treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blobea482d4b1f00e8f03b36d8fc280f319ee03f7f4d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
5 * This file contains the Generic Target Engine Core.
7 * (c) Copyright 2002-2013 Datera, Inc.
9 * Nicholas A. Bellinger <nab@kernel.org>
11 ******************************************************************************/
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
43 static struct workqueue_struct *target_completion_wq;
44 static struct kmem_cache *se_sess_cache;
45 struct kmem_cache *se_ua_cache;
46 struct kmem_cache *t10_pr_reg_cache;
47 struct kmem_cache *t10_alua_lu_gp_cache;
48 struct kmem_cache *t10_alua_lu_gp_mem_cache;
49 struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 struct kmem_cache *t10_alua_lba_map_cache;
51 struct kmem_cache *t10_alua_lba_map_mem_cache;
53 static void transport_complete_task_attr(struct se_cmd *cmd);
54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55 static void transport_handle_queue_full(struct se_cmd *cmd,
56 struct se_device *dev, int err, bool write_pending);
57 static void target_complete_ok_work(struct work_struct *work);
59 int init_se_kmem_caches(void)
61 se_sess_cache = kmem_cache_create("se_sess_cache",
62 sizeof(struct se_session), __alignof__(struct se_session),
63 0, NULL);
64 if (!se_sess_cache) {
65 pr_err("kmem_cache_create() for struct se_session"
66 " failed\n");
67 goto out;
69 se_ua_cache = kmem_cache_create("se_ua_cache",
70 sizeof(struct se_ua), __alignof__(struct se_ua),
71 0, NULL);
72 if (!se_ua_cache) {
73 pr_err("kmem_cache_create() for struct se_ua failed\n");
74 goto out_free_sess_cache;
76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
77 sizeof(struct t10_pr_registration),
78 __alignof__(struct t10_pr_registration), 0, NULL);
79 if (!t10_pr_reg_cache) {
80 pr_err("kmem_cache_create() for struct t10_pr_registration"
81 " failed\n");
82 goto out_free_ua_cache;
84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
86 0, NULL);
87 if (!t10_alua_lu_gp_cache) {
88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89 " failed\n");
90 goto out_free_pr_reg_cache;
92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
93 sizeof(struct t10_alua_lu_gp_member),
94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95 if (!t10_alua_lu_gp_mem_cache) {
96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97 "cache failed\n");
98 goto out_free_lu_gp_cache;
100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
101 sizeof(struct t10_alua_tg_pt_gp),
102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103 if (!t10_alua_tg_pt_gp_cache) {
104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105 "cache failed\n");
106 goto out_free_lu_gp_mem_cache;
108 t10_alua_lba_map_cache = kmem_cache_create(
109 "t10_alua_lba_map_cache",
110 sizeof(struct t10_alua_lba_map),
111 __alignof__(struct t10_alua_lba_map), 0, NULL);
112 if (!t10_alua_lba_map_cache) {
113 pr_err("kmem_cache_create() for t10_alua_lba_map_"
114 "cache failed\n");
115 goto out_free_tg_pt_gp_cache;
117 t10_alua_lba_map_mem_cache = kmem_cache_create(
118 "t10_alua_lba_map_mem_cache",
119 sizeof(struct t10_alua_lba_map_member),
120 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
121 if (!t10_alua_lba_map_mem_cache) {
122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
123 "cache failed\n");
124 goto out_free_lba_map_cache;
127 target_completion_wq = alloc_workqueue("target_completion",
128 WQ_MEM_RECLAIM, 0);
129 if (!target_completion_wq)
130 goto out_free_lba_map_mem_cache;
132 return 0;
134 out_free_lba_map_mem_cache:
135 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
136 out_free_lba_map_cache:
137 kmem_cache_destroy(t10_alua_lba_map_cache);
138 out_free_tg_pt_gp_cache:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
140 out_free_lu_gp_mem_cache:
141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
142 out_free_lu_gp_cache:
143 kmem_cache_destroy(t10_alua_lu_gp_cache);
144 out_free_pr_reg_cache:
145 kmem_cache_destroy(t10_pr_reg_cache);
146 out_free_ua_cache:
147 kmem_cache_destroy(se_ua_cache);
148 out_free_sess_cache:
149 kmem_cache_destroy(se_sess_cache);
150 out:
151 return -ENOMEM;
154 void release_se_kmem_caches(void)
156 destroy_workqueue(target_completion_wq);
157 kmem_cache_destroy(se_sess_cache);
158 kmem_cache_destroy(se_ua_cache);
159 kmem_cache_destroy(t10_pr_reg_cache);
160 kmem_cache_destroy(t10_alua_lu_gp_cache);
161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163 kmem_cache_destroy(t10_alua_lba_map_cache);
164 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock);
169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
172 * Allocate a new row index for the entry type specified
174 u32 scsi_get_new_index(scsi_index_t type)
176 u32 new_index;
178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
180 spin_lock(&scsi_mib_index_lock);
181 new_index = ++scsi_mib_index[type];
182 spin_unlock(&scsi_mib_index_lock);
184 return new_index;
187 void transport_subsystem_check_init(void)
189 int ret;
190 static int sub_api_initialized;
192 if (sub_api_initialized)
193 return;
195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196 if (ret != 0)
197 pr_err("Unable to load target_core_iblock\n");
199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200 if (ret != 0)
201 pr_err("Unable to load target_core_file\n");
203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204 if (ret != 0)
205 pr_err("Unable to load target_core_pscsi\n");
207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208 if (ret != 0)
209 pr_err("Unable to load target_core_user\n");
211 sub_api_initialized = 1;
214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
218 wake_up(&sess->cmd_list_wq);
222 * transport_init_session - initialize a session object
223 * @se_sess: Session object pointer.
225 * The caller must have zero-initialized @se_sess before calling this function.
227 int transport_init_session(struct se_session *se_sess)
229 INIT_LIST_HEAD(&se_sess->sess_list);
230 INIT_LIST_HEAD(&se_sess->sess_acl_list);
231 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
232 spin_lock_init(&se_sess->sess_cmd_lock);
233 init_waitqueue_head(&se_sess->cmd_list_wq);
234 return percpu_ref_init(&se_sess->cmd_count,
235 target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
237 EXPORT_SYMBOL(transport_init_session);
240 * transport_alloc_session - allocate a session object and initialize it
241 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
243 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
245 struct se_session *se_sess;
246 int ret;
248 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
249 if (!se_sess) {
250 pr_err("Unable to allocate struct se_session from"
251 " se_sess_cache\n");
252 return ERR_PTR(-ENOMEM);
254 ret = transport_init_session(se_sess);
255 if (ret < 0) {
256 kmem_cache_free(se_sess_cache, se_sess);
257 return ERR_PTR(ret);
259 se_sess->sup_prot_ops = sup_prot_ops;
261 return se_sess;
263 EXPORT_SYMBOL(transport_alloc_session);
266 * transport_alloc_session_tags - allocate target driver private data
267 * @se_sess: Session pointer.
268 * @tag_num: Maximum number of in-flight commands between initiator and target.
269 * @tag_size: Size in bytes of the private data a target driver associates with
270 * each command.
272 int transport_alloc_session_tags(struct se_session *se_sess,
273 unsigned int tag_num, unsigned int tag_size)
275 int rc;
277 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
278 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
279 if (!se_sess->sess_cmd_map) {
280 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
281 return -ENOMEM;
284 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
285 false, GFP_KERNEL, NUMA_NO_NODE);
286 if (rc < 0) {
287 pr_err("Unable to init se_sess->sess_tag_pool,"
288 " tag_num: %u\n", tag_num);
289 kvfree(se_sess->sess_cmd_map);
290 se_sess->sess_cmd_map = NULL;
291 return -ENOMEM;
294 return 0;
296 EXPORT_SYMBOL(transport_alloc_session_tags);
299 * transport_init_session_tags - allocate a session and target driver private data
300 * @tag_num: Maximum number of in-flight commands between initiator and target.
301 * @tag_size: Size in bytes of the private data a target driver associates with
302 * each command.
303 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
305 static struct se_session *
306 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
307 enum target_prot_op sup_prot_ops)
309 struct se_session *se_sess;
310 int rc;
312 if (tag_num != 0 && !tag_size) {
313 pr_err("init_session_tags called with percpu-ida tag_num:"
314 " %u, but zero tag_size\n", tag_num);
315 return ERR_PTR(-EINVAL);
317 if (!tag_num && tag_size) {
318 pr_err("init_session_tags called with percpu-ida tag_size:"
319 " %u, but zero tag_num\n", tag_size);
320 return ERR_PTR(-EINVAL);
323 se_sess = transport_alloc_session(sup_prot_ops);
324 if (IS_ERR(se_sess))
325 return se_sess;
327 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
328 if (rc < 0) {
329 transport_free_session(se_sess);
330 return ERR_PTR(-ENOMEM);
333 return se_sess;
337 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
339 void __transport_register_session(
340 struct se_portal_group *se_tpg,
341 struct se_node_acl *se_nacl,
342 struct se_session *se_sess,
343 void *fabric_sess_ptr)
345 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
346 unsigned char buf[PR_REG_ISID_LEN];
347 unsigned long flags;
349 se_sess->se_tpg = se_tpg;
350 se_sess->fabric_sess_ptr = fabric_sess_ptr;
352 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
354 * Only set for struct se_session's that will actually be moving I/O.
355 * eg: *NOT* discovery sessions.
357 if (se_nacl) {
360 * Determine if fabric allows for T10-PI feature bits exposed to
361 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
363 * If so, then always save prot_type on a per se_node_acl node
364 * basis and re-instate the previous sess_prot_type to avoid
365 * disabling PI from below any previously initiator side
366 * registered LUNs.
368 if (se_nacl->saved_prot_type)
369 se_sess->sess_prot_type = se_nacl->saved_prot_type;
370 else if (tfo->tpg_check_prot_fabric_only)
371 se_sess->sess_prot_type = se_nacl->saved_prot_type =
372 tfo->tpg_check_prot_fabric_only(se_tpg);
374 * If the fabric module supports an ISID based TransportID,
375 * save this value in binary from the fabric I_T Nexus now.
377 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
378 memset(&buf[0], 0, PR_REG_ISID_LEN);
379 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
380 &buf[0], PR_REG_ISID_LEN);
381 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
384 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
386 * The se_nacl->nacl_sess pointer will be set to the
387 * last active I_T Nexus for each struct se_node_acl.
389 se_nacl->nacl_sess = se_sess;
391 list_add_tail(&se_sess->sess_acl_list,
392 &se_nacl->acl_sess_list);
393 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
395 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
397 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
398 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
400 EXPORT_SYMBOL(__transport_register_session);
402 void transport_register_session(
403 struct se_portal_group *se_tpg,
404 struct se_node_acl *se_nacl,
405 struct se_session *se_sess,
406 void *fabric_sess_ptr)
408 unsigned long flags;
410 spin_lock_irqsave(&se_tpg->session_lock, flags);
411 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
412 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
414 EXPORT_SYMBOL(transport_register_session);
416 struct se_session *
417 target_setup_session(struct se_portal_group *tpg,
418 unsigned int tag_num, unsigned int tag_size,
419 enum target_prot_op prot_op,
420 const char *initiatorname, void *private,
421 int (*callback)(struct se_portal_group *,
422 struct se_session *, void *))
424 struct se_session *sess;
427 * If the fabric driver is using percpu-ida based pre allocation
428 * of I/O descriptor tags, go ahead and perform that setup now..
430 if (tag_num != 0)
431 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
432 else
433 sess = transport_alloc_session(prot_op);
435 if (IS_ERR(sess))
436 return sess;
438 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
439 (unsigned char *)initiatorname);
440 if (!sess->se_node_acl) {
441 transport_free_session(sess);
442 return ERR_PTR(-EACCES);
445 * Go ahead and perform any remaining fabric setup that is
446 * required before transport_register_session().
448 if (callback != NULL) {
449 int rc = callback(tpg, sess, private);
450 if (rc) {
451 transport_free_session(sess);
452 return ERR_PTR(rc);
456 transport_register_session(tpg, sess->se_node_acl, sess, private);
457 return sess;
459 EXPORT_SYMBOL(target_setup_session);
461 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
463 struct se_session *se_sess;
464 ssize_t len = 0;
466 spin_lock_bh(&se_tpg->session_lock);
467 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
468 if (!se_sess->se_node_acl)
469 continue;
470 if (!se_sess->se_node_acl->dynamic_node_acl)
471 continue;
472 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
473 break;
475 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
476 se_sess->se_node_acl->initiatorname);
477 len += 1; /* Include NULL terminator */
479 spin_unlock_bh(&se_tpg->session_lock);
481 return len;
483 EXPORT_SYMBOL(target_show_dynamic_sessions);
485 static void target_complete_nacl(struct kref *kref)
487 struct se_node_acl *nacl = container_of(kref,
488 struct se_node_acl, acl_kref);
489 struct se_portal_group *se_tpg = nacl->se_tpg;
491 if (!nacl->dynamic_stop) {
492 complete(&nacl->acl_free_comp);
493 return;
496 mutex_lock(&se_tpg->acl_node_mutex);
497 list_del_init(&nacl->acl_list);
498 mutex_unlock(&se_tpg->acl_node_mutex);
500 core_tpg_wait_for_nacl_pr_ref(nacl);
501 core_free_device_list_for_node(nacl, se_tpg);
502 kfree(nacl);
505 void target_put_nacl(struct se_node_acl *nacl)
507 kref_put(&nacl->acl_kref, target_complete_nacl);
509 EXPORT_SYMBOL(target_put_nacl);
511 void transport_deregister_session_configfs(struct se_session *se_sess)
513 struct se_node_acl *se_nacl;
514 unsigned long flags;
516 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
518 se_nacl = se_sess->se_node_acl;
519 if (se_nacl) {
520 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
521 if (!list_empty(&se_sess->sess_acl_list))
522 list_del_init(&se_sess->sess_acl_list);
524 * If the session list is empty, then clear the pointer.
525 * Otherwise, set the struct se_session pointer from the tail
526 * element of the per struct se_node_acl active session list.
528 if (list_empty(&se_nacl->acl_sess_list))
529 se_nacl->nacl_sess = NULL;
530 else {
531 se_nacl->nacl_sess = container_of(
532 se_nacl->acl_sess_list.prev,
533 struct se_session, sess_acl_list);
535 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
538 EXPORT_SYMBOL(transport_deregister_session_configfs);
540 void transport_free_session(struct se_session *se_sess)
542 struct se_node_acl *se_nacl = se_sess->se_node_acl;
545 * Drop the se_node_acl->nacl_kref obtained from within
546 * core_tpg_get_initiator_node_acl().
548 if (se_nacl) {
549 struct se_portal_group *se_tpg = se_nacl->se_tpg;
550 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
551 unsigned long flags;
553 se_sess->se_node_acl = NULL;
556 * Also determine if we need to drop the extra ->cmd_kref if
557 * it had been previously dynamically generated, and
558 * the endpoint is not caching dynamic ACLs.
560 mutex_lock(&se_tpg->acl_node_mutex);
561 if (se_nacl->dynamic_node_acl &&
562 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
563 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
564 if (list_empty(&se_nacl->acl_sess_list))
565 se_nacl->dynamic_stop = true;
566 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
568 if (se_nacl->dynamic_stop)
569 list_del_init(&se_nacl->acl_list);
571 mutex_unlock(&se_tpg->acl_node_mutex);
573 if (se_nacl->dynamic_stop)
574 target_put_nacl(se_nacl);
576 target_put_nacl(se_nacl);
578 if (se_sess->sess_cmd_map) {
579 sbitmap_queue_free(&se_sess->sess_tag_pool);
580 kvfree(se_sess->sess_cmd_map);
582 percpu_ref_exit(&se_sess->cmd_count);
583 kmem_cache_free(se_sess_cache, se_sess);
585 EXPORT_SYMBOL(transport_free_session);
587 static int target_release_res(struct se_device *dev, void *data)
589 struct se_session *sess = data;
591 if (dev->reservation_holder == sess)
592 target_release_reservation(dev);
593 return 0;
596 void transport_deregister_session(struct se_session *se_sess)
598 struct se_portal_group *se_tpg = se_sess->se_tpg;
599 unsigned long flags;
601 if (!se_tpg) {
602 transport_free_session(se_sess);
603 return;
606 spin_lock_irqsave(&se_tpg->session_lock, flags);
607 list_del(&se_sess->sess_list);
608 se_sess->se_tpg = NULL;
609 se_sess->fabric_sess_ptr = NULL;
610 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
613 * Since the session is being removed, release SPC-2
614 * reservations held by the session that is disappearing.
616 target_for_each_device(target_release_res, se_sess);
618 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
619 se_tpg->se_tpg_tfo->fabric_name);
621 * If last kref is dropping now for an explicit NodeACL, awake sleeping
622 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
623 * removal context from within transport_free_session() code.
625 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
626 * to release all remaining generate_node_acl=1 created ACL resources.
629 transport_free_session(se_sess);
631 EXPORT_SYMBOL(transport_deregister_session);
633 void target_remove_session(struct se_session *se_sess)
635 transport_deregister_session_configfs(se_sess);
636 transport_deregister_session(se_sess);
638 EXPORT_SYMBOL(target_remove_session);
640 static void target_remove_from_state_list(struct se_cmd *cmd)
642 struct se_device *dev = cmd->se_dev;
643 unsigned long flags;
645 if (!dev)
646 return;
648 spin_lock_irqsave(&dev->execute_task_lock, flags);
649 if (cmd->state_active) {
650 list_del(&cmd->state_list);
651 cmd->state_active = false;
653 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
657 * This function is called by the target core after the target core has
658 * finished processing a SCSI command or SCSI TMF. Both the regular command
659 * processing code and the code for aborting commands can call this
660 * function. CMD_T_STOP is set if and only if another thread is waiting
661 * inside transport_wait_for_tasks() for t_transport_stop_comp.
663 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
665 unsigned long flags;
667 target_remove_from_state_list(cmd);
669 spin_lock_irqsave(&cmd->t_state_lock, flags);
671 * Determine if frontend context caller is requesting the stopping of
672 * this command for frontend exceptions.
674 if (cmd->transport_state & CMD_T_STOP) {
675 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
676 __func__, __LINE__, cmd->tag);
678 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
680 complete_all(&cmd->t_transport_stop_comp);
681 return 1;
683 cmd->transport_state &= ~CMD_T_ACTIVE;
684 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
687 * Some fabric modules like tcm_loop can release their internally
688 * allocated I/O reference and struct se_cmd now.
690 * Fabric modules are expected to return '1' here if the se_cmd being
691 * passed is released at this point, or zero if not being released.
693 return cmd->se_tfo->check_stop_free(cmd);
696 static void target_complete_failure_work(struct work_struct *work)
698 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
700 transport_generic_request_failure(cmd,
701 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
705 * Used when asking transport to copy Sense Data from the underlying
706 * Linux/SCSI struct scsi_cmnd
708 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
710 struct se_device *dev = cmd->se_dev;
712 WARN_ON(!cmd->se_lun);
714 if (!dev)
715 return NULL;
717 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
718 return NULL;
720 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
722 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
723 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
724 return cmd->sense_buffer;
727 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
729 unsigned char *cmd_sense_buf;
730 unsigned long flags;
732 spin_lock_irqsave(&cmd->t_state_lock, flags);
733 cmd_sense_buf = transport_get_sense_buffer(cmd);
734 if (!cmd_sense_buf) {
735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736 return;
739 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
740 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
741 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
743 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
745 static void target_handle_abort(struct se_cmd *cmd)
747 bool tas = cmd->transport_state & CMD_T_TAS;
748 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
749 int ret;
751 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
753 if (tas) {
754 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
755 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
756 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
757 cmd->t_task_cdb[0], cmd->tag);
758 trace_target_cmd_complete(cmd);
759 ret = cmd->se_tfo->queue_status(cmd);
760 if (ret) {
761 transport_handle_queue_full(cmd, cmd->se_dev,
762 ret, false);
763 return;
765 } else {
766 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
767 cmd->se_tfo->queue_tm_rsp(cmd);
769 } else {
771 * Allow the fabric driver to unmap any resources before
772 * releasing the descriptor via TFO->release_cmd().
774 cmd->se_tfo->aborted_task(cmd);
775 if (ack_kref)
776 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
778 * To do: establish a unit attention condition on the I_T
779 * nexus associated with cmd. See also the paragraph "Aborting
780 * commands" in SAM.
784 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
786 transport_cmd_check_stop_to_fabric(cmd);
789 static void target_abort_work(struct work_struct *work)
791 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
793 target_handle_abort(cmd);
796 static bool target_cmd_interrupted(struct se_cmd *cmd)
798 int post_ret;
800 if (cmd->transport_state & CMD_T_ABORTED) {
801 if (cmd->transport_complete_callback)
802 cmd->transport_complete_callback(cmd, false, &post_ret);
803 INIT_WORK(&cmd->work, target_abort_work);
804 queue_work(target_completion_wq, &cmd->work);
805 return true;
806 } else if (cmd->transport_state & CMD_T_STOP) {
807 if (cmd->transport_complete_callback)
808 cmd->transport_complete_callback(cmd, false, &post_ret);
809 complete_all(&cmd->t_transport_stop_comp);
810 return true;
813 return false;
816 /* May be called from interrupt context so must not sleep. */
817 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
819 int success;
820 unsigned long flags;
822 if (target_cmd_interrupted(cmd))
823 return;
825 cmd->scsi_status = scsi_status;
827 spin_lock_irqsave(&cmd->t_state_lock, flags);
828 switch (cmd->scsi_status) {
829 case SAM_STAT_CHECK_CONDITION:
830 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
831 success = 1;
832 else
833 success = 0;
834 break;
835 default:
836 success = 1;
837 break;
840 cmd->t_state = TRANSPORT_COMPLETE;
841 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
842 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
844 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
845 target_complete_failure_work);
846 if (cmd->se_cmd_flags & SCF_USE_CPUID)
847 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
848 else
849 queue_work(target_completion_wq, &cmd->work);
851 EXPORT_SYMBOL(target_complete_cmd);
853 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
855 if ((scsi_status == SAM_STAT_GOOD ||
856 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
857 length < cmd->data_length) {
858 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
859 cmd->residual_count += cmd->data_length - length;
860 } else {
861 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
862 cmd->residual_count = cmd->data_length - length;
865 cmd->data_length = length;
868 target_complete_cmd(cmd, scsi_status);
870 EXPORT_SYMBOL(target_complete_cmd_with_length);
872 static void target_add_to_state_list(struct se_cmd *cmd)
874 struct se_device *dev = cmd->se_dev;
875 unsigned long flags;
877 spin_lock_irqsave(&dev->execute_task_lock, flags);
878 if (!cmd->state_active) {
879 list_add_tail(&cmd->state_list, &dev->state_list);
880 cmd->state_active = true;
882 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
886 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
888 static void transport_write_pending_qf(struct se_cmd *cmd);
889 static void transport_complete_qf(struct se_cmd *cmd);
891 void target_qf_do_work(struct work_struct *work)
893 struct se_device *dev = container_of(work, struct se_device,
894 qf_work_queue);
895 LIST_HEAD(qf_cmd_list);
896 struct se_cmd *cmd, *cmd_tmp;
898 spin_lock_irq(&dev->qf_cmd_lock);
899 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
900 spin_unlock_irq(&dev->qf_cmd_lock);
902 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
903 list_del(&cmd->se_qf_node);
904 atomic_dec_mb(&dev->dev_qf_count);
906 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
907 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
908 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
909 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
910 : "UNKNOWN");
912 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
913 transport_write_pending_qf(cmd);
914 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
915 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
916 transport_complete_qf(cmd);
920 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
922 switch (cmd->data_direction) {
923 case DMA_NONE:
924 return "NONE";
925 case DMA_FROM_DEVICE:
926 return "READ";
927 case DMA_TO_DEVICE:
928 return "WRITE";
929 case DMA_BIDIRECTIONAL:
930 return "BIDI";
931 default:
932 break;
935 return "UNKNOWN";
938 void transport_dump_dev_state(
939 struct se_device *dev,
940 char *b,
941 int *bl)
943 *bl += sprintf(b + *bl, "Status: ");
944 if (dev->export_count)
945 *bl += sprintf(b + *bl, "ACTIVATED");
946 else
947 *bl += sprintf(b + *bl, "DEACTIVATED");
949 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
950 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
951 dev->dev_attrib.block_size,
952 dev->dev_attrib.hw_max_sectors);
953 *bl += sprintf(b + *bl, " ");
956 void transport_dump_vpd_proto_id(
957 struct t10_vpd *vpd,
958 unsigned char *p_buf,
959 int p_buf_len)
961 unsigned char buf[VPD_TMP_BUF_SIZE];
962 int len;
964 memset(buf, 0, VPD_TMP_BUF_SIZE);
965 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
967 switch (vpd->protocol_identifier) {
968 case 0x00:
969 sprintf(buf+len, "Fibre Channel\n");
970 break;
971 case 0x10:
972 sprintf(buf+len, "Parallel SCSI\n");
973 break;
974 case 0x20:
975 sprintf(buf+len, "SSA\n");
976 break;
977 case 0x30:
978 sprintf(buf+len, "IEEE 1394\n");
979 break;
980 case 0x40:
981 sprintf(buf+len, "SCSI Remote Direct Memory Access"
982 " Protocol\n");
983 break;
984 case 0x50:
985 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
986 break;
987 case 0x60:
988 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
989 break;
990 case 0x70:
991 sprintf(buf+len, "Automation/Drive Interface Transport"
992 " Protocol\n");
993 break;
994 case 0x80:
995 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
996 break;
997 default:
998 sprintf(buf+len, "Unknown 0x%02x\n",
999 vpd->protocol_identifier);
1000 break;
1003 if (p_buf)
1004 strncpy(p_buf, buf, p_buf_len);
1005 else
1006 pr_debug("%s", buf);
1009 void
1010 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1013 * Check if the Protocol Identifier Valid (PIV) bit is set..
1015 * from spc3r23.pdf section 7.5.1
1017 if (page_83[1] & 0x80) {
1018 vpd->protocol_identifier = (page_83[0] & 0xf0);
1019 vpd->protocol_identifier_set = 1;
1020 transport_dump_vpd_proto_id(vpd, NULL, 0);
1023 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1025 int transport_dump_vpd_assoc(
1026 struct t10_vpd *vpd,
1027 unsigned char *p_buf,
1028 int p_buf_len)
1030 unsigned char buf[VPD_TMP_BUF_SIZE];
1031 int ret = 0;
1032 int len;
1034 memset(buf, 0, VPD_TMP_BUF_SIZE);
1035 len = sprintf(buf, "T10 VPD Identifier Association: ");
1037 switch (vpd->association) {
1038 case 0x00:
1039 sprintf(buf+len, "addressed logical unit\n");
1040 break;
1041 case 0x10:
1042 sprintf(buf+len, "target port\n");
1043 break;
1044 case 0x20:
1045 sprintf(buf+len, "SCSI target device\n");
1046 break;
1047 default:
1048 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1049 ret = -EINVAL;
1050 break;
1053 if (p_buf)
1054 strncpy(p_buf, buf, p_buf_len);
1055 else
1056 pr_debug("%s", buf);
1058 return ret;
1061 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1064 * The VPD identification association..
1066 * from spc3r23.pdf Section 7.6.3.1 Table 297
1068 vpd->association = (page_83[1] & 0x30);
1069 return transport_dump_vpd_assoc(vpd, NULL, 0);
1071 EXPORT_SYMBOL(transport_set_vpd_assoc);
1073 int transport_dump_vpd_ident_type(
1074 struct t10_vpd *vpd,
1075 unsigned char *p_buf,
1076 int p_buf_len)
1078 unsigned char buf[VPD_TMP_BUF_SIZE];
1079 int ret = 0;
1080 int len;
1082 memset(buf, 0, VPD_TMP_BUF_SIZE);
1083 len = sprintf(buf, "T10 VPD Identifier Type: ");
1085 switch (vpd->device_identifier_type) {
1086 case 0x00:
1087 sprintf(buf+len, "Vendor specific\n");
1088 break;
1089 case 0x01:
1090 sprintf(buf+len, "T10 Vendor ID based\n");
1091 break;
1092 case 0x02:
1093 sprintf(buf+len, "EUI-64 based\n");
1094 break;
1095 case 0x03:
1096 sprintf(buf+len, "NAA\n");
1097 break;
1098 case 0x04:
1099 sprintf(buf+len, "Relative target port identifier\n");
1100 break;
1101 case 0x08:
1102 sprintf(buf+len, "SCSI name string\n");
1103 break;
1104 default:
1105 sprintf(buf+len, "Unsupported: 0x%02x\n",
1106 vpd->device_identifier_type);
1107 ret = -EINVAL;
1108 break;
1111 if (p_buf) {
1112 if (p_buf_len < strlen(buf)+1)
1113 return -EINVAL;
1114 strncpy(p_buf, buf, p_buf_len);
1115 } else {
1116 pr_debug("%s", buf);
1119 return ret;
1122 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1125 * The VPD identifier type..
1127 * from spc3r23.pdf Section 7.6.3.1 Table 298
1129 vpd->device_identifier_type = (page_83[1] & 0x0f);
1130 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1132 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1134 int transport_dump_vpd_ident(
1135 struct t10_vpd *vpd,
1136 unsigned char *p_buf,
1137 int p_buf_len)
1139 unsigned char buf[VPD_TMP_BUF_SIZE];
1140 int ret = 0;
1142 memset(buf, 0, VPD_TMP_BUF_SIZE);
1144 switch (vpd->device_identifier_code_set) {
1145 case 0x01: /* Binary */
1146 snprintf(buf, sizeof(buf),
1147 "T10 VPD Binary Device Identifier: %s\n",
1148 &vpd->device_identifier[0]);
1149 break;
1150 case 0x02: /* ASCII */
1151 snprintf(buf, sizeof(buf),
1152 "T10 VPD ASCII Device Identifier: %s\n",
1153 &vpd->device_identifier[0]);
1154 break;
1155 case 0x03: /* UTF-8 */
1156 snprintf(buf, sizeof(buf),
1157 "T10 VPD UTF-8 Device Identifier: %s\n",
1158 &vpd->device_identifier[0]);
1159 break;
1160 default:
1161 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1162 " 0x%02x", vpd->device_identifier_code_set);
1163 ret = -EINVAL;
1164 break;
1167 if (p_buf)
1168 strncpy(p_buf, buf, p_buf_len);
1169 else
1170 pr_debug("%s", buf);
1172 return ret;
1176 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1178 static const char hex_str[] = "0123456789abcdef";
1179 int j = 0, i = 4; /* offset to start of the identifier */
1182 * The VPD Code Set (encoding)
1184 * from spc3r23.pdf Section 7.6.3.1 Table 296
1186 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1187 switch (vpd->device_identifier_code_set) {
1188 case 0x01: /* Binary */
1189 vpd->device_identifier[j++] =
1190 hex_str[vpd->device_identifier_type];
1191 while (i < (4 + page_83[3])) {
1192 vpd->device_identifier[j++] =
1193 hex_str[(page_83[i] & 0xf0) >> 4];
1194 vpd->device_identifier[j++] =
1195 hex_str[page_83[i] & 0x0f];
1196 i++;
1198 break;
1199 case 0x02: /* ASCII */
1200 case 0x03: /* UTF-8 */
1201 while (i < (4 + page_83[3]))
1202 vpd->device_identifier[j++] = page_83[i++];
1203 break;
1204 default:
1205 break;
1208 return transport_dump_vpd_ident(vpd, NULL, 0);
1210 EXPORT_SYMBOL(transport_set_vpd_ident);
1212 static sense_reason_t
1213 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1214 unsigned int size)
1216 u32 mtl;
1218 if (!cmd->se_tfo->max_data_sg_nents)
1219 return TCM_NO_SENSE;
1221 * Check if fabric enforced maximum SGL entries per I/O descriptor
1222 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1223 * residual_count and reduce original cmd->data_length to maximum
1224 * length based on single PAGE_SIZE entry scatter-lists.
1226 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1227 if (cmd->data_length > mtl) {
1229 * If an existing CDB overflow is present, calculate new residual
1230 * based on CDB size minus fabric maximum transfer length.
1232 * If an existing CDB underflow is present, calculate new residual
1233 * based on original cmd->data_length minus fabric maximum transfer
1234 * length.
1236 * Otherwise, set the underflow residual based on cmd->data_length
1237 * minus fabric maximum transfer length.
1239 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1240 cmd->residual_count = (size - mtl);
1241 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1242 u32 orig_dl = size + cmd->residual_count;
1243 cmd->residual_count = (orig_dl - mtl);
1244 } else {
1245 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1246 cmd->residual_count = (cmd->data_length - mtl);
1248 cmd->data_length = mtl;
1250 * Reset sbc_check_prot() calculated protection payload
1251 * length based upon the new smaller MTL.
1253 if (cmd->prot_length) {
1254 u32 sectors = (mtl / dev->dev_attrib.block_size);
1255 cmd->prot_length = dev->prot_length * sectors;
1258 return TCM_NO_SENSE;
1262 * target_cmd_size_check - Check whether there will be a residual.
1263 * @cmd: SCSI command.
1264 * @size: Data buffer size derived from CDB. The data buffer size provided by
1265 * the SCSI transport driver is available in @cmd->data_length.
1267 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1268 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1270 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
1272 * Return: TCM_NO_SENSE
1274 sense_reason_t
1275 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1277 struct se_device *dev = cmd->se_dev;
1279 if (cmd->unknown_data_length) {
1280 cmd->data_length = size;
1281 } else if (size != cmd->data_length) {
1282 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1283 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1284 " 0x%02x\n", cmd->se_tfo->fabric_name,
1285 cmd->data_length, size, cmd->t_task_cdb[0]);
1287 if (cmd->data_direction == DMA_TO_DEVICE) {
1288 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1289 pr_err_ratelimited("Rejecting underflow/overflow"
1290 " for WRITE data CDB\n");
1291 return TCM_INVALID_CDB_FIELD;
1294 * Some fabric drivers like iscsi-target still expect to
1295 * always reject overflow writes. Reject this case until
1296 * full fabric driver level support for overflow writes
1297 * is introduced tree-wide.
1299 if (size > cmd->data_length) {
1300 pr_err_ratelimited("Rejecting overflow for"
1301 " WRITE control CDB\n");
1302 return TCM_INVALID_CDB_FIELD;
1306 * Reject READ_* or WRITE_* with overflow/underflow for
1307 * type SCF_SCSI_DATA_CDB.
1309 if (dev->dev_attrib.block_size != 512) {
1310 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1311 " CDB on non 512-byte sector setup subsystem"
1312 " plugin: %s\n", dev->transport->name);
1313 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1314 return TCM_INVALID_CDB_FIELD;
1317 * For the overflow case keep the existing fabric provided
1318 * ->data_length. Otherwise for the underflow case, reset
1319 * ->data_length to the smaller SCSI expected data transfer
1320 * length.
1322 if (size > cmd->data_length) {
1323 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1324 cmd->residual_count = (size - cmd->data_length);
1325 } else {
1326 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1327 cmd->residual_count = (cmd->data_length - size);
1328 cmd->data_length = size;
1332 return target_check_max_data_sg_nents(cmd, dev, size);
1337 * Used by fabric modules containing a local struct se_cmd within their
1338 * fabric dependent per I/O descriptor.
1340 * Preserves the value of @cmd->tag.
1342 void transport_init_se_cmd(
1343 struct se_cmd *cmd,
1344 const struct target_core_fabric_ops *tfo,
1345 struct se_session *se_sess,
1346 u32 data_length,
1347 int data_direction,
1348 int task_attr,
1349 unsigned char *sense_buffer)
1351 INIT_LIST_HEAD(&cmd->se_delayed_node);
1352 INIT_LIST_HEAD(&cmd->se_qf_node);
1353 INIT_LIST_HEAD(&cmd->se_cmd_list);
1354 INIT_LIST_HEAD(&cmd->state_list);
1355 init_completion(&cmd->t_transport_stop_comp);
1356 cmd->free_compl = NULL;
1357 cmd->abrt_compl = NULL;
1358 spin_lock_init(&cmd->t_state_lock);
1359 INIT_WORK(&cmd->work, NULL);
1360 kref_init(&cmd->cmd_kref);
1362 cmd->se_tfo = tfo;
1363 cmd->se_sess = se_sess;
1364 cmd->data_length = data_length;
1365 cmd->data_direction = data_direction;
1366 cmd->sam_task_attr = task_attr;
1367 cmd->sense_buffer = sense_buffer;
1369 cmd->state_active = false;
1371 EXPORT_SYMBOL(transport_init_se_cmd);
1373 static sense_reason_t
1374 transport_check_alloc_task_attr(struct se_cmd *cmd)
1376 struct se_device *dev = cmd->se_dev;
1379 * Check if SAM Task Attribute emulation is enabled for this
1380 * struct se_device storage object
1382 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1383 return 0;
1385 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1386 pr_debug("SAM Task Attribute ACA"
1387 " emulation is not supported\n");
1388 return TCM_INVALID_CDB_FIELD;
1391 return 0;
1394 sense_reason_t
1395 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1397 struct se_device *dev = cmd->se_dev;
1398 sense_reason_t ret;
1401 * Ensure that the received CDB is less than the max (252 + 8) bytes
1402 * for VARIABLE_LENGTH_CMD
1404 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1405 pr_err("Received SCSI CDB with command_size: %d that"
1406 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1407 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1408 return TCM_INVALID_CDB_FIELD;
1411 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1412 * allocate the additional extended CDB buffer now.. Otherwise
1413 * setup the pointer from __t_task_cdb to t_task_cdb.
1415 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1416 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1417 GFP_KERNEL);
1418 if (!cmd->t_task_cdb) {
1419 pr_err("Unable to allocate cmd->t_task_cdb"
1420 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1421 scsi_command_size(cdb),
1422 (unsigned long)sizeof(cmd->__t_task_cdb));
1423 return TCM_OUT_OF_RESOURCES;
1425 } else
1426 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1428 * Copy the original CDB into cmd->
1430 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1432 trace_target_sequencer_start(cmd);
1434 ret = dev->transport->parse_cdb(cmd);
1435 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1436 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1437 cmd->se_tfo->fabric_name,
1438 cmd->se_sess->se_node_acl->initiatorname,
1439 cmd->t_task_cdb[0]);
1440 if (ret)
1441 return ret;
1443 ret = transport_check_alloc_task_attr(cmd);
1444 if (ret)
1445 return ret;
1447 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1448 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1449 return 0;
1451 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1454 * Used by fabric module frontends to queue tasks directly.
1455 * May only be used from process context.
1457 int transport_handle_cdb_direct(
1458 struct se_cmd *cmd)
1460 sense_reason_t ret;
1462 if (!cmd->se_lun) {
1463 dump_stack();
1464 pr_err("cmd->se_lun is NULL\n");
1465 return -EINVAL;
1467 if (in_interrupt()) {
1468 dump_stack();
1469 pr_err("transport_generic_handle_cdb cannot be called"
1470 " from interrupt context\n");
1471 return -EINVAL;
1474 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1475 * outstanding descriptors are handled correctly during shutdown via
1476 * transport_wait_for_tasks()
1478 * Also, we don't take cmd->t_state_lock here as we only expect
1479 * this to be called for initial descriptor submission.
1481 cmd->t_state = TRANSPORT_NEW_CMD;
1482 cmd->transport_state |= CMD_T_ACTIVE;
1485 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1486 * so follow TRANSPORT_NEW_CMD processing thread context usage
1487 * and call transport_generic_request_failure() if necessary..
1489 ret = transport_generic_new_cmd(cmd);
1490 if (ret)
1491 transport_generic_request_failure(cmd, ret);
1492 return 0;
1494 EXPORT_SYMBOL(transport_handle_cdb_direct);
1496 sense_reason_t
1497 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1498 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1500 if (!sgl || !sgl_count)
1501 return 0;
1504 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1505 * scatterlists already have been set to follow what the fabric
1506 * passes for the original expected data transfer length.
1508 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1509 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1510 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1511 return TCM_INVALID_CDB_FIELD;
1514 cmd->t_data_sg = sgl;
1515 cmd->t_data_nents = sgl_count;
1516 cmd->t_bidi_data_sg = sgl_bidi;
1517 cmd->t_bidi_data_nents = sgl_bidi_count;
1519 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1520 return 0;
1524 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1525 * se_cmd + use pre-allocated SGL memory.
1527 * @se_cmd: command descriptor to submit
1528 * @se_sess: associated se_sess for endpoint
1529 * @cdb: pointer to SCSI CDB
1530 * @sense: pointer to SCSI sense buffer
1531 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1532 * @data_length: fabric expected data transfer length
1533 * @task_attr: SAM task attribute
1534 * @data_dir: DMA data direction
1535 * @flags: flags for command submission from target_sc_flags_tables
1536 * @sgl: struct scatterlist memory for unidirectional mapping
1537 * @sgl_count: scatterlist count for unidirectional mapping
1538 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1539 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1540 * @sgl_prot: struct scatterlist memory protection information
1541 * @sgl_prot_count: scatterlist count for protection information
1543 * Task tags are supported if the caller has set @se_cmd->tag.
1545 * Returns non zero to signal active I/O shutdown failure. All other
1546 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1547 * but still return zero here.
1549 * This may only be called from process context, and also currently
1550 * assumes internal allocation of fabric payload buffer by target-core.
1552 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1553 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1554 u32 data_length, int task_attr, int data_dir, int flags,
1555 struct scatterlist *sgl, u32 sgl_count,
1556 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1557 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1559 struct se_portal_group *se_tpg;
1560 sense_reason_t rc;
1561 int ret;
1563 se_tpg = se_sess->se_tpg;
1564 BUG_ON(!se_tpg);
1565 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1566 BUG_ON(in_interrupt());
1568 * Initialize se_cmd for target operation. From this point
1569 * exceptions are handled by sending exception status via
1570 * target_core_fabric_ops->queue_status() callback
1572 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1573 data_length, data_dir, task_attr, sense);
1575 if (flags & TARGET_SCF_USE_CPUID)
1576 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1577 else
1578 se_cmd->cpuid = WORK_CPU_UNBOUND;
1580 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1581 se_cmd->unknown_data_length = 1;
1583 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1584 * se_sess->sess_cmd_list. A second kref_get here is necessary
1585 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1586 * kref_put() to happen during fabric packet acknowledgement.
1588 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1589 if (ret)
1590 return ret;
1592 * Signal bidirectional data payloads to target-core
1594 if (flags & TARGET_SCF_BIDI_OP)
1595 se_cmd->se_cmd_flags |= SCF_BIDI;
1597 * Locate se_lun pointer and attach it to struct se_cmd
1599 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1600 if (rc) {
1601 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1602 target_put_sess_cmd(se_cmd);
1603 return 0;
1606 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1607 if (rc != 0) {
1608 transport_generic_request_failure(se_cmd, rc);
1609 return 0;
1613 * Save pointers for SGLs containing protection information,
1614 * if present.
1616 if (sgl_prot_count) {
1617 se_cmd->t_prot_sg = sgl_prot;
1618 se_cmd->t_prot_nents = sgl_prot_count;
1619 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1623 * When a non zero sgl_count has been passed perform SGL passthrough
1624 * mapping for pre-allocated fabric memory instead of having target
1625 * core perform an internal SGL allocation..
1627 if (sgl_count != 0) {
1628 BUG_ON(!sgl);
1631 * A work-around for tcm_loop as some userspace code via
1632 * scsi-generic do not memset their associated read buffers,
1633 * so go ahead and do that here for type non-data CDBs. Also
1634 * note that this is currently guaranteed to be a single SGL
1635 * for this case by target core in target_setup_cmd_from_cdb()
1636 * -> transport_generic_cmd_sequencer().
1638 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1639 se_cmd->data_direction == DMA_FROM_DEVICE) {
1640 unsigned char *buf = NULL;
1642 if (sgl)
1643 buf = kmap(sg_page(sgl)) + sgl->offset;
1645 if (buf) {
1646 memset(buf, 0, sgl->length);
1647 kunmap(sg_page(sgl));
1651 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1652 sgl_bidi, sgl_bidi_count);
1653 if (rc != 0) {
1654 transport_generic_request_failure(se_cmd, rc);
1655 return 0;
1660 * Check if we need to delay processing because of ALUA
1661 * Active/NonOptimized primary access state..
1663 core_alua_check_nonop_delay(se_cmd);
1665 transport_handle_cdb_direct(se_cmd);
1666 return 0;
1668 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1671 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1673 * @se_cmd: command descriptor to submit
1674 * @se_sess: associated se_sess for endpoint
1675 * @cdb: pointer to SCSI CDB
1676 * @sense: pointer to SCSI sense buffer
1677 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1678 * @data_length: fabric expected data transfer length
1679 * @task_attr: SAM task attribute
1680 * @data_dir: DMA data direction
1681 * @flags: flags for command submission from target_sc_flags_tables
1683 * Task tags are supported if the caller has set @se_cmd->tag.
1685 * Returns non zero to signal active I/O shutdown failure. All other
1686 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1687 * but still return zero here.
1689 * This may only be called from process context, and also currently
1690 * assumes internal allocation of fabric payload buffer by target-core.
1692 * It also assumes interal target core SGL memory allocation.
1694 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1695 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1696 u32 data_length, int task_attr, int data_dir, int flags)
1698 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1699 unpacked_lun, data_length, task_attr, data_dir,
1700 flags, NULL, 0, NULL, 0, NULL, 0);
1702 EXPORT_SYMBOL(target_submit_cmd);
1704 static void target_complete_tmr_failure(struct work_struct *work)
1706 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1708 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1709 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1711 transport_cmd_check_stop_to_fabric(se_cmd);
1714 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1715 u64 *unpacked_lun)
1717 struct se_cmd *se_cmd;
1718 unsigned long flags;
1719 bool ret = false;
1721 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1722 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1723 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1724 continue;
1726 if (se_cmd->tag == tag) {
1727 *unpacked_lun = se_cmd->orig_fe_lun;
1728 ret = true;
1729 break;
1732 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1734 return ret;
1738 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1739 * for TMR CDBs
1741 * @se_cmd: command descriptor to submit
1742 * @se_sess: associated se_sess for endpoint
1743 * @sense: pointer to SCSI sense buffer
1744 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1745 * @fabric_tmr_ptr: fabric context for TMR req
1746 * @tm_type: Type of TM request
1747 * @gfp: gfp type for caller
1748 * @tag: referenced task tag for TMR_ABORT_TASK
1749 * @flags: submit cmd flags
1751 * Callable from all contexts.
1754 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1755 unsigned char *sense, u64 unpacked_lun,
1756 void *fabric_tmr_ptr, unsigned char tm_type,
1757 gfp_t gfp, u64 tag, int flags)
1759 struct se_portal_group *se_tpg;
1760 int ret;
1762 se_tpg = se_sess->se_tpg;
1763 BUG_ON(!se_tpg);
1765 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1766 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1768 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1769 * allocation failure.
1771 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1772 if (ret < 0)
1773 return -ENOMEM;
1775 if (tm_type == TMR_ABORT_TASK)
1776 se_cmd->se_tmr_req->ref_task_tag = tag;
1778 /* See target_submit_cmd for commentary */
1779 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1780 if (ret) {
1781 core_tmr_release_req(se_cmd->se_tmr_req);
1782 return ret;
1785 * If this is ABORT_TASK with no explicit fabric provided LUN,
1786 * go ahead and search active session tags for a match to figure
1787 * out unpacked_lun for the original se_cmd.
1789 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1790 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1791 goto failure;
1794 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1795 if (ret)
1796 goto failure;
1798 transport_generic_handle_tmr(se_cmd);
1799 return 0;
1802 * For callback during failure handling, push this work off
1803 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1805 failure:
1806 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1807 schedule_work(&se_cmd->work);
1808 return 0;
1810 EXPORT_SYMBOL(target_submit_tmr);
1813 * Handle SAM-esque emulation for generic transport request failures.
1815 void transport_generic_request_failure(struct se_cmd *cmd,
1816 sense_reason_t sense_reason)
1818 int ret = 0, post_ret;
1820 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1821 sense_reason);
1822 target_show_cmd("-----[ ", cmd);
1825 * For SAM Task Attribute emulation for failed struct se_cmd
1827 transport_complete_task_attr(cmd);
1829 if (cmd->transport_complete_callback)
1830 cmd->transport_complete_callback(cmd, false, &post_ret);
1832 if (cmd->transport_state & CMD_T_ABORTED) {
1833 INIT_WORK(&cmd->work, target_abort_work);
1834 queue_work(target_completion_wq, &cmd->work);
1835 return;
1838 switch (sense_reason) {
1839 case TCM_NON_EXISTENT_LUN:
1840 case TCM_UNSUPPORTED_SCSI_OPCODE:
1841 case TCM_INVALID_CDB_FIELD:
1842 case TCM_INVALID_PARAMETER_LIST:
1843 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1844 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1845 case TCM_UNKNOWN_MODE_PAGE:
1846 case TCM_WRITE_PROTECTED:
1847 case TCM_ADDRESS_OUT_OF_RANGE:
1848 case TCM_CHECK_CONDITION_ABORT_CMD:
1849 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1850 case TCM_CHECK_CONDITION_NOT_READY:
1851 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1852 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1853 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1854 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1855 case TCM_TOO_MANY_TARGET_DESCS:
1856 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1857 case TCM_TOO_MANY_SEGMENT_DESCS:
1858 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1859 break;
1860 case TCM_OUT_OF_RESOURCES:
1861 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1862 goto queue_status;
1863 case TCM_LUN_BUSY:
1864 cmd->scsi_status = SAM_STAT_BUSY;
1865 goto queue_status;
1866 case TCM_RESERVATION_CONFLICT:
1868 * No SENSE Data payload for this case, set SCSI Status
1869 * and queue the response to $FABRIC_MOD.
1871 * Uses linux/include/scsi/scsi.h SAM status codes defs
1873 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1875 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1876 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1877 * CONFLICT STATUS.
1879 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1881 if (cmd->se_sess &&
1882 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1883 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1884 cmd->orig_fe_lun, 0x2C,
1885 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1888 goto queue_status;
1889 default:
1890 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1891 cmd->t_task_cdb[0], sense_reason);
1892 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1893 break;
1896 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1897 if (ret)
1898 goto queue_full;
1900 check_stop:
1901 transport_cmd_check_stop_to_fabric(cmd);
1902 return;
1904 queue_status:
1905 trace_target_cmd_complete(cmd);
1906 ret = cmd->se_tfo->queue_status(cmd);
1907 if (!ret)
1908 goto check_stop;
1909 queue_full:
1910 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1912 EXPORT_SYMBOL(transport_generic_request_failure);
1914 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1916 sense_reason_t ret;
1918 if (!cmd->execute_cmd) {
1919 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1920 goto err;
1922 if (do_checks) {
1924 * Check for an existing UNIT ATTENTION condition after
1925 * target_handle_task_attr() has done SAM task attr
1926 * checking, and possibly have already defered execution
1927 * out to target_restart_delayed_cmds() context.
1929 ret = target_scsi3_ua_check(cmd);
1930 if (ret)
1931 goto err;
1933 ret = target_alua_state_check(cmd);
1934 if (ret)
1935 goto err;
1937 ret = target_check_reservation(cmd);
1938 if (ret) {
1939 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1940 goto err;
1944 ret = cmd->execute_cmd(cmd);
1945 if (!ret)
1946 return;
1947 err:
1948 spin_lock_irq(&cmd->t_state_lock);
1949 cmd->transport_state &= ~CMD_T_SENT;
1950 spin_unlock_irq(&cmd->t_state_lock);
1952 transport_generic_request_failure(cmd, ret);
1955 static int target_write_prot_action(struct se_cmd *cmd)
1957 u32 sectors;
1959 * Perform WRITE_INSERT of PI using software emulation when backend
1960 * device has PI enabled, if the transport has not already generated
1961 * PI using hardware WRITE_INSERT offload.
1963 switch (cmd->prot_op) {
1964 case TARGET_PROT_DOUT_INSERT:
1965 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1966 sbc_dif_generate(cmd);
1967 break;
1968 case TARGET_PROT_DOUT_STRIP:
1969 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1970 break;
1972 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1973 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1974 sectors, 0, cmd->t_prot_sg, 0);
1975 if (unlikely(cmd->pi_err)) {
1976 spin_lock_irq(&cmd->t_state_lock);
1977 cmd->transport_state &= ~CMD_T_SENT;
1978 spin_unlock_irq(&cmd->t_state_lock);
1979 transport_generic_request_failure(cmd, cmd->pi_err);
1980 return -1;
1982 break;
1983 default:
1984 break;
1987 return 0;
1990 static bool target_handle_task_attr(struct se_cmd *cmd)
1992 struct se_device *dev = cmd->se_dev;
1994 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1995 return false;
1997 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2000 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2001 * to allow the passed struct se_cmd list of tasks to the front of the list.
2003 switch (cmd->sam_task_attr) {
2004 case TCM_HEAD_TAG:
2005 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2006 cmd->t_task_cdb[0]);
2007 return false;
2008 case TCM_ORDERED_TAG:
2009 atomic_inc_mb(&dev->dev_ordered_sync);
2011 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2012 cmd->t_task_cdb[0]);
2015 * Execute an ORDERED command if no other older commands
2016 * exist that need to be completed first.
2018 if (!atomic_read(&dev->simple_cmds))
2019 return false;
2020 break;
2021 default:
2023 * For SIMPLE and UNTAGGED Task Attribute commands
2025 atomic_inc_mb(&dev->simple_cmds);
2026 break;
2029 if (atomic_read(&dev->dev_ordered_sync) == 0)
2030 return false;
2032 spin_lock(&dev->delayed_cmd_lock);
2033 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2034 spin_unlock(&dev->delayed_cmd_lock);
2036 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2037 cmd->t_task_cdb[0], cmd->sam_task_attr);
2038 return true;
2041 void target_execute_cmd(struct se_cmd *cmd)
2044 * Determine if frontend context caller is requesting the stopping of
2045 * this command for frontend exceptions.
2047 * If the received CDB has already been aborted stop processing it here.
2049 if (target_cmd_interrupted(cmd))
2050 return;
2052 spin_lock_irq(&cmd->t_state_lock);
2053 cmd->t_state = TRANSPORT_PROCESSING;
2054 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2055 spin_unlock_irq(&cmd->t_state_lock);
2057 if (target_write_prot_action(cmd))
2058 return;
2060 if (target_handle_task_attr(cmd)) {
2061 spin_lock_irq(&cmd->t_state_lock);
2062 cmd->transport_state &= ~CMD_T_SENT;
2063 spin_unlock_irq(&cmd->t_state_lock);
2064 return;
2067 __target_execute_cmd(cmd, true);
2069 EXPORT_SYMBOL(target_execute_cmd);
2072 * Process all commands up to the last received ORDERED task attribute which
2073 * requires another blocking boundary
2075 static void target_restart_delayed_cmds(struct se_device *dev)
2077 for (;;) {
2078 struct se_cmd *cmd;
2080 spin_lock(&dev->delayed_cmd_lock);
2081 if (list_empty(&dev->delayed_cmd_list)) {
2082 spin_unlock(&dev->delayed_cmd_lock);
2083 break;
2086 cmd = list_entry(dev->delayed_cmd_list.next,
2087 struct se_cmd, se_delayed_node);
2088 list_del(&cmd->se_delayed_node);
2089 spin_unlock(&dev->delayed_cmd_lock);
2091 cmd->transport_state |= CMD_T_SENT;
2093 __target_execute_cmd(cmd, true);
2095 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2096 break;
2101 * Called from I/O completion to determine which dormant/delayed
2102 * and ordered cmds need to have their tasks added to the execution queue.
2104 static void transport_complete_task_attr(struct se_cmd *cmd)
2106 struct se_device *dev = cmd->se_dev;
2108 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2109 return;
2111 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2112 goto restart;
2114 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2115 atomic_dec_mb(&dev->simple_cmds);
2116 dev->dev_cur_ordered_id++;
2117 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2118 dev->dev_cur_ordered_id++;
2119 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2120 dev->dev_cur_ordered_id);
2121 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2122 atomic_dec_mb(&dev->dev_ordered_sync);
2124 dev->dev_cur_ordered_id++;
2125 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2126 dev->dev_cur_ordered_id);
2128 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2130 restart:
2131 target_restart_delayed_cmds(dev);
2134 static void transport_complete_qf(struct se_cmd *cmd)
2136 int ret = 0;
2138 transport_complete_task_attr(cmd);
2140 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2141 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2142 * the same callbacks should not be retried. Return CHECK_CONDITION
2143 * if a scsi_status is not already set.
2145 * If a fabric driver ->queue_status() has returned non zero, always
2146 * keep retrying no matter what..
2148 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2149 if (cmd->scsi_status)
2150 goto queue_status;
2152 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2153 goto queue_status;
2157 * Check if we need to send a sense buffer from
2158 * the struct se_cmd in question. We do NOT want
2159 * to take this path of the IO has been marked as
2160 * needing to be treated like a "normal read". This
2161 * is the case if it's a tape read, and either the
2162 * FM, EOM, or ILI bits are set, but there is no
2163 * sense data.
2165 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2166 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2167 goto queue_status;
2169 switch (cmd->data_direction) {
2170 case DMA_FROM_DEVICE:
2171 /* queue status if not treating this as a normal read */
2172 if (cmd->scsi_status &&
2173 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2174 goto queue_status;
2176 trace_target_cmd_complete(cmd);
2177 ret = cmd->se_tfo->queue_data_in(cmd);
2178 break;
2179 case DMA_TO_DEVICE:
2180 if (cmd->se_cmd_flags & SCF_BIDI) {
2181 ret = cmd->se_tfo->queue_data_in(cmd);
2182 break;
2184 /* fall through */
2185 case DMA_NONE:
2186 queue_status:
2187 trace_target_cmd_complete(cmd);
2188 ret = cmd->se_tfo->queue_status(cmd);
2189 break;
2190 default:
2191 break;
2194 if (ret < 0) {
2195 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2196 return;
2198 transport_cmd_check_stop_to_fabric(cmd);
2201 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2202 int err, bool write_pending)
2205 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2206 * ->queue_data_in() callbacks from new process context.
2208 * Otherwise for other errors, transport_complete_qf() will send
2209 * CHECK_CONDITION via ->queue_status() instead of attempting to
2210 * retry associated fabric driver data-transfer callbacks.
2212 if (err == -EAGAIN || err == -ENOMEM) {
2213 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2214 TRANSPORT_COMPLETE_QF_OK;
2215 } else {
2216 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2217 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2220 spin_lock_irq(&dev->qf_cmd_lock);
2221 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2222 atomic_inc_mb(&dev->dev_qf_count);
2223 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2225 schedule_work(&cmd->se_dev->qf_work_queue);
2228 static bool target_read_prot_action(struct se_cmd *cmd)
2230 switch (cmd->prot_op) {
2231 case TARGET_PROT_DIN_STRIP:
2232 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2233 u32 sectors = cmd->data_length >>
2234 ilog2(cmd->se_dev->dev_attrib.block_size);
2236 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2237 sectors, 0, cmd->t_prot_sg,
2239 if (cmd->pi_err)
2240 return true;
2242 break;
2243 case TARGET_PROT_DIN_INSERT:
2244 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2245 break;
2247 sbc_dif_generate(cmd);
2248 break;
2249 default:
2250 break;
2253 return false;
2256 static void target_complete_ok_work(struct work_struct *work)
2258 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2259 int ret;
2262 * Check if we need to move delayed/dormant tasks from cmds on the
2263 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2264 * Attribute.
2266 transport_complete_task_attr(cmd);
2269 * Check to schedule QUEUE_FULL work, or execute an existing
2270 * cmd->transport_qf_callback()
2272 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2273 schedule_work(&cmd->se_dev->qf_work_queue);
2276 * Check if we need to send a sense buffer from
2277 * the struct se_cmd in question. We do NOT want
2278 * to take this path of the IO has been marked as
2279 * needing to be treated like a "normal read". This
2280 * is the case if it's a tape read, and either the
2281 * FM, EOM, or ILI bits are set, but there is no
2282 * sense data.
2284 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2285 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2286 WARN_ON(!cmd->scsi_status);
2287 ret = transport_send_check_condition_and_sense(
2288 cmd, 0, 1);
2289 if (ret)
2290 goto queue_full;
2292 transport_cmd_check_stop_to_fabric(cmd);
2293 return;
2296 * Check for a callback, used by amongst other things
2297 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2299 if (cmd->transport_complete_callback) {
2300 sense_reason_t rc;
2301 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2302 bool zero_dl = !(cmd->data_length);
2303 int post_ret = 0;
2305 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2306 if (!rc && !post_ret) {
2307 if (caw && zero_dl)
2308 goto queue_rsp;
2310 return;
2311 } else if (rc) {
2312 ret = transport_send_check_condition_and_sense(cmd,
2313 rc, 0);
2314 if (ret)
2315 goto queue_full;
2317 transport_cmd_check_stop_to_fabric(cmd);
2318 return;
2322 queue_rsp:
2323 switch (cmd->data_direction) {
2324 case DMA_FROM_DEVICE:
2326 * if this is a READ-type IO, but SCSI status
2327 * is set, then skip returning data and just
2328 * return the status -- unless this IO is marked
2329 * as needing to be treated as a normal read,
2330 * in which case we want to go ahead and return
2331 * the data. This happens, for example, for tape
2332 * reads with the FM, EOM, or ILI bits set, with
2333 * no sense data.
2335 if (cmd->scsi_status &&
2336 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2337 goto queue_status;
2339 atomic_long_add(cmd->data_length,
2340 &cmd->se_lun->lun_stats.tx_data_octets);
2342 * Perform READ_STRIP of PI using software emulation when
2343 * backend had PI enabled, if the transport will not be
2344 * performing hardware READ_STRIP offload.
2346 if (target_read_prot_action(cmd)) {
2347 ret = transport_send_check_condition_and_sense(cmd,
2348 cmd->pi_err, 0);
2349 if (ret)
2350 goto queue_full;
2352 transport_cmd_check_stop_to_fabric(cmd);
2353 return;
2356 trace_target_cmd_complete(cmd);
2357 ret = cmd->se_tfo->queue_data_in(cmd);
2358 if (ret)
2359 goto queue_full;
2360 break;
2361 case DMA_TO_DEVICE:
2362 atomic_long_add(cmd->data_length,
2363 &cmd->se_lun->lun_stats.rx_data_octets);
2365 * Check if we need to send READ payload for BIDI-COMMAND
2367 if (cmd->se_cmd_flags & SCF_BIDI) {
2368 atomic_long_add(cmd->data_length,
2369 &cmd->se_lun->lun_stats.tx_data_octets);
2370 ret = cmd->se_tfo->queue_data_in(cmd);
2371 if (ret)
2372 goto queue_full;
2373 break;
2375 /* fall through */
2376 case DMA_NONE:
2377 queue_status:
2378 trace_target_cmd_complete(cmd);
2379 ret = cmd->se_tfo->queue_status(cmd);
2380 if (ret)
2381 goto queue_full;
2382 break;
2383 default:
2384 break;
2387 transport_cmd_check_stop_to_fabric(cmd);
2388 return;
2390 queue_full:
2391 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2392 " data_direction: %d\n", cmd, cmd->data_direction);
2394 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2397 void target_free_sgl(struct scatterlist *sgl, int nents)
2399 sgl_free_n_order(sgl, nents, 0);
2401 EXPORT_SYMBOL(target_free_sgl);
2403 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2406 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2407 * emulation, and free + reset pointers if necessary..
2409 if (!cmd->t_data_sg_orig)
2410 return;
2412 kfree(cmd->t_data_sg);
2413 cmd->t_data_sg = cmd->t_data_sg_orig;
2414 cmd->t_data_sg_orig = NULL;
2415 cmd->t_data_nents = cmd->t_data_nents_orig;
2416 cmd->t_data_nents_orig = 0;
2419 static inline void transport_free_pages(struct se_cmd *cmd)
2421 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2422 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2423 cmd->t_prot_sg = NULL;
2424 cmd->t_prot_nents = 0;
2427 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2429 * Release special case READ buffer payload required for
2430 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2432 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2433 target_free_sgl(cmd->t_bidi_data_sg,
2434 cmd->t_bidi_data_nents);
2435 cmd->t_bidi_data_sg = NULL;
2436 cmd->t_bidi_data_nents = 0;
2438 transport_reset_sgl_orig(cmd);
2439 return;
2441 transport_reset_sgl_orig(cmd);
2443 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2444 cmd->t_data_sg = NULL;
2445 cmd->t_data_nents = 0;
2447 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2448 cmd->t_bidi_data_sg = NULL;
2449 cmd->t_bidi_data_nents = 0;
2452 void *transport_kmap_data_sg(struct se_cmd *cmd)
2454 struct scatterlist *sg = cmd->t_data_sg;
2455 struct page **pages;
2456 int i;
2459 * We need to take into account a possible offset here for fabrics like
2460 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2461 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2463 if (!cmd->t_data_nents)
2464 return NULL;
2466 BUG_ON(!sg);
2467 if (cmd->t_data_nents == 1)
2468 return kmap(sg_page(sg)) + sg->offset;
2470 /* >1 page. use vmap */
2471 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2472 if (!pages)
2473 return NULL;
2475 /* convert sg[] to pages[] */
2476 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2477 pages[i] = sg_page(sg);
2480 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2481 kfree(pages);
2482 if (!cmd->t_data_vmap)
2483 return NULL;
2485 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2487 EXPORT_SYMBOL(transport_kmap_data_sg);
2489 void transport_kunmap_data_sg(struct se_cmd *cmd)
2491 if (!cmd->t_data_nents) {
2492 return;
2493 } else if (cmd->t_data_nents == 1) {
2494 kunmap(sg_page(cmd->t_data_sg));
2495 return;
2498 vunmap(cmd->t_data_vmap);
2499 cmd->t_data_vmap = NULL;
2501 EXPORT_SYMBOL(transport_kunmap_data_sg);
2504 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2505 bool zero_page, bool chainable)
2507 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2509 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2510 return *sgl ? 0 : -ENOMEM;
2512 EXPORT_SYMBOL(target_alloc_sgl);
2515 * Allocate any required resources to execute the command. For writes we
2516 * might not have the payload yet, so notify the fabric via a call to
2517 * ->write_pending instead. Otherwise place it on the execution queue.
2519 sense_reason_t
2520 transport_generic_new_cmd(struct se_cmd *cmd)
2522 unsigned long flags;
2523 int ret = 0;
2524 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2526 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2527 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2528 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2529 cmd->prot_length, true, false);
2530 if (ret < 0)
2531 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2535 * Determine if the TCM fabric module has already allocated physical
2536 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2537 * beforehand.
2539 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2540 cmd->data_length) {
2542 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2543 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2544 u32 bidi_length;
2546 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2547 bidi_length = cmd->t_task_nolb *
2548 cmd->se_dev->dev_attrib.block_size;
2549 else
2550 bidi_length = cmd->data_length;
2552 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2553 &cmd->t_bidi_data_nents,
2554 bidi_length, zero_flag, false);
2555 if (ret < 0)
2556 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2559 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2560 cmd->data_length, zero_flag, false);
2561 if (ret < 0)
2562 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2563 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2564 cmd->data_length) {
2566 * Special case for COMPARE_AND_WRITE with fabrics
2567 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2569 u32 caw_length = cmd->t_task_nolb *
2570 cmd->se_dev->dev_attrib.block_size;
2572 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2573 &cmd->t_bidi_data_nents,
2574 caw_length, zero_flag, false);
2575 if (ret < 0)
2576 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2579 * If this command is not a write we can execute it right here,
2580 * for write buffers we need to notify the fabric driver first
2581 * and let it call back once the write buffers are ready.
2583 target_add_to_state_list(cmd);
2584 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2585 target_execute_cmd(cmd);
2586 return 0;
2589 spin_lock_irqsave(&cmd->t_state_lock, flags);
2590 cmd->t_state = TRANSPORT_WRITE_PENDING;
2592 * Determine if frontend context caller is requesting the stopping of
2593 * this command for frontend exceptions.
2595 if (cmd->transport_state & CMD_T_STOP &&
2596 !cmd->se_tfo->write_pending_must_be_called) {
2597 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2598 __func__, __LINE__, cmd->tag);
2600 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2602 complete_all(&cmd->t_transport_stop_comp);
2603 return 0;
2605 cmd->transport_state &= ~CMD_T_ACTIVE;
2606 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2608 ret = cmd->se_tfo->write_pending(cmd);
2609 if (ret)
2610 goto queue_full;
2612 return 0;
2614 queue_full:
2615 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2616 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2617 return 0;
2619 EXPORT_SYMBOL(transport_generic_new_cmd);
2621 static void transport_write_pending_qf(struct se_cmd *cmd)
2623 unsigned long flags;
2624 int ret;
2625 bool stop;
2627 spin_lock_irqsave(&cmd->t_state_lock, flags);
2628 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2629 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2631 if (stop) {
2632 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2633 __func__, __LINE__, cmd->tag);
2634 complete_all(&cmd->t_transport_stop_comp);
2635 return;
2638 ret = cmd->se_tfo->write_pending(cmd);
2639 if (ret) {
2640 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2641 cmd);
2642 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2646 static bool
2647 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2648 unsigned long *flags);
2650 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2652 unsigned long flags;
2654 spin_lock_irqsave(&cmd->t_state_lock, flags);
2655 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2656 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2660 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2661 * finished.
2663 void target_put_cmd_and_wait(struct se_cmd *cmd)
2665 DECLARE_COMPLETION_ONSTACK(compl);
2667 WARN_ON_ONCE(cmd->abrt_compl);
2668 cmd->abrt_compl = &compl;
2669 target_put_sess_cmd(cmd);
2670 wait_for_completion(&compl);
2674 * This function is called by frontend drivers after processing of a command
2675 * has finished.
2677 * The protocol for ensuring that either the regular frontend command
2678 * processing flow or target_handle_abort() code drops one reference is as
2679 * follows:
2680 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2681 * the frontend driver to call this function synchronously or asynchronously.
2682 * That will cause one reference to be dropped.
2683 * - During regular command processing the target core sets CMD_T_COMPLETE
2684 * before invoking one of the .queue_*() functions.
2685 * - The code that aborts commands skips commands and TMFs for which
2686 * CMD_T_COMPLETE has been set.
2687 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2688 * commands that will be aborted.
2689 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2690 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2691 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2692 * be called and will drop a reference.
2693 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2694 * will be called. target_handle_abort() will drop the final reference.
2696 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2698 DECLARE_COMPLETION_ONSTACK(compl);
2699 int ret = 0;
2700 bool aborted = false, tas = false;
2702 if (wait_for_tasks)
2703 target_wait_free_cmd(cmd, &aborted, &tas);
2705 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2707 * Handle WRITE failure case where transport_generic_new_cmd()
2708 * has already added se_cmd to state_list, but fabric has
2709 * failed command before I/O submission.
2711 if (cmd->state_active)
2712 target_remove_from_state_list(cmd);
2714 if (aborted)
2715 cmd->free_compl = &compl;
2716 ret = target_put_sess_cmd(cmd);
2717 if (aborted) {
2718 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2719 wait_for_completion(&compl);
2720 ret = 1;
2722 return ret;
2724 EXPORT_SYMBOL(transport_generic_free_cmd);
2727 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2728 * @se_cmd: command descriptor to add
2729 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2731 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2733 struct se_session *se_sess = se_cmd->se_sess;
2734 unsigned long flags;
2735 int ret = 0;
2738 * Add a second kref if the fabric caller is expecting to handle
2739 * fabric acknowledgement that requires two target_put_sess_cmd()
2740 * invocations before se_cmd descriptor release.
2742 if (ack_kref) {
2743 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2744 return -EINVAL;
2746 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2749 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2750 if (se_sess->sess_tearing_down) {
2751 ret = -ESHUTDOWN;
2752 goto out;
2754 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2755 percpu_ref_get(&se_sess->cmd_count);
2756 out:
2757 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2759 if (ret && ack_kref)
2760 target_put_sess_cmd(se_cmd);
2762 return ret;
2764 EXPORT_SYMBOL(target_get_sess_cmd);
2766 static void target_free_cmd_mem(struct se_cmd *cmd)
2768 transport_free_pages(cmd);
2770 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2771 core_tmr_release_req(cmd->se_tmr_req);
2772 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2773 kfree(cmd->t_task_cdb);
2776 static void target_release_cmd_kref(struct kref *kref)
2778 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2779 struct se_session *se_sess = se_cmd->se_sess;
2780 struct completion *free_compl = se_cmd->free_compl;
2781 struct completion *abrt_compl = se_cmd->abrt_compl;
2782 unsigned long flags;
2784 if (se_cmd->lun_ref_active)
2785 percpu_ref_put(&se_cmd->se_lun->lun_ref);
2787 if (se_sess) {
2788 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2789 list_del_init(&se_cmd->se_cmd_list);
2790 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2793 target_free_cmd_mem(se_cmd);
2794 se_cmd->se_tfo->release_cmd(se_cmd);
2795 if (free_compl)
2796 complete(free_compl);
2797 if (abrt_compl)
2798 complete(abrt_compl);
2800 percpu_ref_put(&se_sess->cmd_count);
2804 * target_put_sess_cmd - decrease the command reference count
2805 * @se_cmd: command to drop a reference from
2807 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2808 * refcount to drop to zero. Returns zero otherwise.
2810 int target_put_sess_cmd(struct se_cmd *se_cmd)
2812 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2814 EXPORT_SYMBOL(target_put_sess_cmd);
2816 static const char *data_dir_name(enum dma_data_direction d)
2818 switch (d) {
2819 case DMA_BIDIRECTIONAL: return "BIDI";
2820 case DMA_TO_DEVICE: return "WRITE";
2821 case DMA_FROM_DEVICE: return "READ";
2822 case DMA_NONE: return "NONE";
2825 return "(?)";
2828 static const char *cmd_state_name(enum transport_state_table t)
2830 switch (t) {
2831 case TRANSPORT_NO_STATE: return "NO_STATE";
2832 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2833 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2834 case TRANSPORT_PROCESSING: return "PROCESSING";
2835 case TRANSPORT_COMPLETE: return "COMPLETE";
2836 case TRANSPORT_ISTATE_PROCESSING:
2837 return "ISTATE_PROCESSING";
2838 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2839 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2840 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2843 return "(?)";
2846 static void target_append_str(char **str, const char *txt)
2848 char *prev = *str;
2850 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2851 kstrdup(txt, GFP_ATOMIC);
2852 kfree(prev);
2856 * Convert a transport state bitmask into a string. The caller is
2857 * responsible for freeing the returned pointer.
2859 static char *target_ts_to_str(u32 ts)
2861 char *str = NULL;
2863 if (ts & CMD_T_ABORTED)
2864 target_append_str(&str, "aborted");
2865 if (ts & CMD_T_ACTIVE)
2866 target_append_str(&str, "active");
2867 if (ts & CMD_T_COMPLETE)
2868 target_append_str(&str, "complete");
2869 if (ts & CMD_T_SENT)
2870 target_append_str(&str, "sent");
2871 if (ts & CMD_T_STOP)
2872 target_append_str(&str, "stop");
2873 if (ts & CMD_T_FABRIC_STOP)
2874 target_append_str(&str, "fabric_stop");
2876 return str;
2879 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2881 switch (tmf) {
2882 case TMR_ABORT_TASK: return "ABORT_TASK";
2883 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2884 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2885 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2886 case TMR_LUN_RESET: return "LUN_RESET";
2887 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2888 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2889 case TMR_UNKNOWN: break;
2891 return "(?)";
2894 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2896 char *ts_str = target_ts_to_str(cmd->transport_state);
2897 const u8 *cdb = cmd->t_task_cdb;
2898 struct se_tmr_req *tmf = cmd->se_tmr_req;
2900 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2901 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2902 pfx, cdb[0], cdb[1], cmd->tag,
2903 data_dir_name(cmd->data_direction),
2904 cmd->se_tfo->get_cmd_state(cmd),
2905 cmd_state_name(cmd->t_state), cmd->data_length,
2906 kref_read(&cmd->cmd_kref), ts_str);
2907 } else {
2908 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2909 pfx, target_tmf_name(tmf->function), cmd->tag,
2910 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2911 cmd_state_name(cmd->t_state),
2912 kref_read(&cmd->cmd_kref), ts_str);
2914 kfree(ts_str);
2916 EXPORT_SYMBOL(target_show_cmd);
2919 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2920 * @se_sess: session to flag
2922 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2924 unsigned long flags;
2926 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2927 se_sess->sess_tearing_down = 1;
2928 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2930 percpu_ref_kill(&se_sess->cmd_count);
2932 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2935 * target_wait_for_sess_cmds - Wait for outstanding commands
2936 * @se_sess: session to wait for active I/O
2938 void target_wait_for_sess_cmds(struct se_session *se_sess)
2940 struct se_cmd *cmd;
2941 int ret;
2943 WARN_ON_ONCE(!se_sess->sess_tearing_down);
2945 do {
2946 ret = wait_event_timeout(se_sess->cmd_list_wq,
2947 percpu_ref_is_zero(&se_sess->cmd_count),
2948 180 * HZ);
2949 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
2950 target_show_cmd("session shutdown: still waiting for ",
2951 cmd);
2952 } while (ret <= 0);
2954 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2957 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
2958 * all references to the LUN have been released. Called during LUN shutdown.
2960 void transport_clear_lun_ref(struct se_lun *lun)
2962 percpu_ref_kill(&lun->lun_ref);
2963 wait_for_completion(&lun->lun_shutdown_comp);
2966 static bool
2967 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2968 bool *aborted, bool *tas, unsigned long *flags)
2969 __releases(&cmd->t_state_lock)
2970 __acquires(&cmd->t_state_lock)
2973 assert_spin_locked(&cmd->t_state_lock);
2974 WARN_ON_ONCE(!irqs_disabled());
2976 if (fabric_stop)
2977 cmd->transport_state |= CMD_T_FABRIC_STOP;
2979 if (cmd->transport_state & CMD_T_ABORTED)
2980 *aborted = true;
2982 if (cmd->transport_state & CMD_T_TAS)
2983 *tas = true;
2985 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2986 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2987 return false;
2989 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2990 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2991 return false;
2993 if (!(cmd->transport_state & CMD_T_ACTIVE))
2994 return false;
2996 if (fabric_stop && *aborted)
2997 return false;
2999 cmd->transport_state |= CMD_T_STOP;
3001 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3003 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3005 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3006 180 * HZ))
3007 target_show_cmd("wait for tasks: ", cmd);
3009 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3010 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3012 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3013 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3015 return true;
3019 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3020 * @cmd: command to wait on
3022 bool transport_wait_for_tasks(struct se_cmd *cmd)
3024 unsigned long flags;
3025 bool ret, aborted = false, tas = false;
3027 spin_lock_irqsave(&cmd->t_state_lock, flags);
3028 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3029 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3031 return ret;
3033 EXPORT_SYMBOL(transport_wait_for_tasks);
3035 struct sense_info {
3036 u8 key;
3037 u8 asc;
3038 u8 ascq;
3039 bool add_sector_info;
3042 static const struct sense_info sense_info_table[] = {
3043 [TCM_NO_SENSE] = {
3044 .key = NOT_READY
3046 [TCM_NON_EXISTENT_LUN] = {
3047 .key = ILLEGAL_REQUEST,
3048 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3050 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3051 .key = ILLEGAL_REQUEST,
3052 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3054 [TCM_SECTOR_COUNT_TOO_MANY] = {
3055 .key = ILLEGAL_REQUEST,
3056 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3058 [TCM_UNKNOWN_MODE_PAGE] = {
3059 .key = ILLEGAL_REQUEST,
3060 .asc = 0x24, /* INVALID FIELD IN CDB */
3062 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3063 .key = ABORTED_COMMAND,
3064 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3065 .ascq = 0x03,
3067 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3068 .key = ABORTED_COMMAND,
3069 .asc = 0x0c, /* WRITE ERROR */
3070 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3072 [TCM_INVALID_CDB_FIELD] = {
3073 .key = ILLEGAL_REQUEST,
3074 .asc = 0x24, /* INVALID FIELD IN CDB */
3076 [TCM_INVALID_PARAMETER_LIST] = {
3077 .key = ILLEGAL_REQUEST,
3078 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3080 [TCM_TOO_MANY_TARGET_DESCS] = {
3081 .key = ILLEGAL_REQUEST,
3082 .asc = 0x26,
3083 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3085 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3086 .key = ILLEGAL_REQUEST,
3087 .asc = 0x26,
3088 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3090 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3091 .key = ILLEGAL_REQUEST,
3092 .asc = 0x26,
3093 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3095 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3096 .key = ILLEGAL_REQUEST,
3097 .asc = 0x26,
3098 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3100 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3101 .key = ILLEGAL_REQUEST,
3102 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3104 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3105 .key = ILLEGAL_REQUEST,
3106 .asc = 0x0c, /* WRITE ERROR */
3107 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3109 [TCM_SERVICE_CRC_ERROR] = {
3110 .key = ABORTED_COMMAND,
3111 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3112 .ascq = 0x05, /* N/A */
3114 [TCM_SNACK_REJECTED] = {
3115 .key = ABORTED_COMMAND,
3116 .asc = 0x11, /* READ ERROR */
3117 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3119 [TCM_WRITE_PROTECTED] = {
3120 .key = DATA_PROTECT,
3121 .asc = 0x27, /* WRITE PROTECTED */
3123 [TCM_ADDRESS_OUT_OF_RANGE] = {
3124 .key = ILLEGAL_REQUEST,
3125 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3127 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3128 .key = UNIT_ATTENTION,
3130 [TCM_CHECK_CONDITION_NOT_READY] = {
3131 .key = NOT_READY,
3133 [TCM_MISCOMPARE_VERIFY] = {
3134 .key = MISCOMPARE,
3135 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3136 .ascq = 0x00,
3138 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3139 .key = ABORTED_COMMAND,
3140 .asc = 0x10,
3141 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3142 .add_sector_info = true,
3144 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3145 .key = ABORTED_COMMAND,
3146 .asc = 0x10,
3147 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3148 .add_sector_info = true,
3150 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3151 .key = ABORTED_COMMAND,
3152 .asc = 0x10,
3153 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3154 .add_sector_info = true,
3156 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3157 .key = COPY_ABORTED,
3158 .asc = 0x0d,
3159 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3162 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3164 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3165 * Solaris initiators. Returning NOT READY instead means the
3166 * operations will be retried a finite number of times and we
3167 * can survive intermittent errors.
3169 .key = NOT_READY,
3170 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3172 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3174 * From spc4r22 section5.7.7,5.7.8
3175 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3176 * or a REGISTER AND IGNORE EXISTING KEY service action or
3177 * REGISTER AND MOVE service actionis attempted,
3178 * but there are insufficient device server resources to complete the
3179 * operation, then the command shall be terminated with CHECK CONDITION
3180 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3181 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3183 .key = ILLEGAL_REQUEST,
3184 .asc = 0x55,
3185 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3190 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3191 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3192 * be stored.
3193 * @reason: LIO sense reason code. If this argument has the value
3194 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3195 * dequeuing a unit attention fails due to multiple commands being processed
3196 * concurrently, set the command status to BUSY.
3198 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3200 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3202 const struct sense_info *si;
3203 u8 *buffer = cmd->sense_buffer;
3204 int r = (__force int)reason;
3205 u8 key, asc, ascq;
3206 bool desc_format = target_sense_desc_format(cmd->se_dev);
3208 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3209 si = &sense_info_table[r];
3210 else
3211 si = &sense_info_table[(__force int)
3212 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3214 key = si->key;
3215 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3216 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3217 &ascq)) {
3218 cmd->scsi_status = SAM_STAT_BUSY;
3219 return;
3221 } else if (si->asc == 0) {
3222 WARN_ON_ONCE(cmd->scsi_asc == 0);
3223 asc = cmd->scsi_asc;
3224 ascq = cmd->scsi_ascq;
3225 } else {
3226 asc = si->asc;
3227 ascq = si->ascq;
3230 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3231 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3232 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3233 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3234 if (si->add_sector_info)
3235 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3236 cmd->scsi_sense_length,
3237 cmd->bad_sector) < 0);
3241 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3242 sense_reason_t reason, int from_transport)
3244 unsigned long flags;
3246 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3248 spin_lock_irqsave(&cmd->t_state_lock, flags);
3249 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3250 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3251 return 0;
3253 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3254 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3256 if (!from_transport)
3257 translate_sense_reason(cmd, reason);
3259 trace_target_cmd_complete(cmd);
3260 return cmd->se_tfo->queue_status(cmd);
3262 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3265 * target_send_busy - Send SCSI BUSY status back to the initiator
3266 * @cmd: SCSI command for which to send a BUSY reply.
3268 * Note: Only call this function if target_submit_cmd*() failed.
3270 int target_send_busy(struct se_cmd *cmd)
3272 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3274 cmd->scsi_status = SAM_STAT_BUSY;
3275 trace_target_cmd_complete(cmd);
3276 return cmd->se_tfo->queue_status(cmd);
3278 EXPORT_SYMBOL(target_send_busy);
3280 static void target_tmr_work(struct work_struct *work)
3282 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3283 struct se_device *dev = cmd->se_dev;
3284 struct se_tmr_req *tmr = cmd->se_tmr_req;
3285 int ret;
3287 if (cmd->transport_state & CMD_T_ABORTED)
3288 goto aborted;
3290 switch (tmr->function) {
3291 case TMR_ABORT_TASK:
3292 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3293 break;
3294 case TMR_ABORT_TASK_SET:
3295 case TMR_CLEAR_ACA:
3296 case TMR_CLEAR_TASK_SET:
3297 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3298 break;
3299 case TMR_LUN_RESET:
3300 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3301 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3302 TMR_FUNCTION_REJECTED;
3303 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3304 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3305 cmd->orig_fe_lun, 0x29,
3306 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3308 break;
3309 case TMR_TARGET_WARM_RESET:
3310 tmr->response = TMR_FUNCTION_REJECTED;
3311 break;
3312 case TMR_TARGET_COLD_RESET:
3313 tmr->response = TMR_FUNCTION_REJECTED;
3314 break;
3315 default:
3316 pr_err("Unknown TMR function: 0x%02x.\n",
3317 tmr->function);
3318 tmr->response = TMR_FUNCTION_REJECTED;
3319 break;
3322 if (cmd->transport_state & CMD_T_ABORTED)
3323 goto aborted;
3325 cmd->se_tfo->queue_tm_rsp(cmd);
3327 transport_cmd_check_stop_to_fabric(cmd);
3328 return;
3330 aborted:
3331 target_handle_abort(cmd);
3334 int transport_generic_handle_tmr(
3335 struct se_cmd *cmd)
3337 unsigned long flags;
3338 bool aborted = false;
3340 spin_lock_irqsave(&cmd->t_state_lock, flags);
3341 if (cmd->transport_state & CMD_T_ABORTED) {
3342 aborted = true;
3343 } else {
3344 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3345 cmd->transport_state |= CMD_T_ACTIVE;
3347 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3349 if (aborted) {
3350 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3351 cmd->se_tmr_req->function,
3352 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3353 target_handle_abort(cmd);
3354 return 0;
3357 INIT_WORK(&cmd->work, target_tmr_work);
3358 schedule_work(&cmd->work);
3359 return 0;
3361 EXPORT_SYMBOL(transport_generic_handle_tmr);
3363 bool
3364 target_check_wce(struct se_device *dev)
3366 bool wce = false;
3368 if (dev->transport->get_write_cache)
3369 wce = dev->transport->get_write_cache(dev);
3370 else if (dev->dev_attrib.emulate_write_cache > 0)
3371 wce = true;
3373 return wce;
3376 bool
3377 target_check_fua(struct se_device *dev)
3379 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;