1 // SPDX-License-Identifier: GPL-2.0
3 * Thunderbolt driver - switch/port utility functions
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
20 /* Switch NVM support */
22 #define NVM_DEVID 0x05
23 #define NVM_VERSION 0x08
25 #define NVM_FLASH_SIZE 0x45
27 #define NVM_MIN_SIZE SZ_32K
28 #define NVM_MAX_SIZE SZ_512K
30 static DEFINE_IDA(nvm_ida
);
32 struct nvm_auth_status
{
33 struct list_head list
;
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
43 static LIST_HEAD(nvm_auth_status_cache
);
44 static DEFINE_MUTEX(nvm_auth_status_lock
);
46 static struct nvm_auth_status
*__nvm_get_auth_status(const struct tb_switch
*sw
)
48 struct nvm_auth_status
*st
;
50 list_for_each_entry(st
, &nvm_auth_status_cache
, list
) {
51 if (uuid_equal(&st
->uuid
, sw
->uuid
))
58 static void nvm_get_auth_status(const struct tb_switch
*sw
, u32
*status
)
60 struct nvm_auth_status
*st
;
62 mutex_lock(&nvm_auth_status_lock
);
63 st
= __nvm_get_auth_status(sw
);
64 mutex_unlock(&nvm_auth_status_lock
);
66 *status
= st
? st
->status
: 0;
69 static void nvm_set_auth_status(const struct tb_switch
*sw
, u32 status
)
71 struct nvm_auth_status
*st
;
73 if (WARN_ON(!sw
->uuid
))
76 mutex_lock(&nvm_auth_status_lock
);
77 st
= __nvm_get_auth_status(sw
);
80 st
= kzalloc(sizeof(*st
), GFP_KERNEL
);
84 memcpy(&st
->uuid
, sw
->uuid
, sizeof(st
->uuid
));
85 INIT_LIST_HEAD(&st
->list
);
86 list_add_tail(&st
->list
, &nvm_auth_status_cache
);
91 mutex_unlock(&nvm_auth_status_lock
);
94 static void nvm_clear_auth_status(const struct tb_switch
*sw
)
96 struct nvm_auth_status
*st
;
98 mutex_lock(&nvm_auth_status_lock
);
99 st
= __nvm_get_auth_status(sw
);
104 mutex_unlock(&nvm_auth_status_lock
);
107 static int nvm_validate_and_write(struct tb_switch
*sw
)
109 unsigned int image_size
, hdr_size
;
110 const u8
*buf
= sw
->nvm
->buf
;
117 image_size
= sw
->nvm
->buf_data_size
;
118 if (image_size
< NVM_MIN_SIZE
|| image_size
> NVM_MAX_SIZE
)
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
125 hdr_size
= (*(u32
*)buf
) & 0xffffff;
126 if (hdr_size
+ NVM_DEVID
+ 2 >= image_size
)
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size
, SZ_4K
))
134 * Read digital section size and check that it also fits inside
137 ds_size
= *(u16
*)(buf
+ hdr_size
);
138 if (ds_size
>= image_size
)
141 if (!sw
->safe_mode
) {
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
148 device_id
= *(u16
*)(buf
+ hdr_size
+ NVM_DEVID
);
149 if (device_id
!= sw
->config
.device_id
)
152 if (sw
->generation
< 3) {
153 /* Write CSS headers first */
154 ret
= dma_port_flash_write(sw
->dma_port
,
155 DMA_PORT_CSS_ADDRESS
, buf
+ NVM_CSS
,
156 DMA_PORT_CSS_MAX_SIZE
);
161 /* Skip headers in the image */
163 image_size
-= hdr_size
;
166 if (tb_switch_is_usb4(sw
))
167 return usb4_switch_nvm_write(sw
, 0, buf
, image_size
);
168 return dma_port_flash_write(sw
->dma_port
, 0, buf
, image_size
);
171 static int nvm_authenticate_host_dma_port(struct tb_switch
*sw
)
176 * Root switch NVM upgrade requires that we disconnect the
177 * existing paths first (in case it is not in safe mode
180 if (!sw
->safe_mode
) {
183 ret
= tb_domain_disconnect_all_paths(sw
->tb
);
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
190 ret
= dma_port_flash_update_auth(sw
->dma_port
);
191 if (!ret
|| ret
== -ETIMEDOUT
)
195 * Any error from update auth operation requires power
196 * cycling of the host router.
198 tb_sw_warn(sw
, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw
->dma_port
, &status
) > 0)
200 nvm_set_auth_status(sw
, status
);
204 * From safe mode we can get out by just power cycling the
207 dma_port_power_cycle(sw
->dma_port
);
211 static int nvm_authenticate_device_dma_port(struct tb_switch
*sw
)
213 int ret
, retries
= 10;
215 ret
= dma_port_flash_update_auth(sw
->dma_port
);
221 /* Power cycle is required */
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
236 ret
= dma_port_flash_update_auth_status(sw
->dma_port
, &status
);
237 if (ret
< 0 && ret
!= -ETIMEDOUT
)
241 tb_sw_warn(sw
, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw
, status
);
245 tb_sw_info(sw
, "power cycling the switch now\n");
246 dma_port_power_cycle(sw
->dma_port
);
256 static void nvm_authenticate_start_dma_port(struct tb_switch
*sw
)
258 struct pci_dev
*root_port
;
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
266 root_port
= pci_find_pcie_root_port(sw
->tb
->nhi
->pdev
);
268 pm_runtime_get_noresume(&root_port
->dev
);
271 static void nvm_authenticate_complete_dma_port(struct tb_switch
*sw
)
273 struct pci_dev
*root_port
;
275 root_port
= pci_find_pcie_root_port(sw
->tb
->nhi
->pdev
);
277 pm_runtime_put(&root_port
->dev
);
280 static inline bool nvm_readable(struct tb_switch
*sw
)
282 if (tb_switch_is_usb4(sw
)) {
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
289 return usb4_switch_nvm_sector_size(sw
) > 0;
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw
->dma_port
;
296 static inline bool nvm_upgradeable(struct tb_switch
*sw
)
298 if (sw
->no_nvm_upgrade
)
300 return nvm_readable(sw
);
303 static inline int nvm_read(struct tb_switch
*sw
, unsigned int address
,
304 void *buf
, size_t size
)
306 if (tb_switch_is_usb4(sw
))
307 return usb4_switch_nvm_read(sw
, address
, buf
, size
);
308 return dma_port_flash_read(sw
->dma_port
, address
, buf
, size
);
311 static int nvm_authenticate(struct tb_switch
*sw
)
315 if (tb_switch_is_usb4(sw
))
316 return usb4_switch_nvm_authenticate(sw
);
319 nvm_authenticate_start_dma_port(sw
);
320 ret
= nvm_authenticate_host_dma_port(sw
);
322 ret
= nvm_authenticate_device_dma_port(sw
);
328 static int tb_switch_nvm_read(void *priv
, unsigned int offset
, void *val
,
331 struct tb_switch
*sw
= priv
;
334 pm_runtime_get_sync(&sw
->dev
);
336 if (!mutex_trylock(&sw
->tb
->lock
)) {
337 ret
= restart_syscall();
341 ret
= nvm_read(sw
, offset
, val
, bytes
);
342 mutex_unlock(&sw
->tb
->lock
);
345 pm_runtime_mark_last_busy(&sw
->dev
);
346 pm_runtime_put_autosuspend(&sw
->dev
);
351 static int tb_switch_nvm_write(void *priv
, unsigned int offset
, void *val
,
354 struct tb_switch
*sw
= priv
;
357 if (!mutex_trylock(&sw
->tb
->lock
))
358 return restart_syscall();
361 * Since writing the NVM image might require some special steps,
362 * for example when CSS headers are written, we cache the image
363 * locally here and handle the special cases when the user asks
364 * us to authenticate the image.
367 sw
->nvm
->buf
= vmalloc(NVM_MAX_SIZE
);
374 sw
->nvm
->buf_data_size
= offset
+ bytes
;
375 memcpy(sw
->nvm
->buf
+ offset
, val
, bytes
);
378 mutex_unlock(&sw
->tb
->lock
);
383 static struct nvmem_device
*register_nvmem(struct tb_switch
*sw
, int id
,
384 size_t size
, bool active
)
386 struct nvmem_config config
;
388 memset(&config
, 0, sizeof(config
));
391 config
.name
= "nvm_active";
392 config
.reg_read
= tb_switch_nvm_read
;
393 config
.read_only
= true;
395 config
.name
= "nvm_non_active";
396 config
.reg_write
= tb_switch_nvm_write
;
397 config
.root_only
= true;
402 config
.word_size
= 4;
404 config
.dev
= &sw
->dev
;
405 config
.owner
= THIS_MODULE
;
408 return nvmem_register(&config
);
411 static int tb_switch_nvm_add(struct tb_switch
*sw
)
413 struct nvmem_device
*nvm_dev
;
414 struct tb_switch_nvm
*nvm
;
418 if (!nvm_readable(sw
))
422 * The NVM format of non-Intel hardware is not known so
423 * currently restrict NVM upgrade for Intel hardware. We may
424 * relax this in the future when we learn other NVM formats.
426 if (sw
->config
.vendor_id
!= PCI_VENDOR_ID_INTEL
) {
428 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
429 sw
->config
.vendor_id
);
433 nvm
= kzalloc(sizeof(*nvm
), GFP_KERNEL
);
437 nvm
->id
= ida_simple_get(&nvm_ida
, 0, 0, GFP_KERNEL
);
440 * If the switch is in safe-mode the only accessible portion of
441 * the NVM is the non-active one where userspace is expected to
442 * write new functional NVM.
444 if (!sw
->safe_mode
) {
445 u32 nvm_size
, hdr_size
;
447 ret
= nvm_read(sw
, NVM_FLASH_SIZE
, &val
, sizeof(val
));
451 hdr_size
= sw
->generation
< 3 ? SZ_8K
: SZ_16K
;
452 nvm_size
= (SZ_1M
<< (val
& 7)) / 8;
453 nvm_size
= (nvm_size
- hdr_size
) / 2;
455 ret
= nvm_read(sw
, NVM_VERSION
, &val
, sizeof(val
));
459 nvm
->major
= val
>> 16;
460 nvm
->minor
= val
>> 8;
462 nvm_dev
= register_nvmem(sw
, nvm
->id
, nvm_size
, true);
463 if (IS_ERR(nvm_dev
)) {
464 ret
= PTR_ERR(nvm_dev
);
467 nvm
->active
= nvm_dev
;
470 if (!sw
->no_nvm_upgrade
) {
471 nvm_dev
= register_nvmem(sw
, nvm
->id
, NVM_MAX_SIZE
, false);
472 if (IS_ERR(nvm_dev
)) {
473 ret
= PTR_ERR(nvm_dev
);
476 nvm
->non_active
= nvm_dev
;
484 nvmem_unregister(nvm
->active
);
486 ida_simple_remove(&nvm_ida
, nvm
->id
);
492 static void tb_switch_nvm_remove(struct tb_switch
*sw
)
494 struct tb_switch_nvm
*nvm
;
502 /* Remove authentication status in case the switch is unplugged */
503 if (!nvm
->authenticating
)
504 nvm_clear_auth_status(sw
);
507 nvmem_unregister(nvm
->non_active
);
509 nvmem_unregister(nvm
->active
);
510 ida_simple_remove(&nvm_ida
, nvm
->id
);
515 /* port utility functions */
517 static const char *tb_port_type(struct tb_regs_port_header
*port
)
519 switch (port
->type
>> 16) {
521 switch ((u8
) port
->type
) {
546 static void tb_dump_port(struct tb
*tb
, struct tb_regs_port_header
*port
)
549 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
550 port
->port_number
, port
->vendor_id
, port
->device_id
,
551 port
->revision
, port
->thunderbolt_version
, tb_port_type(port
),
553 tb_dbg(tb
, " Max hop id (in/out): %d/%d\n",
554 port
->max_in_hop_id
, port
->max_out_hop_id
);
555 tb_dbg(tb
, " Max counters: %d\n", port
->max_counters
);
556 tb_dbg(tb
, " NFC Credits: %#x\n", port
->nfc_credits
);
560 * tb_port_state() - get connectedness state of a port
562 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
564 * Return: Returns an enum tb_port_state on success or an error code on failure.
566 static int tb_port_state(struct tb_port
*port
)
568 struct tb_cap_phy phy
;
570 if (port
->cap_phy
== 0) {
571 tb_port_WARN(port
, "does not have a PHY\n");
574 res
= tb_port_read(port
, &phy
, TB_CFG_PORT
, port
->cap_phy
, 2);
581 * tb_wait_for_port() - wait for a port to become ready
583 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
584 * wait_if_unplugged is set then we also wait if the port is in state
585 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
586 * switch resume). Otherwise we only wait if a device is registered but the link
587 * has not yet been established.
589 * Return: Returns an error code on failure. Returns 0 if the port is not
590 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
591 * if the port is connected and in state TB_PORT_UP.
593 int tb_wait_for_port(struct tb_port
*port
, bool wait_if_unplugged
)
597 if (!port
->cap_phy
) {
598 tb_port_WARN(port
, "does not have PHY\n");
601 if (tb_is_upstream_port(port
)) {
602 tb_port_WARN(port
, "is the upstream port\n");
607 state
= tb_port_state(port
);
610 if (state
== TB_PORT_DISABLED
) {
611 tb_port_dbg(port
, "is disabled (state: 0)\n");
614 if (state
== TB_PORT_UNPLUGGED
) {
615 if (wait_if_unplugged
) {
616 /* used during resume */
618 "is unplugged (state: 7), retrying...\n");
622 tb_port_dbg(port
, "is unplugged (state: 7)\n");
625 if (state
== TB_PORT_UP
) {
626 tb_port_dbg(port
, "is connected, link is up (state: 2)\n");
631 * After plug-in the state is TB_PORT_CONNECTING. Give it some
635 "is connected, link is not up (state: %d), retrying...\n",
640 "failed to reach state TB_PORT_UP. Ignoring port...\n");
645 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
647 * Change the number of NFC credits allocated to @port by @credits. To remove
648 * NFC credits pass a negative amount of credits.
650 * Return: Returns 0 on success or an error code on failure.
652 int tb_port_add_nfc_credits(struct tb_port
*port
, int credits
)
656 if (credits
== 0 || port
->sw
->is_unplugged
)
659 nfc_credits
= port
->config
.nfc_credits
& ADP_CS_4_NFC_BUFFERS_MASK
;
660 nfc_credits
+= credits
;
662 tb_port_dbg(port
, "adding %d NFC credits to %lu", credits
,
663 port
->config
.nfc_credits
& ADP_CS_4_NFC_BUFFERS_MASK
);
665 port
->config
.nfc_credits
&= ~ADP_CS_4_NFC_BUFFERS_MASK
;
666 port
->config
.nfc_credits
|= nfc_credits
;
668 return tb_port_write(port
, &port
->config
.nfc_credits
,
669 TB_CFG_PORT
, ADP_CS_4
, 1);
673 * tb_port_set_initial_credits() - Set initial port link credits allocated
674 * @port: Port to set the initial credits
675 * @credits: Number of credits to to allocate
677 * Set initial credits value to be used for ingress shared buffering.
679 int tb_port_set_initial_credits(struct tb_port
*port
, u32 credits
)
684 ret
= tb_port_read(port
, &data
, TB_CFG_PORT
, ADP_CS_5
, 1);
688 data
&= ~ADP_CS_5_LCA_MASK
;
689 data
|= (credits
<< ADP_CS_5_LCA_SHIFT
) & ADP_CS_5_LCA_MASK
;
691 return tb_port_write(port
, &data
, TB_CFG_PORT
, ADP_CS_5
, 1);
695 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
697 * Return: Returns 0 on success or an error code on failure.
699 int tb_port_clear_counter(struct tb_port
*port
, int counter
)
701 u32 zero
[3] = { 0, 0, 0 };
702 tb_port_dbg(port
, "clearing counter %d\n", counter
);
703 return tb_port_write(port
, zero
, TB_CFG_COUNTERS
, 3 * counter
, 3);
707 * tb_port_unlock() - Unlock downstream port
708 * @port: Port to unlock
710 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
711 * downstream router accessible for CM.
713 int tb_port_unlock(struct tb_port
*port
)
715 if (tb_switch_is_icm(port
->sw
))
717 if (!tb_port_is_null(port
))
719 if (tb_switch_is_usb4(port
->sw
))
720 return usb4_port_unlock(port
);
725 * tb_init_port() - initialize a port
727 * This is a helper method for tb_switch_alloc. Does not check or initialize
728 * any downstream switches.
730 * Return: Returns 0 on success or an error code on failure.
732 static int tb_init_port(struct tb_port
*port
)
737 res
= tb_port_read(port
, &port
->config
, TB_CFG_PORT
, 0, 8);
739 if (res
== -ENODEV
) {
740 tb_dbg(port
->sw
->tb
, " Port %d: not implemented\n",
747 /* Port 0 is the switch itself and has no PHY. */
748 if (port
->config
.type
== TB_TYPE_PORT
&& port
->port
!= 0) {
749 cap
= tb_port_find_cap(port
, TB_PORT_CAP_PHY
);
754 tb_port_WARN(port
, "non switch port without a PHY\n");
756 cap
= tb_port_find_cap(port
, TB_PORT_CAP_USB4
);
758 port
->cap_usb4
= cap
;
759 } else if (port
->port
!= 0) {
760 cap
= tb_port_find_cap(port
, TB_PORT_CAP_ADAP
);
762 port
->cap_adap
= cap
;
765 tb_dump_port(port
->sw
->tb
, &port
->config
);
767 /* Control port does not need HopID allocation */
769 ida_init(&port
->in_hopids
);
770 ida_init(&port
->out_hopids
);
773 INIT_LIST_HEAD(&port
->list
);
778 static int tb_port_alloc_hopid(struct tb_port
*port
, bool in
, int min_hopid
,
785 port_max_hopid
= port
->config
.max_in_hop_id
;
786 ida
= &port
->in_hopids
;
788 port_max_hopid
= port
->config
.max_out_hop_id
;
789 ida
= &port
->out_hopids
;
792 /* HopIDs 0-7 are reserved */
793 if (min_hopid
< TB_PATH_MIN_HOPID
)
794 min_hopid
= TB_PATH_MIN_HOPID
;
796 if (max_hopid
< 0 || max_hopid
> port_max_hopid
)
797 max_hopid
= port_max_hopid
;
799 return ida_simple_get(ida
, min_hopid
, max_hopid
+ 1, GFP_KERNEL
);
803 * tb_port_alloc_in_hopid() - Allocate input HopID from port
804 * @port: Port to allocate HopID for
805 * @min_hopid: Minimum acceptable input HopID
806 * @max_hopid: Maximum acceptable input HopID
808 * Return: HopID between @min_hopid and @max_hopid or negative errno in
811 int tb_port_alloc_in_hopid(struct tb_port
*port
, int min_hopid
, int max_hopid
)
813 return tb_port_alloc_hopid(port
, true, min_hopid
, max_hopid
);
817 * tb_port_alloc_out_hopid() - Allocate output HopID from port
818 * @port: Port to allocate HopID for
819 * @min_hopid: Minimum acceptable output HopID
820 * @max_hopid: Maximum acceptable output HopID
822 * Return: HopID between @min_hopid and @max_hopid or negative errno in
825 int tb_port_alloc_out_hopid(struct tb_port
*port
, int min_hopid
, int max_hopid
)
827 return tb_port_alloc_hopid(port
, false, min_hopid
, max_hopid
);
831 * tb_port_release_in_hopid() - Release allocated input HopID from port
832 * @port: Port whose HopID to release
833 * @hopid: HopID to release
835 void tb_port_release_in_hopid(struct tb_port
*port
, int hopid
)
837 ida_simple_remove(&port
->in_hopids
, hopid
);
841 * tb_port_release_out_hopid() - Release allocated output HopID from port
842 * @port: Port whose HopID to release
843 * @hopid: HopID to release
845 void tb_port_release_out_hopid(struct tb_port
*port
, int hopid
)
847 ida_simple_remove(&port
->out_hopids
, hopid
);
851 * tb_next_port_on_path() - Return next port for given port on a path
852 * @start: Start port of the walk
853 * @end: End port of the walk
854 * @prev: Previous port (%NULL if this is the first)
856 * This function can be used to walk from one port to another if they
857 * are connected through zero or more switches. If the @prev is dual
858 * link port, the function follows that link and returns another end on
861 * If the @end port has been reached, return %NULL.
863 * Domain tb->lock must be held when this function is called.
865 struct tb_port
*tb_next_port_on_path(struct tb_port
*start
, struct tb_port
*end
,
866 struct tb_port
*prev
)
868 struct tb_port
*next
;
873 if (prev
->sw
== end
->sw
) {
879 if (start
->sw
->config
.depth
< end
->sw
->config
.depth
) {
881 prev
->remote
->sw
->config
.depth
> prev
->sw
->config
.depth
)
884 next
= tb_port_at(tb_route(end
->sw
), prev
->sw
);
886 if (tb_is_upstream_port(prev
)) {
889 next
= tb_upstream_port(prev
->sw
);
891 * Keep the same link if prev and next are both
894 if (next
->dual_link_port
&&
895 next
->link_nr
!= prev
->link_nr
) {
896 next
= next
->dual_link_port
;
904 static int tb_port_get_link_speed(struct tb_port
*port
)
912 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
913 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
917 speed
= (val
& LANE_ADP_CS_1_CURRENT_SPEED_MASK
) >>
918 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT
;
919 return speed
== LANE_ADP_CS_1_CURRENT_SPEED_GEN3
? 20 : 10;
922 static int tb_port_get_link_width(struct tb_port
*port
)
930 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
931 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
935 return (val
& LANE_ADP_CS_1_CURRENT_WIDTH_MASK
) >>
936 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT
;
939 static bool tb_port_is_width_supported(struct tb_port
*port
, int width
)
947 ret
= tb_port_read(port
, &phy
, TB_CFG_PORT
,
948 port
->cap_phy
+ LANE_ADP_CS_0
, 1);
952 widths
= (phy
& LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK
) >>
953 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT
;
955 return !!(widths
& width
);
958 static int tb_port_set_link_width(struct tb_port
*port
, unsigned int width
)
966 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
967 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
971 val
&= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK
;
974 val
|= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE
<<
975 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT
;
978 val
|= LANE_ADP_CS_1_TARGET_WIDTH_DUAL
<<
979 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT
;
985 val
|= LANE_ADP_CS_1_LB
;
987 return tb_port_write(port
, &val
, TB_CFG_PORT
,
988 port
->cap_phy
+ LANE_ADP_CS_1
, 1);
991 static int tb_port_lane_bonding_enable(struct tb_port
*port
)
996 * Enable lane bonding for both links if not already enabled by
997 * for example the boot firmware.
999 ret
= tb_port_get_link_width(port
);
1001 ret
= tb_port_set_link_width(port
, 2);
1006 ret
= tb_port_get_link_width(port
->dual_link_port
);
1008 ret
= tb_port_set_link_width(port
->dual_link_port
, 2);
1010 tb_port_set_link_width(port
, 1);
1015 port
->bonded
= true;
1016 port
->dual_link_port
->bonded
= true;
1021 static void tb_port_lane_bonding_disable(struct tb_port
*port
)
1023 port
->dual_link_port
->bonded
= false;
1024 port
->bonded
= false;
1026 tb_port_set_link_width(port
->dual_link_port
, 1);
1027 tb_port_set_link_width(port
, 1);
1031 * tb_port_is_enabled() - Is the adapter port enabled
1032 * @port: Port to check
1034 bool tb_port_is_enabled(struct tb_port
*port
)
1036 switch (port
->config
.type
) {
1037 case TB_TYPE_PCIE_UP
:
1038 case TB_TYPE_PCIE_DOWN
:
1039 return tb_pci_port_is_enabled(port
);
1041 case TB_TYPE_DP_HDMI_IN
:
1042 case TB_TYPE_DP_HDMI_OUT
:
1043 return tb_dp_port_is_enabled(port
);
1045 case TB_TYPE_USB3_UP
:
1046 case TB_TYPE_USB3_DOWN
:
1047 return tb_usb3_port_is_enabled(port
);
1055 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1056 * @port: USB3 adapter port to check
1058 bool tb_usb3_port_is_enabled(struct tb_port
*port
)
1062 if (tb_port_read(port
, &data
, TB_CFG_PORT
,
1063 port
->cap_adap
+ ADP_USB3_CS_0
, 1))
1066 return !!(data
& ADP_USB3_CS_0_PE
);
1070 * tb_usb3_port_enable() - Enable USB3 adapter port
1071 * @port: USB3 adapter port to enable
1072 * @enable: Enable/disable the USB3 adapter
1074 int tb_usb3_port_enable(struct tb_port
*port
, bool enable
)
1076 u32 word
= enable
? (ADP_USB3_CS_0_PE
| ADP_USB3_CS_0_V
)
1079 if (!port
->cap_adap
)
1081 return tb_port_write(port
, &word
, TB_CFG_PORT
,
1082 port
->cap_adap
+ ADP_USB3_CS_0
, 1);
1086 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1087 * @port: PCIe port to check
1089 bool tb_pci_port_is_enabled(struct tb_port
*port
)
1093 if (tb_port_read(port
, &data
, TB_CFG_PORT
,
1094 port
->cap_adap
+ ADP_PCIE_CS_0
, 1))
1097 return !!(data
& ADP_PCIE_CS_0_PE
);
1101 * tb_pci_port_enable() - Enable PCIe adapter port
1102 * @port: PCIe port to enable
1103 * @enable: Enable/disable the PCIe adapter
1105 int tb_pci_port_enable(struct tb_port
*port
, bool enable
)
1107 u32 word
= enable
? ADP_PCIE_CS_0_PE
: 0x0;
1108 if (!port
->cap_adap
)
1110 return tb_port_write(port
, &word
, TB_CFG_PORT
,
1111 port
->cap_adap
+ ADP_PCIE_CS_0
, 1);
1115 * tb_dp_port_hpd_is_active() - Is HPD already active
1116 * @port: DP out port to check
1118 * Checks if the DP OUT adapter port has HDP bit already set.
1120 int tb_dp_port_hpd_is_active(struct tb_port
*port
)
1125 ret
= tb_port_read(port
, &data
, TB_CFG_PORT
,
1126 port
->cap_adap
+ ADP_DP_CS_2
, 1);
1130 return !!(data
& ADP_DP_CS_2_HDP
);
1134 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1135 * @port: Port to clear HPD
1137 * If the DP IN port has HDP set, this function can be used to clear it.
1139 int tb_dp_port_hpd_clear(struct tb_port
*port
)
1144 ret
= tb_port_read(port
, &data
, TB_CFG_PORT
,
1145 port
->cap_adap
+ ADP_DP_CS_3
, 1);
1149 data
|= ADP_DP_CS_3_HDPC
;
1150 return tb_port_write(port
, &data
, TB_CFG_PORT
,
1151 port
->cap_adap
+ ADP_DP_CS_3
, 1);
1155 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1156 * @port: DP IN/OUT port to set hops
1157 * @video: Video Hop ID
1158 * @aux_tx: AUX TX Hop ID
1159 * @aux_rx: AUX RX Hop ID
1161 * Programs specified Hop IDs for DP IN/OUT port.
1163 int tb_dp_port_set_hops(struct tb_port
*port
, unsigned int video
,
1164 unsigned int aux_tx
, unsigned int aux_rx
)
1169 ret
= tb_port_read(port
, data
, TB_CFG_PORT
,
1170 port
->cap_adap
+ ADP_DP_CS_0
, ARRAY_SIZE(data
));
1174 data
[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK
;
1175 data
[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK
;
1176 data
[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK
;
1178 data
[0] |= (video
<< ADP_DP_CS_0_VIDEO_HOPID_SHIFT
) &
1179 ADP_DP_CS_0_VIDEO_HOPID_MASK
;
1180 data
[1] |= aux_tx
& ADP_DP_CS_1_AUX_TX_HOPID_MASK
;
1181 data
[1] |= (aux_rx
<< ADP_DP_CS_1_AUX_RX_HOPID_SHIFT
) &
1182 ADP_DP_CS_1_AUX_RX_HOPID_MASK
;
1184 return tb_port_write(port
, data
, TB_CFG_PORT
,
1185 port
->cap_adap
+ ADP_DP_CS_0
, ARRAY_SIZE(data
));
1189 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1190 * @port: DP adapter port to check
1192 bool tb_dp_port_is_enabled(struct tb_port
*port
)
1196 if (tb_port_read(port
, data
, TB_CFG_PORT
, port
->cap_adap
+ ADP_DP_CS_0
,
1200 return !!(data
[0] & (ADP_DP_CS_0_VE
| ADP_DP_CS_0_AE
));
1204 * tb_dp_port_enable() - Enables/disables DP paths of a port
1205 * @port: DP IN/OUT port
1206 * @enable: Enable/disable DP path
1208 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1209 * calling this function.
1211 int tb_dp_port_enable(struct tb_port
*port
, bool enable
)
1216 ret
= tb_port_read(port
, data
, TB_CFG_PORT
,
1217 port
->cap_adap
+ ADP_DP_CS_0
, ARRAY_SIZE(data
));
1222 data
[0] |= ADP_DP_CS_0_VE
| ADP_DP_CS_0_AE
;
1224 data
[0] &= ~(ADP_DP_CS_0_VE
| ADP_DP_CS_0_AE
);
1226 return tb_port_write(port
, data
, TB_CFG_PORT
,
1227 port
->cap_adap
+ ADP_DP_CS_0
, ARRAY_SIZE(data
));
1230 /* switch utility functions */
1232 static const char *tb_switch_generation_name(const struct tb_switch
*sw
)
1234 switch (sw
->generation
) {
1236 return "Thunderbolt 1";
1238 return "Thunderbolt 2";
1240 return "Thunderbolt 3";
1248 static void tb_dump_switch(const struct tb
*tb
, const struct tb_switch
*sw
)
1250 const struct tb_regs_switch_header
*regs
= &sw
->config
;
1252 tb_dbg(tb
, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1253 tb_switch_generation_name(sw
), regs
->vendor_id
, regs
->device_id
,
1254 regs
->revision
, regs
->thunderbolt_version
);
1255 tb_dbg(tb
, " Max Port Number: %d\n", regs
->max_port_number
);
1256 tb_dbg(tb
, " Config:\n");
1258 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1259 regs
->upstream_port_number
, regs
->depth
,
1260 (((u64
) regs
->route_hi
) << 32) | regs
->route_lo
,
1261 regs
->enabled
, regs
->plug_events_delay
);
1262 tb_dbg(tb
, " unknown1: %#x unknown4: %#x\n",
1263 regs
->__unknown1
, regs
->__unknown4
);
1267 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1269 * Return: Returns 0 on success or an error code on failure.
1271 int tb_switch_reset(struct tb
*tb
, u64 route
)
1273 struct tb_cfg_result res
;
1274 struct tb_regs_switch_header header
= {
1275 header
.route_hi
= route
>> 32,
1276 header
.route_lo
= route
,
1277 header
.enabled
= true,
1279 tb_dbg(tb
, "resetting switch at %llx\n", route
);
1280 res
.err
= tb_cfg_write(tb
->ctl
, ((u32
*) &header
) + 2, route
,
1284 res
= tb_cfg_reset(tb
->ctl
, route
, TB_CFG_DEFAULT_TIMEOUT
);
1291 * tb_plug_events_active() - enable/disable plug events on a switch
1293 * Also configures a sane plug_events_delay of 255ms.
1295 * Return: Returns 0 on success or an error code on failure.
1297 static int tb_plug_events_active(struct tb_switch
*sw
, bool active
)
1302 if (tb_switch_is_icm(sw
))
1305 sw
->config
.plug_events_delay
= 0xff;
1306 res
= tb_sw_write(sw
, ((u32
*) &sw
->config
) + 4, TB_CFG_SWITCH
, 4, 1);
1310 /* Plug events are always enabled in USB4 */
1311 if (tb_switch_is_usb4(sw
))
1314 res
= tb_sw_read(sw
, &data
, TB_CFG_SWITCH
, sw
->cap_plug_events
+ 1, 1);
1319 data
= data
& 0xFFFFFF83;
1320 switch (sw
->config
.device_id
) {
1321 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE
:
1322 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE
:
1323 case PCI_DEVICE_ID_INTEL_PORT_RIDGE
:
1331 return tb_sw_write(sw
, &data
, TB_CFG_SWITCH
,
1332 sw
->cap_plug_events
+ 1, 1);
1335 static ssize_t
authorized_show(struct device
*dev
,
1336 struct device_attribute
*attr
,
1339 struct tb_switch
*sw
= tb_to_switch(dev
);
1341 return sprintf(buf
, "%u\n", sw
->authorized
);
1344 static int tb_switch_set_authorized(struct tb_switch
*sw
, unsigned int val
)
1348 if (!mutex_trylock(&sw
->tb
->lock
))
1349 return restart_syscall();
1355 /* Approve switch */
1358 ret
= tb_domain_approve_switch_key(sw
->tb
, sw
);
1360 ret
= tb_domain_approve_switch(sw
->tb
, sw
);
1363 /* Challenge switch */
1366 ret
= tb_domain_challenge_switch_key(sw
->tb
, sw
);
1374 sw
->authorized
= val
;
1375 /* Notify status change to the userspace */
1376 kobject_uevent(&sw
->dev
.kobj
, KOBJ_CHANGE
);
1380 mutex_unlock(&sw
->tb
->lock
);
1384 static ssize_t
authorized_store(struct device
*dev
,
1385 struct device_attribute
*attr
,
1386 const char *buf
, size_t count
)
1388 struct tb_switch
*sw
= tb_to_switch(dev
);
1392 ret
= kstrtouint(buf
, 0, &val
);
1398 pm_runtime_get_sync(&sw
->dev
);
1399 ret
= tb_switch_set_authorized(sw
, val
);
1400 pm_runtime_mark_last_busy(&sw
->dev
);
1401 pm_runtime_put_autosuspend(&sw
->dev
);
1403 return ret
? ret
: count
;
1405 static DEVICE_ATTR_RW(authorized
);
1407 static ssize_t
boot_show(struct device
*dev
, struct device_attribute
*attr
,
1410 struct tb_switch
*sw
= tb_to_switch(dev
);
1412 return sprintf(buf
, "%u\n", sw
->boot
);
1414 static DEVICE_ATTR_RO(boot
);
1416 static ssize_t
device_show(struct device
*dev
, struct device_attribute
*attr
,
1419 struct tb_switch
*sw
= tb_to_switch(dev
);
1421 return sprintf(buf
, "%#x\n", sw
->device
);
1423 static DEVICE_ATTR_RO(device
);
1426 device_name_show(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1428 struct tb_switch
*sw
= tb_to_switch(dev
);
1430 return sprintf(buf
, "%s\n", sw
->device_name
? sw
->device_name
: "");
1432 static DEVICE_ATTR_RO(device_name
);
1435 generation_show(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1437 struct tb_switch
*sw
= tb_to_switch(dev
);
1439 return sprintf(buf
, "%u\n", sw
->generation
);
1441 static DEVICE_ATTR_RO(generation
);
1443 static ssize_t
key_show(struct device
*dev
, struct device_attribute
*attr
,
1446 struct tb_switch
*sw
= tb_to_switch(dev
);
1449 if (!mutex_trylock(&sw
->tb
->lock
))
1450 return restart_syscall();
1453 ret
= sprintf(buf
, "%*phN\n", TB_SWITCH_KEY_SIZE
, sw
->key
);
1455 ret
= sprintf(buf
, "\n");
1457 mutex_unlock(&sw
->tb
->lock
);
1461 static ssize_t
key_store(struct device
*dev
, struct device_attribute
*attr
,
1462 const char *buf
, size_t count
)
1464 struct tb_switch
*sw
= tb_to_switch(dev
);
1465 u8 key
[TB_SWITCH_KEY_SIZE
];
1466 ssize_t ret
= count
;
1469 if (!strcmp(buf
, "\n"))
1471 else if (hex2bin(key
, buf
, sizeof(key
)))
1474 if (!mutex_trylock(&sw
->tb
->lock
))
1475 return restart_syscall();
1477 if (sw
->authorized
) {
1484 sw
->key
= kmemdup(key
, sizeof(key
), GFP_KERNEL
);
1490 mutex_unlock(&sw
->tb
->lock
);
1493 static DEVICE_ATTR(key
, 0600, key_show
, key_store
);
1495 static ssize_t
speed_show(struct device
*dev
, struct device_attribute
*attr
,
1498 struct tb_switch
*sw
= tb_to_switch(dev
);
1500 return sprintf(buf
, "%u.0 Gb/s\n", sw
->link_speed
);
1504 * Currently all lanes must run at the same speed but we expose here
1505 * both directions to allow possible asymmetric links in the future.
1507 static DEVICE_ATTR(rx_speed
, 0444, speed_show
, NULL
);
1508 static DEVICE_ATTR(tx_speed
, 0444, speed_show
, NULL
);
1510 static ssize_t
lanes_show(struct device
*dev
, struct device_attribute
*attr
,
1513 struct tb_switch
*sw
= tb_to_switch(dev
);
1515 return sprintf(buf
, "%u\n", sw
->link_width
);
1519 * Currently link has same amount of lanes both directions (1 or 2) but
1520 * expose them separately to allow possible asymmetric links in the future.
1522 static DEVICE_ATTR(rx_lanes
, 0444, lanes_show
, NULL
);
1523 static DEVICE_ATTR(tx_lanes
, 0444, lanes_show
, NULL
);
1525 static ssize_t
nvm_authenticate_show(struct device
*dev
,
1526 struct device_attribute
*attr
, char *buf
)
1528 struct tb_switch
*sw
= tb_to_switch(dev
);
1531 nvm_get_auth_status(sw
, &status
);
1532 return sprintf(buf
, "%#x\n", status
);
1535 static ssize_t
nvm_authenticate_store(struct device
*dev
,
1536 struct device_attribute
*attr
, const char *buf
, size_t count
)
1538 struct tb_switch
*sw
= tb_to_switch(dev
);
1542 pm_runtime_get_sync(&sw
->dev
);
1544 if (!mutex_trylock(&sw
->tb
->lock
)) {
1545 ret
= restart_syscall();
1549 /* If NVMem devices are not yet added */
1555 ret
= kstrtobool(buf
, &val
);
1559 /* Always clear the authentication status */
1560 nvm_clear_auth_status(sw
);
1563 if (!sw
->nvm
->buf
) {
1568 ret
= nvm_validate_and_write(sw
);
1572 sw
->nvm
->authenticating
= true;
1573 ret
= nvm_authenticate(sw
);
1577 mutex_unlock(&sw
->tb
->lock
);
1579 pm_runtime_mark_last_busy(&sw
->dev
);
1580 pm_runtime_put_autosuspend(&sw
->dev
);
1586 static DEVICE_ATTR_RW(nvm_authenticate
);
1588 static ssize_t
nvm_version_show(struct device
*dev
,
1589 struct device_attribute
*attr
, char *buf
)
1591 struct tb_switch
*sw
= tb_to_switch(dev
);
1594 if (!mutex_trylock(&sw
->tb
->lock
))
1595 return restart_syscall();
1602 ret
= sprintf(buf
, "%x.%x\n", sw
->nvm
->major
, sw
->nvm
->minor
);
1604 mutex_unlock(&sw
->tb
->lock
);
1608 static DEVICE_ATTR_RO(nvm_version
);
1610 static ssize_t
vendor_show(struct device
*dev
, struct device_attribute
*attr
,
1613 struct tb_switch
*sw
= tb_to_switch(dev
);
1615 return sprintf(buf
, "%#x\n", sw
->vendor
);
1617 static DEVICE_ATTR_RO(vendor
);
1620 vendor_name_show(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1622 struct tb_switch
*sw
= tb_to_switch(dev
);
1624 return sprintf(buf
, "%s\n", sw
->vendor_name
? sw
->vendor_name
: "");
1626 static DEVICE_ATTR_RO(vendor_name
);
1628 static ssize_t
unique_id_show(struct device
*dev
, struct device_attribute
*attr
,
1631 struct tb_switch
*sw
= tb_to_switch(dev
);
1633 return sprintf(buf
, "%pUb\n", sw
->uuid
);
1635 static DEVICE_ATTR_RO(unique_id
);
1637 static struct attribute
*switch_attrs
[] = {
1638 &dev_attr_authorized
.attr
,
1639 &dev_attr_boot
.attr
,
1640 &dev_attr_device
.attr
,
1641 &dev_attr_device_name
.attr
,
1642 &dev_attr_generation
.attr
,
1644 &dev_attr_nvm_authenticate
.attr
,
1645 &dev_attr_nvm_version
.attr
,
1646 &dev_attr_rx_speed
.attr
,
1647 &dev_attr_rx_lanes
.attr
,
1648 &dev_attr_tx_speed
.attr
,
1649 &dev_attr_tx_lanes
.attr
,
1650 &dev_attr_vendor
.attr
,
1651 &dev_attr_vendor_name
.attr
,
1652 &dev_attr_unique_id
.attr
,
1656 static umode_t
switch_attr_is_visible(struct kobject
*kobj
,
1657 struct attribute
*attr
, int n
)
1659 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
1660 struct tb_switch
*sw
= tb_to_switch(dev
);
1662 if (attr
== &dev_attr_device
.attr
) {
1665 } else if (attr
== &dev_attr_device_name
.attr
) {
1666 if (!sw
->device_name
)
1668 } else if (attr
== &dev_attr_vendor
.attr
) {
1671 } else if (attr
== &dev_attr_vendor_name
.attr
) {
1672 if (!sw
->vendor_name
)
1674 } else if (attr
== &dev_attr_key
.attr
) {
1676 sw
->tb
->security_level
== TB_SECURITY_SECURE
&&
1677 sw
->security_level
== TB_SECURITY_SECURE
)
1680 } else if (attr
== &dev_attr_rx_speed
.attr
||
1681 attr
== &dev_attr_rx_lanes
.attr
||
1682 attr
== &dev_attr_tx_speed
.attr
||
1683 attr
== &dev_attr_tx_lanes
.attr
) {
1687 } else if (attr
== &dev_attr_nvm_authenticate
.attr
) {
1688 if (nvm_upgradeable(sw
))
1691 } else if (attr
== &dev_attr_nvm_version
.attr
) {
1692 if (nvm_readable(sw
))
1695 } else if (attr
== &dev_attr_boot
.attr
) {
1701 return sw
->safe_mode
? 0 : attr
->mode
;
1704 static struct attribute_group switch_group
= {
1705 .is_visible
= switch_attr_is_visible
,
1706 .attrs
= switch_attrs
,
1709 static const struct attribute_group
*switch_groups
[] = {
1714 static void tb_switch_release(struct device
*dev
)
1716 struct tb_switch
*sw
= tb_to_switch(dev
);
1717 struct tb_port
*port
;
1719 dma_port_free(sw
->dma_port
);
1721 tb_switch_for_each_port(sw
, port
) {
1722 if (!port
->disabled
) {
1723 ida_destroy(&port
->in_hopids
);
1724 ida_destroy(&port
->out_hopids
);
1729 kfree(sw
->device_name
);
1730 kfree(sw
->vendor_name
);
1738 * Currently only need to provide the callbacks. Everything else is handled
1739 * in the connection manager.
1741 static int __maybe_unused
tb_switch_runtime_suspend(struct device
*dev
)
1743 struct tb_switch
*sw
= tb_to_switch(dev
);
1744 const struct tb_cm_ops
*cm_ops
= sw
->tb
->cm_ops
;
1746 if (cm_ops
->runtime_suspend_switch
)
1747 return cm_ops
->runtime_suspend_switch(sw
);
1752 static int __maybe_unused
tb_switch_runtime_resume(struct device
*dev
)
1754 struct tb_switch
*sw
= tb_to_switch(dev
);
1755 const struct tb_cm_ops
*cm_ops
= sw
->tb
->cm_ops
;
1757 if (cm_ops
->runtime_resume_switch
)
1758 return cm_ops
->runtime_resume_switch(sw
);
1762 static const struct dev_pm_ops tb_switch_pm_ops
= {
1763 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend
, tb_switch_runtime_resume
,
1767 struct device_type tb_switch_type
= {
1768 .name
= "thunderbolt_device",
1769 .release
= tb_switch_release
,
1770 .pm
= &tb_switch_pm_ops
,
1773 static int tb_switch_get_generation(struct tb_switch
*sw
)
1775 switch (sw
->config
.device_id
) {
1776 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE
:
1777 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE
:
1778 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK
:
1779 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C
:
1780 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C
:
1781 case PCI_DEVICE_ID_INTEL_PORT_RIDGE
:
1782 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE
:
1783 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE
:
1786 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE
:
1787 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE
:
1788 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE
:
1791 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE
:
1792 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE
:
1793 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE
:
1794 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE
:
1795 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE
:
1796 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE
:
1797 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE
:
1798 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE
:
1799 case PCI_DEVICE_ID_INTEL_ICL_NHI0
:
1800 case PCI_DEVICE_ID_INTEL_ICL_NHI1
:
1804 if (tb_switch_is_usb4(sw
))
1808 * For unknown switches assume generation to be 1 to be
1811 tb_sw_warn(sw
, "unsupported switch device id %#x\n",
1812 sw
->config
.device_id
);
1817 static bool tb_switch_exceeds_max_depth(const struct tb_switch
*sw
, int depth
)
1821 if (tb_switch_is_usb4(sw
) ||
1822 (sw
->tb
->root_switch
&& tb_switch_is_usb4(sw
->tb
->root_switch
)))
1823 max_depth
= USB4_SWITCH_MAX_DEPTH
;
1825 max_depth
= TB_SWITCH_MAX_DEPTH
;
1827 return depth
> max_depth
;
1831 * tb_switch_alloc() - allocate a switch
1832 * @tb: Pointer to the owning domain
1833 * @parent: Parent device for this switch
1834 * @route: Route string for this switch
1836 * Allocates and initializes a switch. Will not upload configuration to
1837 * the switch. For that you need to call tb_switch_configure()
1838 * separately. The returned switch should be released by calling
1841 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1844 struct tb_switch
*tb_switch_alloc(struct tb
*tb
, struct device
*parent
,
1847 struct tb_switch
*sw
;
1851 /* Unlock the downstream port so we can access the switch below */
1853 struct tb_switch
*parent_sw
= tb_to_switch(parent
);
1854 struct tb_port
*down
;
1856 down
= tb_port_at(route
, parent_sw
);
1857 tb_port_unlock(down
);
1860 depth
= tb_route_length(route
);
1862 upstream_port
= tb_cfg_get_upstream_port(tb
->ctl
, route
);
1863 if (upstream_port
< 0)
1864 return ERR_PTR(upstream_port
);
1866 sw
= kzalloc(sizeof(*sw
), GFP_KERNEL
);
1868 return ERR_PTR(-ENOMEM
);
1871 ret
= tb_cfg_read(tb
->ctl
, &sw
->config
, route
, 0, TB_CFG_SWITCH
, 0, 5);
1873 goto err_free_sw_ports
;
1875 sw
->generation
= tb_switch_get_generation(sw
);
1877 tb_dbg(tb
, "current switch config:\n");
1878 tb_dump_switch(tb
, sw
);
1880 /* configure switch */
1881 sw
->config
.upstream_port_number
= upstream_port
;
1882 sw
->config
.depth
= depth
;
1883 sw
->config
.route_hi
= upper_32_bits(route
);
1884 sw
->config
.route_lo
= lower_32_bits(route
);
1885 sw
->config
.enabled
= 0;
1887 /* Make sure we do not exceed maximum topology limit */
1888 if (tb_switch_exceeds_max_depth(sw
, depth
)) {
1889 ret
= -EADDRNOTAVAIL
;
1890 goto err_free_sw_ports
;
1893 /* initialize ports */
1894 sw
->ports
= kcalloc(sw
->config
.max_port_number
+ 1, sizeof(*sw
->ports
),
1898 goto err_free_sw_ports
;
1901 for (i
= 0; i
<= sw
->config
.max_port_number
; i
++) {
1902 /* minimum setup for tb_find_cap and tb_drom_read to work */
1903 sw
->ports
[i
].sw
= sw
;
1904 sw
->ports
[i
].port
= i
;
1907 ret
= tb_switch_find_vse_cap(sw
, TB_VSE_CAP_PLUG_EVENTS
);
1909 sw
->cap_plug_events
= ret
;
1911 ret
= tb_switch_find_vse_cap(sw
, TB_VSE_CAP_LINK_CONTROLLER
);
1915 /* Root switch is always authorized */
1917 sw
->authorized
= true;
1919 device_initialize(&sw
->dev
);
1920 sw
->dev
.parent
= parent
;
1921 sw
->dev
.bus
= &tb_bus_type
;
1922 sw
->dev
.type
= &tb_switch_type
;
1923 sw
->dev
.groups
= switch_groups
;
1924 dev_set_name(&sw
->dev
, "%u-%llx", tb
->index
, tb_route(sw
));
1932 return ERR_PTR(ret
);
1936 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1937 * @tb: Pointer to the owning domain
1938 * @parent: Parent device for this switch
1939 * @route: Route string for this switch
1941 * This creates a switch in safe mode. This means the switch pretty much
1942 * lacks all capabilities except DMA configuration port before it is
1943 * flashed with a valid NVM firmware.
1945 * The returned switch must be released by calling tb_switch_put().
1947 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1950 tb_switch_alloc_safe_mode(struct tb
*tb
, struct device
*parent
, u64 route
)
1952 struct tb_switch
*sw
;
1954 sw
= kzalloc(sizeof(*sw
), GFP_KERNEL
);
1956 return ERR_PTR(-ENOMEM
);
1959 sw
->config
.depth
= tb_route_length(route
);
1960 sw
->config
.route_hi
= upper_32_bits(route
);
1961 sw
->config
.route_lo
= lower_32_bits(route
);
1962 sw
->safe_mode
= true;
1964 device_initialize(&sw
->dev
);
1965 sw
->dev
.parent
= parent
;
1966 sw
->dev
.bus
= &tb_bus_type
;
1967 sw
->dev
.type
= &tb_switch_type
;
1968 sw
->dev
.groups
= switch_groups
;
1969 dev_set_name(&sw
->dev
, "%u-%llx", tb
->index
, tb_route(sw
));
1975 * tb_switch_configure() - Uploads configuration to the switch
1976 * @sw: Switch to configure
1978 * Call this function before the switch is added to the system. It will
1979 * upload configuration to the switch and makes it available for the
1980 * connection manager to use. Can be called to the switch again after
1981 * resume from low power states to re-initialize it.
1983 * Return: %0 in case of success and negative errno in case of failure
1985 int tb_switch_configure(struct tb_switch
*sw
)
1987 struct tb
*tb
= sw
->tb
;
1991 route
= tb_route(sw
);
1993 tb_dbg(tb
, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1994 sw
->config
.enabled
? "restoring " : "initializing", route
,
1995 tb_route_length(route
), sw
->config
.upstream_port_number
);
1997 sw
->config
.enabled
= 1;
1999 if (tb_switch_is_usb4(sw
)) {
2001 * For USB4 devices, we need to program the CM version
2002 * accordingly so that it knows to expose all the
2003 * additional capabilities.
2005 sw
->config
.cmuv
= USB4_VERSION_1_0
;
2007 /* Enumerate the switch */
2008 ret
= tb_sw_write(sw
, (u32
*)&sw
->config
+ 1, TB_CFG_SWITCH
,
2013 ret
= usb4_switch_setup(sw
);
2017 ret
= usb4_switch_configure_link(sw
);
2019 if (sw
->config
.vendor_id
!= PCI_VENDOR_ID_INTEL
)
2020 tb_sw_warn(sw
, "unknown switch vendor id %#x\n",
2021 sw
->config
.vendor_id
);
2023 if (!sw
->cap_plug_events
) {
2024 tb_sw_warn(sw
, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2028 /* Enumerate the switch */
2029 ret
= tb_sw_write(sw
, (u32
*)&sw
->config
+ 1, TB_CFG_SWITCH
,
2034 ret
= tb_lc_configure_link(sw
);
2039 return tb_plug_events_active(sw
, true);
2042 static int tb_switch_set_uuid(struct tb_switch
*sw
)
2051 if (tb_switch_is_usb4(sw
)) {
2052 ret
= usb4_switch_read_uid(sw
, &sw
->uid
);
2058 * The newer controllers include fused UUID as part of
2059 * link controller specific registers
2061 ret
= tb_lc_read_uuid(sw
, uuid
);
2071 * ICM generates UUID based on UID and fills the upper
2072 * two words with ones. This is not strictly following
2073 * UUID format but we want to be compatible with it so
2074 * we do the same here.
2076 uuid
[0] = sw
->uid
& 0xffffffff;
2077 uuid
[1] = (sw
->uid
>> 32) & 0xffffffff;
2078 uuid
[2] = 0xffffffff;
2079 uuid
[3] = 0xffffffff;
2082 sw
->uuid
= kmemdup(uuid
, sizeof(uuid
), GFP_KERNEL
);
2088 static int tb_switch_add_dma_port(struct tb_switch
*sw
)
2093 switch (sw
->generation
) {
2095 /* Only root switch can be upgraded */
2101 ret
= tb_switch_set_uuid(sw
);
2108 * DMA port is the only thing available when the switch
2116 /* Root switch DMA port requires running firmware */
2117 if (!tb_route(sw
) && !tb_switch_is_icm(sw
))
2120 sw
->dma_port
= dma_port_alloc(sw
);
2124 if (sw
->no_nvm_upgrade
)
2128 * If there is status already set then authentication failed
2129 * when the dma_port_flash_update_auth() returned. Power cycling
2130 * is not needed (it was done already) so only thing we do here
2131 * is to unblock runtime PM of the root port.
2133 nvm_get_auth_status(sw
, &status
);
2136 nvm_authenticate_complete_dma_port(sw
);
2141 * Check status of the previous flash authentication. If there
2142 * is one we need to power cycle the switch in any case to make
2143 * it functional again.
2145 ret
= dma_port_flash_update_auth_status(sw
->dma_port
, &status
);
2149 /* Now we can allow root port to suspend again */
2151 nvm_authenticate_complete_dma_port(sw
);
2154 tb_sw_info(sw
, "switch flash authentication failed\n");
2155 nvm_set_auth_status(sw
, status
);
2158 tb_sw_info(sw
, "power cycling the switch now\n");
2159 dma_port_power_cycle(sw
->dma_port
);
2162 * We return error here which causes the switch adding failure.
2163 * It should appear back after power cycle is complete.
2168 static void tb_switch_default_link_ports(struct tb_switch
*sw
)
2172 for (i
= 1; i
<= sw
->config
.max_port_number
; i
+= 2) {
2173 struct tb_port
*port
= &sw
->ports
[i
];
2174 struct tb_port
*subordinate
;
2176 if (!tb_port_is_null(port
))
2179 /* Check for the subordinate port */
2180 if (i
== sw
->config
.max_port_number
||
2181 !tb_port_is_null(&sw
->ports
[i
+ 1]))
2184 /* Link them if not already done so (by DROM) */
2185 subordinate
= &sw
->ports
[i
+ 1];
2186 if (!port
->dual_link_port
&& !subordinate
->dual_link_port
) {
2188 port
->dual_link_port
= subordinate
;
2189 subordinate
->link_nr
= 1;
2190 subordinate
->dual_link_port
= port
;
2192 tb_sw_dbg(sw
, "linked ports %d <-> %d\n",
2193 port
->port
, subordinate
->port
);
2198 static bool tb_switch_lane_bonding_possible(struct tb_switch
*sw
)
2200 const struct tb_port
*up
= tb_upstream_port(sw
);
2202 if (!up
->dual_link_port
|| !up
->dual_link_port
->remote
)
2205 if (tb_switch_is_usb4(sw
))
2206 return usb4_switch_lane_bonding_possible(sw
);
2207 return tb_lc_lane_bonding_possible(sw
);
2210 static int tb_switch_update_link_attributes(struct tb_switch
*sw
)
2213 bool change
= false;
2216 if (!tb_route(sw
) || tb_switch_is_icm(sw
))
2219 up
= tb_upstream_port(sw
);
2221 ret
= tb_port_get_link_speed(up
);
2224 if (sw
->link_speed
!= ret
)
2226 sw
->link_speed
= ret
;
2228 ret
= tb_port_get_link_width(up
);
2231 if (sw
->link_width
!= ret
)
2233 sw
->link_width
= ret
;
2235 /* Notify userspace that there is possible link attribute change */
2236 if (device_is_registered(&sw
->dev
) && change
)
2237 kobject_uevent(&sw
->dev
.kobj
, KOBJ_CHANGE
);
2243 * tb_switch_lane_bonding_enable() - Enable lane bonding
2244 * @sw: Switch to enable lane bonding
2246 * Connection manager can call this function to enable lane bonding of a
2247 * switch. If conditions are correct and both switches support the feature,
2248 * lanes are bonded. It is safe to call this to any switch.
2250 int tb_switch_lane_bonding_enable(struct tb_switch
*sw
)
2252 struct tb_switch
*parent
= tb_to_switch(sw
->dev
.parent
);
2253 struct tb_port
*up
, *down
;
2254 u64 route
= tb_route(sw
);
2260 if (!tb_switch_lane_bonding_possible(sw
))
2263 up
= tb_upstream_port(sw
);
2264 down
= tb_port_at(route
, parent
);
2266 if (!tb_port_is_width_supported(up
, 2) ||
2267 !tb_port_is_width_supported(down
, 2))
2270 ret
= tb_port_lane_bonding_enable(up
);
2272 tb_port_warn(up
, "failed to enable lane bonding\n");
2276 ret
= tb_port_lane_bonding_enable(down
);
2278 tb_port_warn(down
, "failed to enable lane bonding\n");
2279 tb_port_lane_bonding_disable(up
);
2283 tb_switch_update_link_attributes(sw
);
2285 tb_sw_dbg(sw
, "lane bonding enabled\n");
2290 * tb_switch_lane_bonding_disable() - Disable lane bonding
2291 * @sw: Switch whose lane bonding to disable
2293 * Disables lane bonding between @sw and parent. This can be called even
2294 * if lanes were not bonded originally.
2296 void tb_switch_lane_bonding_disable(struct tb_switch
*sw
)
2298 struct tb_switch
*parent
= tb_to_switch(sw
->dev
.parent
);
2299 struct tb_port
*up
, *down
;
2304 up
= tb_upstream_port(sw
);
2308 down
= tb_port_at(tb_route(sw
), parent
);
2310 tb_port_lane_bonding_disable(up
);
2311 tb_port_lane_bonding_disable(down
);
2313 tb_switch_update_link_attributes(sw
);
2314 tb_sw_dbg(sw
, "lane bonding disabled\n");
2318 * tb_switch_add() - Add a switch to the domain
2319 * @sw: Switch to add
2321 * This is the last step in adding switch to the domain. It will read
2322 * identification information from DROM and initializes ports so that
2323 * they can be used to connect other switches. The switch will be
2324 * exposed to the userspace when this function successfully returns. To
2325 * remove and release the switch, call tb_switch_remove().
2327 * Return: %0 in case of success and negative errno in case of failure
2329 int tb_switch_add(struct tb_switch
*sw
)
2334 * Initialize DMA control port now before we read DROM. Recent
2335 * host controllers have more complete DROM on NVM that includes
2336 * vendor and model identification strings which we then expose
2337 * to the userspace. NVM can be accessed through DMA
2338 * configuration based mailbox.
2340 ret
= tb_switch_add_dma_port(sw
);
2342 dev_err(&sw
->dev
, "failed to add DMA port\n");
2346 if (!sw
->safe_mode
) {
2348 ret
= tb_drom_read(sw
);
2350 dev_err(&sw
->dev
, "reading DROM failed\n");
2353 tb_sw_dbg(sw
, "uid: %#llx\n", sw
->uid
);
2355 ret
= tb_switch_set_uuid(sw
);
2357 dev_err(&sw
->dev
, "failed to set UUID\n");
2361 for (i
= 0; i
<= sw
->config
.max_port_number
; i
++) {
2362 if (sw
->ports
[i
].disabled
) {
2363 tb_port_dbg(&sw
->ports
[i
], "disabled by eeprom\n");
2366 ret
= tb_init_port(&sw
->ports
[i
]);
2368 dev_err(&sw
->dev
, "failed to initialize port %d\n", i
);
2373 tb_switch_default_link_ports(sw
);
2375 ret
= tb_switch_update_link_attributes(sw
);
2379 ret
= tb_switch_tmu_init(sw
);
2384 ret
= device_add(&sw
->dev
);
2386 dev_err(&sw
->dev
, "failed to add device: %d\n", ret
);
2391 dev_info(&sw
->dev
, "new device found, vendor=%#x device=%#x\n",
2392 sw
->vendor
, sw
->device
);
2393 if (sw
->vendor_name
&& sw
->device_name
)
2394 dev_info(&sw
->dev
, "%s %s\n", sw
->vendor_name
,
2398 ret
= tb_switch_nvm_add(sw
);
2400 dev_err(&sw
->dev
, "failed to add NVM devices\n");
2401 device_del(&sw
->dev
);
2405 pm_runtime_set_active(&sw
->dev
);
2407 pm_runtime_set_autosuspend_delay(&sw
->dev
, TB_AUTOSUSPEND_DELAY
);
2408 pm_runtime_use_autosuspend(&sw
->dev
);
2409 pm_runtime_mark_last_busy(&sw
->dev
);
2410 pm_runtime_enable(&sw
->dev
);
2411 pm_request_autosuspend(&sw
->dev
);
2418 * tb_switch_remove() - Remove and release a switch
2419 * @sw: Switch to remove
2421 * This will remove the switch from the domain and release it after last
2422 * reference count drops to zero. If there are switches connected below
2423 * this switch, they will be removed as well.
2425 void tb_switch_remove(struct tb_switch
*sw
)
2427 struct tb_port
*port
;
2430 pm_runtime_get_sync(&sw
->dev
);
2431 pm_runtime_disable(&sw
->dev
);
2434 /* port 0 is the switch itself and never has a remote */
2435 tb_switch_for_each_port(sw
, port
) {
2436 if (tb_port_has_remote(port
)) {
2437 tb_switch_remove(port
->remote
->sw
);
2438 port
->remote
= NULL
;
2439 } else if (port
->xdomain
) {
2440 tb_xdomain_remove(port
->xdomain
);
2441 port
->xdomain
= NULL
;
2445 if (!sw
->is_unplugged
)
2446 tb_plug_events_active(sw
, false);
2448 if (tb_switch_is_usb4(sw
))
2449 usb4_switch_unconfigure_link(sw
);
2451 tb_lc_unconfigure_link(sw
);
2453 tb_switch_nvm_remove(sw
);
2456 dev_info(&sw
->dev
, "device disconnected\n");
2457 device_unregister(&sw
->dev
);
2461 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2463 void tb_sw_set_unplugged(struct tb_switch
*sw
)
2465 struct tb_port
*port
;
2467 if (sw
== sw
->tb
->root_switch
) {
2468 tb_sw_WARN(sw
, "cannot unplug root switch\n");
2471 if (sw
->is_unplugged
) {
2472 tb_sw_WARN(sw
, "is_unplugged already set\n");
2475 sw
->is_unplugged
= true;
2476 tb_switch_for_each_port(sw
, port
) {
2477 if (tb_port_has_remote(port
))
2478 tb_sw_set_unplugged(port
->remote
->sw
);
2479 else if (port
->xdomain
)
2480 port
->xdomain
->is_unplugged
= true;
2484 int tb_switch_resume(struct tb_switch
*sw
)
2486 struct tb_port
*port
;
2489 tb_sw_dbg(sw
, "resuming switch\n");
2492 * Check for UID of the connected switches except for root
2493 * switch which we assume cannot be removed.
2499 * Check first that we can still read the switch config
2500 * space. It may be that there is now another domain
2503 err
= tb_cfg_get_upstream_port(sw
->tb
->ctl
, tb_route(sw
));
2505 tb_sw_info(sw
, "switch not present anymore\n");
2509 if (tb_switch_is_usb4(sw
))
2510 err
= usb4_switch_read_uid(sw
, &uid
);
2512 err
= tb_drom_read_uid_only(sw
, &uid
);
2514 tb_sw_warn(sw
, "uid read failed\n");
2517 if (sw
->uid
!= uid
) {
2519 "changed while suspended (uid %#llx -> %#llx)\n",
2525 err
= tb_switch_configure(sw
);
2529 /* check for surviving downstream switches */
2530 tb_switch_for_each_port(sw
, port
) {
2531 if (!tb_port_has_remote(port
) && !port
->xdomain
)
2534 if (tb_wait_for_port(port
, true) <= 0) {
2536 "lost during suspend, disconnecting\n");
2537 if (tb_port_has_remote(port
))
2538 tb_sw_set_unplugged(port
->remote
->sw
);
2539 else if (port
->xdomain
)
2540 port
->xdomain
->is_unplugged
= true;
2541 } else if (tb_port_has_remote(port
) || port
->xdomain
) {
2543 * Always unlock the port so the downstream
2544 * switch/domain is accessible.
2546 if (tb_port_unlock(port
))
2547 tb_port_warn(port
, "failed to unlock port\n");
2548 if (port
->remote
&& tb_switch_resume(port
->remote
->sw
)) {
2550 "lost during suspend, disconnecting\n");
2551 tb_sw_set_unplugged(port
->remote
->sw
);
2558 void tb_switch_suspend(struct tb_switch
*sw
)
2560 struct tb_port
*port
;
2563 err
= tb_plug_events_active(sw
, false);
2567 tb_switch_for_each_port(sw
, port
) {
2568 if (tb_port_has_remote(port
))
2569 tb_switch_suspend(port
->remote
->sw
);
2572 if (tb_switch_is_usb4(sw
))
2573 usb4_switch_set_sleep(sw
);
2575 tb_lc_set_sleep(sw
);
2579 * tb_switch_query_dp_resource() - Query availability of DP resource
2580 * @sw: Switch whose DP resource is queried
2583 * Queries availability of DP resource for DP tunneling using switch
2584 * specific means. Returns %true if resource is available.
2586 bool tb_switch_query_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
2588 if (tb_switch_is_usb4(sw
))
2589 return usb4_switch_query_dp_resource(sw
, in
);
2590 return tb_lc_dp_sink_query(sw
, in
);
2594 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2595 * @sw: Switch whose DP resource is allocated
2598 * Allocates DP resource for DP tunneling. The resource must be
2599 * available for this to succeed (see tb_switch_query_dp_resource()).
2600 * Returns %0 in success and negative errno otherwise.
2602 int tb_switch_alloc_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
2604 if (tb_switch_is_usb4(sw
))
2605 return usb4_switch_alloc_dp_resource(sw
, in
);
2606 return tb_lc_dp_sink_alloc(sw
, in
);
2610 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2611 * @sw: Switch whose DP resource is de-allocated
2614 * De-allocates DP resource that was previously allocated for DP
2617 void tb_switch_dealloc_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
2621 if (tb_switch_is_usb4(sw
))
2622 ret
= usb4_switch_dealloc_dp_resource(sw
, in
);
2624 ret
= tb_lc_dp_sink_dealloc(sw
, in
);
2627 tb_sw_warn(sw
, "failed to de-allocate DP resource for port %d\n",
2631 struct tb_sw_lookup
{
2639 static int tb_switch_match(struct device
*dev
, const void *data
)
2641 struct tb_switch
*sw
= tb_to_switch(dev
);
2642 const struct tb_sw_lookup
*lookup
= data
;
2646 if (sw
->tb
!= lookup
->tb
)
2650 return !memcmp(sw
->uuid
, lookup
->uuid
, sizeof(*lookup
->uuid
));
2652 if (lookup
->route
) {
2653 return sw
->config
.route_lo
== lower_32_bits(lookup
->route
) &&
2654 sw
->config
.route_hi
== upper_32_bits(lookup
->route
);
2657 /* Root switch is matched only by depth */
2661 return sw
->link
== lookup
->link
&& sw
->depth
== lookup
->depth
;
2665 * tb_switch_find_by_link_depth() - Find switch by link and depth
2666 * @tb: Domain the switch belongs
2667 * @link: Link number the switch is connected
2668 * @depth: Depth of the switch in link
2670 * Returned switch has reference count increased so the caller needs to
2671 * call tb_switch_put() when done with the switch.
2673 struct tb_switch
*tb_switch_find_by_link_depth(struct tb
*tb
, u8 link
, u8 depth
)
2675 struct tb_sw_lookup lookup
;
2678 memset(&lookup
, 0, sizeof(lookup
));
2681 lookup
.depth
= depth
;
2683 dev
= bus_find_device(&tb_bus_type
, NULL
, &lookup
, tb_switch_match
);
2685 return tb_to_switch(dev
);
2691 * tb_switch_find_by_uuid() - Find switch by UUID
2692 * @tb: Domain the switch belongs
2693 * @uuid: UUID to look for
2695 * Returned switch has reference count increased so the caller needs to
2696 * call tb_switch_put() when done with the switch.
2698 struct tb_switch
*tb_switch_find_by_uuid(struct tb
*tb
, const uuid_t
*uuid
)
2700 struct tb_sw_lookup lookup
;
2703 memset(&lookup
, 0, sizeof(lookup
));
2707 dev
= bus_find_device(&tb_bus_type
, NULL
, &lookup
, tb_switch_match
);
2709 return tb_to_switch(dev
);
2715 * tb_switch_find_by_route() - Find switch by route string
2716 * @tb: Domain the switch belongs
2717 * @route: Route string to look for
2719 * Returned switch has reference count increased so the caller needs to
2720 * call tb_switch_put() when done with the switch.
2722 struct tb_switch
*tb_switch_find_by_route(struct tb
*tb
, u64 route
)
2724 struct tb_sw_lookup lookup
;
2728 return tb_switch_get(tb
->root_switch
);
2730 memset(&lookup
, 0, sizeof(lookup
));
2732 lookup
.route
= route
;
2734 dev
= bus_find_device(&tb_bus_type
, NULL
, &lookup
, tb_switch_match
);
2736 return tb_to_switch(dev
);
2742 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2743 * @sw: Switch to find the port from
2744 * @type: Port type to look for
2746 struct tb_port
*tb_switch_find_port(struct tb_switch
*sw
,
2747 enum tb_port_type type
)
2749 struct tb_port
*port
;
2751 tb_switch_for_each_port(sw
, port
) {
2752 if (port
->config
.type
== type
)
2759 void tb_switch_exit(void)
2761 ida_destroy(&nvm_ida
);