treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / thermal / ti-soc-thermal / ti-bandgap.c
blob2fa78f73856848c9904362ea5ede6b981cd13649
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI Bandgap temperature sensor driver
5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
6 * Author: J Keerthy <j-keerthy@ti.com>
7 * Author: Moiz Sonasath <m-sonasath@ti.com>
8 * Couple of fixes, DT and MFD adaptation:
9 * Eduardo Valentin <eduardo.valentin@ti.com>
12 #include <linux/module.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/clk.h>
18 #include <linux/gpio.h>
19 #include <linux/platform_device.h>
20 #include <linux/err.h>
21 #include <linux/types.h>
22 #include <linux/spinlock.h>
23 #include <linux/reboot.h>
24 #include <linux/of_device.h>
25 #include <linux/of_platform.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_gpio.h>
28 #include <linux/io.h>
30 #include "ti-bandgap.h"
32 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id);
34 /*** Helper functions to access registers and their bitfields ***/
36 /**
37 * ti_bandgap_readl() - simple read helper function
38 * @bgp: pointer to ti_bandgap structure
39 * @reg: desired register (offset) to be read
41 * Helper function to read bandgap registers. It uses the io remapped area.
42 * Return: the register value.
44 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
46 return readl(bgp->base + reg);
49 /**
50 * ti_bandgap_writel() - simple write helper function
51 * @bgp: pointer to ti_bandgap structure
52 * @val: desired register value to be written
53 * @reg: desired register (offset) to be written
55 * Helper function to write bandgap registers. It uses the io remapped area.
57 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
59 writel(val, bgp->base + reg);
62 /**
63 * DOC: macro to update bits.
65 * RMW_BITS() - used to read, modify and update bandgap bitfields.
66 * The value passed will be shifted.
68 #define RMW_BITS(bgp, id, reg, mask, val) \
69 do { \
70 struct temp_sensor_registers *t; \
71 u32 r; \
73 t = bgp->conf->sensors[(id)].registers; \
74 r = ti_bandgap_readl(bgp, t->reg); \
75 r &= ~t->mask; \
76 r |= (val) << __ffs(t->mask); \
77 ti_bandgap_writel(bgp, r, t->reg); \
78 } while (0)
80 /*** Basic helper functions ***/
82 /**
83 * ti_bandgap_power() - controls the power state of a bandgap device
84 * @bgp: pointer to ti_bandgap structure
85 * @on: desired power state (1 - on, 0 - off)
87 * Used to power on/off a bandgap device instance. Only used on those
88 * that features tempsoff bit.
90 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
92 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
94 int i;
96 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH))
97 return -ENOTSUPP;
99 for (i = 0; i < bgp->conf->sensor_count; i++)
100 /* active on 0 */
101 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
102 return 0;
106 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
107 * @bgp: pointer to ti_bandgap structure
108 * @reg: desired register (offset) to be read
110 * Function to read dra7 bandgap sensor temperature. This is done separately
111 * so as to workaround the errata "Bandgap Temperature read Dtemp can be
112 * corrupted" - Errata ID: i814".
113 * Read accesses to registers listed below can be corrupted due to incorrect
114 * resynchronization between clock domains.
115 * Read access to registers below can be corrupted :
116 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
117 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
119 * Return: the register value.
121 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg)
123 u32 val1, val2;
125 val1 = ti_bandgap_readl(bgp, reg);
126 val2 = ti_bandgap_readl(bgp, reg);
128 /* If both times we read the same value then that is right */
129 if (val1 == val2)
130 return val1;
132 /* if val1 and val2 are different read it third time */
133 return ti_bandgap_readl(bgp, reg);
137 * ti_bandgap_read_temp() - helper function to read sensor temperature
138 * @bgp: pointer to ti_bandgap structure
139 * @id: bandgap sensor id
141 * Function to concentrate the steps to read sensor temperature register.
142 * This function is desired because, depending on bandgap device version,
143 * it might be needed to freeze the bandgap state machine, before fetching
144 * the register value.
146 * Return: temperature in ADC values.
148 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
150 struct temp_sensor_registers *tsr;
151 u32 temp, reg;
153 tsr = bgp->conf->sensors[id].registers;
154 reg = tsr->temp_sensor_ctrl;
156 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
157 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
159 * In case we cannot read from cur_dtemp / dtemp_0,
160 * then we read from the last valid temp read
162 reg = tsr->ctrl_dtemp_1;
165 /* read temperature */
166 if (TI_BANDGAP_HAS(bgp, ERRATA_814))
167 temp = ti_errata814_bandgap_read_temp(bgp, reg);
168 else
169 temp = ti_bandgap_readl(bgp, reg);
171 temp &= tsr->bgap_dtemp_mask;
173 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
174 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
176 return temp;
179 /*** IRQ handlers ***/
182 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
183 * @irq: IRQ number
184 * @data: private data (struct ti_bandgap *)
186 * This is the Talert handler. Use it only if bandgap device features
187 * HAS(TALERT). This handler goes over all sensors and checks their
188 * conditions and acts accordingly. In case there are events pending,
189 * it will reset the event mask to wait for the opposite event (next event).
190 * Every time there is a new event, it will be reported to thermal layer.
192 * Return: IRQ_HANDLED
194 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
196 struct ti_bandgap *bgp = data;
197 struct temp_sensor_registers *tsr;
198 u32 t_hot = 0, t_cold = 0, ctrl;
199 int i;
201 spin_lock(&bgp->lock);
202 for (i = 0; i < bgp->conf->sensor_count; i++) {
203 tsr = bgp->conf->sensors[i].registers;
204 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
206 /* Read the status of t_hot */
207 t_hot = ctrl & tsr->status_hot_mask;
209 /* Read the status of t_cold */
210 t_cold = ctrl & tsr->status_cold_mask;
212 if (!t_cold && !t_hot)
213 continue;
215 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
217 * One TALERT interrupt: Two sources
218 * If the interrupt is due to t_hot then mask t_hot and
219 * and unmask t_cold else mask t_cold and unmask t_hot
221 if (t_hot) {
222 ctrl &= ~tsr->mask_hot_mask;
223 ctrl |= tsr->mask_cold_mask;
224 } else if (t_cold) {
225 ctrl &= ~tsr->mask_cold_mask;
226 ctrl |= tsr->mask_hot_mask;
229 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
231 dev_dbg(bgp->dev,
232 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
233 __func__, bgp->conf->sensors[i].domain,
234 t_hot, t_cold);
236 /* report temperature to whom may concern */
237 if (bgp->conf->report_temperature)
238 bgp->conf->report_temperature(bgp, i);
240 spin_unlock(&bgp->lock);
242 return IRQ_HANDLED;
246 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
247 * @irq: IRQ number
248 * @data: private data (unused)
250 * This is the Tshut handler. Use it only if bandgap device features
251 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
252 * the system.
254 * Return: IRQ_HANDLED
256 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
258 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
259 __func__);
261 orderly_poweroff(true);
263 return IRQ_HANDLED;
266 /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/
269 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
270 * @bgp: struct ti_bandgap pointer
271 * @adc_val: value in ADC representation
272 * @t: address where to write the resulting temperature in mCelsius
274 * Simple conversion from ADC representation to mCelsius. In case the ADC value
275 * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
276 * The conversion table is indexed by the ADC values.
278 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
279 * argument is out of the ADC conv table range.
281 static
282 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
284 const struct ti_bandgap_data *conf = bgp->conf;
286 /* look up for temperature in the table and return the temperature */
287 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val)
288 return -ERANGE;
290 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
291 return 0;
295 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
296 * @bgp: struct ti_bandgap pointer
297 * @id: bandgap sensor id
299 * Checks if the bandgap pointer is valid and if the sensor id is also
300 * applicable.
302 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
303 * @id cannot index @bgp sensors.
305 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
307 if (!bgp || IS_ERR(bgp)) {
308 pr_err("%s: invalid bandgap pointer\n", __func__);
309 return -EINVAL;
312 if ((id < 0) || (id >= bgp->conf->sensor_count)) {
313 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
314 __func__, id);
315 return -ERANGE;
318 return 0;
322 * ti_bandgap_read_counter() - read the sensor counter
323 * @bgp: pointer to bandgap instance
324 * @id: sensor id
325 * @interval: resulting update interval in miliseconds
327 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
328 int *interval)
330 struct temp_sensor_registers *tsr;
331 int time;
333 tsr = bgp->conf->sensors[id].registers;
334 time = ti_bandgap_readl(bgp, tsr->bgap_counter);
335 time = (time & tsr->counter_mask) >>
336 __ffs(tsr->counter_mask);
337 time = time * 1000 / bgp->clk_rate;
338 *interval = time;
342 * ti_bandgap_read_counter_delay() - read the sensor counter delay
343 * @bgp: pointer to bandgap instance
344 * @id: sensor id
345 * @interval: resulting update interval in miliseconds
347 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
348 int *interval)
350 struct temp_sensor_registers *tsr;
351 int reg_val;
353 tsr = bgp->conf->sensors[id].registers;
355 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
356 reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
357 __ffs(tsr->mask_counter_delay_mask);
358 switch (reg_val) {
359 case 0:
360 *interval = 0;
361 break;
362 case 1:
363 *interval = 1;
364 break;
365 case 2:
366 *interval = 10;
367 break;
368 case 3:
369 *interval = 100;
370 break;
371 case 4:
372 *interval = 250;
373 break;
374 case 5:
375 *interval = 500;
376 break;
377 default:
378 dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
379 reg_val);
384 * ti_bandgap_read_update_interval() - read the sensor update interval
385 * @bgp: pointer to bandgap instance
386 * @id: sensor id
387 * @interval: resulting update interval in miliseconds
389 * Return: 0 on success or the proper error code
391 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
392 int *interval)
394 int ret = 0;
396 ret = ti_bandgap_validate(bgp, id);
397 if (ret)
398 goto exit;
400 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
401 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
402 ret = -ENOTSUPP;
403 goto exit;
406 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
407 ti_bandgap_read_counter(bgp, id, interval);
408 goto exit;
411 ti_bandgap_read_counter_delay(bgp, id, interval);
412 exit:
413 return ret;
417 * ti_bandgap_write_counter_delay() - set the counter_delay
418 * @bgp: pointer to bandgap instance
419 * @id: sensor id
420 * @interval: desired update interval in miliseconds
422 * Return: 0 on success or the proper error code
424 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
425 u32 interval)
427 int rval;
429 switch (interval) {
430 case 0: /* Immediate conversion */
431 rval = 0x0;
432 break;
433 case 1: /* Conversion after ever 1ms */
434 rval = 0x1;
435 break;
436 case 10: /* Conversion after ever 10ms */
437 rval = 0x2;
438 break;
439 case 100: /* Conversion after ever 100ms */
440 rval = 0x3;
441 break;
442 case 250: /* Conversion after ever 250ms */
443 rval = 0x4;
444 break;
445 case 500: /* Conversion after ever 500ms */
446 rval = 0x5;
447 break;
448 default:
449 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
450 return -EINVAL;
453 spin_lock(&bgp->lock);
454 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
455 spin_unlock(&bgp->lock);
457 return 0;
461 * ti_bandgap_write_counter() - set the bandgap sensor counter
462 * @bgp: pointer to bandgap instance
463 * @id: sensor id
464 * @interval: desired update interval in miliseconds
466 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
467 u32 interval)
469 interval = interval * bgp->clk_rate / 1000;
470 spin_lock(&bgp->lock);
471 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
472 spin_unlock(&bgp->lock);
476 * ti_bandgap_write_update_interval() - set the update interval
477 * @bgp: pointer to bandgap instance
478 * @id: sensor id
479 * @interval: desired update interval in miliseconds
481 * Return: 0 on success or the proper error code
483 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
484 int id, u32 interval)
486 int ret = ti_bandgap_validate(bgp, id);
487 if (ret)
488 goto exit;
490 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
491 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
492 ret = -ENOTSUPP;
493 goto exit;
496 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
497 ti_bandgap_write_counter(bgp, id, interval);
498 goto exit;
501 ret = ti_bandgap_write_counter_delay(bgp, id, interval);
502 exit:
503 return ret;
507 * ti_bandgap_read_temperature() - report current temperature
508 * @bgp: pointer to bandgap instance
509 * @id: sensor id
510 * @temperature: resulting temperature
512 * Return: 0 on success or the proper error code
514 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
515 int *temperature)
517 u32 temp;
518 int ret;
520 ret = ti_bandgap_validate(bgp, id);
521 if (ret)
522 return ret;
524 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) {
525 ret = ti_bandgap_force_single_read(bgp, id);
526 if (ret)
527 return ret;
530 spin_lock(&bgp->lock);
531 temp = ti_bandgap_read_temp(bgp, id);
532 spin_unlock(&bgp->lock);
534 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
535 if (ret)
536 return -EIO;
538 *temperature = temp;
540 return 0;
544 * ti_bandgap_set_sensor_data() - helper function to store thermal
545 * framework related data.
546 * @bgp: pointer to bandgap instance
547 * @id: sensor id
548 * @data: thermal framework related data to be stored
550 * Return: 0 on success or the proper error code
552 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
554 int ret = ti_bandgap_validate(bgp, id);
555 if (ret)
556 return ret;
558 bgp->regval[id].data = data;
560 return 0;
564 * ti_bandgap_get_sensor_data() - helper function to get thermal
565 * framework related data.
566 * @bgp: pointer to bandgap instance
567 * @id: sensor id
569 * Return: data stored by set function with sensor id on success or NULL
571 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
573 int ret = ti_bandgap_validate(bgp, id);
574 if (ret)
575 return ERR_PTR(ret);
577 return bgp->regval[id].data;
580 /*** Helper functions used during device initialization ***/
583 * ti_bandgap_force_single_read() - executes 1 single ADC conversion
584 * @bgp: pointer to struct ti_bandgap
585 * @id: sensor id which it is desired to read 1 temperature
587 * Used to initialize the conversion state machine and set it to a valid
588 * state. Called during device initialization and context restore events.
590 * Return: 0
592 static int
593 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
595 u32 counter = 1000;
596 struct temp_sensor_registers *tsr;
598 /* Select single conversion mode */
599 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
600 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
602 /* Start of Conversion = 1 */
603 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
605 /* Wait for EOCZ going up */
606 tsr = bgp->conf->sensors[id].registers;
608 while (--counter) {
609 if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
610 tsr->bgap_eocz_mask)
611 break;
614 /* Start of Conversion = 0 */
615 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
617 /* Wait for EOCZ going down */
618 counter = 1000;
619 while (--counter) {
620 if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
621 tsr->bgap_eocz_mask))
622 break;
625 return 0;
629 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode
630 * @bgp: pointer to struct ti_bandgap
632 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
633 * be used for junction temperature monitoring, it is desirable that the
634 * sensors are operational all the time, so that alerts are generated
635 * properly.
637 * Return: 0
639 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
641 int i;
643 for (i = 0; i < bgp->conf->sensor_count; i++) {
644 /* Perform a single read just before enabling continuous */
645 ti_bandgap_force_single_read(bgp, i);
646 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
649 return 0;
653 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
654 * @bgp: pointer to struct ti_bandgap
655 * @id: id of the individual sensor
656 * @trend: Pointer to trend.
658 * This function needs to be called to fetch the temperature trend of a
659 * Particular sensor. The function computes the difference in temperature
660 * w.r.t time. For the bandgaps with built in history buffer the temperatures
661 * are read from the buffer and for those without the Buffer -ENOTSUPP is
662 * returned.
664 * Return: 0 if no error, else return corresponding error. If no
665 * error then the trend value is passed on to trend parameter
667 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
669 struct temp_sensor_registers *tsr;
670 u32 temp1, temp2, reg1, reg2;
671 int t1, t2, interval, ret = 0;
673 ret = ti_bandgap_validate(bgp, id);
674 if (ret)
675 goto exit;
677 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
678 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
679 ret = -ENOTSUPP;
680 goto exit;
683 spin_lock(&bgp->lock);
685 tsr = bgp->conf->sensors[id].registers;
687 /* Freeze and read the last 2 valid readings */
688 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
689 reg1 = tsr->ctrl_dtemp_1;
690 reg2 = tsr->ctrl_dtemp_2;
692 /* read temperature from history buffer */
693 temp1 = ti_bandgap_readl(bgp, reg1);
694 temp1 &= tsr->bgap_dtemp_mask;
696 temp2 = ti_bandgap_readl(bgp, reg2);
697 temp2 &= tsr->bgap_dtemp_mask;
699 /* Convert from adc values to mCelsius temperature */
700 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
701 if (ret)
702 goto unfreeze;
704 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
705 if (ret)
706 goto unfreeze;
708 /* Fetch the update interval */
709 ret = ti_bandgap_read_update_interval(bgp, id, &interval);
710 if (ret)
711 goto unfreeze;
713 /* Set the interval to 1 ms if bandgap counter delay is not set */
714 if (interval == 0)
715 interval = 1;
717 *trend = (t1 - t2) / interval;
719 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
720 t1, t2, *trend);
722 unfreeze:
723 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
724 spin_unlock(&bgp->lock);
725 exit:
726 return ret;
730 * ti_bandgap_tshut_init() - setup and initialize tshut handling
731 * @bgp: pointer to struct ti_bandgap
732 * @pdev: pointer to device struct platform_device
734 * Call this function only in case the bandgap features HAS(TSHUT).
735 * In this case, the driver needs to handle the TSHUT signal as an IRQ.
736 * The IRQ is wired as a GPIO, and for this purpose, it is required
737 * to specify which GPIO line is used. TSHUT IRQ is fired anytime
738 * one of the bandgap sensors violates the TSHUT high/hot threshold.
739 * And in that case, the system must go off.
741 * Return: 0 if no error, else error status
743 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
744 struct platform_device *pdev)
746 int gpio_nr = bgp->tshut_gpio;
747 int status;
749 /* Request for gpio_86 line */
750 status = gpio_request(gpio_nr, "tshut");
751 if (status < 0) {
752 dev_err(bgp->dev, "Could not request for TSHUT GPIO:%i\n", 86);
753 return status;
755 status = gpio_direction_input(gpio_nr);
756 if (status) {
757 dev_err(bgp->dev, "Cannot set input TSHUT GPIO %d\n", gpio_nr);
758 return status;
761 status = request_irq(gpio_to_irq(gpio_nr), ti_bandgap_tshut_irq_handler,
762 IRQF_TRIGGER_RISING, "tshut", NULL);
763 if (status) {
764 gpio_free(gpio_nr);
765 dev_err(bgp->dev, "request irq failed for TSHUT");
768 return 0;
772 * ti_bandgap_alert_init() - setup and initialize talert handling
773 * @bgp: pointer to struct ti_bandgap
774 * @pdev: pointer to device struct platform_device
776 * Call this function only in case the bandgap features HAS(TALERT).
777 * In this case, the driver needs to handle the TALERT signals as an IRQs.
778 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
779 * are violated. In these situation, the driver must reprogram the thresholds,
780 * accordingly to specified policy.
782 * Return: 0 if no error, else return corresponding error.
784 static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
785 struct platform_device *pdev)
787 int ret;
789 bgp->irq = platform_get_irq(pdev, 0);
790 if (bgp->irq < 0) {
791 dev_err(&pdev->dev, "get_irq failed\n");
792 return bgp->irq;
794 ret = request_threaded_irq(bgp->irq, NULL,
795 ti_bandgap_talert_irq_handler,
796 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
797 "talert", bgp);
798 if (ret) {
799 dev_err(&pdev->dev, "Request threaded irq failed.\n");
800 return ret;
803 return 0;
806 static const struct of_device_id of_ti_bandgap_match[];
808 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
809 * @pdev: pointer to device struct platform_device
811 * Used to read the device tree properties accordingly to the bandgap
812 * matching version. Based on bandgap version and its capabilities it
813 * will build a struct ti_bandgap out of the required DT entries.
815 * Return: valid bandgap structure if successful, else returns ERR_PTR
816 * return value must be verified with IS_ERR.
818 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
820 struct device_node *node = pdev->dev.of_node;
821 const struct of_device_id *of_id;
822 struct ti_bandgap *bgp;
823 struct resource *res;
824 int i;
826 /* just for the sake */
827 if (!node) {
828 dev_err(&pdev->dev, "no platform information available\n");
829 return ERR_PTR(-EINVAL);
832 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
833 if (!bgp)
834 return ERR_PTR(-ENOMEM);
836 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
837 if (of_id)
838 bgp->conf = of_id->data;
840 /* register shadow for context save and restore */
841 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count,
842 sizeof(*bgp->regval), GFP_KERNEL);
843 if (!bgp->regval)
844 return ERR_PTR(-ENOMEM);
846 i = 0;
847 do {
848 void __iomem *chunk;
850 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
851 if (!res)
852 break;
853 chunk = devm_ioremap_resource(&pdev->dev, res);
854 if (i == 0)
855 bgp->base = chunk;
856 if (IS_ERR(chunk))
857 return ERR_CAST(chunk);
859 i++;
860 } while (res);
862 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
863 bgp->tshut_gpio = of_get_gpio(node, 0);
864 if (!gpio_is_valid(bgp->tshut_gpio)) {
865 dev_err(&pdev->dev, "invalid gpio for tshut (%d)\n",
866 bgp->tshut_gpio);
867 return ERR_PTR(-EINVAL);
871 return bgp;
874 /*** Device driver call backs ***/
876 static
877 int ti_bandgap_probe(struct platform_device *pdev)
879 struct ti_bandgap *bgp;
880 int clk_rate, ret, i;
882 bgp = ti_bandgap_build(pdev);
883 if (IS_ERR(bgp)) {
884 dev_err(&pdev->dev, "failed to fetch platform data\n");
885 return PTR_ERR(bgp);
887 bgp->dev = &pdev->dev;
889 if (TI_BANDGAP_HAS(bgp, UNRELIABLE))
890 dev_warn(&pdev->dev,
891 "This OMAP thermal sensor is unreliable. You've been warned\n");
893 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
894 ret = ti_bandgap_tshut_init(bgp, pdev);
895 if (ret) {
896 dev_err(&pdev->dev,
897 "failed to initialize system tshut IRQ\n");
898 return ret;
902 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
903 if (IS_ERR(bgp->fclock)) {
904 dev_err(&pdev->dev, "failed to request fclock reference\n");
905 ret = PTR_ERR(bgp->fclock);
906 goto free_irqs;
909 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name);
910 if (IS_ERR(bgp->div_clk)) {
911 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n");
912 ret = PTR_ERR(bgp->div_clk);
913 goto put_fclock;
916 for (i = 0; i < bgp->conf->sensor_count; i++) {
917 struct temp_sensor_registers *tsr;
918 u32 val;
920 tsr = bgp->conf->sensors[i].registers;
922 * check if the efuse has a non-zero value if not
923 * it is an untrimmed sample and the temperatures
924 * may not be accurate
926 val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
927 if (!val)
928 dev_info(&pdev->dev,
929 "Non-trimmed BGAP, Temp not accurate\n");
932 clk_rate = clk_round_rate(bgp->div_clk,
933 bgp->conf->sensors[0].ts_data->max_freq);
934 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
935 clk_rate <= 0) {
936 ret = -ENODEV;
937 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
938 goto put_clks;
941 ret = clk_set_rate(bgp->div_clk, clk_rate);
942 if (ret)
943 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
945 bgp->clk_rate = clk_rate;
946 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
947 clk_prepare_enable(bgp->fclock);
950 spin_lock_init(&bgp->lock);
951 bgp->dev = &pdev->dev;
952 platform_set_drvdata(pdev, bgp);
954 ti_bandgap_power(bgp, true);
956 /* Set default counter to 1 for now */
957 if (TI_BANDGAP_HAS(bgp, COUNTER))
958 for (i = 0; i < bgp->conf->sensor_count; i++)
959 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
961 /* Set default thresholds for alert and shutdown */
962 for (i = 0; i < bgp->conf->sensor_count; i++) {
963 struct temp_sensor_data *ts_data;
965 ts_data = bgp->conf->sensors[i].ts_data;
967 if (TI_BANDGAP_HAS(bgp, TALERT)) {
968 /* Set initial Talert thresholds */
969 RMW_BITS(bgp, i, bgap_threshold,
970 threshold_tcold_mask, ts_data->t_cold);
971 RMW_BITS(bgp, i, bgap_threshold,
972 threshold_thot_mask, ts_data->t_hot);
973 /* Enable the alert events */
974 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
975 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
978 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
979 /* Set initial Tshut thresholds */
980 RMW_BITS(bgp, i, tshut_threshold,
981 tshut_hot_mask, ts_data->tshut_hot);
982 RMW_BITS(bgp, i, tshut_threshold,
983 tshut_cold_mask, ts_data->tshut_cold);
987 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
988 ti_bandgap_set_continuous_mode(bgp);
990 /* Set .250 seconds time as default counter */
991 if (TI_BANDGAP_HAS(bgp, COUNTER))
992 for (i = 0; i < bgp->conf->sensor_count; i++)
993 RMW_BITS(bgp, i, bgap_counter, counter_mask,
994 bgp->clk_rate / 4);
996 /* Every thing is good? Then expose the sensors */
997 for (i = 0; i < bgp->conf->sensor_count; i++) {
998 char *domain;
1000 if (bgp->conf->sensors[i].register_cooling) {
1001 ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1002 if (ret)
1003 goto remove_sensors;
1006 if (bgp->conf->expose_sensor) {
1007 domain = bgp->conf->sensors[i].domain;
1008 ret = bgp->conf->expose_sensor(bgp, i, domain);
1009 if (ret)
1010 goto remove_last_cooling;
1015 * Enable the Interrupts once everything is set. Otherwise irq handler
1016 * might be called as soon as it is enabled where as rest of framework
1017 * is still getting initialised.
1019 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1020 ret = ti_bandgap_talert_init(bgp, pdev);
1021 if (ret) {
1022 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1023 i = bgp->conf->sensor_count;
1024 goto disable_clk;
1028 return 0;
1030 remove_last_cooling:
1031 if (bgp->conf->sensors[i].unregister_cooling)
1032 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1033 remove_sensors:
1034 for (i--; i >= 0; i--) {
1035 if (bgp->conf->sensors[i].unregister_cooling)
1036 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1037 if (bgp->conf->remove_sensor)
1038 bgp->conf->remove_sensor(bgp, i);
1040 ti_bandgap_power(bgp, false);
1041 disable_clk:
1042 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1043 clk_disable_unprepare(bgp->fclock);
1044 put_clks:
1045 clk_put(bgp->div_clk);
1046 put_fclock:
1047 clk_put(bgp->fclock);
1048 free_irqs:
1049 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1050 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1051 gpio_free(bgp->tshut_gpio);
1054 return ret;
1057 static
1058 int ti_bandgap_remove(struct platform_device *pdev)
1060 struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1061 int i;
1063 /* First thing is to remove sensor interfaces */
1064 for (i = 0; i < bgp->conf->sensor_count; i++) {
1065 if (bgp->conf->sensors[i].unregister_cooling)
1066 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1068 if (bgp->conf->remove_sensor)
1069 bgp->conf->remove_sensor(bgp, i);
1072 ti_bandgap_power(bgp, false);
1074 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1075 clk_disable_unprepare(bgp->fclock);
1076 clk_put(bgp->fclock);
1077 clk_put(bgp->div_clk);
1079 if (TI_BANDGAP_HAS(bgp, TALERT))
1080 free_irq(bgp->irq, bgp);
1082 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1083 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1084 gpio_free(bgp->tshut_gpio);
1087 return 0;
1090 #ifdef CONFIG_PM_SLEEP
1091 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1093 int i;
1095 for (i = 0; i < bgp->conf->sensor_count; i++) {
1096 struct temp_sensor_registers *tsr;
1097 struct temp_sensor_regval *rval;
1099 rval = &bgp->regval[i];
1100 tsr = bgp->conf->sensors[i].registers;
1102 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1103 rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1104 tsr->bgap_mode_ctrl);
1105 if (TI_BANDGAP_HAS(bgp, COUNTER))
1106 rval->bg_counter = ti_bandgap_readl(bgp,
1107 tsr->bgap_counter);
1108 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1109 rval->bg_threshold = ti_bandgap_readl(bgp,
1110 tsr->bgap_threshold);
1111 rval->bg_ctrl = ti_bandgap_readl(bgp,
1112 tsr->bgap_mask_ctrl);
1115 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1116 rval->tshut_threshold = ti_bandgap_readl(bgp,
1117 tsr->tshut_threshold);
1120 return 0;
1123 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1125 int i;
1127 for (i = 0; i < bgp->conf->sensor_count; i++) {
1128 struct temp_sensor_registers *tsr;
1129 struct temp_sensor_regval *rval;
1130 u32 val = 0;
1132 rval = &bgp->regval[i];
1133 tsr = bgp->conf->sensors[i].registers;
1135 if (TI_BANDGAP_HAS(bgp, COUNTER))
1136 val = ti_bandgap_readl(bgp, tsr->bgap_counter);
1138 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1139 ti_bandgap_writel(bgp, rval->tshut_threshold,
1140 tsr->tshut_threshold);
1141 /* Force immediate temperature measurement and update
1142 * of the DTEMP field
1144 ti_bandgap_force_single_read(bgp, i);
1146 if (TI_BANDGAP_HAS(bgp, COUNTER))
1147 ti_bandgap_writel(bgp, rval->bg_counter,
1148 tsr->bgap_counter);
1149 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1150 ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1151 tsr->bgap_mode_ctrl);
1152 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1153 ti_bandgap_writel(bgp, rval->bg_threshold,
1154 tsr->bgap_threshold);
1155 ti_bandgap_writel(bgp, rval->bg_ctrl,
1156 tsr->bgap_mask_ctrl);
1160 return 0;
1163 static int ti_bandgap_suspend(struct device *dev)
1165 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1166 int err;
1168 err = ti_bandgap_save_ctxt(bgp);
1169 ti_bandgap_power(bgp, false);
1171 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1172 clk_disable_unprepare(bgp->fclock);
1174 return err;
1177 static int ti_bandgap_resume(struct device *dev)
1179 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1181 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1182 clk_prepare_enable(bgp->fclock);
1184 ti_bandgap_power(bgp, true);
1186 return ti_bandgap_restore_ctxt(bgp);
1188 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
1189 ti_bandgap_resume);
1191 #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops)
1192 #else
1193 #define DEV_PM_OPS NULL
1194 #endif
1196 static const struct of_device_id of_ti_bandgap_match[] = {
1197 #ifdef CONFIG_OMAP3_THERMAL
1199 .compatible = "ti,omap34xx-bandgap",
1200 .data = (void *)&omap34xx_data,
1203 .compatible = "ti,omap36xx-bandgap",
1204 .data = (void *)&omap36xx_data,
1206 #endif
1207 #ifdef CONFIG_OMAP4_THERMAL
1209 .compatible = "ti,omap4430-bandgap",
1210 .data = (void *)&omap4430_data,
1213 .compatible = "ti,omap4460-bandgap",
1214 .data = (void *)&omap4460_data,
1217 .compatible = "ti,omap4470-bandgap",
1218 .data = (void *)&omap4470_data,
1220 #endif
1221 #ifdef CONFIG_OMAP5_THERMAL
1223 .compatible = "ti,omap5430-bandgap",
1224 .data = (void *)&omap5430_data,
1226 #endif
1227 #ifdef CONFIG_DRA752_THERMAL
1229 .compatible = "ti,dra752-bandgap",
1230 .data = (void *)&dra752_data,
1232 #endif
1233 /* Sentinel */
1234 { },
1236 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1238 static struct platform_driver ti_bandgap_sensor_driver = {
1239 .probe = ti_bandgap_probe,
1240 .remove = ti_bandgap_remove,
1241 .driver = {
1242 .name = "ti-soc-thermal",
1243 .pm = DEV_PM_OPS,
1244 .of_match_table = of_ti_bandgap_match,
1248 module_platform_driver(ti_bandgap_sensor_driver);
1250 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1251 MODULE_LICENSE("GPL v2");
1252 MODULE_ALIAS("platform:ti-soc-thermal");
1253 MODULE_AUTHOR("Texas Instrument Inc.");