONFIG_TCM_FILEIO
) && request_module("target_core_file");
201 pr_err("Unable to load target_core_file\n");
203 ret
= IS_ENABLED(CONFIG_TCM_PSCSI
) && request_module("target_core_pscsi");
205 pr_err("Unable to load target_core_pscsi\n");
207 ret
= IS_ENABLED(CONFIG_TCM_USER2
) && request_module("target_core_user");
209 pr_err("Unable to load target_core_user\n");
211 sub_api_initialized
= 1;
214 static void target_release_sess_cmd_refcnt(struct percpu_ref
*ref
)
216 struct se_session
*sess
= container_of(ref
, typeof(*sess
), cmd_count
);
218 wake_up(&sess
->cmd_list_wq
);
222 * transport_init_session - initialize a session object
223 * @se_sess: Session object pointer.
225 * The caller must have zero-initialized @se_sess before calling this function.
227 int transport_init_session(struct se_session
*se_sess
)
229 INIT_LIST_HEAD(&se_sess
->sess_list
);
230 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
231 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
232 spin_lock_init(&se_sess
->sess_cmd_lock
);
233 init_waitqueue_head(&se_sess
->cmd_list_wq
);
234 return percpu_ref_init(&se_sess
->cmd_count
,
235 target_release_sess_cmd_refcnt
, 0, GFP_KERNEL
);
237 EXPORT_SYMBOL(transport_init_session
);
240 * transport_alloc_session - allocate a session object and initialize it
241 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
243 struct se_session
*transport_alloc_session(enum target_prot_op sup_prot_ops
)
245 struct se_session
*se_sess
;
248 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
250 pr_err("Unable to allocate struct se_session from"
252 return ERR_PTR(-ENOMEM
);
254 ret
= transport_init_session(se_sess
);
256 kmem_cache_free(se_sess_cache
, se_sess
);
259 se_sess
->sup_prot_ops
= sup_prot_ops
;
263 EXPORT_SYMBOL(transport_alloc_session
);
266 * transport_alloc_session_tags - allocate target driver private data
267 * @se_sess: Session pointer.
268 * @tag_num: Maximum number of in-flight commands between initiator and target.
269 * @tag_size: Size in bytes of the private data a target driver associates with
272 int transport_alloc_session_tags(struct se_session
*se_sess
,
273 unsigned int tag_num
, unsigned int tag_size
)
277 se_sess
->sess_cmd_map
= kvcalloc(tag_size
, tag_num
,
278 GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
279 if (!se_sess
->sess_cmd_map
) {
280 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
284 rc
= sbitmap_queue_init_node(&se_sess
->sess_tag_pool
, tag_num
, -1,
285 false, GFP_KERNEL
, NUMA_NO_NODE
);
287 pr_err("Unable to init se_sess->sess_tag_pool,"
288 " tag_num: %u\n", tag_num
);
289 kvfree(se_sess
->sess_cmd_map
);
290 se_sess
->sess_cmd_map
= NULL
;
296 EXPORT_SYMBOL(transport_alloc_session_tags
);
299 * transport_init_session_tags - allocate a session and target driver private data
300 * @tag_num: Maximum number of in-flight commands between initiator and target.
301 * @tag_size: Size in bytes of the private data a target driver associates with
303 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
305 static struct se_session
*
306 transport_init_session_tags(unsigned int tag_num
, unsigned int tag_size
,
307 enum target_prot_op sup_prot_ops
)
309 struct se_session
*se_sess
;
312 if (tag_num
!= 0 && !tag_size
) {
313 pr_err("init_session_tags called with percpu-ida tag_num:"
314 " %u, but zero tag_size\n", tag_num
);
315 return ERR_PTR(-EINVAL
);
317 if (!tag_num
&& tag_size
) {
318 pr_err("init_session_tags called with percpu-ida tag_size:"
319 " %u, but zero tag_num\n", tag_size
);
320 return ERR_PTR(-EINVAL
);
323 se_sess
= transport_alloc_session(sup_prot_ops
);
327 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
329 transport_free_session(se_sess
);
330 return ERR_PTR(-ENOMEM
);
337 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
339 void __transport_register_session(
340 struct se_portal_group
*se_tpg
,
341 struct se_node_acl
*se_nacl
,
342 struct se_session
*se_sess
,
343 void *fabric_sess_ptr
)
345 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
346 unsigned char buf
[PR_REG_ISID_LEN
];
349 se_sess
->se_tpg
= se_tpg
;
350 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
352 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
354 * Only set for struct se_session's that will actually be moving I/O.
355 * eg: *NOT* discovery sessions.
360 * Determine if fabric allows for T10-PI feature bits exposed to
361 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
363 * If so, then always save prot_type on a per se_node_acl node
364 * basis and re-instate the previous sess_prot_type to avoid
365 * disabling PI from below any previously initiator side
368 if (se_nacl
->saved_prot_type
)
369 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
370 else if (tfo
->tpg_check_prot_fabric_only
)
371 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
372 tfo
->tpg_check_prot_fabric_only(se_tpg
);
374 * If the fabric module supports an ISID based TransportID,
375 * save this value in binary from the fabric I_T Nexus now.
377 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
378 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
379 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
380 &buf
[0], PR_REG_ISID_LEN
);
381 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
384 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
386 * The se_nacl->nacl_sess pointer will be set to the
387 * last active I_T Nexus for each struct se_node_acl.
389 se_nacl
->nacl_sess
= se_sess
;
391 list_add_tail(&se_sess
->sess_acl_list
,
392 &se_nacl
->acl_sess_list
);
393 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
395 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
397 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
398 se_tpg
->se_tpg_tfo
->fabric_name
, se_sess
->fabric_sess_ptr
);
400 EXPORT_SYMBOL(__transport_register_session
);
402 void transport_register_session(
403 struct se_portal_group
*se_tpg
,
404 struct se_node_acl
*se_nacl
,
405 struct se_session
*se_sess
,
406 void *fabric_sess_ptr
)
410 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
411 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
412 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
414 EXPORT_SYMBOL(transport_register_session
);
417 target_setup_session(struct se_portal_group
*tpg
,
418 unsigned int tag_num
, unsigned int tag_size
,
419 enum target_prot_op prot_op
,
420 const char *initiatorname
, void *private,
421 int (*callback
)(struct se_portal_group
*,
422 struct se_session
*, void *))
424 struct se_session
*sess
;
427 * If the fabric driver is using percpu-ida based pre allocation
428 * of I/O descriptor tags, go ahead and perform that setup now..
431 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
433 sess
= transport_alloc_session(prot_op
);
438 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
439 (unsigned char *)initiatorname
);
440 if (!sess
->se_node_acl
) {
441 transport_free_session(sess
);
442 return ERR_PTR(-EACCES
);
445 * Go ahead and perform any remaining fabric setup that is
446 * required before transport_register_session().
448 if (callback
!= NULL
) {
449 int rc
= callback(tpg
, sess
, private);
451 transport_free_session(sess
);
456 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
459 EXPORT_SYMBOL(target_setup_session
);
461 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
463 struct se_session
*se_sess
;
466 spin_lock_bh(&se_tpg
->session_lock
);
467 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
468 if (!se_sess
->se_node_acl
)
470 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
472 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
475 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
476 se_sess
->se_node_acl
->initiatorname
);
477 len
+= 1; /* Include NULL terminator */
479 spin_unlock_bh(&se_tpg
->session_lock
);
483 EXPORT_SYMBOL(target_show_dynamic_sessions
);
485 static void target_complete_nacl(struct kref
*kref
)
487 struct se_node_acl
*nacl
= container_of(kref
,
488 struct se_node_acl
, acl_kref
);
489 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
491 if (!nacl
->dynamic_stop
) {
492 complete(&nacl
->acl_free_comp
);
496 mutex_lock(&se_tpg
->acl_node_mutex
);
497 list_del_init(&nacl
->acl_list
);
498 mutex_unlock(&se_tpg
->acl_node_mutex
);
500 core_tpg_wait_for_nacl_pr_ref(nacl
);
501 core_free_device_list_for_node(nacl
, se_tpg
);
505 void target_put_nacl(struct se_node_acl
*nacl
)
507 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
509 EXPORT_SYMBOL(target_put_nacl
);
511 void transport_deregister_session_configfs(struct se_session
*se_sess
)
513 struct se_node_acl
*se_nacl
;
516 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
518 se_nacl
= se_sess
->se_node_acl
;
520 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
521 if (!list_empty(&se_sess
->sess_acl_list
))
522 list_del_init(&se_sess
->sess_acl_list
);
524 * If the session list is empty, then clear the pointer.
525 * Otherwise, set the struct se_session pointer from the tail
526 * element of the per struct se_node_acl active session list.
528 if (list_empty(&se_nacl
->acl_sess_list
))
529 se_nacl
->nacl_sess
= NULL
;
531 se_nacl
->nacl_sess
= container_of(
532 se_nacl
->acl_sess_list
.prev
,
533 struct se_session
, sess_acl_list
);
535 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
538 EXPORT_SYMBOL(transport_deregister_session_configfs
);
540 void transport_free_session(struct se_session
*se_sess
)
542 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
545 * Drop the se_node_acl->nacl_kref obtained from within
546 * core_tpg_get_initiator_node_acl().
549 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
550 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
553 se_sess
->se_node_acl
= NULL
;
556 * Also determine if we need to drop the extra ->cmd_kref if
557 * it had been previously dynamically generated, and
558 * the endpoint is not caching dynamic ACLs.
560 mutex_lock(&se_tpg
->acl_node_mutex
);
561 if (se_nacl
->dynamic_node_acl
&&
562 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
563 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
564 if (list_empty(&se_nacl
->acl_sess_list
))
565 se_nacl
->dynamic_stop
= true;
566 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
568 if (se_nacl
->dynamic_stop
)
569 list_del_init(&se_nacl
->acl_list
);
571 mutex_unlock(&se_tpg
->acl_node_mutex
);
573 if (se_nacl
->dynamic_stop
)
574 target_put_nacl(se_nacl
);
576 target_put_nacl(se_nacl
);
578 if (se_sess
->sess_cmd_map
) {
579 sbitmap_queue_free(&se_sess
->sess_tag_pool
);
580 kvfree(se_sess
->sess_cmd_map
);
582 percpu_ref_exit(&se_sess
->cmd_count
);
583 kmem_cache_free(se_sess_cache
, se_sess
);
585 EXPORT_SYMBOL(transport_free_session
);
587 static int target_release_res(struct se_device
*dev
, void *data
)
589 struct se_session
*sess
= data
;
591 if (dev
->reservation_holder
== sess
)
592 target_release_reservation(dev
);
596 void transport_deregister_session(struct se_session
*se_sess
)
598 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
602 transport_free_session(se_sess
);
606 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
607 list_del(&se_sess
->sess_list
);
608 se_sess
->se_tpg
= NULL
;
609 se_sess
->fabric_sess_ptr
= NULL
;
610 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
613 * Since the session is being removed, release SPC-2
614 * reservations held by the session that is disappearing.
616 target_for_each_device(target_release_res
, se_sess
);
618 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
619 se_tpg
->se_tpg_tfo
->fabric_name
);
621 * If last kref is dropping now for an explicit NodeACL, awake sleeping
622 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
623 * removal context from within transport_free_session() code.
625 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
626 * to release all remaining generate_node_acl=1 created ACL resources.
629 transport_free_session(se_sess
);
631 EXPORT_SYMBOL(transport_deregister_session
);
633 void target_remove_session(struct se_session
*se_sess
)
635 transport_deregister_session_configfs(se_sess
);
636 transport_deregister_session(se_sess
);
638 EXPORT_SYMBOL(target_remove_session
);
640 static void target_remove_from_state_list(struct se_cmd
*cmd
)
642 struct se_device
*dev
= cmd
->se_dev
;
648 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
649 if (cmd
->state_active
) {
650 list_del(&cmd
->state_list
);
651 cmd
->state_active
= false;
653 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
657 * This function is called by the target core after the target core has
658 * finished processing a SCSI command or SCSI TMF. Both the regular command
659 * processing code and the code for aborting commands can call this
660 * function. CMD_T_STOP is set if and only if another thread is waiting
661 * inside transport_wait_for_tasks() for t_transport_stop_comp.
663 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
667 target_remove_from_state_list(cmd
);
669 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
671 * Determine if frontend context caller is requesting the stopping of
672 * this command for frontend exceptions.
674 if (cmd
->transport_state
& CMD_T_STOP
) {
675 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
676 __func__
, __LINE__
, cmd
->tag
);
678 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
680 complete_all(&cmd
->t_transport_stop_comp
);
683 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
684 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
687 * Some fabric modules like tcm_loop can release their internally
688 * allocated I/O reference and struct se_cmd now.
690 * Fabric modules are expected to return '1' here if the se_cmd being
691 * passed is released at this point, or zero if not being released.
693 return cmd
->se_tfo
->check_stop_free(cmd
);
696 static void target_complete_failure_work(struct work_struct
*work
)
698 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
700 transport_generic_request_failure(cmd
,
701 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
705 * Used when asking transport to copy Sense Data from the underlying
706 * Linux/SCSI struct scsi_cmnd
708 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
710 struct se_device
*dev
= cmd
->se_dev
;
712 WARN_ON(!cmd
->se_lun
);
717 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
720 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
722 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
723 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
724 return cmd
->sense_buffer
;
727 void transport_copy_sense_to_cmd(struct se_cmd
*cmd
, unsigned char *sense
)
729 unsigned char *cmd_sense_buf
;
732 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
733 cmd_sense_buf
= transport_get_sense_buffer(cmd
);
734 if (!cmd_sense_buf
) {
735 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
739 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
740 memcpy(cmd_sense_buf
, sense
, cmd
->scsi_sense_length
);
741 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
743 EXPORT_SYMBOL(transport_copy_sense_to_cmd
);
745 static void target_handle_abort(struct se_cmd
*cmd
)
747 bool tas
= cmd
->transport_state
& CMD_T_TAS
;
748 bool ack_kref
= cmd
->se_cmd_flags
& SCF_ACK_KREF
;
751 pr_debug("tag %#llx: send_abort_response = %d\n", cmd
->tag
, tas
);
754 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
755 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
756 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
757 cmd
->t_task_cdb
[0], cmd
->tag
);
758 trace_target_cmd_complete(cmd
);
759 ret
= cmd
->se_tfo
->queue_status(cmd
);
761 transport_handle_queue_full(cmd
, cmd
->se_dev
,
766 cmd
->se_tmr_req
->response
= TMR_FUNCTION_REJECTED
;
767 cmd
->se_tfo
->queue_tm_rsp(cmd
);
771 * Allow the fabric driver to unmap any resources before
772 * releasing the descriptor via TFO->release_cmd().
774 cmd
->se_tfo
->aborted_task(cmd
);
776 WARN_ON_ONCE(target_put_sess_cmd(cmd
) != 0);
778 * To do: establish a unit attention condition on the I_T
779 * nexus associated with cmd. See also the paragraph "Aborting
784 WARN_ON_ONCE(kref_read(&cmd
->cmd_kref
) == 0);
786 transport_cmd_check_stop_to_fabric(cmd
);
789 static void target_abort_work(struct work_struct
*work
)
791 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
793 target_handle_abort(cmd
);
796 static bool target_cmd_interrupted(struct se_cmd
*cmd
)
800 if (cmd
->transport_state
& CMD_T_ABORTED
) {
801 if (cmd
->transport_complete_callback
)
802 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
803 INIT_WORK(&cmd
->work
, target_abort_work
);
804 queue_work(target_completion_wq
, &cmd
->work
);
806 } else if (cmd
->transport_state
& CMD_T_STOP
) {
807 if (cmd
->transport_complete_callback
)
808 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
809 complete_all(&cmd
->t_transport_stop_comp
);
816 /* May be called from interrupt context so must not sleep. */
817 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
822 if (target_cmd_interrupted(cmd
))
825 cmd
->scsi_status
= scsi_status
;
827 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
828 switch (cmd
->scsi_status
) {
829 case SAM_STAT_CHECK_CONDITION
:
830 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
840 cmd
->t_state
= TRANSPORT_COMPLETE
;
841 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
842 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
844 INIT_WORK(&cmd
->work
, success
? target_complete_ok_work
:
845 target_complete_failure_work
);
846 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
847 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
849 queue_work(target_completion_wq
, &cmd
->work
);
851 EXPORT_SYMBOL(target_complete_cmd
);
853 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
855 if ((scsi_status
== SAM_STAT_GOOD
||
856 cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
857 length
< cmd
->data_length
) {
858 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
859 cmd
->residual_count
+= cmd
->data_length
- length
;
861 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
862 cmd
->residual_count
= cmd
->data_length
- length
;
865 cmd
->data_length
= length
;
868 target_complete_cmd(cmd
, scsi_status
);
870 EXPORT_SYMBOL(target_complete_cmd_with_length
);
872 static void target_add_to_state_list(struct se_cmd
*cmd
)
874 struct se_device
*dev
= cmd
->se_dev
;
877 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
878 if (!cmd
->state_active
) {
879 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
880 cmd
->state_active
= true;
882 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
886 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
888 static void transport_write_pending_qf(struct se_cmd
*cmd
);
889 static void transport_complete_qf(struct se_cmd
*cmd
);
891 void target_qf_do_work(struct work_struct
*work
)
893 struct se_device
*dev
= container_of(work
, struct se_device
,
895 LIST_HEAD(qf_cmd_list
);
896 struct se_cmd
*cmd
, *cmd_tmp
;
898 spin_lock_irq(&dev
->qf_cmd_lock
);
899 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
900 spin_unlock_irq(&dev
->qf_cmd_lock
);
902 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
903 list_del(&cmd
->se_qf_node
);
904 atomic_dec_mb(&dev
->dev_qf_count
);
906 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
907 " context: %s\n", cmd
->se_tfo
->fabric_name
, cmd
,
908 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
909 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
912 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
913 transport_write_pending_qf(cmd
);
914 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
||
915 cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
)
916 transport_complete_qf(cmd
);
920 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
922 switch (cmd
->data_direction
) {
925 case DMA_FROM_DEVICE
:
929 case DMA_BIDIRECTIONAL
:
938 void transport_dump_dev_state(
939 struct se_device
*dev
,
943 *bl
+= sprintf(b
+ *bl
, "Status: ");
944 if (dev
->export_count
)
945 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
947 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
949 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
950 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
951 dev
->dev_attrib
.block_size
,
952 dev
->dev_attrib
.hw_max_sectors
);
953 *bl
+= sprintf(b
+ *bl
, " ");
956 void transport_dump_vpd_proto_id(
958 unsigned char *p_buf
,
961 unsigned char buf
[VPD_TMP_BUF_SIZE
];
964 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
965 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
967 switch (vpd
->protocol_identifier
) {
969 sprintf(buf
+len
, "Fibre Channel\n");
972 sprintf(buf
+len
, "Parallel SCSI\n");
975 sprintf(buf
+len
, "SSA\n");
978 sprintf(buf
+len
, "IEEE 1394\n");
981 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
985 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
988 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
991 sprintf(buf
+len
, "Automation/Drive Interface Transport"
995 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
998 sprintf(buf
+len
, "Unknown 0x%02x\n",
999 vpd
->protocol_identifier
);
1004 strncpy(p_buf
, buf
, p_buf_len
);
1006 pr_debug("%s", buf
);
1010 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1013 * Check if the Protocol Identifier Valid (PIV) bit is set..
1015 * from spc3r23.pdf section 7.5.1
1017 if (page_83
[1] & 0x80) {
1018 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1019 vpd
->protocol_identifier_set
= 1;
1020 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1023 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1025 int transport_dump_vpd_assoc(
1026 struct t10_vpd
*vpd
,
1027 unsigned char *p_buf
,
1030 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1034 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1035 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1037 switch (vpd
->association
) {
1039 sprintf(buf
+len
, "addressed logical unit\n");
1042 sprintf(buf
+len
, "target port\n");
1045 sprintf(buf
+len
, "SCSI target device\n");
1048 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1054 strncpy(p_buf
, buf
, p_buf_len
);
1056 pr_debug("%s", buf
);
1061 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1064 * The VPD identification association..
1066 * from spc3r23.pdf Section 7.6.3.1 Table 297
1068 vpd
->association
= (page_83
[1] & 0x30);
1069 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1071 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1073 int transport_dump_vpd_ident_type(
1074 struct t10_vpd
*vpd
,
1075 unsigned char *p_buf
,
1078 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1082 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1083 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1085 switch (vpd
->device_identifier_type
) {
1087 sprintf(buf
+len
, "Vendor specific\n");
1090 sprintf(buf
+len
, "T10 Vendor ID based\n");
1093 sprintf(buf
+len
, "EUI-64 based\n");
1096 sprintf(buf
+len
, "NAA\n");
1099 sprintf(buf
+len
, "Relative target port identifier\n");
1102 sprintf(buf
+len
, "SCSI name string\n");
1105 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1106 vpd
->device_identifier_type
);
1112 if (p_buf_len
< strlen(buf
)+1)
1114 strncpy(p_buf
, buf
, p_buf_len
);
1116 pr_debug("%s", buf
);
1122 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1125 * The VPD identifier type..
1127 * from spc3r23.pdf Section 7.6.3.1 Table 298
1129 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1130 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1132 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1134 int transport_dump_vpd_ident(
1135 struct t10_vpd
*vpd
,
1136 unsigned char *p_buf
,
1139 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1142 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1144 switch (vpd
->device_identifier_code_set
) {
1145 case 0x01: /* Binary */
1146 snprintf(buf
, sizeof(buf
),
1147 "T10 VPD Binary Device Identifier: %s\n",
1148 &vpd
->device_identifier
[0]);
1150 case 0x02: /* ASCII */
1151 snprintf(buf
, sizeof(buf
),
1152 "T10 VPD ASCII Device Identifier: %s\n",
1153 &vpd
->device_identifier
[0]);
1155 case 0x03: /* UTF-8 */
1156 snprintf(buf
, sizeof(buf
),
1157 "T10 VPD UTF-8 Device Identifier: %s\n",
1158 &vpd
->device_identifier
[0]);
1161 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1162 " 0x%02x", vpd
->device_identifier_code_set
);
1168 strncpy(p_buf
, buf
, p_buf_len
);
1170 pr_debug("%s", buf
);
1176 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1178 static const char hex_str
[] = "0123456789abcdef";
1179 int j
= 0, i
= 4; /* offset to start of the identifier */
1182 * The VPD Code Set (encoding)
1184 * from spc3r23.pdf Section 7.6.3.1 Table 296
1186 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1187 switch (vpd
->device_identifier_code_set
) {
1188 case 0x01: /* Binary */
1189 vpd
->device_identifier
[j
++] =
1190 hex_str
[vpd
->device_identifier_type
];
1191 while (i
< (4 + page_83
[3])) {
1192 vpd
->device_identifier
[j
++] =
1193 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1194 vpd
->device_identifier
[j
++] =
1195 hex_str
[page_83
[i
] & 0x0f];
1199 case 0x02: /* ASCII */
1200 case 0x03: /* UTF-8 */
1201 while (i
< (4 + page_83
[3]))
1202 vpd
->device_identifier
[j
++] = page_83
[i
++];
1208 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1210 EXPORT_SYMBOL(transport_set_vpd_ident
);
1212 static sense_reason_t
1213 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1218 if (!cmd
->se_tfo
->max_data_sg_nents
)
1219 return TCM_NO_SENSE
;
1221 * Check if fabric enforced maximum SGL entries per I/O descriptor
1222 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1223 * residual_count and reduce original cmd->data_length to maximum
1224 * length based on single PAGE_SIZE entry scatter-lists.
1226 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1227 if (cmd
->data_length
> mtl
) {
1229 * If an existing CDB overflow is present, calculate new residual
1230 * based on CDB size minus fabric maximum transfer length.
1232 * If an existing CDB underflow is present, calculate new residual
1233 * based on original cmd->data_length minus fabric maximum transfer
1236 * Otherwise, set the underflow residual based on cmd->data_length
1237 * minus fabric maximum transfer length.
1239 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1240 cmd
->residual_count
= (size
- mtl
);
1241 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1242 u32 orig_dl
= size
+ cmd
->residual_count
;
1243 cmd
->residual_count
= (orig_dl
- mtl
);
1245 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1246 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1248 cmd
->data_length
= mtl
;
1250 * Reset sbc_check_prot() calculated protection payload
1251 * length based upon the new smaller MTL.
1253 if (cmd
->prot_length
) {
1254 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1255 cmd
->prot_length
= dev
->prot_length
* sectors
;
1258 return TCM_NO_SENSE
;
1262 * target_cmd_size_check - Check whether there will be a residual.
1263 * @cmd: SCSI command.
1264 * @size: Data buffer size derived from CDB. The data buffer size provided by
1265 * the SCSI transport driver is available in @cmd->data_length.
1267 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1268 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1270 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
1272 * Return: TCM_NO_SENSE
1275 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1277 struct se_device
*dev
= cmd
->se_dev
;
1279 if (cmd
->unknown_data_length
) {
1280 cmd
->data_length
= size
;
1281 } else if (size
!= cmd
->data_length
) {
1282 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1283 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1284 " 0x%02x\n", cmd
->se_tfo
->fabric_name
,
1285 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1287 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1288 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1289 pr_err_ratelimited("Rejecting underflow/overflow"
1290 " for WRITE data CDB\n");
1291 return TCM_INVALID_CDB_FIELD
;
1294 * Some fabric drivers like iscsi-target still expect to
1295 * always reject overflow writes. Reject this case until
1296 * full fabric driver level support for overflow writes
1297 * is introduced tree-wide.
1299 if (size
> cmd
->data_length
) {
1300 pr_err_ratelimited("Rejecting overflow for"
1301 " WRITE control CDB\n");
1302 return TCM_INVALID_CDB_FIELD
;
1306 * Reject READ_* or WRITE_* with overflow/underflow for
1307 * type SCF_SCSI_DATA_CDB.
1309 if (dev
->dev_attrib
.block_size
!= 512) {
1310 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1311 " CDB on non 512-byte sector setup subsystem"
1312 " plugin: %s\n", dev
->transport
->name
);
1313 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1314 return TCM_INVALID_CDB_FIELD
;
1317 * For the overflow case keep the existing fabric provided
1318 * ->data_length. Otherwise for the underflow case, reset
1319 * ->data_length to the smaller SCSI expected data transfer
1322 if (size
> cmd
->data_length
) {
1323 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1324 cmd
->residual_count
= (size
- cmd
->data_length
);
1326 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1327 cmd
->residual_count
= (cmd
->data_length
- size
);
1328 cmd
->data_length
= size
;
1332 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1337 * Used by fabric modules containing a local struct se_cmd within their
1338 * fabric dependent per I/O descriptor.
1340 * Preserves the value of @cmd->tag.
1342 void transport_init_se_cmd(
1344 const struct target_core_fabric_ops
*tfo
,
1345 struct se_session
*se_sess
,
1349 unsigned char *sense_buffer
)
1351 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1352 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1353 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1354 INIT_LIST_HEAD(&cmd
->state_list
);
1355 init_completion(&cmd
->t_transport_stop_comp
);
1356 cmd
->free_compl
= NULL
;
1357 cmd
->abrt_compl
= NULL
;
1358 spin_lock_init(&cmd
->t_state_lock
);
1359 INIT_WORK(&cmd
->work
, NULL
);
1360 kref_init(&cmd
->cmd_kref
);
1363 cmd
->se_sess
= se_sess
;
1364 cmd
->data_length
= data_length
;
1365 cmd
->data_direction
= data_direction
;
1366 cmd
->sam_task_attr
= task_attr
;
1367 cmd
->sense_buffer
= sense_buffer
;
1369 cmd
->state_active
= false;
1371 EXPORT_SYMBOL(transport_init_se_cmd
);
1373 static sense_reason_t
1374 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1376 struct se_device
*dev
= cmd
->se_dev
;
1379 * Check if SAM Task Attribute emulation is enabled for this
1380 * struct se_device storage object
1382 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1385 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1386 pr_debug("SAM Task Attribute ACA"
1387 " emulation is not supported\n");
1388 return TCM_INVALID_CDB_FIELD
;
1395 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1397 struct se_device
*dev
= cmd
->se_dev
;
1401 * Ensure that the received CDB is less than the max (252 + 8) bytes
1402 * for VARIABLE_LENGTH_CMD
1404 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1405 pr_err("Received SCSI CDB with command_size: %d that"
1406 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1407 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1408 return TCM_INVALID_CDB_FIELD
;
1411 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1412 * allocate the additional extended CDB buffer now.. Otherwise
1413 * setup the pointer from __t_task_cdb to t_task_cdb.
1415 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1416 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1418 if (!cmd
->t_task_cdb
) {
1419 pr_err("Unable to allocate cmd->t_task_cdb"
1420 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1421 scsi_command_size(cdb
),
1422 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1423 return TCM_OUT_OF_RESOURCES
;
1426 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1428 * Copy the original CDB into cmd->
1430 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1432 trace_target_sequencer_start(cmd
);
1434 ret
= dev
->transport
->parse_cdb(cmd
);
1435 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1436 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1437 cmd
->se_tfo
->fabric_name
,
1438 cmd
->se_sess
->se_node_acl
->initiatorname
,
1439 cmd
->t_task_cdb
[0]);
1443 ret
= transport_check_alloc_task_attr(cmd
);
1447 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1448 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1451 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1454 * Used by fabric module frontends to queue tasks directly.
1455 * May only be used from process context.
1457 int transport_handle_cdb_direct(
1464 pr_err("cmd->se_lun is NULL\n");
1467 if (in_interrupt()) {
1469 pr_err("transport_generic_handle_cdb cannot be called"
1470 " from interrupt context\n");
1474 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1475 * outstanding descriptors are handled correctly during shutdown via
1476 * transport_wait_for_tasks()
1478 * Also, we don't take cmd->t_state_lock here as we only expect
1479 * this to be called for initial descriptor submission.
1481 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1482 cmd
->transport_state
|= CMD_T_ACTIVE
;
1485 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1486 * so follow TRANSPORT_NEW_CMD processing thread context usage
1487 * and call transport_generic_request_failure() if necessary..
1489 ret
= transport_generic_new_cmd(cmd
);
1491 transport_generic_request_failure(cmd
, ret
);
1494 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1497 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1498 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1500 if (!sgl
|| !sgl_count
)
1504 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1505 * scatterlists already have been set to follow what the fabric
1506 * passes for the original expected data transfer length.
1508 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1509 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1510 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1511 return TCM_INVALID_CDB_FIELD
;
1514 cmd
->t_data_sg
= sgl
;
1515 cmd
->t_data_nents
= sgl_count
;
1516 cmd
->t_bidi_data_sg
= sgl_bidi
;
1517 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1519 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1524 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1525 * se_cmd + use pre-allocated SGL memory.
1527 * @se_cmd: command descriptor to submit
1528 * @se_sess: associated se_sess for endpoint
1529 * @cdb: pointer to SCSI CDB
1530 * @sense: pointer to SCSI sense buffer
1531 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1532 * @data_length: fabric expected data transfer length
1533 * @task_attr: SAM task attribute
1534 * @data_dir: DMA data direction
1535 * @flags: flags for command submission from target_sc_flags_tables
1536 * @sgl: struct scatterlist memory for unidirectional mapping
1537 * @sgl_count: scatterlist count for unidirectional mapping
1538 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1539 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1540 * @sgl_prot: struct scatterlist memory protection information
1541 * @sgl_prot_count: scatterlist count for protection information
1543 * Task tags are supported if the caller has set @se_cmd->tag.
1545 * Returns non zero to signal active I/O shutdown failure. All other
1546 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1547 * but still return zero here.
1549 * This may only be called from process context, and also currently
1550 * assumes internal allocation of fabric payload buffer by target-core.
1552 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1553 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1554 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1555 struct scatterlist
*sgl
, u32 sgl_count
,
1556 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1557 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1559 struct se_portal_group
*se_tpg
;
1563 se_tpg
= se_sess
->se_tpg
;
1565 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1566 BUG_ON(in_interrupt());
1568 * Initialize se_cmd for target operation. From this point
1569 * exceptions are handled by sending exception status via
1570 * target_core_fabric_ops->queue_status() callback
1572 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1573 data_length
, data_dir
, task_attr
, sense
);
1575 if (flags
& TARGET_SCF_USE_CPUID
)
1576 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1578 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1580 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1581 se_cmd
->unknown_data_length
= 1;
1583 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1584 * se_sess->sess_cmd_list. A second kref_get here is necessary
1585 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1586 * kref_put() to happen during fabric packet acknowledgement.
1588 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1592 * Signal bidirectional data payloads to target-core
1594 if (flags
& TARGET_SCF_BIDI_OP
)
1595 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1597 * Locate se_lun pointer and attach it to struct se_cmd
1599 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1601 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1602 target_put_sess_cmd(se_cmd
);
1606 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1608 transport_generic_request_failure(se_cmd
, rc
);
1613 * Save pointers for SGLs containing protection information,
1616 if (sgl_prot_count
) {
1617 se_cmd
->t_prot_sg
= sgl_prot
;
1618 se_cmd
->t_prot_nents
= sgl_prot_count
;
1619 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1623 * When a non zero sgl_count has been passed perform SGL passthrough
1624 * mapping for pre-allocated fabric memory instead of having target
1625 * core perform an internal SGL allocation..
1627 if (sgl_count
!= 0) {
1631 * A work-around for tcm_loop as some userspace code via
1632 * scsi-generic do not memset their associated read buffers,
1633 * so go ahead and do that here for type non-data CDBs. Also
1634 * note that this is currently guaranteed to be a single SGL
1635 * for this case by target core in target_setup_cmd_from_cdb()
1636 * -> transport_generic_cmd_sequencer().
1638 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1639 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1640 unsigned char *buf
= NULL
;
1643 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1646 memset(buf
, 0, sgl
->length
);
1647 kunmap(sg_page(sgl
));
1651 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1652 sgl_bidi
, sgl_bidi_count
);
1654 transport_generic_request_failure(se_cmd
, rc
);
1660 * Check if we need to delay processing because of ALUA
1661 * Active/NonOptimized primary access state..
1663 core_alua_check_nonop_delay(se_cmd
);
1665 transport_handle_cdb_direct(se_cmd
);
1668 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1671 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1673 * @se_cmd: command descriptor to submit
1674 * @se_sess: associated se_sess for endpoint
1675 * @cdb: pointer to SCSI CDB
1676 * @sense: pointer to SCSI sense buffer
1677 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1678 * @data_length: fabric expected data transfer length
1679 * @task_attr: SAM task attribute
1680 * @data_dir: DMA data direction
1681 * @flags: flags for command submission from target_sc_flags_tables
1683 * Task tags are supported if the caller has set @se_cmd->tag.
1685 * Returns non zero to signal active I/O shutdown failure. All other
1686 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1687 * but still return zero here.
1689 * This may only be called from process context, and also currently
1690 * assumes internal allocation of fabric payload buffer by target-core.
1692 * It also assumes interal target core SGL memory allocation.
1694 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1695 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1696 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1698 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1699 unpacked_lun
, data_length
, task_attr
, data_dir
,
1700 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1702 EXPORT_SYMBOL(target_submit_cmd
);
1704 static void target_complete_tmr_failure(struct work_struct
*work
)
1706 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1708 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1709 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1711 transport_cmd_check_stop_to_fabric(se_cmd
);
1714 static bool target_lookup_lun_from_tag(struct se_session
*se_sess
, u64 tag
,
1717 struct se_cmd
*se_cmd
;
1718 unsigned long flags
;
1721 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
1722 list_for_each_entry(se_cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
) {
1723 if (se_cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
1726 if (se_cmd
->tag
== tag
) {
1727 *unpacked_lun
= se_cmd
->orig_fe_lun
;
1732 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
1738 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1741 * @se_cmd: command descriptor to submit
1742 * @se_sess: associated se_sess for endpoint
1743 * @sense: pointer to SCSI sense buffer
1744 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1745 * @fabric_tmr_ptr: fabric context for TMR req
1746 * @tm_type: Type of TM request
1747 * @gfp: gfp type for caller
1748 * @tag: referenced task tag for TMR_ABORT_TASK
1749 * @flags: submit cmd flags
1751 * Callable from all contexts.
1754 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1755 unsigned char *sense
, u64 unpacked_lun
,
1756 void *fabric_tmr_ptr
, unsigned char tm_type
,
1757 gfp_t gfp
, u64 tag
, int flags
)
1759 struct se_portal_group
*se_tpg
;
1762 se_tpg
= se_sess
->se_tpg
;
1765 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1766 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1768 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1769 * allocation failure.
1771 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1775 if (tm_type
== TMR_ABORT_TASK
)
1776 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1778 /* See target_submit_cmd for commentary */
1779 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1781 core_tmr_release_req(se_cmd
->se_tmr_req
);
1785 * If this is ABORT_TASK with no explicit fabric provided LUN,
1786 * go ahead and search active session tags for a match to figure
1787 * out unpacked_lun for the original se_cmd.
1789 if (tm_type
== TMR_ABORT_TASK
&& (flags
& TARGET_SCF_LOOKUP_LUN_FROM_TAG
)) {
1790 if (!target_lookup_lun_from_tag(se_sess
, tag
, &unpacked_lun
))
1794 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1798 transport_generic_handle_tmr(se_cmd
);
1802 * For callback during failure handling, push this work off
1803 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1806 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1807 schedule_work(&se_cmd
->work
);
1810 EXPORT_SYMBOL(target_submit_tmr
);
1813 * Handle SAM-esque emulation for generic transport request failures.
1815 void transport_generic_request_failure(struct se_cmd
*cmd
,
1816 sense_reason_t sense_reason
)
1818 int ret
= 0, post_ret
;
1820 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1822 target_show_cmd("-----[ ", cmd
);
1825 * For SAM Task Attribute emulation for failed struct se_cmd
1827 transport_complete_task_attr(cmd
);
1829 if (cmd
->transport_complete_callback
)
1830 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1832 if (cmd
->transport_state
& CMD_T_ABORTED
) {
1833 INIT_WORK(&cmd
->work
, target_abort_work
);
1834 queue_work(target_completion_wq
, &cmd
->work
);
1838 switch (sense_reason
) {
1839 case TCM_NON_EXISTENT_LUN
:
1840 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1841 case TCM_INVALID_CDB_FIELD
:
1842 case TCM_INVALID_PARAMETER_LIST
:
1843 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1844 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1845 case TCM_UNKNOWN_MODE_PAGE
:
1846 case TCM_WRITE_PROTECTED
:
1847 case TCM_ADDRESS_OUT_OF_RANGE
:
1848 case TCM_CHECK_CONDITION_ABORT_CMD
:
1849 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1850 case TCM_CHECK_CONDITION_NOT_READY
:
1851 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1852 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1853 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1854 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1855 case TCM_TOO_MANY_TARGET_DESCS
:
1856 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
1857 case TCM_TOO_MANY_SEGMENT_DESCS
:
1858 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
1860 case TCM_OUT_OF_RESOURCES
:
1861 cmd
->scsi_status
= SAM_STAT_TASK_SET_FULL
;
1864 cmd
->scsi_status
= SAM_STAT_BUSY
;
1866 case TCM_RESERVATION_CONFLICT
:
1868 * No SENSE Data payload for this case, set SCSI Status
1869 * and queue the response to $FABRIC_MOD.
1871 * Uses linux/include/scsi/scsi.h SAM status codes defs
1873 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1875 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1876 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1879 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1882 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1883 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1884 cmd
->orig_fe_lun
, 0x2C,
1885 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1890 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1891 cmd
->t_task_cdb
[0], sense_reason
);
1892 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1896 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1901 transport_cmd_check_stop_to_fabric(cmd
);
1905 trace_target_cmd_complete(cmd
);
1906 ret
= cmd
->se_tfo
->queue_status(cmd
);
1910 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
1912 EXPORT_SYMBOL(transport_generic_request_failure
);
1914 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1918 if (!cmd
->execute_cmd
) {
1919 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1924 * Check for an existing UNIT ATTENTION condition after
1925 * target_handle_task_attr() has done SAM task attr
1926 * checking, and possibly have already defered execution
1927 * out to target_restart_delayed_cmds() context.
1929 ret
= target_scsi3_ua_check(cmd
);
1933 ret
= target_alua_state_check(cmd
);
1937 ret
= target_check_reservation(cmd
);
1939 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1944 ret
= cmd
->execute_cmd(cmd
);
1948 spin_lock_irq(&cmd
->t_state_lock
);
1949 cmd
->transport_state
&= ~CMD_T_SENT
;
1950 spin_unlock_irq(&cmd
->t_state_lock
);
1952 transport_generic_request_failure(cmd
, ret
);
1955 static int target_write_prot_action(struct se_cmd
*cmd
)
1959 * Perform WRITE_INSERT of PI using software emulation when backend
1960 * device has PI enabled, if the transport has not already generated
1961 * PI using hardware WRITE_INSERT offload.
1963 switch (cmd
->prot_op
) {
1964 case TARGET_PROT_DOUT_INSERT
:
1965 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1966 sbc_dif_generate(cmd
);
1968 case TARGET_PROT_DOUT_STRIP
:
1969 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1972 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1973 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1974 sectors
, 0, cmd
->t_prot_sg
, 0);
1975 if (unlikely(cmd
->pi_err
)) {
1976 spin_lock_irq(&cmd
->t_state_lock
);
1977 cmd
->transport_state
&= ~CMD_T_SENT
;
1978 spin_unlock_irq(&cmd
->t_state_lock
);
1979 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1990 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1992 struct se_device
*dev
= cmd
->se_dev
;
1994 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1997 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
2000 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2001 * to allow the passed struct se_cmd list of tasks to the front of the list.
2003 switch (cmd
->sam_task_attr
) {
2005 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2006 cmd
->t_task_cdb
[0]);
2008 case TCM_ORDERED_TAG
:
2009 atomic_inc_mb(&dev
->dev_ordered_sync
);
2011 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2012 cmd
->t_task_cdb
[0]);
2015 * Execute an ORDERED command if no other older commands
2016 * exist that need to be completed first.
2018 if (!atomic_read(&dev
->simple_cmds
))
2023 * For SIMPLE and UNTAGGED Task Attribute commands
2025 atomic_inc_mb(&dev
->simple_cmds
);
2029 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
2032 spin_lock(&dev
->delayed_cmd_lock
);
2033 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
2034 spin_unlock(&dev
->delayed_cmd_lock
);
2036 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2037 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
2041 void target_execute_cmd(struct se_cmd
*cmd
)
2044 * Determine if frontend context caller is requesting the stopping of
2045 * this command for frontend exceptions.
2047 * If the received CDB has already been aborted stop processing it here.
2049 if (target_cmd_interrupted(cmd
))
2052 spin_lock_irq(&cmd
->t_state_lock
);
2053 cmd
->t_state
= TRANSPORT_PROCESSING
;
2054 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
2055 spin_unlock_irq(&cmd
->t_state_lock
);
2057 if (target_write_prot_action(cmd
))
2060 if (target_handle_task_attr(cmd
)) {
2061 spin_lock_irq(&cmd
->t_state_lock
);
2062 cmd
->transport_state
&= ~CMD_T_SENT
;
2063 spin_unlock_irq(&cmd
->t_state_lock
);
2067 __target_execute_cmd(cmd
, true);
2069 EXPORT_SYMBOL(target_execute_cmd
);
2072 * Process all commands up to the last received ORDERED task attribute which
2073 * requires another blocking boundary
2075 static void target_restart_delayed_cmds(struct se_device
*dev
)
2080 spin_lock(&dev
->delayed_cmd_lock
);
2081 if (list_empty(&dev
->delayed_cmd_list
)) {
2082 spin_unlock(&dev
->delayed_cmd_lock
);
2086 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
2087 struct se_cmd
, se_delayed_node
);
2088 list_del(&cmd
->se_delayed_node
);
2089 spin_unlock(&dev
->delayed_cmd_lock
);
2091 cmd
->transport_state
|= CMD_T_SENT
;
2093 __target_execute_cmd(cmd
, true);
2095 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
2101 * Called from I/O completion to determine which dormant/delayed
2102 * and ordered cmds need to have their tasks added to the execution queue.
2104 static void transport_complete_task_attr(struct se_cmd
*cmd
)
2106 struct se_device
*dev
= cmd
->se_dev
;
2108 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2111 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2114 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2115 atomic_dec_mb(&dev
->simple_cmds
);
2116 dev
->dev_cur_ordered_id
++;
2117 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2118 dev
->dev_cur_ordered_id
++;
2119 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2120 dev
->dev_cur_ordered_id
);
2121 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2122 atomic_dec_mb(&dev
->dev_ordered_sync
);
2124 dev
->dev_cur_ordered_id
++;
2125 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2126 dev
->dev_cur_ordered_id
);
2128 cmd
->se_cmd_flags
&= ~SCF_TASK_ATTR_SET
;
2131 target_restart_delayed_cmds(dev
);
2134 static void transport_complete_qf(struct se_cmd
*cmd
)
2138 transport_complete_task_attr(cmd
);
2140 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2141 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2142 * the same callbacks should not be retried. Return CHECK_CONDITION
2143 * if a scsi_status is not already set.
2145 * If a fabric driver ->queue_status() has returned non zero, always
2146 * keep retrying no matter what..
2148 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
) {
2149 if (cmd
->scsi_status
)
2152 translate_sense_reason(cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
2157 * Check if we need to send a sense buffer from
2158 * the struct se_cmd in question. We do NOT want
2159 * to take this path of the IO has been marked as
2160 * needing to be treated like a "normal read". This
2161 * is the case if it's a tape read, and either the
2162 * FM, EOM, or ILI bits are set, but there is no
2165 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2166 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
2169 switch (cmd
->data_direction
) {
2170 case DMA_FROM_DEVICE
:
2171 /* queue status if not treating this as a normal read */
2172 if (cmd
->scsi_status
&&
2173 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2176 trace_target_cmd_complete(cmd
);
2177 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2180 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2181 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2187 trace_target_cmd_complete(cmd
);
2188 ret
= cmd
->se_tfo
->queue_status(cmd
);
2195 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2198 transport_cmd_check_stop_to_fabric(cmd
);
2201 static void transport_handle_queue_full(struct se_cmd
*cmd
, struct se_device
*dev
,
2202 int err
, bool write_pending
)
2205 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2206 * ->queue_data_in() callbacks from new process context.
2208 * Otherwise for other errors, transport_complete_qf() will send
2209 * CHECK_CONDITION via ->queue_status() instead of attempting to
2210 * retry associated fabric driver data-transfer callbacks.
2212 if (err
== -EAGAIN
|| err
== -ENOMEM
) {
2213 cmd
->t_state
= (write_pending
) ? TRANSPORT_COMPLETE_QF_WP
:
2214 TRANSPORT_COMPLETE_QF_OK
;
2216 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err
);
2217 cmd
->t_state
= TRANSPORT_COMPLETE_QF_ERR
;
2220 spin_lock_irq(&dev
->qf_cmd_lock
);
2221 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2222 atomic_inc_mb(&dev
->dev_qf_count
);
2223 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2225 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2228 static bool target_read_prot_action(struct se_cmd
*cmd
)
2230 switch (cmd
->prot_op
) {
2231 case TARGET_PROT_DIN_STRIP
:
2232 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2233 u32 sectors
= cmd
->data_length
>>
2234 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2236 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2237 sectors
, 0, cmd
->t_prot_sg
,
2243 case TARGET_PROT_DIN_INSERT
:
2244 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2247 sbc_dif_generate(cmd
);
2256 static void target_complete_ok_work(struct work_struct
*work
)
2258 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2262 * Check if we need to move delayed/dormant tasks from cmds on the
2263 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2266 transport_complete_task_attr(cmd
);
2269 * Check to schedule QUEUE_FULL work, or execute an existing
2270 * cmd->transport_qf_callback()
2272 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2273 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2276 * Check if we need to send a sense buffer from
2277 * the struct se_cmd in question. We do NOT want
2278 * to take this path of the IO has been marked as
2279 * needing to be treated like a "normal read". This
2280 * is the case if it's a tape read, and either the
2281 * FM, EOM, or ILI bits are set, but there is no
2284 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2285 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2286 WARN_ON(!cmd
->scsi_status
);
2287 ret
= transport_send_check_condition_and_sense(
2292 transport_cmd_check_stop_to_fabric(cmd
);
2296 * Check for a callback, used by amongst other things
2297 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2299 if (cmd
->transport_complete_callback
) {
2301 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2302 bool zero_dl
= !(cmd
->data_length
);
2305 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2306 if (!rc
&& !post_ret
) {
2312 ret
= transport_send_check_condition_and_sense(cmd
,
2317 transport_cmd_check_stop_to_fabric(cmd
);
2323 switch (cmd
->data_direction
) {
2324 case DMA_FROM_DEVICE
:
2326 * if this is a READ-type IO, but SCSI status
2327 * is set, then skip returning data and just
2328 * return the status -- unless this IO is marked
2329 * as needing to be treated as a normal read,
2330 * in which case we want to go ahead and return
2331 * the data. This happens, for example, for tape
2332 * reads with the FM, EOM, or ILI bits set, with
2335 if (cmd
->scsi_status
&&
2336 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2339 atomic_long_add(cmd
->data_length
,
2340 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2342 * Perform READ_STRIP of PI using software emulation when
2343 * backend had PI enabled, if the transport will not be
2344 * performing hardware READ_STRIP offload.
2346 if (target_read_prot_action(cmd
)) {
2347 ret
= transport_send_check_condition_and_sense(cmd
,
2352 transport_cmd_check_stop_to_fabric(cmd
);
2356 trace_target_cmd_complete(cmd
);
2357 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2362 atomic_long_add(cmd
->data_length
,
2363 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2365 * Check if we need to send READ payload for BIDI-COMMAND
2367 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2368 atomic_long_add(cmd
->data_length
,
2369 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2370 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2378 trace_target_cmd_complete(cmd
);
2379 ret
= cmd
->se_tfo
->queue_status(cmd
);
2387 transport_cmd_check_stop_to_fabric(cmd
);
2391 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2392 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2394 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2397 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2399 sgl_free_n_order(sgl
, nents
, 0);
2401 EXPORT_SYMBOL(target_free_sgl
);
2403 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2406 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2407 * emulation, and free + reset pointers if necessary..
2409 if (!cmd
->t_data_sg_orig
)
2412 kfree(cmd
->t_data_sg
);
2413 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2414 cmd
->t_data_sg_orig
= NULL
;
2415 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2416 cmd
->t_data_nents_orig
= 0;
2419 static inline void transport_free_pages(struct se_cmd
*cmd
)
2421 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2422 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2423 cmd
->t_prot_sg
= NULL
;
2424 cmd
->t_prot_nents
= 0;
2427 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2429 * Release special case READ buffer payload required for
2430 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2432 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2433 target_free_sgl(cmd
->t_bidi_data_sg
,
2434 cmd
->t_bidi_data_nents
);
2435 cmd
->t_bidi_data_sg
= NULL
;
2436 cmd
->t_bidi_data_nents
= 0;
2438 transport_reset_sgl_orig(cmd
);
2441 transport_reset_sgl_orig(cmd
);
2443 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2444 cmd
->t_data_sg
= NULL
;
2445 cmd
->t_data_nents
= 0;
2447 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2448 cmd
->t_bidi_data_sg
= NULL
;
2449 cmd
->t_bidi_data_nents
= 0;
2452 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2454 struct scatterlist
*sg
= cmd
->t_data_sg
;
2455 struct page
**pages
;
2459 * We need to take into account a possible offset here for fabrics like
2460 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2461 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2463 if (!cmd
->t_data_nents
)
2467 if (cmd
->t_data_nents
== 1)
2468 return kmap(sg_page(sg
)) + sg
->offset
;
2470 /* >1 page. use vmap */
2471 pages
= kmalloc_array(cmd
->t_data_nents
, sizeof(*pages
), GFP_KERNEL
);
2475 /* convert sg[] to pages[] */
2476 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2477 pages
[i
] = sg_page(sg
);
2480 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2482 if (!cmd
->t_data_vmap
)
2485 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2487 EXPORT_SYMBOL(transport_kmap_data_sg
);
2489 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2491 if (!cmd
->t_data_nents
) {
2493 } else if (cmd
->t_data_nents
== 1) {
2494 kunmap(sg_page(cmd
->t_data_sg
));
2498 vunmap(cmd
->t_data_vmap
);
2499 cmd
->t_data_vmap
= NULL
;
2501 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2504 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2505 bool zero_page
, bool chainable
)
2507 gfp_t gfp
= GFP_KERNEL
| (zero_page
? __GFP_ZERO
: 0);
2509 *sgl
= sgl_alloc_order(length
, 0, chainable
, gfp
, nents
);
2510 return *sgl
? 0 : -ENOMEM
;
2512 EXPORT_SYMBOL(target_alloc_sgl
);
2515 * Allocate any required resources to execute the command. For writes we
2516 * might not have the payload yet, so notify the fabric via a call to
2517 * ->write_pending instead. Otherwise place it on the execution queue.
2520 transport_generic_new_cmd(struct se_cmd
*cmd
)
2522 unsigned long flags
;
2524 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2526 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2527 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2528 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2529 cmd
->prot_length
, true, false);
2531 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2535 * Determine if the TCM fabric module has already allocated physical
2536 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2539 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2542 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2543 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2546 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2547 bidi_length
= cmd
->t_task_nolb
*
2548 cmd
->se_dev
->dev_attrib
.block_size
;
2550 bidi_length
= cmd
->data_length
;
2552 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2553 &cmd
->t_bidi_data_nents
,
2554 bidi_length
, zero_flag
, false);
2556 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2559 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2560 cmd
->data_length
, zero_flag
, false);
2562 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2563 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2566 * Special case for COMPARE_AND_WRITE with fabrics
2567 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2569 u32 caw_length
= cmd
->t_task_nolb
*
2570 cmd
->se_dev
->dev_attrib
.block_size
;
2572 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2573 &cmd
->t_bidi_data_nents
,
2574 caw_length
, zero_flag
, false);
2576 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2579 * If this command is not a write we can execute it right here,
2580 * for write buffers we need to notify the fabric driver first
2581 * and let it call back once the write buffers are ready.
2583 target_add_to_state_list(cmd
);
2584 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2585 target_execute_cmd(cmd
);
2589 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2590 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2592 * Determine if frontend context caller is requesting the stopping of
2593 * this command for frontend exceptions.
2595 if (cmd
->transport_state
& CMD_T_STOP
&&
2596 !cmd
->se_tfo
->write_pending_must_be_called
) {
2597 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2598 __func__
, __LINE__
, cmd
->tag
);
2600 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2602 complete_all(&cmd
->t_transport_stop_comp
);
2605 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2606 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2608 ret
= cmd
->se_tfo
->write_pending(cmd
);
2615 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2616 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2619 EXPORT_SYMBOL(transport_generic_new_cmd
);
2621 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2623 unsigned long flags
;
2627 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2628 stop
= (cmd
->transport_state
& (CMD_T_STOP
| CMD_T_ABORTED
));
2629 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2632 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2633 __func__
, __LINE__
, cmd
->tag
);
2634 complete_all(&cmd
->t_transport_stop_comp
);
2638 ret
= cmd
->se_tfo
->write_pending(cmd
);
2640 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2642 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2647 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2648 unsigned long *flags
);
2650 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2652 unsigned long flags
;
2654 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2655 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2656 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2660 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2663 void target_put_cmd_and_wait(struct se_cmd
*cmd
)
2665 DECLARE_COMPLETION_ONSTACK(compl);
2667 WARN_ON_ONCE(cmd
->abrt_compl
);
2668 cmd
->abrt_compl
= &compl;
2669 target_put_sess_cmd(cmd
);
2670 wait_for_completion(&compl);
2674 * This function is called by frontend drivers after processing of a command
2677 * The protocol for ensuring that either the regular frontend command
2678 * processing flow or target_handle_abort() code drops one reference is as
2680 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2681 * the frontend driver to call this function synchronously or asynchronously.
2682 * That will cause one reference to be dropped.
2683 * - During regular command processing the target core sets CMD_T_COMPLETE
2684 * before invoking one of the .queue_*() functions.
2685 * - The code that aborts commands skips commands and TMFs for which
2686 * CMD_T_COMPLETE has been set.
2687 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2688 * commands that will be aborted.
2689 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2690 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2691 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2692 * be called and will drop a reference.
2693 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2694 * will be called. target_handle_abort() will drop the final reference.
2696 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2698 DECLARE_COMPLETION_ONSTACK(compl);
2700 bool aborted
= false, tas
= false;
2703 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2705 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) {
2707 * Handle WRITE failure case where transport_generic_new_cmd()
2708 * has already added se_cmd to state_list, but fabric has
2709 * failed command before I/O submission.
2711 if (cmd
->state_active
)
2712 target_remove_from_state_list(cmd
);
2715 cmd
->free_compl
= &compl;
2716 ret
= target_put_sess_cmd(cmd
);
2718 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2719 wait_for_completion(&compl);
2724 EXPORT_SYMBOL(transport_generic_free_cmd
);
2727 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2728 * @se_cmd: command descriptor to add
2729 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2731 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2733 struct se_session
*se_sess
= se_cmd
->se_sess
;
2734 unsigned long flags
;
2738 * Add a second kref if the fabric caller is expecting to handle
2739 * fabric acknowledgement that requires two target_put_sess_cmd()
2740 * invocations before se_cmd descriptor release.
2743 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2746 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2749 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2750 if (se_sess
->sess_tearing_down
) {
2754 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2755 percpu_ref_get(&se_sess
->cmd_count
);
2757 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2759 if (ret
&& ack_kref
)
2760 target_put_sess_cmd(se_cmd
);
2764 EXPORT_SYMBOL(target_get_sess_cmd
);
2766 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2768 transport_free_pages(cmd
);
2770 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2771 core_tmr_release_req(cmd
->se_tmr_req
);
2772 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2773 kfree(cmd
->t_task_cdb
);
2776 static void target_release_cmd_kref(struct kref
*kref
)
2778 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2779 struct se_session
*se_sess
= se_cmd
->se_sess
;
2780 struct completion
*free_compl
= se_cmd
->free_compl
;
2781 struct completion
*abrt_compl
= se_cmd
->abrt_compl
;
2782 unsigned long flags
;
2784 if (se_cmd
->lun_ref_active
)
2785 percpu_ref_put(&se_cmd
->se_lun
->lun_ref
);
2788 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2789 list_del_init(&se_cmd
->se_cmd_list
);
2790 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2793 target_free_cmd_mem(se_cmd
);
2794 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2796 complete(free_compl
);
2798 complete(abrt_compl
);
2800 percpu_ref_put(&se_sess
->cmd_count
);
2804 * target_put_sess_cmd - decrease the command reference count
2805 * @se_cmd: command to drop a reference from
2807 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2808 * refcount to drop to zero. Returns zero otherwise.
2810 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2812 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2814 EXPORT_SYMBOL(target_put_sess_cmd
);
2816 static const char *data_dir_name(enum dma_data_direction d
)
2819 case DMA_BIDIRECTIONAL
: return "BIDI";
2820 case DMA_TO_DEVICE
: return "WRITE";
2821 case DMA_FROM_DEVICE
: return "READ";
2822 case DMA_NONE
: return "NONE";
2828 static const char *cmd_state_name(enum transport_state_table t
)
2831 case TRANSPORT_NO_STATE
: return "NO_STATE";
2832 case TRANSPORT_NEW_CMD
: return "NEW_CMD";
2833 case TRANSPORT_WRITE_PENDING
: return "WRITE_PENDING";
2834 case TRANSPORT_PROCESSING
: return "PROCESSING";
2835 case TRANSPORT_COMPLETE
: return "COMPLETE";
2836 case TRANSPORT_ISTATE_PROCESSING
:
2837 return "ISTATE_PROCESSING";
2838 case TRANSPORT_COMPLETE_QF_WP
: return "COMPLETE_QF_WP";
2839 case TRANSPORT_COMPLETE_QF_OK
: return "COMPLETE_QF_OK";
2840 case TRANSPORT_COMPLETE_QF_ERR
: return "COMPLETE_QF_ERR";
2846 static void target_append_str(char **str
, const char *txt
)
2850 *str
= *str
? kasprintf(GFP_ATOMIC
, "%s,%s", *str
, txt
) :
2851 kstrdup(txt
, GFP_ATOMIC
);
2856 * Convert a transport state bitmask into a string. The caller is
2857 * responsible for freeing the returned pointer.
2859 static char *target_ts_to_str(u32 ts
)
2863 if (ts
& CMD_T_ABORTED
)
2864 target_append_str(&str
, "aborted");
2865 if (ts
& CMD_T_ACTIVE
)
2866 target_append_str(&str
, "active");
2867 if (ts
& CMD_T_COMPLETE
)
2868 target_append_str(&str
, "complete");
2869 if (ts
& CMD_T_SENT
)
2870 target_append_str(&str
, "sent");
2871 if (ts
& CMD_T_STOP
)
2872 target_append_str(&str
, "stop");
2873 if (ts
& CMD_T_FABRIC_STOP
)
2874 target_append_str(&str
, "fabric_stop");
2879 static const char *target_tmf_name(enum tcm_tmreq_table tmf
)
2882 case TMR_ABORT_TASK
: return "ABORT_TASK";
2883 case TMR_ABORT_TASK_SET
: return "ABORT_TASK_SET";
2884 case TMR_CLEAR_ACA
: return "CLEAR_ACA";
2885 case TMR_CLEAR_TASK_SET
: return "CLEAR_TASK_SET";
2886 case TMR_LUN_RESET
: return "LUN_RESET";
2887 case TMR_TARGET_WARM_RESET
: return "TARGET_WARM_RESET";
2888 case TMR_TARGET_COLD_RESET
: return "TARGET_COLD_RESET";
2889 case TMR_UNKNOWN
: break;
2894 void target_show_cmd(const char *pfx
, struct se_cmd
*cmd
)
2896 char *ts_str
= target_ts_to_str(cmd
->transport_state
);
2897 const u8
*cdb
= cmd
->t_task_cdb
;
2898 struct se_tmr_req
*tmf
= cmd
->se_tmr_req
;
2900 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2901 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2902 pfx
, cdb
[0], cdb
[1], cmd
->tag
,
2903 data_dir_name(cmd
->data_direction
),
2904 cmd
->se_tfo
->get_cmd_state(cmd
),
2905 cmd_state_name(cmd
->t_state
), cmd
->data_length
,
2906 kref_read(&cmd
->cmd_kref
), ts_str
);
2908 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2909 pfx
, target_tmf_name(tmf
->function
), cmd
->tag
,
2910 tmf
->ref_task_tag
, cmd
->se_tfo
->get_cmd_state(cmd
),
2911 cmd_state_name(cmd
->t_state
),
2912 kref_read(&cmd
->cmd_kref
), ts_str
);
2916 EXPORT_SYMBOL(target_show_cmd
);
2919 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2920 * @se_sess: session to flag
2922 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2924 unsigned long flags
;
2926 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2927 se_sess
->sess_tearing_down
= 1;
2928 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2930 percpu_ref_kill(&se_sess
->cmd_count
);
2932 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2935 * target_wait_for_sess_cmds - Wait for outstanding commands
2936 * @se_sess: session to wait for active I/O
2938 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2943 WARN_ON_ONCE(!se_sess
->sess_tearing_down
);
2946 ret
= wait_event_timeout(se_sess
->cmd_list_wq
,
2947 percpu_ref_is_zero(&se_sess
->cmd_count
),
2949 list_for_each_entry(cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
)
2950 target_show_cmd("session shutdown: still waiting for ",
2954 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2957 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
2958 * all references to the LUN have been released. Called during LUN shutdown.
2960 void transport_clear_lun_ref(struct se_lun
*lun
)
2962 percpu_ref_kill(&lun
->lun_ref
);
2963 wait_for_completion(&lun
->lun_shutdown_comp
);
2967 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2968 bool *aborted
, bool *tas
, unsigned long *flags
)
2969 __releases(&cmd
->t_state_lock
)
2970 __acquires(&cmd
->t_state_lock
)
2973 assert_spin_locked(&cmd
->t_state_lock
);
2974 WARN_ON_ONCE(!irqs_disabled());
2977 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2979 if (cmd
->transport_state
& CMD_T_ABORTED
)
2982 if (cmd
->transport_state
& CMD_T_TAS
)
2985 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2986 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2989 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2990 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2993 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2996 if (fabric_stop
&& *aborted
)
2999 cmd
->transport_state
|= CMD_T_STOP
;
3001 target_show_cmd("wait_for_tasks: Stopping ", cmd
);
3003 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
3005 while (!wait_for_completion_timeout(&cmd
->t_transport_stop_comp
,
3007 target_show_cmd("wait for tasks: ", cmd
);
3009 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
3010 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
3012 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3013 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
3019 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3020 * @cmd: command to wait on
3022 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
3024 unsigned long flags
;
3025 bool ret
, aborted
= false, tas
= false;
3027 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3028 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
3029 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3033 EXPORT_SYMBOL(transport_wait_for_tasks
);
3039 bool add_sector_info
;
3042 static const struct sense_info sense_info_table
[] = {
3046 [TCM_NON_EXISTENT_LUN
] = {
3047 .key
= ILLEGAL_REQUEST
,
3048 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3050 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
3051 .key
= ILLEGAL_REQUEST
,
3052 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3054 [TCM_SECTOR_COUNT_TOO_MANY
] = {
3055 .key
= ILLEGAL_REQUEST
,
3056 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3058 [TCM_UNKNOWN_MODE_PAGE
] = {
3059 .key
= ILLEGAL_REQUEST
,
3060 .asc
= 0x24, /* INVALID FIELD IN CDB */
3062 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
3063 .key
= ABORTED_COMMAND
,
3064 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3067 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
3068 .key
= ABORTED_COMMAND
,
3069 .asc
= 0x0c, /* WRITE ERROR */
3070 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3072 [TCM_INVALID_CDB_FIELD
] = {
3073 .key
= ILLEGAL_REQUEST
,
3074 .asc
= 0x24, /* INVALID FIELD IN CDB */
3076 [TCM_INVALID_PARAMETER_LIST
] = {
3077 .key
= ILLEGAL_REQUEST
,
3078 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
3080 [TCM_TOO_MANY_TARGET_DESCS
] = {
3081 .key
= ILLEGAL_REQUEST
,
3083 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
3085 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
3086 .key
= ILLEGAL_REQUEST
,
3088 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3090 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
3091 .key
= ILLEGAL_REQUEST
,
3093 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3095 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
3096 .key
= ILLEGAL_REQUEST
,
3098 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3100 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
3101 .key
= ILLEGAL_REQUEST
,
3102 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
3104 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
3105 .key
= ILLEGAL_REQUEST
,
3106 .asc
= 0x0c, /* WRITE ERROR */
3107 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3109 [TCM_SERVICE_CRC_ERROR
] = {
3110 .key
= ABORTED_COMMAND
,
3111 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
3112 .ascq
= 0x05, /* N/A */
3114 [TCM_SNACK_REJECTED
] = {
3115 .key
= ABORTED_COMMAND
,
3116 .asc
= 0x11, /* READ ERROR */
3117 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
3119 [TCM_WRITE_PROTECTED
] = {
3120 .key
= DATA_PROTECT
,
3121 .asc
= 0x27, /* WRITE PROTECTED */
3123 [TCM_ADDRESS_OUT_OF_RANGE
] = {
3124 .key
= ILLEGAL_REQUEST
,
3125 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3127 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
3128 .key
= UNIT_ATTENTION
,
3130 [TCM_CHECK_CONDITION_NOT_READY
] = {
3133 [TCM_MISCOMPARE_VERIFY
] = {
3135 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3138 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
3139 .key
= ABORTED_COMMAND
,
3141 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3142 .add_sector_info
= true,
3144 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
3145 .key
= ABORTED_COMMAND
,
3147 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3148 .add_sector_info
= true,
3150 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
3151 .key
= ABORTED_COMMAND
,
3153 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3154 .add_sector_info
= true,
3156 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
3157 .key
= COPY_ABORTED
,
3159 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3162 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
3164 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3165 * Solaris initiators. Returning NOT READY instead means the
3166 * operations will be retried a finite number of times and we
3167 * can survive intermittent errors.
3170 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3172 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES
] = {
3174 * From spc4r22 section5.7.7,5.7.8
3175 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3176 * or a REGISTER AND IGNORE EXISTING KEY service action or
3177 * REGISTER AND MOVE service actionis attempted,
3178 * but there are insufficient device server resources to complete the
3179 * operation, then the command shall be terminated with CHECK CONDITION
3180 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3181 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3183 .key
= ILLEGAL_REQUEST
,
3185 .ascq
= 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3190 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3191 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3193 * @reason: LIO sense reason code. If this argument has the value
3194 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3195 * dequeuing a unit attention fails due to multiple commands being processed
3196 * concurrently, set the command status to BUSY.
3198 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3200 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
3202 const struct sense_info
*si
;
3203 u8
*buffer
= cmd
->sense_buffer
;
3204 int r
= (__force
int)reason
;
3206 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
3208 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
3209 si
= &sense_info_table
[r
];
3211 si
= &sense_info_table
[(__force
int)
3212 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
3215 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
3216 if (!core_scsi3_ua_for_check_condition(cmd
, &key
, &asc
,
3218 cmd
->scsi_status
= SAM_STAT_BUSY
;
3221 } else if (si
->asc
== 0) {
3222 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
3223 asc
= cmd
->scsi_asc
;
3224 ascq
= cmd
->scsi_ascq
;
3230 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3231 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3232 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3233 scsi_build_sense_buffer(desc_format
, buffer
, key
, asc
, ascq
);
3234 if (si
->add_sector_info
)
3235 WARN_ON_ONCE(scsi_set_sense_information(buffer
,
3236 cmd
->scsi_sense_length
,
3237 cmd
->bad_sector
) < 0);
3241 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3242 sense_reason_t reason
, int from_transport
)
3244 unsigned long flags
;
3246 WARN_ON_ONCE(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
);
3248 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3249 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3250 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3253 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3254 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3256 if (!from_transport
)
3257 translate_sense_reason(cmd
, reason
);
3259 trace_target_cmd_complete(cmd
);
3260 return cmd
->se_tfo
->queue_status(cmd
);
3262 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3265 * target_send_busy - Send SCSI BUSY status back to the initiator
3266 * @cmd: SCSI command for which to send a BUSY reply.
3268 * Note: Only call this function if target_submit_cmd*() failed.
3270 int target_send_busy(struct se_cmd
*cmd
)
3272 WARN_ON_ONCE(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
);
3274 cmd
->scsi_status
= SAM_STAT_BUSY
;
3275 trace_target_cmd_complete(cmd
);
3276 return cmd
->se_tfo
->queue_status(cmd
);
3278 EXPORT_SYMBOL(target_send_busy
);
3280 static void target_tmr_work(struct work_struct
*work
)
3282 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3283 struct se_device
*dev
= cmd
->se_dev
;
3284 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3287 if (cmd
->transport_state
& CMD_T_ABORTED
)
3290 switch (tmr
->function
) {
3291 case TMR_ABORT_TASK
:
3292 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3294 case TMR_ABORT_TASK_SET
:
3296 case TMR_CLEAR_TASK_SET
:
3297 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3300 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3301 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3302 TMR_FUNCTION_REJECTED
;
3303 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3304 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3305 cmd
->orig_fe_lun
, 0x29,
3306 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3309 case TMR_TARGET_WARM_RESET
:
3310 tmr
->response
= TMR_FUNCTION_REJECTED
;
3312 case TMR_TARGET_COLD_RESET
:
3313 tmr
->response
= TMR_FUNCTION_REJECTED
;
3316 pr_err("Unknown TMR function: 0x%02x.\n",
3318 tmr
->response
= TMR_FUNCTION_REJECTED
;
3322 if (cmd
->transport_state
& CMD_T_ABORTED
)
3325 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3327 transport_cmd_check_stop_to_fabric(cmd
);
3331 target_handle_abort(cmd
);
3334 int transport_generic_handle_tmr(
3337 unsigned long flags
;
3338 bool aborted
= false;
3340 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3341 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3344 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3345 cmd
->transport_state
|= CMD_T_ACTIVE
;
3347 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3350 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3351 cmd
->se_tmr_req
->function
,
3352 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3353 target_handle_abort(cmd
);
3357 INIT_WORK(&cmd
->work
, target_tmr_work
);
3358 schedule_work(&cmd
->work
);
3361 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3364 target_check_wce(struct se_device
*dev
)
3368 if (dev
->transport
->get_write_cache
)
3369 wce
= dev
->transport
->get_write_cache(dev
);
3370 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3377 target_check_fua(struct se_device
*dev
)
3379 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;