treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / thunderbolt / switch.c
blobad5479f211744ffee22c0062b6013956d385c2be
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
18 #include "tb.h"
20 /* Switch NVM support */
22 #define NVM_DEVID 0x05
23 #define NVM_VERSION 0x08
24 #define NVM_CSS 0x10
25 #define NVM_FLASH_SIZE 0x45
27 #define NVM_MIN_SIZE SZ_32K
28 #define NVM_MAX_SIZE SZ_512K
30 static DEFINE_IDA(nvm_ida);
32 struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
48 struct nvm_auth_status *st;
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
55 return NULL;
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
60 struct nvm_auth_status *st;
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
66 *status = st ? st->status : 0;
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
71 struct nvm_auth_status *st;
73 if (WARN_ON(!sw->uuid))
74 return;
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
89 st->status = status;
90 unlock:
91 mutex_unlock(&nvm_auth_status_lock);
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
96 struct nvm_auth_status *st;
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
104 mutex_unlock(&nvm_auth_status_lock);
107 static int nvm_validate_and_write(struct tb_switch *sw)
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
114 if (!buf)
115 return -EINVAL;
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
134 * Read digital section size and check that it also fits inside
135 * the image.
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
141 if (!sw->safe_mode) {
142 u16 device_id;
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
166 if (tb_switch_is_usb4(sw))
167 return usb4_switch_nvm_write(sw, 0, buf, image_size);
168 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
173 int ret = 0;
176 * Root switch NVM upgrade requires that we disconnect the
177 * existing paths first (in case it is not in safe mode
178 * already).
180 if (!sw->safe_mode) {
181 u32 status;
183 ret = tb_domain_disconnect_all_paths(sw->tb);
184 if (ret)
185 return ret;
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
190 ret = dma_port_flash_update_auth(sw->dma_port);
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
195 * Any error from update auth operation requires power
196 * cycling of the host router.
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
204 * From safe mode we can get out by just power cycling the
205 * switch.
207 dma_port_power_cycle(sw->dma_port);
208 return ret;
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
213 int ret, retries = 10;
215 ret = dma_port_flash_update_auth(sw->dma_port);
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
224 return ret;
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
233 do {
234 u32 status;
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
250 msleep(500);
251 } while (--retries);
253 return -ETIMEDOUT;
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
258 struct pci_dev *root_port;
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
266 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
273 struct pci_dev *root_port;
275 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
280 static inline bool nvm_readable(struct tb_switch *sw)
282 if (tb_switch_is_usb4(sw)) {
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
289 return usb4_switch_nvm_sector_size(sw) > 0;
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
311 static int nvm_authenticate(struct tb_switch *sw)
313 int ret;
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
325 return ret;
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
331 struct tb_switch *sw = priv;
332 int ret;
334 pm_runtime_get_sync(&sw->dev);
336 if (!mutex_trylock(&sw->tb->lock)) {
337 ret = restart_syscall();
338 goto out;
341 ret = nvm_read(sw, offset, val, bytes);
342 mutex_unlock(&sw->tb->lock);
344 out:
345 pm_runtime_mark_last_busy(&sw->dev);
346 pm_runtime_put_autosuspend(&sw->dev);
348 return ret;
351 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
352 size_t bytes)
354 struct tb_switch *sw = priv;
355 int ret = 0;
357 if (!mutex_trylock(&sw->tb->lock))
358 return restart_syscall();
361 * Since writing the NVM image might require some special steps,
362 * for example when CSS headers are written, we cache the image
363 * locally here and handle the special cases when the user asks
364 * us to authenticate the image.
366 if (!sw->nvm->buf) {
367 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
368 if (!sw->nvm->buf) {
369 ret = -ENOMEM;
370 goto unlock;
374 sw->nvm->buf_data_size = offset + bytes;
375 memcpy(sw->nvm->buf + offset, val, bytes);
377 unlock:
378 mutex_unlock(&sw->tb->lock);
380 return ret;
383 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
384 size_t size, bool active)
386 struct nvmem_config config;
388 memset(&config, 0, sizeof(config));
390 if (active) {
391 config.name = "nvm_active";
392 config.reg_read = tb_switch_nvm_read;
393 config.read_only = true;
394 } else {
395 config.name = "nvm_non_active";
396 config.reg_write = tb_switch_nvm_write;
397 config.root_only = true;
400 config.id = id;
401 config.stride = 4;
402 config.word_size = 4;
403 config.size = size;
404 config.dev = &sw->dev;
405 config.owner = THIS_MODULE;
406 config.priv = sw;
408 return nvmem_register(&config);
411 static int tb_switch_nvm_add(struct tb_switch *sw)
413 struct nvmem_device *nvm_dev;
414 struct tb_switch_nvm *nvm;
415 u32 val;
416 int ret;
418 if (!nvm_readable(sw))
419 return 0;
422 * The NVM format of non-Intel hardware is not known so
423 * currently restrict NVM upgrade for Intel hardware. We may
424 * relax this in the future when we learn other NVM formats.
426 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) {
427 dev_info(&sw->dev,
428 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
429 sw->config.vendor_id);
430 return 0;
433 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
434 if (!nvm)
435 return -ENOMEM;
437 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
440 * If the switch is in safe-mode the only accessible portion of
441 * the NVM is the non-active one where userspace is expected to
442 * write new functional NVM.
444 if (!sw->safe_mode) {
445 u32 nvm_size, hdr_size;
447 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
448 if (ret)
449 goto err_ida;
451 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
452 nvm_size = (SZ_1M << (val & 7)) / 8;
453 nvm_size = (nvm_size - hdr_size) / 2;
455 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
456 if (ret)
457 goto err_ida;
459 nvm->major = val >> 16;
460 nvm->minor = val >> 8;
462 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
463 if (IS_ERR(nvm_dev)) {
464 ret = PTR_ERR(nvm_dev);
465 goto err_ida;
467 nvm->active = nvm_dev;
470 if (!sw->no_nvm_upgrade) {
471 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
472 if (IS_ERR(nvm_dev)) {
473 ret = PTR_ERR(nvm_dev);
474 goto err_nvm_active;
476 nvm->non_active = nvm_dev;
479 sw->nvm = nvm;
480 return 0;
482 err_nvm_active:
483 if (nvm->active)
484 nvmem_unregister(nvm->active);
485 err_ida:
486 ida_simple_remove(&nvm_ida, nvm->id);
487 kfree(nvm);
489 return ret;
492 static void tb_switch_nvm_remove(struct tb_switch *sw)
494 struct tb_switch_nvm *nvm;
496 nvm = sw->nvm;
497 sw->nvm = NULL;
499 if (!nvm)
500 return;
502 /* Remove authentication status in case the switch is unplugged */
503 if (!nvm->authenticating)
504 nvm_clear_auth_status(sw);
506 if (nvm->non_active)
507 nvmem_unregister(nvm->non_active);
508 if (nvm->active)
509 nvmem_unregister(nvm->active);
510 ida_simple_remove(&nvm_ida, nvm->id);
511 vfree(nvm->buf);
512 kfree(nvm);
515 /* port utility functions */
517 static const char *tb_port_type(struct tb_regs_port_header *port)
519 switch (port->type >> 16) {
520 case 0:
521 switch ((u8) port->type) {
522 case 0:
523 return "Inactive";
524 case 1:
525 return "Port";
526 case 2:
527 return "NHI";
528 default:
529 return "unknown";
531 case 0x2:
532 return "Ethernet";
533 case 0x8:
534 return "SATA";
535 case 0xe:
536 return "DP/HDMI";
537 case 0x10:
538 return "PCIe";
539 case 0x20:
540 return "USB";
541 default:
542 return "unknown";
546 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
548 tb_dbg(tb,
549 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
550 port->port_number, port->vendor_id, port->device_id,
551 port->revision, port->thunderbolt_version, tb_port_type(port),
552 port->type);
553 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
554 port->max_in_hop_id, port->max_out_hop_id);
555 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
556 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
560 * tb_port_state() - get connectedness state of a port
562 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
564 * Return: Returns an enum tb_port_state on success or an error code on failure.
566 static int tb_port_state(struct tb_port *port)
568 struct tb_cap_phy phy;
569 int res;
570 if (port->cap_phy == 0) {
571 tb_port_WARN(port, "does not have a PHY\n");
572 return -EINVAL;
574 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
575 if (res)
576 return res;
577 return phy.state;
581 * tb_wait_for_port() - wait for a port to become ready
583 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
584 * wait_if_unplugged is set then we also wait if the port is in state
585 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
586 * switch resume). Otherwise we only wait if a device is registered but the link
587 * has not yet been established.
589 * Return: Returns an error code on failure. Returns 0 if the port is not
590 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
591 * if the port is connected and in state TB_PORT_UP.
593 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
595 int retries = 10;
596 int state;
597 if (!port->cap_phy) {
598 tb_port_WARN(port, "does not have PHY\n");
599 return -EINVAL;
601 if (tb_is_upstream_port(port)) {
602 tb_port_WARN(port, "is the upstream port\n");
603 return -EINVAL;
606 while (retries--) {
607 state = tb_port_state(port);
608 if (state < 0)
609 return state;
610 if (state == TB_PORT_DISABLED) {
611 tb_port_dbg(port, "is disabled (state: 0)\n");
612 return 0;
614 if (state == TB_PORT_UNPLUGGED) {
615 if (wait_if_unplugged) {
616 /* used during resume */
617 tb_port_dbg(port,
618 "is unplugged (state: 7), retrying...\n");
619 msleep(100);
620 continue;
622 tb_port_dbg(port, "is unplugged (state: 7)\n");
623 return 0;
625 if (state == TB_PORT_UP) {
626 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
627 return 1;
631 * After plug-in the state is TB_PORT_CONNECTING. Give it some
632 * time.
634 tb_port_dbg(port,
635 "is connected, link is not up (state: %d), retrying...\n",
636 state);
637 msleep(100);
639 tb_port_warn(port,
640 "failed to reach state TB_PORT_UP. Ignoring port...\n");
641 return 0;
645 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
647 * Change the number of NFC credits allocated to @port by @credits. To remove
648 * NFC credits pass a negative amount of credits.
650 * Return: Returns 0 on success or an error code on failure.
652 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
654 u32 nfc_credits;
656 if (credits == 0 || port->sw->is_unplugged)
657 return 0;
659 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
660 nfc_credits += credits;
662 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
663 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
665 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
666 port->config.nfc_credits |= nfc_credits;
668 return tb_port_write(port, &port->config.nfc_credits,
669 TB_CFG_PORT, ADP_CS_4, 1);
673 * tb_port_set_initial_credits() - Set initial port link credits allocated
674 * @port: Port to set the initial credits
675 * @credits: Number of credits to to allocate
677 * Set initial credits value to be used for ingress shared buffering.
679 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
681 u32 data;
682 int ret;
684 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
685 if (ret)
686 return ret;
688 data &= ~ADP_CS_5_LCA_MASK;
689 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
691 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
695 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
697 * Return: Returns 0 on success or an error code on failure.
699 int tb_port_clear_counter(struct tb_port *port, int counter)
701 u32 zero[3] = { 0, 0, 0 };
702 tb_port_dbg(port, "clearing counter %d\n", counter);
703 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
707 * tb_port_unlock() - Unlock downstream port
708 * @port: Port to unlock
710 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
711 * downstream router accessible for CM.
713 int tb_port_unlock(struct tb_port *port)
715 if (tb_switch_is_icm(port->sw))
716 return 0;
717 if (!tb_port_is_null(port))
718 return -EINVAL;
719 if (tb_switch_is_usb4(port->sw))
720 return usb4_port_unlock(port);
721 return 0;
725 * tb_init_port() - initialize a port
727 * This is a helper method for tb_switch_alloc. Does not check or initialize
728 * any downstream switches.
730 * Return: Returns 0 on success or an error code on failure.
732 static int tb_init_port(struct tb_port *port)
734 int res;
735 int cap;
737 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
738 if (res) {
739 if (res == -ENODEV) {
740 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
741 port->port);
742 return 0;
744 return res;
747 /* Port 0 is the switch itself and has no PHY. */
748 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
749 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
751 if (cap > 0)
752 port->cap_phy = cap;
753 else
754 tb_port_WARN(port, "non switch port without a PHY\n");
756 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
757 if (cap > 0)
758 port->cap_usb4 = cap;
759 } else if (port->port != 0) {
760 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
761 if (cap > 0)
762 port->cap_adap = cap;
765 tb_dump_port(port->sw->tb, &port->config);
767 /* Control port does not need HopID allocation */
768 if (port->port) {
769 ida_init(&port->in_hopids);
770 ida_init(&port->out_hopids);
773 INIT_LIST_HEAD(&port->list);
774 return 0;
778 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
779 int max_hopid)
781 int port_max_hopid;
782 struct ida *ida;
784 if (in) {
785 port_max_hopid = port->config.max_in_hop_id;
786 ida = &port->in_hopids;
787 } else {
788 port_max_hopid = port->config.max_out_hop_id;
789 ida = &port->out_hopids;
792 /* HopIDs 0-7 are reserved */
793 if (min_hopid < TB_PATH_MIN_HOPID)
794 min_hopid = TB_PATH_MIN_HOPID;
796 if (max_hopid < 0 || max_hopid > port_max_hopid)
797 max_hopid = port_max_hopid;
799 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
803 * tb_port_alloc_in_hopid() - Allocate input HopID from port
804 * @port: Port to allocate HopID for
805 * @min_hopid: Minimum acceptable input HopID
806 * @max_hopid: Maximum acceptable input HopID
808 * Return: HopID between @min_hopid and @max_hopid or negative errno in
809 * case of error.
811 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
813 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
817 * tb_port_alloc_out_hopid() - Allocate output HopID from port
818 * @port: Port to allocate HopID for
819 * @min_hopid: Minimum acceptable output HopID
820 * @max_hopid: Maximum acceptable output HopID
822 * Return: HopID between @min_hopid and @max_hopid or negative errno in
823 * case of error.
825 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
827 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
831 * tb_port_release_in_hopid() - Release allocated input HopID from port
832 * @port: Port whose HopID to release
833 * @hopid: HopID to release
835 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
837 ida_simple_remove(&port->in_hopids, hopid);
841 * tb_port_release_out_hopid() - Release allocated output HopID from port
842 * @port: Port whose HopID to release
843 * @hopid: HopID to release
845 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
847 ida_simple_remove(&port->out_hopids, hopid);
851 * tb_next_port_on_path() - Return next port for given port on a path
852 * @start: Start port of the walk
853 * @end: End port of the walk
854 * @prev: Previous port (%NULL if this is the first)
856 * This function can be used to walk from one port to another if they
857 * are connected through zero or more switches. If the @prev is dual
858 * link port, the function follows that link and returns another end on
859 * that same link.
861 * If the @end port has been reached, return %NULL.
863 * Domain tb->lock must be held when this function is called.
865 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
866 struct tb_port *prev)
868 struct tb_port *next;
870 if (!prev)
871 return start;
873 if (prev->sw == end->sw) {
874 if (prev == end)
875 return NULL;
876 return end;
879 if (start->sw->config.depth < end->sw->config.depth) {
880 if (prev->remote &&
881 prev->remote->sw->config.depth > prev->sw->config.depth)
882 next = prev->remote;
883 else
884 next = tb_port_at(tb_route(end->sw), prev->sw);
885 } else {
886 if (tb_is_upstream_port(prev)) {
887 next = prev->remote;
888 } else {
889 next = tb_upstream_port(prev->sw);
891 * Keep the same link if prev and next are both
892 * dual link ports.
894 if (next->dual_link_port &&
895 next->link_nr != prev->link_nr) {
896 next = next->dual_link_port;
901 return next;
904 static int tb_port_get_link_speed(struct tb_port *port)
906 u32 val, speed;
907 int ret;
909 if (!port->cap_phy)
910 return -EINVAL;
912 ret = tb_port_read(port, &val, TB_CFG_PORT,
913 port->cap_phy + LANE_ADP_CS_1, 1);
914 if (ret)
915 return ret;
917 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
918 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
919 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
922 static int tb_port_get_link_width(struct tb_port *port)
924 u32 val;
925 int ret;
927 if (!port->cap_phy)
928 return -EINVAL;
930 ret = tb_port_read(port, &val, TB_CFG_PORT,
931 port->cap_phy + LANE_ADP_CS_1, 1);
932 if (ret)
933 return ret;
935 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
936 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
939 static bool tb_port_is_width_supported(struct tb_port *port, int width)
941 u32 phy, widths;
942 int ret;
944 if (!port->cap_phy)
945 return false;
947 ret = tb_port_read(port, &phy, TB_CFG_PORT,
948 port->cap_phy + LANE_ADP_CS_0, 1);
949 if (ret)
950 return ret;
952 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
953 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
955 return !!(widths & width);
958 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
960 u32 val;
961 int ret;
963 if (!port->cap_phy)
964 return -EINVAL;
966 ret = tb_port_read(port, &val, TB_CFG_PORT,
967 port->cap_phy + LANE_ADP_CS_1, 1);
968 if (ret)
969 return ret;
971 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
972 switch (width) {
973 case 1:
974 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
975 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
976 break;
977 case 2:
978 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
979 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
980 break;
981 default:
982 return -EINVAL;
985 val |= LANE_ADP_CS_1_LB;
987 return tb_port_write(port, &val, TB_CFG_PORT,
988 port->cap_phy + LANE_ADP_CS_1, 1);
991 static int tb_port_lane_bonding_enable(struct tb_port *port)
993 int ret;
996 * Enable lane bonding for both links if not already enabled by
997 * for example the boot firmware.
999 ret = tb_port_get_link_width(port);
1000 if (ret == 1) {
1001 ret = tb_port_set_link_width(port, 2);
1002 if (ret)
1003 return ret;
1006 ret = tb_port_get_link_width(port->dual_link_port);
1007 if (ret == 1) {
1008 ret = tb_port_set_link_width(port->dual_link_port, 2);
1009 if (ret) {
1010 tb_port_set_link_width(port, 1);
1011 return ret;
1015 port->bonded = true;
1016 port->dual_link_port->bonded = true;
1018 return 0;
1021 static void tb_port_lane_bonding_disable(struct tb_port *port)
1023 port->dual_link_port->bonded = false;
1024 port->bonded = false;
1026 tb_port_set_link_width(port->dual_link_port, 1);
1027 tb_port_set_link_width(port, 1);
1031 * tb_port_is_enabled() - Is the adapter port enabled
1032 * @port: Port to check
1034 bool tb_port_is_enabled(struct tb_port *port)
1036 switch (port->config.type) {
1037 case TB_TYPE_PCIE_UP:
1038 case TB_TYPE_PCIE_DOWN:
1039 return tb_pci_port_is_enabled(port);
1041 case TB_TYPE_DP_HDMI_IN:
1042 case TB_TYPE_DP_HDMI_OUT:
1043 return tb_dp_port_is_enabled(port);
1045 case TB_TYPE_USB3_UP:
1046 case TB_TYPE_USB3_DOWN:
1047 return tb_usb3_port_is_enabled(port);
1049 default:
1050 return false;
1055 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1056 * @port: USB3 adapter port to check
1058 bool tb_usb3_port_is_enabled(struct tb_port *port)
1060 u32 data;
1062 if (tb_port_read(port, &data, TB_CFG_PORT,
1063 port->cap_adap + ADP_USB3_CS_0, 1))
1064 return false;
1066 return !!(data & ADP_USB3_CS_0_PE);
1070 * tb_usb3_port_enable() - Enable USB3 adapter port
1071 * @port: USB3 adapter port to enable
1072 * @enable: Enable/disable the USB3 adapter
1074 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1076 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1077 : ADP_USB3_CS_0_V;
1079 if (!port->cap_adap)
1080 return -ENXIO;
1081 return tb_port_write(port, &word, TB_CFG_PORT,
1082 port->cap_adap + ADP_USB3_CS_0, 1);
1086 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1087 * @port: PCIe port to check
1089 bool tb_pci_port_is_enabled(struct tb_port *port)
1091 u32 data;
1093 if (tb_port_read(port, &data, TB_CFG_PORT,
1094 port->cap_adap + ADP_PCIE_CS_0, 1))
1095 return false;
1097 return !!(data & ADP_PCIE_CS_0_PE);
1101 * tb_pci_port_enable() - Enable PCIe adapter port
1102 * @port: PCIe port to enable
1103 * @enable: Enable/disable the PCIe adapter
1105 int tb_pci_port_enable(struct tb_port *port, bool enable)
1107 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1108 if (!port->cap_adap)
1109 return -ENXIO;
1110 return tb_port_write(port, &word, TB_CFG_PORT,
1111 port->cap_adap + ADP_PCIE_CS_0, 1);
1115 * tb_dp_port_hpd_is_active() - Is HPD already active
1116 * @port: DP out port to check
1118 * Checks if the DP OUT adapter port has HDP bit already set.
1120 int tb_dp_port_hpd_is_active(struct tb_port *port)
1122 u32 data;
1123 int ret;
1125 ret = tb_port_read(port, &data, TB_CFG_PORT,
1126 port->cap_adap + ADP_DP_CS_2, 1);
1127 if (ret)
1128 return ret;
1130 return !!(data & ADP_DP_CS_2_HDP);
1134 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1135 * @port: Port to clear HPD
1137 * If the DP IN port has HDP set, this function can be used to clear it.
1139 int tb_dp_port_hpd_clear(struct tb_port *port)
1141 u32 data;
1142 int ret;
1144 ret = tb_port_read(port, &data, TB_CFG_PORT,
1145 port->cap_adap + ADP_DP_CS_3, 1);
1146 if (ret)
1147 return ret;
1149 data |= ADP_DP_CS_3_HDPC;
1150 return tb_port_write(port, &data, TB_CFG_PORT,
1151 port->cap_adap + ADP_DP_CS_3, 1);
1155 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1156 * @port: DP IN/OUT port to set hops
1157 * @video: Video Hop ID
1158 * @aux_tx: AUX TX Hop ID
1159 * @aux_rx: AUX RX Hop ID
1161 * Programs specified Hop IDs for DP IN/OUT port.
1163 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1164 unsigned int aux_tx, unsigned int aux_rx)
1166 u32 data[2];
1167 int ret;
1169 ret = tb_port_read(port, data, TB_CFG_PORT,
1170 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1171 if (ret)
1172 return ret;
1174 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1175 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1176 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1178 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1179 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1180 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1181 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1182 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1184 return tb_port_write(port, data, TB_CFG_PORT,
1185 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1189 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1190 * @port: DP adapter port to check
1192 bool tb_dp_port_is_enabled(struct tb_port *port)
1194 u32 data[2];
1196 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1197 ARRAY_SIZE(data)))
1198 return false;
1200 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1204 * tb_dp_port_enable() - Enables/disables DP paths of a port
1205 * @port: DP IN/OUT port
1206 * @enable: Enable/disable DP path
1208 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1209 * calling this function.
1211 int tb_dp_port_enable(struct tb_port *port, bool enable)
1213 u32 data[2];
1214 int ret;
1216 ret = tb_port_read(port, data, TB_CFG_PORT,
1217 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1218 if (ret)
1219 return ret;
1221 if (enable)
1222 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1223 else
1224 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1226 return tb_port_write(port, data, TB_CFG_PORT,
1227 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1230 /* switch utility functions */
1232 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1234 switch (sw->generation) {
1235 case 1:
1236 return "Thunderbolt 1";
1237 case 2:
1238 return "Thunderbolt 2";
1239 case 3:
1240 return "Thunderbolt 3";
1241 case 4:
1242 return "USB4";
1243 default:
1244 return "Unknown";
1248 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1250 const struct tb_regs_switch_header *regs = &sw->config;
1252 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1253 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1254 regs->revision, regs->thunderbolt_version);
1255 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1256 tb_dbg(tb, " Config:\n");
1257 tb_dbg(tb,
1258 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1259 regs->upstream_port_number, regs->depth,
1260 (((u64) regs->route_hi) << 32) | regs->route_lo,
1261 regs->enabled, regs->plug_events_delay);
1262 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1263 regs->__unknown1, regs->__unknown4);
1267 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1269 * Return: Returns 0 on success or an error code on failure.
1271 int tb_switch_reset(struct tb *tb, u64 route)
1273 struct tb_cfg_result res;
1274 struct tb_regs_switch_header header = {
1275 header.route_hi = route >> 32,
1276 header.route_lo = route,
1277 header.enabled = true,
1279 tb_dbg(tb, "resetting switch at %llx\n", route);
1280 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1281 0, 2, 2, 2);
1282 if (res.err)
1283 return res.err;
1284 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1285 if (res.err > 0)
1286 return -EIO;
1287 return res.err;
1291 * tb_plug_events_active() - enable/disable plug events on a switch
1293 * Also configures a sane plug_events_delay of 255ms.
1295 * Return: Returns 0 on success or an error code on failure.
1297 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1299 u32 data;
1300 int res;
1302 if (tb_switch_is_icm(sw))
1303 return 0;
1305 sw->config.plug_events_delay = 0xff;
1306 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1307 if (res)
1308 return res;
1310 /* Plug events are always enabled in USB4 */
1311 if (tb_switch_is_usb4(sw))
1312 return 0;
1314 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1315 if (res)
1316 return res;
1318 if (active) {
1319 data = data & 0xFFFFFF83;
1320 switch (sw->config.device_id) {
1321 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1322 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1323 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1324 break;
1325 default:
1326 data |= 4;
1328 } else {
1329 data = data | 0x7c;
1331 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1332 sw->cap_plug_events + 1, 1);
1335 static ssize_t authorized_show(struct device *dev,
1336 struct device_attribute *attr,
1337 char *buf)
1339 struct tb_switch *sw = tb_to_switch(dev);
1341 return sprintf(buf, "%u\n", sw->authorized);
1344 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1346 int ret = -EINVAL;
1348 if (!mutex_trylock(&sw->tb->lock))
1349 return restart_syscall();
1351 if (sw->authorized)
1352 goto unlock;
1354 switch (val) {
1355 /* Approve switch */
1356 case 1:
1357 if (sw->key)
1358 ret = tb_domain_approve_switch_key(sw->tb, sw);
1359 else
1360 ret = tb_domain_approve_switch(sw->tb, sw);
1361 break;
1363 /* Challenge switch */
1364 case 2:
1365 if (sw->key)
1366 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1367 break;
1369 default:
1370 break;
1373 if (!ret) {
1374 sw->authorized = val;
1375 /* Notify status change to the userspace */
1376 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1379 unlock:
1380 mutex_unlock(&sw->tb->lock);
1381 return ret;
1384 static ssize_t authorized_store(struct device *dev,
1385 struct device_attribute *attr,
1386 const char *buf, size_t count)
1388 struct tb_switch *sw = tb_to_switch(dev);
1389 unsigned int val;
1390 ssize_t ret;
1392 ret = kstrtouint(buf, 0, &val);
1393 if (ret)
1394 return ret;
1395 if (val > 2)
1396 return -EINVAL;
1398 pm_runtime_get_sync(&sw->dev);
1399 ret = tb_switch_set_authorized(sw, val);
1400 pm_runtime_mark_last_busy(&sw->dev);
1401 pm_runtime_put_autosuspend(&sw->dev);
1403 return ret ? ret : count;
1405 static DEVICE_ATTR_RW(authorized);
1407 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1408 char *buf)
1410 struct tb_switch *sw = tb_to_switch(dev);
1412 return sprintf(buf, "%u\n", sw->boot);
1414 static DEVICE_ATTR_RO(boot);
1416 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1417 char *buf)
1419 struct tb_switch *sw = tb_to_switch(dev);
1421 return sprintf(buf, "%#x\n", sw->device);
1423 static DEVICE_ATTR_RO(device);
1425 static ssize_t
1426 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1428 struct tb_switch *sw = tb_to_switch(dev);
1430 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1432 static DEVICE_ATTR_RO(device_name);
1434 static ssize_t
1435 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1437 struct tb_switch *sw = tb_to_switch(dev);
1439 return sprintf(buf, "%u\n", sw->generation);
1441 static DEVICE_ATTR_RO(generation);
1443 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1444 char *buf)
1446 struct tb_switch *sw = tb_to_switch(dev);
1447 ssize_t ret;
1449 if (!mutex_trylock(&sw->tb->lock))
1450 return restart_syscall();
1452 if (sw->key)
1453 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1454 else
1455 ret = sprintf(buf, "\n");
1457 mutex_unlock(&sw->tb->lock);
1458 return ret;
1461 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1462 const char *buf, size_t count)
1464 struct tb_switch *sw = tb_to_switch(dev);
1465 u8 key[TB_SWITCH_KEY_SIZE];
1466 ssize_t ret = count;
1467 bool clear = false;
1469 if (!strcmp(buf, "\n"))
1470 clear = true;
1471 else if (hex2bin(key, buf, sizeof(key)))
1472 return -EINVAL;
1474 if (!mutex_trylock(&sw->tb->lock))
1475 return restart_syscall();
1477 if (sw->authorized) {
1478 ret = -EBUSY;
1479 } else {
1480 kfree(sw->key);
1481 if (clear) {
1482 sw->key = NULL;
1483 } else {
1484 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1485 if (!sw->key)
1486 ret = -ENOMEM;
1490 mutex_unlock(&sw->tb->lock);
1491 return ret;
1493 static DEVICE_ATTR(key, 0600, key_show, key_store);
1495 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1496 char *buf)
1498 struct tb_switch *sw = tb_to_switch(dev);
1500 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1504 * Currently all lanes must run at the same speed but we expose here
1505 * both directions to allow possible asymmetric links in the future.
1507 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1508 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1510 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1511 char *buf)
1513 struct tb_switch *sw = tb_to_switch(dev);
1515 return sprintf(buf, "%u\n", sw->link_width);
1519 * Currently link has same amount of lanes both directions (1 or 2) but
1520 * expose them separately to allow possible asymmetric links in the future.
1522 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1523 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1525 static ssize_t nvm_authenticate_show(struct device *dev,
1526 struct device_attribute *attr, char *buf)
1528 struct tb_switch *sw = tb_to_switch(dev);
1529 u32 status;
1531 nvm_get_auth_status(sw, &status);
1532 return sprintf(buf, "%#x\n", status);
1535 static ssize_t nvm_authenticate_store(struct device *dev,
1536 struct device_attribute *attr, const char *buf, size_t count)
1538 struct tb_switch *sw = tb_to_switch(dev);
1539 bool val;
1540 int ret;
1542 pm_runtime_get_sync(&sw->dev);
1544 if (!mutex_trylock(&sw->tb->lock)) {
1545 ret = restart_syscall();
1546 goto exit_rpm;
1549 /* If NVMem devices are not yet added */
1550 if (!sw->nvm) {
1551 ret = -EAGAIN;
1552 goto exit_unlock;
1555 ret = kstrtobool(buf, &val);
1556 if (ret)
1557 goto exit_unlock;
1559 /* Always clear the authentication status */
1560 nvm_clear_auth_status(sw);
1562 if (val) {
1563 if (!sw->nvm->buf) {
1564 ret = -EINVAL;
1565 goto exit_unlock;
1568 ret = nvm_validate_and_write(sw);
1569 if (ret)
1570 goto exit_unlock;
1572 sw->nvm->authenticating = true;
1573 ret = nvm_authenticate(sw);
1576 exit_unlock:
1577 mutex_unlock(&sw->tb->lock);
1578 exit_rpm:
1579 pm_runtime_mark_last_busy(&sw->dev);
1580 pm_runtime_put_autosuspend(&sw->dev);
1582 if (ret)
1583 return ret;
1584 return count;
1586 static DEVICE_ATTR_RW(nvm_authenticate);
1588 static ssize_t nvm_version_show(struct device *dev,
1589 struct device_attribute *attr, char *buf)
1591 struct tb_switch *sw = tb_to_switch(dev);
1592 int ret;
1594 if (!mutex_trylock(&sw->tb->lock))
1595 return restart_syscall();
1597 if (sw->safe_mode)
1598 ret = -ENODATA;
1599 else if (!sw->nvm)
1600 ret = -EAGAIN;
1601 else
1602 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1604 mutex_unlock(&sw->tb->lock);
1606 return ret;
1608 static DEVICE_ATTR_RO(nvm_version);
1610 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1611 char *buf)
1613 struct tb_switch *sw = tb_to_switch(dev);
1615 return sprintf(buf, "%#x\n", sw->vendor);
1617 static DEVICE_ATTR_RO(vendor);
1619 static ssize_t
1620 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1622 struct tb_switch *sw = tb_to_switch(dev);
1624 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1626 static DEVICE_ATTR_RO(vendor_name);
1628 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1629 char *buf)
1631 struct tb_switch *sw = tb_to_switch(dev);
1633 return sprintf(buf, "%pUb\n", sw->uuid);
1635 static DEVICE_ATTR_RO(unique_id);
1637 static struct attribute *switch_attrs[] = {
1638 &dev_attr_authorized.attr,
1639 &dev_attr_boot.attr,
1640 &dev_attr_device.attr,
1641 &dev_attr_device_name.attr,
1642 &dev_attr_generation.attr,
1643 &dev_attr_key.attr,
1644 &dev_attr_nvm_authenticate.attr,
1645 &dev_attr_nvm_version.attr,
1646 &dev_attr_rx_speed.attr,
1647 &dev_attr_rx_lanes.attr,
1648 &dev_attr_tx_speed.attr,
1649 &dev_attr_tx_lanes.attr,
1650 &dev_attr_vendor.attr,
1651 &dev_attr_vendor_name.attr,
1652 &dev_attr_unique_id.attr,
1653 NULL,
1656 static umode_t switch_attr_is_visible(struct kobject *kobj,
1657 struct attribute *attr, int n)
1659 struct device *dev = container_of(kobj, struct device, kobj);
1660 struct tb_switch *sw = tb_to_switch(dev);
1662 if (attr == &dev_attr_device.attr) {
1663 if (!sw->device)
1664 return 0;
1665 } else if (attr == &dev_attr_device_name.attr) {
1666 if (!sw->device_name)
1667 return 0;
1668 } else if (attr == &dev_attr_vendor.attr) {
1669 if (!sw->vendor)
1670 return 0;
1671 } else if (attr == &dev_attr_vendor_name.attr) {
1672 if (!sw->vendor_name)
1673 return 0;
1674 } else if (attr == &dev_attr_key.attr) {
1675 if (tb_route(sw) &&
1676 sw->tb->security_level == TB_SECURITY_SECURE &&
1677 sw->security_level == TB_SECURITY_SECURE)
1678 return attr->mode;
1679 return 0;
1680 } else if (attr == &dev_attr_rx_speed.attr ||
1681 attr == &dev_attr_rx_lanes.attr ||
1682 attr == &dev_attr_tx_speed.attr ||
1683 attr == &dev_attr_tx_lanes.attr) {
1684 if (tb_route(sw))
1685 return attr->mode;
1686 return 0;
1687 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1688 if (nvm_upgradeable(sw))
1689 return attr->mode;
1690 return 0;
1691 } else if (attr == &dev_attr_nvm_version.attr) {
1692 if (nvm_readable(sw))
1693 return attr->mode;
1694 return 0;
1695 } else if (attr == &dev_attr_boot.attr) {
1696 if (tb_route(sw))
1697 return attr->mode;
1698 return 0;
1701 return sw->safe_mode ? 0 : attr->mode;
1704 static struct attribute_group switch_group = {
1705 .is_visible = switch_attr_is_visible,
1706 .attrs = switch_attrs,
1709 static const struct attribute_group *switch_groups[] = {
1710 &switch_group,
1711 NULL,
1714 static void tb_switch_release(struct device *dev)
1716 struct tb_switch *sw = tb_to_switch(dev);
1717 struct tb_port *port;
1719 dma_port_free(sw->dma_port);
1721 tb_switch_for_each_port(sw, port) {
1722 if (!port->disabled) {
1723 ida_destroy(&port->in_hopids);
1724 ida_destroy(&port->out_hopids);
1728 kfree(sw->uuid);
1729 kfree(sw->device_name);
1730 kfree(sw->vendor_name);
1731 kfree(sw->ports);
1732 kfree(sw->drom);
1733 kfree(sw->key);
1734 kfree(sw);
1738 * Currently only need to provide the callbacks. Everything else is handled
1739 * in the connection manager.
1741 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1743 struct tb_switch *sw = tb_to_switch(dev);
1744 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1746 if (cm_ops->runtime_suspend_switch)
1747 return cm_ops->runtime_suspend_switch(sw);
1749 return 0;
1752 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1754 struct tb_switch *sw = tb_to_switch(dev);
1755 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1757 if (cm_ops->runtime_resume_switch)
1758 return cm_ops->runtime_resume_switch(sw);
1759 return 0;
1762 static const struct dev_pm_ops tb_switch_pm_ops = {
1763 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1764 NULL)
1767 struct device_type tb_switch_type = {
1768 .name = "thunderbolt_device",
1769 .release = tb_switch_release,
1770 .pm = &tb_switch_pm_ops,
1773 static int tb_switch_get_generation(struct tb_switch *sw)
1775 switch (sw->config.device_id) {
1776 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1777 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1778 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1779 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1780 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1781 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1782 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1783 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1784 return 1;
1786 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1787 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1788 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1789 return 2;
1791 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1792 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1793 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1794 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1795 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1796 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1797 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1798 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1799 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1800 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1801 return 3;
1803 default:
1804 if (tb_switch_is_usb4(sw))
1805 return 4;
1808 * For unknown switches assume generation to be 1 to be
1809 * on the safe side.
1811 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1812 sw->config.device_id);
1813 return 1;
1817 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1819 int max_depth;
1821 if (tb_switch_is_usb4(sw) ||
1822 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1823 max_depth = USB4_SWITCH_MAX_DEPTH;
1824 else
1825 max_depth = TB_SWITCH_MAX_DEPTH;
1827 return depth > max_depth;
1831 * tb_switch_alloc() - allocate a switch
1832 * @tb: Pointer to the owning domain
1833 * @parent: Parent device for this switch
1834 * @route: Route string for this switch
1836 * Allocates and initializes a switch. Will not upload configuration to
1837 * the switch. For that you need to call tb_switch_configure()
1838 * separately. The returned switch should be released by calling
1839 * tb_switch_put().
1841 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1842 * failure.
1844 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1845 u64 route)
1847 struct tb_switch *sw;
1848 int upstream_port;
1849 int i, ret, depth;
1851 /* Unlock the downstream port so we can access the switch below */
1852 if (route) {
1853 struct tb_switch *parent_sw = tb_to_switch(parent);
1854 struct tb_port *down;
1856 down = tb_port_at(route, parent_sw);
1857 tb_port_unlock(down);
1860 depth = tb_route_length(route);
1862 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1863 if (upstream_port < 0)
1864 return ERR_PTR(upstream_port);
1866 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1867 if (!sw)
1868 return ERR_PTR(-ENOMEM);
1870 sw->tb = tb;
1871 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1872 if (ret)
1873 goto err_free_sw_ports;
1875 sw->generation = tb_switch_get_generation(sw);
1877 tb_dbg(tb, "current switch config:\n");
1878 tb_dump_switch(tb, sw);
1880 /* configure switch */
1881 sw->config.upstream_port_number = upstream_port;
1882 sw->config.depth = depth;
1883 sw->config.route_hi = upper_32_bits(route);
1884 sw->config.route_lo = lower_32_bits(route);
1885 sw->config.enabled = 0;
1887 /* Make sure we do not exceed maximum topology limit */
1888 if (tb_switch_exceeds_max_depth(sw, depth)) {
1889 ret = -EADDRNOTAVAIL;
1890 goto err_free_sw_ports;
1893 /* initialize ports */
1894 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1895 GFP_KERNEL);
1896 if (!sw->ports) {
1897 ret = -ENOMEM;
1898 goto err_free_sw_ports;
1901 for (i = 0; i <= sw->config.max_port_number; i++) {
1902 /* minimum setup for tb_find_cap and tb_drom_read to work */
1903 sw->ports[i].sw = sw;
1904 sw->ports[i].port = i;
1907 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1908 if (ret > 0)
1909 sw->cap_plug_events = ret;
1911 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1912 if (ret > 0)
1913 sw->cap_lc = ret;
1915 /* Root switch is always authorized */
1916 if (!route)
1917 sw->authorized = true;
1919 device_initialize(&sw->dev);
1920 sw->dev.parent = parent;
1921 sw->dev.bus = &tb_bus_type;
1922 sw->dev.type = &tb_switch_type;
1923 sw->dev.groups = switch_groups;
1924 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1926 return sw;
1928 err_free_sw_ports:
1929 kfree(sw->ports);
1930 kfree(sw);
1932 return ERR_PTR(ret);
1936 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1937 * @tb: Pointer to the owning domain
1938 * @parent: Parent device for this switch
1939 * @route: Route string for this switch
1941 * This creates a switch in safe mode. This means the switch pretty much
1942 * lacks all capabilities except DMA configuration port before it is
1943 * flashed with a valid NVM firmware.
1945 * The returned switch must be released by calling tb_switch_put().
1947 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1949 struct tb_switch *
1950 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1952 struct tb_switch *sw;
1954 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1955 if (!sw)
1956 return ERR_PTR(-ENOMEM);
1958 sw->tb = tb;
1959 sw->config.depth = tb_route_length(route);
1960 sw->config.route_hi = upper_32_bits(route);
1961 sw->config.route_lo = lower_32_bits(route);
1962 sw->safe_mode = true;
1964 device_initialize(&sw->dev);
1965 sw->dev.parent = parent;
1966 sw->dev.bus = &tb_bus_type;
1967 sw->dev.type = &tb_switch_type;
1968 sw->dev.groups = switch_groups;
1969 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1971 return sw;
1975 * tb_switch_configure() - Uploads configuration to the switch
1976 * @sw: Switch to configure
1978 * Call this function before the switch is added to the system. It will
1979 * upload configuration to the switch and makes it available for the
1980 * connection manager to use. Can be called to the switch again after
1981 * resume from low power states to re-initialize it.
1983 * Return: %0 in case of success and negative errno in case of failure
1985 int tb_switch_configure(struct tb_switch *sw)
1987 struct tb *tb = sw->tb;
1988 u64 route;
1989 int ret;
1991 route = tb_route(sw);
1993 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1994 sw->config.enabled ? "restoring " : "initializing", route,
1995 tb_route_length(route), sw->config.upstream_port_number);
1997 sw->config.enabled = 1;
1999 if (tb_switch_is_usb4(sw)) {
2001 * For USB4 devices, we need to program the CM version
2002 * accordingly so that it knows to expose all the
2003 * additional capabilities.
2005 sw->config.cmuv = USB4_VERSION_1_0;
2007 /* Enumerate the switch */
2008 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2009 ROUTER_CS_1, 4);
2010 if (ret)
2011 return ret;
2013 ret = usb4_switch_setup(sw);
2014 if (ret)
2015 return ret;
2017 ret = usb4_switch_configure_link(sw);
2018 } else {
2019 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2020 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2021 sw->config.vendor_id);
2023 if (!sw->cap_plug_events) {
2024 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2025 return -ENODEV;
2028 /* Enumerate the switch */
2029 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2030 ROUTER_CS_1, 3);
2031 if (ret)
2032 return ret;
2034 ret = tb_lc_configure_link(sw);
2036 if (ret)
2037 return ret;
2039 return tb_plug_events_active(sw, true);
2042 static int tb_switch_set_uuid(struct tb_switch *sw)
2044 bool uid = false;
2045 u32 uuid[4];
2046 int ret;
2048 if (sw->uuid)
2049 return 0;
2051 if (tb_switch_is_usb4(sw)) {
2052 ret = usb4_switch_read_uid(sw, &sw->uid);
2053 if (ret)
2054 return ret;
2055 uid = true;
2056 } else {
2058 * The newer controllers include fused UUID as part of
2059 * link controller specific registers
2061 ret = tb_lc_read_uuid(sw, uuid);
2062 if (ret) {
2063 if (ret != -EINVAL)
2064 return ret;
2065 uid = true;
2069 if (uid) {
2071 * ICM generates UUID based on UID and fills the upper
2072 * two words with ones. This is not strictly following
2073 * UUID format but we want to be compatible with it so
2074 * we do the same here.
2076 uuid[0] = sw->uid & 0xffffffff;
2077 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2078 uuid[2] = 0xffffffff;
2079 uuid[3] = 0xffffffff;
2082 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2083 if (!sw->uuid)
2084 return -ENOMEM;
2085 return 0;
2088 static int tb_switch_add_dma_port(struct tb_switch *sw)
2090 u32 status;
2091 int ret;
2093 switch (sw->generation) {
2094 case 2:
2095 /* Only root switch can be upgraded */
2096 if (tb_route(sw))
2097 return 0;
2099 /* fallthrough */
2100 case 3:
2101 ret = tb_switch_set_uuid(sw);
2102 if (ret)
2103 return ret;
2104 break;
2106 default:
2108 * DMA port is the only thing available when the switch
2109 * is in safe mode.
2111 if (!sw->safe_mode)
2112 return 0;
2113 break;
2116 /* Root switch DMA port requires running firmware */
2117 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2118 return 0;
2120 sw->dma_port = dma_port_alloc(sw);
2121 if (!sw->dma_port)
2122 return 0;
2124 if (sw->no_nvm_upgrade)
2125 return 0;
2128 * If there is status already set then authentication failed
2129 * when the dma_port_flash_update_auth() returned. Power cycling
2130 * is not needed (it was done already) so only thing we do here
2131 * is to unblock runtime PM of the root port.
2133 nvm_get_auth_status(sw, &status);
2134 if (status) {
2135 if (!tb_route(sw))
2136 nvm_authenticate_complete_dma_port(sw);
2137 return 0;
2141 * Check status of the previous flash authentication. If there
2142 * is one we need to power cycle the switch in any case to make
2143 * it functional again.
2145 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2146 if (ret <= 0)
2147 return ret;
2149 /* Now we can allow root port to suspend again */
2150 if (!tb_route(sw))
2151 nvm_authenticate_complete_dma_port(sw);
2153 if (status) {
2154 tb_sw_info(sw, "switch flash authentication failed\n");
2155 nvm_set_auth_status(sw, status);
2158 tb_sw_info(sw, "power cycling the switch now\n");
2159 dma_port_power_cycle(sw->dma_port);
2162 * We return error here which causes the switch adding failure.
2163 * It should appear back after power cycle is complete.
2165 return -ESHUTDOWN;
2168 static void tb_switch_default_link_ports(struct tb_switch *sw)
2170 int i;
2172 for (i = 1; i <= sw->config.max_port_number; i += 2) {
2173 struct tb_port *port = &sw->ports[i];
2174 struct tb_port *subordinate;
2176 if (!tb_port_is_null(port))
2177 continue;
2179 /* Check for the subordinate port */
2180 if (i == sw->config.max_port_number ||
2181 !tb_port_is_null(&sw->ports[i + 1]))
2182 continue;
2184 /* Link them if not already done so (by DROM) */
2185 subordinate = &sw->ports[i + 1];
2186 if (!port->dual_link_port && !subordinate->dual_link_port) {
2187 port->link_nr = 0;
2188 port->dual_link_port = subordinate;
2189 subordinate->link_nr = 1;
2190 subordinate->dual_link_port = port;
2192 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2193 port->port, subordinate->port);
2198 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2200 const struct tb_port *up = tb_upstream_port(sw);
2202 if (!up->dual_link_port || !up->dual_link_port->remote)
2203 return false;
2205 if (tb_switch_is_usb4(sw))
2206 return usb4_switch_lane_bonding_possible(sw);
2207 return tb_lc_lane_bonding_possible(sw);
2210 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2212 struct tb_port *up;
2213 bool change = false;
2214 int ret;
2216 if (!tb_route(sw) || tb_switch_is_icm(sw))
2217 return 0;
2219 up = tb_upstream_port(sw);
2221 ret = tb_port_get_link_speed(up);
2222 if (ret < 0)
2223 return ret;
2224 if (sw->link_speed != ret)
2225 change = true;
2226 sw->link_speed = ret;
2228 ret = tb_port_get_link_width(up);
2229 if (ret < 0)
2230 return ret;
2231 if (sw->link_width != ret)
2232 change = true;
2233 sw->link_width = ret;
2235 /* Notify userspace that there is possible link attribute change */
2236 if (device_is_registered(&sw->dev) && change)
2237 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2239 return 0;
2243 * tb_switch_lane_bonding_enable() - Enable lane bonding
2244 * @sw: Switch to enable lane bonding
2246 * Connection manager can call this function to enable lane bonding of a
2247 * switch. If conditions are correct and both switches support the feature,
2248 * lanes are bonded. It is safe to call this to any switch.
2250 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2252 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2253 struct tb_port *up, *down;
2254 u64 route = tb_route(sw);
2255 int ret;
2257 if (!route)
2258 return 0;
2260 if (!tb_switch_lane_bonding_possible(sw))
2261 return 0;
2263 up = tb_upstream_port(sw);
2264 down = tb_port_at(route, parent);
2266 if (!tb_port_is_width_supported(up, 2) ||
2267 !tb_port_is_width_supported(down, 2))
2268 return 0;
2270 ret = tb_port_lane_bonding_enable(up);
2271 if (ret) {
2272 tb_port_warn(up, "failed to enable lane bonding\n");
2273 return ret;
2276 ret = tb_port_lane_bonding_enable(down);
2277 if (ret) {
2278 tb_port_warn(down, "failed to enable lane bonding\n");
2279 tb_port_lane_bonding_disable(up);
2280 return ret;
2283 tb_switch_update_link_attributes(sw);
2285 tb_sw_dbg(sw, "lane bonding enabled\n");
2286 return ret;
2290 * tb_switch_lane_bonding_disable() - Disable lane bonding
2291 * @sw: Switch whose lane bonding to disable
2293 * Disables lane bonding between @sw and parent. This can be called even
2294 * if lanes were not bonded originally.
2296 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2298 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2299 struct tb_port *up, *down;
2301 if (!tb_route(sw))
2302 return;
2304 up = tb_upstream_port(sw);
2305 if (!up->bonded)
2306 return;
2308 down = tb_port_at(tb_route(sw), parent);
2310 tb_port_lane_bonding_disable(up);
2311 tb_port_lane_bonding_disable(down);
2313 tb_switch_update_link_attributes(sw);
2314 tb_sw_dbg(sw, "lane bonding disabled\n");
2318 * tb_switch_add() - Add a switch to the domain
2319 * @sw: Switch to add
2321 * This is the last step in adding switch to the domain. It will read
2322 * identification information from DROM and initializes ports so that
2323 * they can be used to connect other switches. The switch will be
2324 * exposed to the userspace when this function successfully returns. To
2325 * remove and release the switch, call tb_switch_remove().
2327 * Return: %0 in case of success and negative errno in case of failure
2329 int tb_switch_add(struct tb_switch *sw)
2331 int i, ret;
2334 * Initialize DMA control port now before we read DROM. Recent
2335 * host controllers have more complete DROM on NVM that includes
2336 * vendor and model identification strings which we then expose
2337 * to the userspace. NVM can be accessed through DMA
2338 * configuration based mailbox.
2340 ret = tb_switch_add_dma_port(sw);
2341 if (ret) {
2342 dev_err(&sw->dev, "failed to add DMA port\n");
2343 return ret;
2346 if (!sw->safe_mode) {
2347 /* read drom */
2348 ret = tb_drom_read(sw);
2349 if (ret) {
2350 dev_err(&sw->dev, "reading DROM failed\n");
2351 return ret;
2353 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2355 ret = tb_switch_set_uuid(sw);
2356 if (ret) {
2357 dev_err(&sw->dev, "failed to set UUID\n");
2358 return ret;
2361 for (i = 0; i <= sw->config.max_port_number; i++) {
2362 if (sw->ports[i].disabled) {
2363 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2364 continue;
2366 ret = tb_init_port(&sw->ports[i]);
2367 if (ret) {
2368 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2369 return ret;
2373 tb_switch_default_link_ports(sw);
2375 ret = tb_switch_update_link_attributes(sw);
2376 if (ret)
2377 return ret;
2379 ret = tb_switch_tmu_init(sw);
2380 if (ret)
2381 return ret;
2384 ret = device_add(&sw->dev);
2385 if (ret) {
2386 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2387 return ret;
2390 if (tb_route(sw)) {
2391 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2392 sw->vendor, sw->device);
2393 if (sw->vendor_name && sw->device_name)
2394 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2395 sw->device_name);
2398 ret = tb_switch_nvm_add(sw);
2399 if (ret) {
2400 dev_err(&sw->dev, "failed to add NVM devices\n");
2401 device_del(&sw->dev);
2402 return ret;
2405 pm_runtime_set_active(&sw->dev);
2406 if (sw->rpm) {
2407 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2408 pm_runtime_use_autosuspend(&sw->dev);
2409 pm_runtime_mark_last_busy(&sw->dev);
2410 pm_runtime_enable(&sw->dev);
2411 pm_request_autosuspend(&sw->dev);
2414 return 0;
2418 * tb_switch_remove() - Remove and release a switch
2419 * @sw: Switch to remove
2421 * This will remove the switch from the domain and release it after last
2422 * reference count drops to zero. If there are switches connected below
2423 * this switch, they will be removed as well.
2425 void tb_switch_remove(struct tb_switch *sw)
2427 struct tb_port *port;
2429 if (sw->rpm) {
2430 pm_runtime_get_sync(&sw->dev);
2431 pm_runtime_disable(&sw->dev);
2434 /* port 0 is the switch itself and never has a remote */
2435 tb_switch_for_each_port(sw, port) {
2436 if (tb_port_has_remote(port)) {
2437 tb_switch_remove(port->remote->sw);
2438 port->remote = NULL;
2439 } else if (port->xdomain) {
2440 tb_xdomain_remove(port->xdomain);
2441 port->xdomain = NULL;
2445 if (!sw->is_unplugged)
2446 tb_plug_events_active(sw, false);
2448 if (tb_switch_is_usb4(sw))
2449 usb4_switch_unconfigure_link(sw);
2450 else
2451 tb_lc_unconfigure_link(sw);
2453 tb_switch_nvm_remove(sw);
2455 if (tb_route(sw))
2456 dev_info(&sw->dev, "device disconnected\n");
2457 device_unregister(&sw->dev);
2461 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2463 void tb_sw_set_unplugged(struct tb_switch *sw)
2465 struct tb_port *port;
2467 if (sw == sw->tb->root_switch) {
2468 tb_sw_WARN(sw, "cannot unplug root switch\n");
2469 return;
2471 if (sw->is_unplugged) {
2472 tb_sw_WARN(sw, "is_unplugged already set\n");
2473 return;
2475 sw->is_unplugged = true;
2476 tb_switch_for_each_port(sw, port) {
2477 if (tb_port_has_remote(port))
2478 tb_sw_set_unplugged(port->remote->sw);
2479 else if (port->xdomain)
2480 port->xdomain->is_unplugged = true;
2484 int tb_switch_resume(struct tb_switch *sw)
2486 struct tb_port *port;
2487 int err;
2489 tb_sw_dbg(sw, "resuming switch\n");
2492 * Check for UID of the connected switches except for root
2493 * switch which we assume cannot be removed.
2495 if (tb_route(sw)) {
2496 u64 uid;
2499 * Check first that we can still read the switch config
2500 * space. It may be that there is now another domain
2501 * connected.
2503 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2504 if (err < 0) {
2505 tb_sw_info(sw, "switch not present anymore\n");
2506 return err;
2509 if (tb_switch_is_usb4(sw))
2510 err = usb4_switch_read_uid(sw, &uid);
2511 else
2512 err = tb_drom_read_uid_only(sw, &uid);
2513 if (err) {
2514 tb_sw_warn(sw, "uid read failed\n");
2515 return err;
2517 if (sw->uid != uid) {
2518 tb_sw_info(sw,
2519 "changed while suspended (uid %#llx -> %#llx)\n",
2520 sw->uid, uid);
2521 return -ENODEV;
2525 err = tb_switch_configure(sw);
2526 if (err)
2527 return err;
2529 /* check for surviving downstream switches */
2530 tb_switch_for_each_port(sw, port) {
2531 if (!tb_port_has_remote(port) && !port->xdomain)
2532 continue;
2534 if (tb_wait_for_port(port, true) <= 0) {
2535 tb_port_warn(port,
2536 "lost during suspend, disconnecting\n");
2537 if (tb_port_has_remote(port))
2538 tb_sw_set_unplugged(port->remote->sw);
2539 else if (port->xdomain)
2540 port->xdomain->is_unplugged = true;
2541 } else if (tb_port_has_remote(port) || port->xdomain) {
2543 * Always unlock the port so the downstream
2544 * switch/domain is accessible.
2546 if (tb_port_unlock(port))
2547 tb_port_warn(port, "failed to unlock port\n");
2548 if (port->remote && tb_switch_resume(port->remote->sw)) {
2549 tb_port_warn(port,
2550 "lost during suspend, disconnecting\n");
2551 tb_sw_set_unplugged(port->remote->sw);
2555 return 0;
2558 void tb_switch_suspend(struct tb_switch *sw)
2560 struct tb_port *port;
2561 int err;
2563 err = tb_plug_events_active(sw, false);
2564 if (err)
2565 return;
2567 tb_switch_for_each_port(sw, port) {
2568 if (tb_port_has_remote(port))
2569 tb_switch_suspend(port->remote->sw);
2572 if (tb_switch_is_usb4(sw))
2573 usb4_switch_set_sleep(sw);
2574 else
2575 tb_lc_set_sleep(sw);
2579 * tb_switch_query_dp_resource() - Query availability of DP resource
2580 * @sw: Switch whose DP resource is queried
2581 * @in: DP IN port
2583 * Queries availability of DP resource for DP tunneling using switch
2584 * specific means. Returns %true if resource is available.
2586 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2588 if (tb_switch_is_usb4(sw))
2589 return usb4_switch_query_dp_resource(sw, in);
2590 return tb_lc_dp_sink_query(sw, in);
2594 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2595 * @sw: Switch whose DP resource is allocated
2596 * @in: DP IN port
2598 * Allocates DP resource for DP tunneling. The resource must be
2599 * available for this to succeed (see tb_switch_query_dp_resource()).
2600 * Returns %0 in success and negative errno otherwise.
2602 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2604 if (tb_switch_is_usb4(sw))
2605 return usb4_switch_alloc_dp_resource(sw, in);
2606 return tb_lc_dp_sink_alloc(sw, in);
2610 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2611 * @sw: Switch whose DP resource is de-allocated
2612 * @in: DP IN port
2614 * De-allocates DP resource that was previously allocated for DP
2615 * tunneling.
2617 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2619 int ret;
2621 if (tb_switch_is_usb4(sw))
2622 ret = usb4_switch_dealloc_dp_resource(sw, in);
2623 else
2624 ret = tb_lc_dp_sink_dealloc(sw, in);
2626 if (ret)
2627 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2628 in->port);
2631 struct tb_sw_lookup {
2632 struct tb *tb;
2633 u8 link;
2634 u8 depth;
2635 const uuid_t *uuid;
2636 u64 route;
2639 static int tb_switch_match(struct device *dev, const void *data)
2641 struct tb_switch *sw = tb_to_switch(dev);
2642 const struct tb_sw_lookup *lookup = data;
2644 if (!sw)
2645 return 0;
2646 if (sw->tb != lookup->tb)
2647 return 0;
2649 if (lookup->uuid)
2650 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2652 if (lookup->route) {
2653 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2654 sw->config.route_hi == upper_32_bits(lookup->route);
2657 /* Root switch is matched only by depth */
2658 if (!lookup->depth)
2659 return !sw->depth;
2661 return sw->link == lookup->link && sw->depth == lookup->depth;
2665 * tb_switch_find_by_link_depth() - Find switch by link and depth
2666 * @tb: Domain the switch belongs
2667 * @link: Link number the switch is connected
2668 * @depth: Depth of the switch in link
2670 * Returned switch has reference count increased so the caller needs to
2671 * call tb_switch_put() when done with the switch.
2673 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2675 struct tb_sw_lookup lookup;
2676 struct device *dev;
2678 memset(&lookup, 0, sizeof(lookup));
2679 lookup.tb = tb;
2680 lookup.link = link;
2681 lookup.depth = depth;
2683 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2684 if (dev)
2685 return tb_to_switch(dev);
2687 return NULL;
2691 * tb_switch_find_by_uuid() - Find switch by UUID
2692 * @tb: Domain the switch belongs
2693 * @uuid: UUID to look for
2695 * Returned switch has reference count increased so the caller needs to
2696 * call tb_switch_put() when done with the switch.
2698 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2700 struct tb_sw_lookup lookup;
2701 struct device *dev;
2703 memset(&lookup, 0, sizeof(lookup));
2704 lookup.tb = tb;
2705 lookup.uuid = uuid;
2707 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2708 if (dev)
2709 return tb_to_switch(dev);
2711 return NULL;
2715 * tb_switch_find_by_route() - Find switch by route string
2716 * @tb: Domain the switch belongs
2717 * @route: Route string to look for
2719 * Returned switch has reference count increased so the caller needs to
2720 * call tb_switch_put() when done with the switch.
2722 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2724 struct tb_sw_lookup lookup;
2725 struct device *dev;
2727 if (!route)
2728 return tb_switch_get(tb->root_switch);
2730 memset(&lookup, 0, sizeof(lookup));
2731 lookup.tb = tb;
2732 lookup.route = route;
2734 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2735 if (dev)
2736 return tb_to_switch(dev);
2738 return NULL;
2742 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2743 * @sw: Switch to find the port from
2744 * @type: Port type to look for
2746 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2747 enum tb_port_type type)
2749 struct tb_port *port;
2751 tb_switch_for_each_port(sw, port) {
2752 if (port->config.type == type)
2753 return port;
2756 return NULL;
2759 void tb_switch_exit(void)
2761 ida_destroy(&nvm_ida);