1 // SPDX-License-Identifier: GPL-2.0+
3 * Driver for AMBA serial ports
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
43 #include <linux/acpi.h>
45 #include "amba-pl011.h"
49 #define SERIAL_AMBA_MAJOR 204
50 #define SERIAL_AMBA_MINOR 64
51 #define SERIAL_AMBA_NR UART_NR
53 #define AMBA_ISR_PASS_LIMIT 256
55 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX (1 << 16)
58 static u16 pl011_std_offsets
[REG_ARRAY_SIZE
] = {
59 [REG_DR
] = UART01x_DR
,
60 [REG_FR
] = UART01x_FR
,
61 [REG_LCRH_RX
] = UART011_LCRH
,
62 [REG_LCRH_TX
] = UART011_LCRH
,
63 [REG_IBRD
] = UART011_IBRD
,
64 [REG_FBRD
] = UART011_FBRD
,
65 [REG_CR
] = UART011_CR
,
66 [REG_IFLS
] = UART011_IFLS
,
67 [REG_IMSC
] = UART011_IMSC
,
68 [REG_RIS
] = UART011_RIS
,
69 [REG_MIS
] = UART011_MIS
,
70 [REG_ICR
] = UART011_ICR
,
71 [REG_DMACR
] = UART011_DMACR
,
74 /* There is by now at least one vendor with differing details, so handle it */
76 const u16
*reg_offset
;
86 bool cts_event_workaround
;
90 unsigned int (*get_fifosize
)(struct amba_device
*dev
);
93 static unsigned int get_fifosize_arm(struct amba_device
*dev
)
95 return amba_rev(dev
) < 3 ? 16 : 32;
98 static struct vendor_data vendor_arm
= {
99 .reg_offset
= pl011_std_offsets
,
100 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
101 .fr_busy
= UART01x_FR_BUSY
,
102 .fr_dsr
= UART01x_FR_DSR
,
103 .fr_cts
= UART01x_FR_CTS
,
104 .fr_ri
= UART011_FR_RI
,
105 .oversampling
= false,
106 .dma_threshold
= false,
107 .cts_event_workaround
= false,
108 .always_enabled
= false,
109 .fixed_options
= false,
110 .get_fifosize
= get_fifosize_arm
,
113 static const struct vendor_data vendor_sbsa
= {
114 .reg_offset
= pl011_std_offsets
,
115 .fr_busy
= UART01x_FR_BUSY
,
116 .fr_dsr
= UART01x_FR_DSR
,
117 .fr_cts
= UART01x_FR_CTS
,
118 .fr_ri
= UART011_FR_RI
,
120 .oversampling
= false,
121 .dma_threshold
= false,
122 .cts_event_workaround
= false,
123 .always_enabled
= true,
124 .fixed_options
= true,
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44
= {
129 .reg_offset
= pl011_std_offsets
,
130 .fr_busy
= UART011_FR_TXFE
,
131 .fr_dsr
= UART01x_FR_DSR
,
132 .fr_cts
= UART01x_FR_CTS
,
133 .fr_ri
= UART011_FR_RI
,
134 .inv_fr
= UART011_FR_TXFE
,
136 .oversampling
= false,
137 .dma_threshold
= false,
138 .cts_event_workaround
= false,
139 .always_enabled
= true,
140 .fixed_options
= true,
144 static u16 pl011_st_offsets
[REG_ARRAY_SIZE
] = {
145 [REG_DR
] = UART01x_DR
,
146 [REG_ST_DMAWM
] = ST_UART011_DMAWM
,
147 [REG_ST_TIMEOUT
] = ST_UART011_TIMEOUT
,
148 [REG_FR
] = UART01x_FR
,
149 [REG_LCRH_RX
] = ST_UART011_LCRH_RX
,
150 [REG_LCRH_TX
] = ST_UART011_LCRH_TX
,
151 [REG_IBRD
] = UART011_IBRD
,
152 [REG_FBRD
] = UART011_FBRD
,
153 [REG_CR
] = UART011_CR
,
154 [REG_IFLS
] = UART011_IFLS
,
155 [REG_IMSC
] = UART011_IMSC
,
156 [REG_RIS
] = UART011_RIS
,
157 [REG_MIS
] = UART011_MIS
,
158 [REG_ICR
] = UART011_ICR
,
159 [REG_DMACR
] = UART011_DMACR
,
160 [REG_ST_XFCR
] = ST_UART011_XFCR
,
161 [REG_ST_XON1
] = ST_UART011_XON1
,
162 [REG_ST_XON2
] = ST_UART011_XON2
,
163 [REG_ST_XOFF1
] = ST_UART011_XOFF1
,
164 [REG_ST_XOFF2
] = ST_UART011_XOFF2
,
165 [REG_ST_ITCR
] = ST_UART011_ITCR
,
166 [REG_ST_ITIP
] = ST_UART011_ITIP
,
167 [REG_ST_ABCR
] = ST_UART011_ABCR
,
168 [REG_ST_ABIMSC
] = ST_UART011_ABIMSC
,
171 static unsigned int get_fifosize_st(struct amba_device
*dev
)
176 static struct vendor_data vendor_st
= {
177 .reg_offset
= pl011_st_offsets
,
178 .ifls
= UART011_IFLS_RX_HALF
|UART011_IFLS_TX_HALF
,
179 .fr_busy
= UART01x_FR_BUSY
,
180 .fr_dsr
= UART01x_FR_DSR
,
181 .fr_cts
= UART01x_FR_CTS
,
182 .fr_ri
= UART011_FR_RI
,
183 .oversampling
= true,
184 .dma_threshold
= true,
185 .cts_event_workaround
= true,
186 .always_enabled
= false,
187 .fixed_options
= false,
188 .get_fifosize
= get_fifosize_st
,
191 static const u16 pl011_zte_offsets
[REG_ARRAY_SIZE
] = {
192 [REG_DR
] = ZX_UART011_DR
,
193 [REG_FR
] = ZX_UART011_FR
,
194 [REG_LCRH_RX
] = ZX_UART011_LCRH
,
195 [REG_LCRH_TX
] = ZX_UART011_LCRH
,
196 [REG_IBRD
] = ZX_UART011_IBRD
,
197 [REG_FBRD
] = ZX_UART011_FBRD
,
198 [REG_CR
] = ZX_UART011_CR
,
199 [REG_IFLS
] = ZX_UART011_IFLS
,
200 [REG_IMSC
] = ZX_UART011_IMSC
,
201 [REG_RIS
] = ZX_UART011_RIS
,
202 [REG_MIS
] = ZX_UART011_MIS
,
203 [REG_ICR
] = ZX_UART011_ICR
,
204 [REG_DMACR
] = ZX_UART011_DMACR
,
207 static unsigned int get_fifosize_zte(struct amba_device
*dev
)
212 static struct vendor_data vendor_zte
= {
213 .reg_offset
= pl011_zte_offsets
,
215 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
216 .fr_busy
= ZX_UART01x_FR_BUSY
,
217 .fr_dsr
= ZX_UART01x_FR_DSR
,
218 .fr_cts
= ZX_UART01x_FR_CTS
,
219 .fr_ri
= ZX_UART011_FR_RI
,
220 .get_fifosize
= get_fifosize_zte
,
223 /* Deals with DMA transactions */
226 struct scatterlist sg
;
230 struct pl011_dmarx_data
{
231 struct dma_chan
*chan
;
232 struct completion complete
;
234 struct pl011_sgbuf sgbuf_a
;
235 struct pl011_sgbuf sgbuf_b
;
238 struct timer_list timer
;
239 unsigned int last_residue
;
240 unsigned long last_jiffies
;
242 unsigned int poll_rate
;
243 unsigned int poll_timeout
;
246 struct pl011_dmatx_data
{
247 struct dma_chan
*chan
;
248 struct scatterlist sg
;
254 * We wrap our port structure around the generic uart_port.
256 struct uart_amba_port
{
257 struct uart_port port
;
258 const u16
*reg_offset
;
260 const struct vendor_data
*vendor
;
261 unsigned int dmacr
; /* dma control reg */
262 unsigned int im
; /* interrupt mask */
263 unsigned int old_status
;
264 unsigned int fifosize
; /* vendor-specific */
265 unsigned int old_cr
; /* state during shutdown */
266 unsigned int fixed_baud
; /* vendor-set fixed baud rate */
268 #ifdef CONFIG_DMA_ENGINE
272 struct pl011_dmarx_data dmarx
;
273 struct pl011_dmatx_data dmatx
;
278 static unsigned int pl011_reg_to_offset(const struct uart_amba_port
*uap
,
281 return uap
->reg_offset
[reg
];
284 static unsigned int pl011_read(const struct uart_amba_port
*uap
,
287 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
289 return (uap
->port
.iotype
== UPIO_MEM32
) ?
290 readl_relaxed(addr
) : readw_relaxed(addr
);
293 static void pl011_write(unsigned int val
, const struct uart_amba_port
*uap
,
296 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
298 if (uap
->port
.iotype
== UPIO_MEM32
)
299 writel_relaxed(val
, addr
);
301 writew_relaxed(val
, addr
);
305 * Reads up to 256 characters from the FIFO or until it's empty and
306 * inserts them into the TTY layer. Returns the number of characters
307 * read from the FIFO.
309 static int pl011_fifo_to_tty(struct uart_amba_port
*uap
)
312 unsigned int ch
, flag
, fifotaken
;
314 for (fifotaken
= 0; fifotaken
!= 256; fifotaken
++) {
315 status
= pl011_read(uap
, REG_FR
);
316 if (status
& UART01x_FR_RXFE
)
319 /* Take chars from the FIFO and update status */
320 ch
= pl011_read(uap
, REG_DR
) | UART_DUMMY_DR_RX
;
322 uap
->port
.icount
.rx
++;
324 if (unlikely(ch
& UART_DR_ERROR
)) {
325 if (ch
& UART011_DR_BE
) {
326 ch
&= ~(UART011_DR_FE
| UART011_DR_PE
);
327 uap
->port
.icount
.brk
++;
328 if (uart_handle_break(&uap
->port
))
330 } else if (ch
& UART011_DR_PE
)
331 uap
->port
.icount
.parity
++;
332 else if (ch
& UART011_DR_FE
)
333 uap
->port
.icount
.frame
++;
334 if (ch
& UART011_DR_OE
)
335 uap
->port
.icount
.overrun
++;
337 ch
&= uap
->port
.read_status_mask
;
339 if (ch
& UART011_DR_BE
)
341 else if (ch
& UART011_DR_PE
)
343 else if (ch
& UART011_DR_FE
)
347 if (uart_handle_sysrq_char(&uap
->port
, ch
& 255))
350 uart_insert_char(&uap
->port
, ch
, UART011_DR_OE
, ch
, flag
);
358 * All the DMA operation mode stuff goes inside this ifdef.
359 * This assumes that you have a generic DMA device interface,
360 * no custom DMA interfaces are supported.
362 #ifdef CONFIG_DMA_ENGINE
364 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
366 static int pl011_sgbuf_init(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
367 enum dma_data_direction dir
)
371 sg
->buf
= dma_alloc_coherent(chan
->device
->dev
,
372 PL011_DMA_BUFFER_SIZE
, &dma_addr
, GFP_KERNEL
);
376 sg_init_table(&sg
->sg
, 1);
377 sg_set_page(&sg
->sg
, phys_to_page(dma_addr
),
378 PL011_DMA_BUFFER_SIZE
, offset_in_page(dma_addr
));
379 sg_dma_address(&sg
->sg
) = dma_addr
;
380 sg_dma_len(&sg
->sg
) = PL011_DMA_BUFFER_SIZE
;
385 static void pl011_sgbuf_free(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
386 enum dma_data_direction dir
)
389 dma_free_coherent(chan
->device
->dev
,
390 PL011_DMA_BUFFER_SIZE
, sg
->buf
,
391 sg_dma_address(&sg
->sg
));
395 static void pl011_dma_probe(struct uart_amba_port
*uap
)
397 /* DMA is the sole user of the platform data right now */
398 struct amba_pl011_data
*plat
= dev_get_platdata(uap
->port
.dev
);
399 struct device
*dev
= uap
->port
.dev
;
400 struct dma_slave_config tx_conf
= {
401 .dst_addr
= uap
->port
.mapbase
+
402 pl011_reg_to_offset(uap
, REG_DR
),
403 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
404 .direction
= DMA_MEM_TO_DEV
,
405 .dst_maxburst
= uap
->fifosize
>> 1,
408 struct dma_chan
*chan
;
411 uap
->dma_probed
= true;
412 chan
= dma_request_chan(dev
, "tx");
414 if (PTR_ERR(chan
) == -EPROBE_DEFER
) {
415 uap
->dma_probed
= false;
419 /* We need platform data */
420 if (!plat
|| !plat
->dma_filter
) {
421 dev_info(uap
->port
.dev
, "no DMA platform data\n");
425 /* Try to acquire a generic DMA engine slave TX channel */
427 dma_cap_set(DMA_SLAVE
, mask
);
429 chan
= dma_request_channel(mask
, plat
->dma_filter
,
432 dev_err(uap
->port
.dev
, "no TX DMA channel!\n");
437 dmaengine_slave_config(chan
, &tx_conf
);
438 uap
->dmatx
.chan
= chan
;
440 dev_info(uap
->port
.dev
, "DMA channel TX %s\n",
441 dma_chan_name(uap
->dmatx
.chan
));
443 /* Optionally make use of an RX channel as well */
444 chan
= dma_request_slave_channel(dev
, "rx");
446 if (!chan
&& plat
&& plat
->dma_rx_param
) {
447 chan
= dma_request_channel(mask
, plat
->dma_filter
, plat
->dma_rx_param
);
450 dev_err(uap
->port
.dev
, "no RX DMA channel!\n");
456 struct dma_slave_config rx_conf
= {
457 .src_addr
= uap
->port
.mapbase
+
458 pl011_reg_to_offset(uap
, REG_DR
),
459 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
460 .direction
= DMA_DEV_TO_MEM
,
461 .src_maxburst
= uap
->fifosize
>> 2,
464 struct dma_slave_caps caps
;
467 * Some DMA controllers provide information on their capabilities.
468 * If the controller does, check for suitable residue processing
469 * otherwise assime all is well.
471 if (0 == dma_get_slave_caps(chan
, &caps
)) {
472 if (caps
.residue_granularity
==
473 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
) {
474 dma_release_channel(chan
);
475 dev_info(uap
->port
.dev
,
476 "RX DMA disabled - no residue processing\n");
480 dmaengine_slave_config(chan
, &rx_conf
);
481 uap
->dmarx
.chan
= chan
;
483 uap
->dmarx
.auto_poll_rate
= false;
484 if (plat
&& plat
->dma_rx_poll_enable
) {
485 /* Set poll rate if specified. */
486 if (plat
->dma_rx_poll_rate
) {
487 uap
->dmarx
.auto_poll_rate
= false;
488 uap
->dmarx
.poll_rate
= plat
->dma_rx_poll_rate
;
491 * 100 ms defaults to poll rate if not
492 * specified. This will be adjusted with
493 * the baud rate at set_termios.
495 uap
->dmarx
.auto_poll_rate
= true;
496 uap
->dmarx
.poll_rate
= 100;
498 /* 3 secs defaults poll_timeout if not specified. */
499 if (plat
->dma_rx_poll_timeout
)
500 uap
->dmarx
.poll_timeout
=
501 plat
->dma_rx_poll_timeout
;
503 uap
->dmarx
.poll_timeout
= 3000;
504 } else if (!plat
&& dev
->of_node
) {
505 uap
->dmarx
.auto_poll_rate
= of_property_read_bool(
506 dev
->of_node
, "auto-poll");
507 if (uap
->dmarx
.auto_poll_rate
) {
510 if (0 == of_property_read_u32(dev
->of_node
,
512 uap
->dmarx
.poll_rate
= x
;
514 uap
->dmarx
.poll_rate
= 100;
515 if (0 == of_property_read_u32(dev
->of_node
,
516 "poll-timeout-ms", &x
))
517 uap
->dmarx
.poll_timeout
= x
;
519 uap
->dmarx
.poll_timeout
= 3000;
522 dev_info(uap
->port
.dev
, "DMA channel RX %s\n",
523 dma_chan_name(uap
->dmarx
.chan
));
527 static void pl011_dma_remove(struct uart_amba_port
*uap
)
530 dma_release_channel(uap
->dmatx
.chan
);
532 dma_release_channel(uap
->dmarx
.chan
);
535 /* Forward declare these for the refill routine */
536 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
);
537 static void pl011_start_tx_pio(struct uart_amba_port
*uap
);
540 * The current DMA TX buffer has been sent.
541 * Try to queue up another DMA buffer.
543 static void pl011_dma_tx_callback(void *data
)
545 struct uart_amba_port
*uap
= data
;
546 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
550 spin_lock_irqsave(&uap
->port
.lock
, flags
);
551 if (uap
->dmatx
.queued
)
552 dma_unmap_sg(dmatx
->chan
->device
->dev
, &dmatx
->sg
, 1,
556 uap
->dmacr
= dmacr
& ~UART011_TXDMAE
;
557 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
560 * If TX DMA was disabled, it means that we've stopped the DMA for
561 * some reason (eg, XOFF received, or we want to send an X-char.)
563 * Note: we need to be careful here of a potential race between DMA
564 * and the rest of the driver - if the driver disables TX DMA while
565 * a TX buffer completing, we must update the tx queued status to
566 * get further refills (hence we check dmacr).
568 if (!(dmacr
& UART011_TXDMAE
) || uart_tx_stopped(&uap
->port
) ||
569 uart_circ_empty(&uap
->port
.state
->xmit
)) {
570 uap
->dmatx
.queued
= false;
571 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
575 if (pl011_dma_tx_refill(uap
) <= 0)
577 * We didn't queue a DMA buffer for some reason, but we
578 * have data pending to be sent. Re-enable the TX IRQ.
580 pl011_start_tx_pio(uap
);
582 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
586 * Try to refill the TX DMA buffer.
587 * Locking: called with port lock held and IRQs disabled.
589 * 1 if we queued up a TX DMA buffer.
590 * 0 if we didn't want to handle this by DMA
593 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
)
595 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
596 struct dma_chan
*chan
= dmatx
->chan
;
597 struct dma_device
*dma_dev
= chan
->device
;
598 struct dma_async_tx_descriptor
*desc
;
599 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
603 * Try to avoid the overhead involved in using DMA if the
604 * transaction fits in the first half of the FIFO, by using
605 * the standard interrupt handling. This ensures that we
606 * issue a uart_write_wakeup() at the appropriate time.
608 count
= uart_circ_chars_pending(xmit
);
609 if (count
< (uap
->fifosize
>> 1)) {
610 uap
->dmatx
.queued
= false;
615 * Bodge: don't send the last character by DMA, as this
616 * will prevent XON from notifying us to restart DMA.
620 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
621 if (count
> PL011_DMA_BUFFER_SIZE
)
622 count
= PL011_DMA_BUFFER_SIZE
;
624 if (xmit
->tail
< xmit
->head
)
625 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], count
);
627 size_t first
= UART_XMIT_SIZE
- xmit
->tail
;
632 second
= count
- first
;
634 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], first
);
636 memcpy(&dmatx
->buf
[first
], &xmit
->buf
[0], second
);
639 dmatx
->sg
.length
= count
;
641 if (dma_map_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
) != 1) {
642 uap
->dmatx
.queued
= false;
643 dev_dbg(uap
->port
.dev
, "unable to map TX DMA\n");
647 desc
= dmaengine_prep_slave_sg(chan
, &dmatx
->sg
, 1, DMA_MEM_TO_DEV
,
648 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
650 dma_unmap_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
);
651 uap
->dmatx
.queued
= false;
653 * If DMA cannot be used right now, we complete this
654 * transaction via IRQ and let the TTY layer retry.
656 dev_dbg(uap
->port
.dev
, "TX DMA busy\n");
660 /* Some data to go along to the callback */
661 desc
->callback
= pl011_dma_tx_callback
;
662 desc
->callback_param
= uap
;
664 /* All errors should happen at prepare time */
665 dmaengine_submit(desc
);
667 /* Fire the DMA transaction */
668 dma_dev
->device_issue_pending(chan
);
670 uap
->dmacr
|= UART011_TXDMAE
;
671 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
672 uap
->dmatx
.queued
= true;
675 * Now we know that DMA will fire, so advance the ring buffer
676 * with the stuff we just dispatched.
678 xmit
->tail
= (xmit
->tail
+ count
) & (UART_XMIT_SIZE
- 1);
679 uap
->port
.icount
.tx
+= count
;
681 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
682 uart_write_wakeup(&uap
->port
);
688 * We received a transmit interrupt without a pending X-char but with
689 * pending characters.
690 * Locking: called with port lock held and IRQs disabled.
692 * false if we want to use PIO to transmit
693 * true if we queued a DMA buffer
695 static bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
697 if (!uap
->using_tx_dma
)
701 * If we already have a TX buffer queued, but received a
702 * TX interrupt, it will be because we've just sent an X-char.
703 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
705 if (uap
->dmatx
.queued
) {
706 uap
->dmacr
|= UART011_TXDMAE
;
707 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
708 uap
->im
&= ~UART011_TXIM
;
709 pl011_write(uap
->im
, uap
, REG_IMSC
);
714 * We don't have a TX buffer queued, so try to queue one.
715 * If we successfully queued a buffer, mask the TX IRQ.
717 if (pl011_dma_tx_refill(uap
) > 0) {
718 uap
->im
&= ~UART011_TXIM
;
719 pl011_write(uap
->im
, uap
, REG_IMSC
);
726 * Stop the DMA transmit (eg, due to received XOFF).
727 * Locking: called with port lock held and IRQs disabled.
729 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
731 if (uap
->dmatx
.queued
) {
732 uap
->dmacr
&= ~UART011_TXDMAE
;
733 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
738 * Try to start a DMA transmit, or in the case of an XON/OFF
739 * character queued for send, try to get that character out ASAP.
740 * Locking: called with port lock held and IRQs disabled.
742 * false if we want the TX IRQ to be enabled
743 * true if we have a buffer queued
745 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
749 if (!uap
->using_tx_dma
)
752 if (!uap
->port
.x_char
) {
753 /* no X-char, try to push chars out in DMA mode */
756 if (!uap
->dmatx
.queued
) {
757 if (pl011_dma_tx_refill(uap
) > 0) {
758 uap
->im
&= ~UART011_TXIM
;
759 pl011_write(uap
->im
, uap
, REG_IMSC
);
762 } else if (!(uap
->dmacr
& UART011_TXDMAE
)) {
763 uap
->dmacr
|= UART011_TXDMAE
;
764 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
770 * We have an X-char to send. Disable DMA to prevent it loading
771 * the TX fifo, and then see if we can stuff it into the FIFO.
774 uap
->dmacr
&= ~UART011_TXDMAE
;
775 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
777 if (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
) {
779 * No space in the FIFO, so enable the transmit interrupt
780 * so we know when there is space. Note that once we've
781 * loaded the character, we should just re-enable DMA.
786 pl011_write(uap
->port
.x_char
, uap
, REG_DR
);
787 uap
->port
.icount
.tx
++;
788 uap
->port
.x_char
= 0;
790 /* Success - restore the DMA state */
792 pl011_write(dmacr
, uap
, REG_DMACR
);
798 * Flush the transmit buffer.
799 * Locking: called with port lock held and IRQs disabled.
801 static void pl011_dma_flush_buffer(struct uart_port
*port
)
802 __releases(&uap
->port
.lock
)
803 __acquires(&uap
->port
.lock
)
805 struct uart_amba_port
*uap
=
806 container_of(port
, struct uart_amba_port
, port
);
808 if (!uap
->using_tx_dma
)
811 dmaengine_terminate_async(uap
->dmatx
.chan
);
813 if (uap
->dmatx
.queued
) {
814 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
816 uap
->dmatx
.queued
= false;
817 uap
->dmacr
&= ~UART011_TXDMAE
;
818 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
822 static void pl011_dma_rx_callback(void *data
);
824 static int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
826 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
827 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
828 struct dma_async_tx_descriptor
*desc
;
829 struct pl011_sgbuf
*sgbuf
;
834 /* Start the RX DMA job */
835 sgbuf
= uap
->dmarx
.use_buf_b
?
836 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
837 desc
= dmaengine_prep_slave_sg(rxchan
, &sgbuf
->sg
, 1,
839 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
841 * If the DMA engine is busy and cannot prepare a
842 * channel, no big deal, the driver will fall back
843 * to interrupt mode as a result of this error code.
846 uap
->dmarx
.running
= false;
847 dmaengine_terminate_all(rxchan
);
851 /* Some data to go along to the callback */
852 desc
->callback
= pl011_dma_rx_callback
;
853 desc
->callback_param
= uap
;
854 dmarx
->cookie
= dmaengine_submit(desc
);
855 dma_async_issue_pending(rxchan
);
857 uap
->dmacr
|= UART011_RXDMAE
;
858 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
859 uap
->dmarx
.running
= true;
861 uap
->im
&= ~UART011_RXIM
;
862 pl011_write(uap
->im
, uap
, REG_IMSC
);
868 * This is called when either the DMA job is complete, or
869 * the FIFO timeout interrupt occurred. This must be called
870 * with the port spinlock uap->port.lock held.
872 static void pl011_dma_rx_chars(struct uart_amba_port
*uap
,
873 u32 pending
, bool use_buf_b
,
876 struct tty_port
*port
= &uap
->port
.state
->port
;
877 struct pl011_sgbuf
*sgbuf
= use_buf_b
?
878 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
880 u32 fifotaken
= 0; /* only used for vdbg() */
882 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
885 if (uap
->dmarx
.poll_rate
) {
886 /* The data can be taken by polling */
887 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
888 /* Recalculate the pending size */
889 if (pending
>= dmataken
)
893 /* Pick the remain data from the DMA */
897 * First take all chars in the DMA pipe, then look in the FIFO.
898 * Note that tty_insert_flip_buf() tries to take as many chars
901 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
904 uap
->port
.icount
.rx
+= dma_count
;
905 if (dma_count
< pending
)
906 dev_warn(uap
->port
.dev
,
907 "couldn't insert all characters (TTY is full?)\n");
910 /* Reset the last_residue for Rx DMA poll */
911 if (uap
->dmarx
.poll_rate
)
912 dmarx
->last_residue
= sgbuf
->sg
.length
;
915 * Only continue with trying to read the FIFO if all DMA chars have
918 if (dma_count
== pending
&& readfifo
) {
919 /* Clear any error flags */
920 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
921 UART011_FEIS
, uap
, REG_ICR
);
924 * If we read all the DMA'd characters, and we had an
925 * incomplete buffer, that could be due to an rx error, or
926 * maybe we just timed out. Read any pending chars and check
929 * Error conditions will only occur in the FIFO, these will
930 * trigger an immediate interrupt and stop the DMA job, so we
931 * will always find the error in the FIFO, never in the DMA
934 fifotaken
= pl011_fifo_to_tty(uap
);
937 spin_unlock(&uap
->port
.lock
);
938 dev_vdbg(uap
->port
.dev
,
939 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
940 dma_count
, fifotaken
);
941 tty_flip_buffer_push(port
);
942 spin_lock(&uap
->port
.lock
);
945 static void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
947 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
948 struct dma_chan
*rxchan
= dmarx
->chan
;
949 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
950 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
952 struct dma_tx_state state
;
953 enum dma_status dmastat
;
956 * Pause the transfer so we can trust the current counter,
957 * do this before we pause the PL011 block, else we may
960 if (dmaengine_pause(rxchan
))
961 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
962 dmastat
= rxchan
->device
->device_tx_status(rxchan
,
963 dmarx
->cookie
, &state
);
964 if (dmastat
!= DMA_PAUSED
)
965 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
967 /* Disable RX DMA - incoming data will wait in the FIFO */
968 uap
->dmacr
&= ~UART011_RXDMAE
;
969 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
970 uap
->dmarx
.running
= false;
972 pending
= sgbuf
->sg
.length
- state
.residue
;
973 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
974 /* Then we terminate the transfer - we now know our residue */
975 dmaengine_terminate_all(rxchan
);
978 * This will take the chars we have so far and insert
979 * into the framework.
981 pl011_dma_rx_chars(uap
, pending
, dmarx
->use_buf_b
, true);
983 /* Switch buffer & re-trigger DMA job */
984 dmarx
->use_buf_b
= !dmarx
->use_buf_b
;
985 if (pl011_dma_rx_trigger_dma(uap
)) {
986 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
987 "fall back to interrupt mode\n");
988 uap
->im
|= UART011_RXIM
;
989 pl011_write(uap
->im
, uap
, REG_IMSC
);
993 static void pl011_dma_rx_callback(void *data
)
995 struct uart_amba_port
*uap
= data
;
996 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
997 struct dma_chan
*rxchan
= dmarx
->chan
;
998 bool lastbuf
= dmarx
->use_buf_b
;
999 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
1000 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
1002 struct dma_tx_state state
;
1006 * This completion interrupt occurs typically when the
1007 * RX buffer is totally stuffed but no timeout has yet
1008 * occurred. When that happens, we just want the RX
1009 * routine to flush out the secondary DMA buffer while
1010 * we immediately trigger the next DMA job.
1012 spin_lock_irq(&uap
->port
.lock
);
1014 * Rx data can be taken by the UART interrupts during
1015 * the DMA irq handler. So we check the residue here.
1017 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1018 pending
= sgbuf
->sg
.length
- state
.residue
;
1019 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
1020 /* Then we terminate the transfer - we now know our residue */
1021 dmaengine_terminate_all(rxchan
);
1023 uap
->dmarx
.running
= false;
1024 dmarx
->use_buf_b
= !lastbuf
;
1025 ret
= pl011_dma_rx_trigger_dma(uap
);
1027 pl011_dma_rx_chars(uap
, pending
, lastbuf
, false);
1028 spin_unlock_irq(&uap
->port
.lock
);
1030 * Do this check after we picked the DMA chars so we don't
1031 * get some IRQ immediately from RX.
1034 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
1035 "fall back to interrupt mode\n");
1036 uap
->im
|= UART011_RXIM
;
1037 pl011_write(uap
->im
, uap
, REG_IMSC
);
1042 * Stop accepting received characters, when we're shutting down or
1043 * suspending this port.
1044 * Locking: called with port lock held and IRQs disabled.
1046 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1048 /* FIXME. Just disable the DMA enable */
1049 uap
->dmacr
&= ~UART011_RXDMAE
;
1050 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1054 * Timer handler for Rx DMA polling.
1055 * Every polling, It checks the residue in the dma buffer and transfer
1056 * data to the tty. Also, last_residue is updated for the next polling.
1058 static void pl011_dma_rx_poll(struct timer_list
*t
)
1060 struct uart_amba_port
*uap
= from_timer(uap
, t
, dmarx
.timer
);
1061 struct tty_port
*port
= &uap
->port
.state
->port
;
1062 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1063 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
1064 unsigned long flags
= 0;
1065 unsigned int dmataken
= 0;
1066 unsigned int size
= 0;
1067 struct pl011_sgbuf
*sgbuf
;
1069 struct dma_tx_state state
;
1071 sgbuf
= dmarx
->use_buf_b
? &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
1072 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1073 if (likely(state
.residue
< dmarx
->last_residue
)) {
1074 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
1075 size
= dmarx
->last_residue
- state
.residue
;
1076 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
1078 if (dma_count
== size
)
1079 dmarx
->last_residue
= state
.residue
;
1080 dmarx
->last_jiffies
= jiffies
;
1082 tty_flip_buffer_push(port
);
1085 * If no data is received in poll_timeout, the driver will fall back
1086 * to interrupt mode. We will retrigger DMA at the first interrupt.
1088 if (jiffies_to_msecs(jiffies
- dmarx
->last_jiffies
)
1089 > uap
->dmarx
.poll_timeout
) {
1091 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1092 pl011_dma_rx_stop(uap
);
1093 uap
->im
|= UART011_RXIM
;
1094 pl011_write(uap
->im
, uap
, REG_IMSC
);
1095 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1097 uap
->dmarx
.running
= false;
1098 dmaengine_terminate_all(rxchan
);
1099 del_timer(&uap
->dmarx
.timer
);
1101 mod_timer(&uap
->dmarx
.timer
,
1102 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1106 static void pl011_dma_startup(struct uart_amba_port
*uap
)
1110 if (!uap
->dma_probed
)
1111 pl011_dma_probe(uap
);
1113 if (!uap
->dmatx
.chan
)
1116 uap
->dmatx
.buf
= kmalloc(PL011_DMA_BUFFER_SIZE
, GFP_KERNEL
| __GFP_DMA
);
1117 if (!uap
->dmatx
.buf
) {
1118 dev_err(uap
->port
.dev
, "no memory for DMA TX buffer\n");
1119 uap
->port
.fifosize
= uap
->fifosize
;
1123 sg_init_one(&uap
->dmatx
.sg
, uap
->dmatx
.buf
, PL011_DMA_BUFFER_SIZE
);
1125 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1126 uap
->port
.fifosize
= PL011_DMA_BUFFER_SIZE
;
1127 uap
->using_tx_dma
= true;
1129 if (!uap
->dmarx
.chan
)
1132 /* Allocate and map DMA RX buffers */
1133 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1136 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1137 "RX buffer A", ret
);
1141 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
,
1144 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1145 "RX buffer B", ret
);
1146 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1151 uap
->using_rx_dma
= true;
1154 /* Turn on DMA error (RX/TX will be enabled on demand) */
1155 uap
->dmacr
|= UART011_DMAONERR
;
1156 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1159 * ST Micro variants has some specific dma burst threshold
1160 * compensation. Set this to 16 bytes, so burst will only
1161 * be issued above/below 16 bytes.
1163 if (uap
->vendor
->dma_threshold
)
1164 pl011_write(ST_UART011_DMAWM_RX_16
| ST_UART011_DMAWM_TX_16
,
1167 if (uap
->using_rx_dma
) {
1168 if (pl011_dma_rx_trigger_dma(uap
))
1169 dev_dbg(uap
->port
.dev
, "could not trigger initial "
1170 "RX DMA job, fall back to interrupt mode\n");
1171 if (uap
->dmarx
.poll_rate
) {
1172 timer_setup(&uap
->dmarx
.timer
, pl011_dma_rx_poll
, 0);
1173 mod_timer(&uap
->dmarx
.timer
,
1175 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1176 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1177 uap
->dmarx
.last_jiffies
= jiffies
;
1182 static void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1184 if (!(uap
->using_tx_dma
|| uap
->using_rx_dma
))
1187 /* Disable RX and TX DMA */
1188 while (pl011_read(uap
, REG_FR
) & uap
->vendor
->fr_busy
)
1191 spin_lock_irq(&uap
->port
.lock
);
1192 uap
->dmacr
&= ~(UART011_DMAONERR
| UART011_RXDMAE
| UART011_TXDMAE
);
1193 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1194 spin_unlock_irq(&uap
->port
.lock
);
1196 if (uap
->using_tx_dma
) {
1197 /* In theory, this should already be done by pl011_dma_flush_buffer */
1198 dmaengine_terminate_all(uap
->dmatx
.chan
);
1199 if (uap
->dmatx
.queued
) {
1200 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
1202 uap
->dmatx
.queued
= false;
1205 kfree(uap
->dmatx
.buf
);
1206 uap
->using_tx_dma
= false;
1209 if (uap
->using_rx_dma
) {
1210 dmaengine_terminate_all(uap
->dmarx
.chan
);
1211 /* Clean up the RX DMA */
1212 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
, DMA_FROM_DEVICE
);
1213 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
, DMA_FROM_DEVICE
);
1214 if (uap
->dmarx
.poll_rate
)
1215 del_timer_sync(&uap
->dmarx
.timer
);
1216 uap
->using_rx_dma
= false;
1220 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1222 return uap
->using_rx_dma
;
1225 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1227 return uap
->using_rx_dma
&& uap
->dmarx
.running
;
1231 /* Blank functions if the DMA engine is not available */
1232 static inline void pl011_dma_remove(struct uart_amba_port
*uap
)
1236 static inline void pl011_dma_startup(struct uart_amba_port
*uap
)
1240 static inline void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1244 static inline bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
1249 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
1253 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
1258 static inline void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
1262 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1266 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
1271 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1276 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1281 #define pl011_dma_flush_buffer NULL
1284 static void pl011_stop_tx(struct uart_port
*port
)
1286 struct uart_amba_port
*uap
=
1287 container_of(port
, struct uart_amba_port
, port
);
1289 uap
->im
&= ~UART011_TXIM
;
1290 pl011_write(uap
->im
, uap
, REG_IMSC
);
1291 pl011_dma_tx_stop(uap
);
1294 static bool pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
);
1296 /* Start TX with programmed I/O only (no DMA) */
1297 static void pl011_start_tx_pio(struct uart_amba_port
*uap
)
1299 if (pl011_tx_chars(uap
, false)) {
1300 uap
->im
|= UART011_TXIM
;
1301 pl011_write(uap
->im
, uap
, REG_IMSC
);
1305 static void pl011_start_tx(struct uart_port
*port
)
1307 struct uart_amba_port
*uap
=
1308 container_of(port
, struct uart_amba_port
, port
);
1310 if (!pl011_dma_tx_start(uap
))
1311 pl011_start_tx_pio(uap
);
1314 static void pl011_stop_rx(struct uart_port
*port
)
1316 struct uart_amba_port
*uap
=
1317 container_of(port
, struct uart_amba_port
, port
);
1319 uap
->im
&= ~(UART011_RXIM
|UART011_RTIM
|UART011_FEIM
|
1320 UART011_PEIM
|UART011_BEIM
|UART011_OEIM
);
1321 pl011_write(uap
->im
, uap
, REG_IMSC
);
1323 pl011_dma_rx_stop(uap
);
1326 static void pl011_enable_ms(struct uart_port
*port
)
1328 struct uart_amba_port
*uap
=
1329 container_of(port
, struct uart_amba_port
, port
);
1331 uap
->im
|= UART011_RIMIM
|UART011_CTSMIM
|UART011_DCDMIM
|UART011_DSRMIM
;
1332 pl011_write(uap
->im
, uap
, REG_IMSC
);
1335 static void pl011_rx_chars(struct uart_amba_port
*uap
)
1336 __releases(&uap
->port
.lock
)
1337 __acquires(&uap
->port
.lock
)
1339 pl011_fifo_to_tty(uap
);
1341 spin_unlock(&uap
->port
.lock
);
1342 tty_flip_buffer_push(&uap
->port
.state
->port
);
1344 * If we were temporarily out of DMA mode for a while,
1345 * attempt to switch back to DMA mode again.
1347 if (pl011_dma_rx_available(uap
)) {
1348 if (pl011_dma_rx_trigger_dma(uap
)) {
1349 dev_dbg(uap
->port
.dev
, "could not trigger RX DMA job "
1350 "fall back to interrupt mode again\n");
1351 uap
->im
|= UART011_RXIM
;
1352 pl011_write(uap
->im
, uap
, REG_IMSC
);
1354 #ifdef CONFIG_DMA_ENGINE
1355 /* Start Rx DMA poll */
1356 if (uap
->dmarx
.poll_rate
) {
1357 uap
->dmarx
.last_jiffies
= jiffies
;
1358 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1359 mod_timer(&uap
->dmarx
.timer
,
1361 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1366 spin_lock(&uap
->port
.lock
);
1369 static bool pl011_tx_char(struct uart_amba_port
*uap
, unsigned char c
,
1372 if (unlikely(!from_irq
) &&
1373 pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1374 return false; /* unable to transmit character */
1376 pl011_write(c
, uap
, REG_DR
);
1377 uap
->port
.icount
.tx
++;
1382 /* Returns true if tx interrupts have to be (kept) enabled */
1383 static bool pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
)
1385 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
1386 int count
= uap
->fifosize
>> 1;
1388 if (uap
->port
.x_char
) {
1389 if (!pl011_tx_char(uap
, uap
->port
.x_char
, from_irq
))
1391 uap
->port
.x_char
= 0;
1394 if (uart_circ_empty(xmit
) || uart_tx_stopped(&uap
->port
)) {
1395 pl011_stop_tx(&uap
->port
);
1399 /* If we are using DMA mode, try to send some characters. */
1400 if (pl011_dma_tx_irq(uap
))
1404 if (likely(from_irq
) && count
-- == 0)
1407 if (!pl011_tx_char(uap
, xmit
->buf
[xmit
->tail
], from_irq
))
1410 xmit
->tail
= (xmit
->tail
+ 1) & (UART_XMIT_SIZE
- 1);
1411 } while (!uart_circ_empty(xmit
));
1413 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
1414 uart_write_wakeup(&uap
->port
);
1416 if (uart_circ_empty(xmit
)) {
1417 pl011_stop_tx(&uap
->port
);
1423 static void pl011_modem_status(struct uart_amba_port
*uap
)
1425 unsigned int status
, delta
;
1427 status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1429 delta
= status
^ uap
->old_status
;
1430 uap
->old_status
= status
;
1435 if (delta
& UART01x_FR_DCD
)
1436 uart_handle_dcd_change(&uap
->port
, status
& UART01x_FR_DCD
);
1438 if (delta
& uap
->vendor
->fr_dsr
)
1439 uap
->port
.icount
.dsr
++;
1441 if (delta
& uap
->vendor
->fr_cts
)
1442 uart_handle_cts_change(&uap
->port
,
1443 status
& uap
->vendor
->fr_cts
);
1445 wake_up_interruptible(&uap
->port
.state
->port
.delta_msr_wait
);
1448 static void check_apply_cts_event_workaround(struct uart_amba_port
*uap
)
1450 if (!uap
->vendor
->cts_event_workaround
)
1453 /* workaround to make sure that all bits are unlocked.. */
1454 pl011_write(0x00, uap
, REG_ICR
);
1457 * WA: introduce 26ns(1 uart clk) delay before W1C;
1458 * single apb access will incur 2 pclk(133.12Mhz) delay,
1459 * so add 2 dummy reads
1461 pl011_read(uap
, REG_ICR
);
1462 pl011_read(uap
, REG_ICR
);
1465 static irqreturn_t
pl011_int(int irq
, void *dev_id
)
1467 struct uart_amba_port
*uap
= dev_id
;
1468 unsigned long flags
;
1469 unsigned int status
, pass_counter
= AMBA_ISR_PASS_LIMIT
;
1472 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1473 status
= pl011_read(uap
, REG_RIS
) & uap
->im
;
1476 check_apply_cts_event_workaround(uap
);
1478 pl011_write(status
& ~(UART011_TXIS
|UART011_RTIS
|
1482 if (status
& (UART011_RTIS
|UART011_RXIS
)) {
1483 if (pl011_dma_rx_running(uap
))
1484 pl011_dma_rx_irq(uap
);
1486 pl011_rx_chars(uap
);
1488 if (status
& (UART011_DSRMIS
|UART011_DCDMIS
|
1489 UART011_CTSMIS
|UART011_RIMIS
))
1490 pl011_modem_status(uap
);
1491 if (status
& UART011_TXIS
)
1492 pl011_tx_chars(uap
, true);
1494 if (pass_counter
-- == 0)
1497 status
= pl011_read(uap
, REG_RIS
) & uap
->im
;
1498 } while (status
!= 0);
1502 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1504 return IRQ_RETVAL(handled
);
1507 static unsigned int pl011_tx_empty(struct uart_port
*port
)
1509 struct uart_amba_port
*uap
=
1510 container_of(port
, struct uart_amba_port
, port
);
1512 /* Allow feature register bits to be inverted to work around errata */
1513 unsigned int status
= pl011_read(uap
, REG_FR
) ^ uap
->vendor
->inv_fr
;
1515 return status
& (uap
->vendor
->fr_busy
| UART01x_FR_TXFF
) ?
1519 static unsigned int pl011_get_mctrl(struct uart_port
*port
)
1521 struct uart_amba_port
*uap
=
1522 container_of(port
, struct uart_amba_port
, port
);
1523 unsigned int result
= 0;
1524 unsigned int status
= pl011_read(uap
, REG_FR
);
1526 #define TIOCMBIT(uartbit, tiocmbit) \
1527 if (status & uartbit) \
1530 TIOCMBIT(UART01x_FR_DCD
, TIOCM_CAR
);
1531 TIOCMBIT(uap
->vendor
->fr_dsr
, TIOCM_DSR
);
1532 TIOCMBIT(uap
->vendor
->fr_cts
, TIOCM_CTS
);
1533 TIOCMBIT(uap
->vendor
->fr_ri
, TIOCM_RNG
);
1538 static void pl011_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
1540 struct uart_amba_port
*uap
=
1541 container_of(port
, struct uart_amba_port
, port
);
1544 cr
= pl011_read(uap
, REG_CR
);
1546 #define TIOCMBIT(tiocmbit, uartbit) \
1547 if (mctrl & tiocmbit) \
1552 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTS
);
1553 TIOCMBIT(TIOCM_DTR
, UART011_CR_DTR
);
1554 TIOCMBIT(TIOCM_OUT1
, UART011_CR_OUT1
);
1555 TIOCMBIT(TIOCM_OUT2
, UART011_CR_OUT2
);
1556 TIOCMBIT(TIOCM_LOOP
, UART011_CR_LBE
);
1558 if (port
->status
& UPSTAT_AUTORTS
) {
1559 /* We need to disable auto-RTS if we want to turn RTS off */
1560 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTSEN
);
1564 pl011_write(cr
, uap
, REG_CR
);
1567 static void pl011_break_ctl(struct uart_port
*port
, int break_state
)
1569 struct uart_amba_port
*uap
=
1570 container_of(port
, struct uart_amba_port
, port
);
1571 unsigned long flags
;
1574 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1575 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
1576 if (break_state
== -1)
1577 lcr_h
|= UART01x_LCRH_BRK
;
1579 lcr_h
&= ~UART01x_LCRH_BRK
;
1580 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1581 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1584 #ifdef CONFIG_CONSOLE_POLL
1586 static void pl011_quiesce_irqs(struct uart_port
*port
)
1588 struct uart_amba_port
*uap
=
1589 container_of(port
, struct uart_amba_port
, port
);
1591 pl011_write(pl011_read(uap
, REG_MIS
), uap
, REG_ICR
);
1593 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1594 * we simply mask it. start_tx() will unmask it.
1596 * Note we can race with start_tx(), and if the race happens, the
1597 * polling user might get another interrupt just after we clear it.
1598 * But it should be OK and can happen even w/o the race, e.g.
1599 * controller immediately got some new data and raised the IRQ.
1601 * And whoever uses polling routines assumes that it manages the device
1602 * (including tx queue), so we're also fine with start_tx()'s caller
1605 pl011_write(pl011_read(uap
, REG_IMSC
) & ~UART011_TXIM
, uap
,
1609 static int pl011_get_poll_char(struct uart_port
*port
)
1611 struct uart_amba_port
*uap
=
1612 container_of(port
, struct uart_amba_port
, port
);
1613 unsigned int status
;
1616 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1619 pl011_quiesce_irqs(port
);
1621 status
= pl011_read(uap
, REG_FR
);
1622 if (status
& UART01x_FR_RXFE
)
1623 return NO_POLL_CHAR
;
1625 return pl011_read(uap
, REG_DR
);
1628 static void pl011_put_poll_char(struct uart_port
*port
,
1631 struct uart_amba_port
*uap
=
1632 container_of(port
, struct uart_amba_port
, port
);
1634 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1637 pl011_write(ch
, uap
, REG_DR
);
1640 #endif /* CONFIG_CONSOLE_POLL */
1642 static int pl011_hwinit(struct uart_port
*port
)
1644 struct uart_amba_port
*uap
=
1645 container_of(port
, struct uart_amba_port
, port
);
1648 /* Optionaly enable pins to be muxed in and configured */
1649 pinctrl_pm_select_default_state(port
->dev
);
1652 * Try to enable the clock producer.
1654 retval
= clk_prepare_enable(uap
->clk
);
1658 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
1660 /* Clear pending error and receive interrupts */
1661 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
1662 UART011_FEIS
| UART011_RTIS
| UART011_RXIS
,
1666 * Save interrupts enable mask, and enable RX interrupts in case if
1667 * the interrupt is used for NMI entry.
1669 uap
->im
= pl011_read(uap
, REG_IMSC
);
1670 pl011_write(UART011_RTIM
| UART011_RXIM
, uap
, REG_IMSC
);
1672 if (dev_get_platdata(uap
->port
.dev
)) {
1673 struct amba_pl011_data
*plat
;
1675 plat
= dev_get_platdata(uap
->port
.dev
);
1682 static bool pl011_split_lcrh(const struct uart_amba_port
*uap
)
1684 return pl011_reg_to_offset(uap
, REG_LCRH_RX
) !=
1685 pl011_reg_to_offset(uap
, REG_LCRH_TX
);
1688 static void pl011_write_lcr_h(struct uart_amba_port
*uap
, unsigned int lcr_h
)
1690 pl011_write(lcr_h
, uap
, REG_LCRH_RX
);
1691 if (pl011_split_lcrh(uap
)) {
1694 * Wait 10 PCLKs before writing LCRH_TX register,
1695 * to get this delay write read only register 10 times
1697 for (i
= 0; i
< 10; ++i
)
1698 pl011_write(0xff, uap
, REG_MIS
);
1699 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1703 static int pl011_allocate_irq(struct uart_amba_port
*uap
)
1705 pl011_write(uap
->im
, uap
, REG_IMSC
);
1707 return request_irq(uap
->port
.irq
, pl011_int
, IRQF_SHARED
, "uart-pl011", uap
);
1711 * Enable interrupts, only timeouts when using DMA
1712 * if initial RX DMA job failed, start in interrupt mode
1715 static void pl011_enable_interrupts(struct uart_amba_port
*uap
)
1719 spin_lock_irq(&uap
->port
.lock
);
1721 /* Clear out any spuriously appearing RX interrupts */
1722 pl011_write(UART011_RTIS
| UART011_RXIS
, uap
, REG_ICR
);
1725 * RXIS is asserted only when the RX FIFO transitions from below
1726 * to above the trigger threshold. If the RX FIFO is already
1727 * full to the threshold this can't happen and RXIS will now be
1728 * stuck off. Drain the RX FIFO explicitly to fix this:
1730 for (i
= 0; i
< uap
->fifosize
* 2; ++i
) {
1731 if (pl011_read(uap
, REG_FR
) & UART01x_FR_RXFE
)
1734 pl011_read(uap
, REG_DR
);
1737 uap
->im
= UART011_RTIM
;
1738 if (!pl011_dma_rx_running(uap
))
1739 uap
->im
|= UART011_RXIM
;
1740 pl011_write(uap
->im
, uap
, REG_IMSC
);
1741 spin_unlock_irq(&uap
->port
.lock
);
1744 static int pl011_startup(struct uart_port
*port
)
1746 struct uart_amba_port
*uap
=
1747 container_of(port
, struct uart_amba_port
, port
);
1751 retval
= pl011_hwinit(port
);
1755 retval
= pl011_allocate_irq(uap
);
1759 pl011_write(uap
->vendor
->ifls
, uap
, REG_IFLS
);
1761 spin_lock_irq(&uap
->port
.lock
);
1763 /* restore RTS and DTR */
1764 cr
= uap
->old_cr
& (UART011_CR_RTS
| UART011_CR_DTR
);
1765 cr
|= UART01x_CR_UARTEN
| UART011_CR_RXE
| UART011_CR_TXE
;
1766 pl011_write(cr
, uap
, REG_CR
);
1768 spin_unlock_irq(&uap
->port
.lock
);
1771 * initialise the old status of the modem signals
1773 uap
->old_status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1776 pl011_dma_startup(uap
);
1778 pl011_enable_interrupts(uap
);
1783 clk_disable_unprepare(uap
->clk
);
1787 static int sbsa_uart_startup(struct uart_port
*port
)
1789 struct uart_amba_port
*uap
=
1790 container_of(port
, struct uart_amba_port
, port
);
1793 retval
= pl011_hwinit(port
);
1797 retval
= pl011_allocate_irq(uap
);
1801 /* The SBSA UART does not support any modem status lines. */
1802 uap
->old_status
= 0;
1804 pl011_enable_interrupts(uap
);
1809 static void pl011_shutdown_channel(struct uart_amba_port
*uap
,
1814 val
= pl011_read(uap
, lcrh
);
1815 val
&= ~(UART01x_LCRH_BRK
| UART01x_LCRH_FEN
);
1816 pl011_write(val
, uap
, lcrh
);
1820 * disable the port. It should not disable RTS and DTR.
1821 * Also RTS and DTR state should be preserved to restore
1822 * it during startup().
1824 static void pl011_disable_uart(struct uart_amba_port
*uap
)
1828 uap
->port
.status
&= ~(UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
);
1829 spin_lock_irq(&uap
->port
.lock
);
1830 cr
= pl011_read(uap
, REG_CR
);
1832 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1833 cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
1834 pl011_write(cr
, uap
, REG_CR
);
1835 spin_unlock_irq(&uap
->port
.lock
);
1838 * disable break condition and fifos
1840 pl011_shutdown_channel(uap
, REG_LCRH_RX
);
1841 if (pl011_split_lcrh(uap
))
1842 pl011_shutdown_channel(uap
, REG_LCRH_TX
);
1845 static void pl011_disable_interrupts(struct uart_amba_port
*uap
)
1847 spin_lock_irq(&uap
->port
.lock
);
1849 /* mask all interrupts and clear all pending ones */
1851 pl011_write(uap
->im
, uap
, REG_IMSC
);
1852 pl011_write(0xffff, uap
, REG_ICR
);
1854 spin_unlock_irq(&uap
->port
.lock
);
1857 static void pl011_shutdown(struct uart_port
*port
)
1859 struct uart_amba_port
*uap
=
1860 container_of(port
, struct uart_amba_port
, port
);
1862 pl011_disable_interrupts(uap
);
1864 pl011_dma_shutdown(uap
);
1866 free_irq(uap
->port
.irq
, uap
);
1868 pl011_disable_uart(uap
);
1871 * Shut down the clock producer
1873 clk_disable_unprepare(uap
->clk
);
1874 /* Optionally let pins go into sleep states */
1875 pinctrl_pm_select_sleep_state(port
->dev
);
1877 if (dev_get_platdata(uap
->port
.dev
)) {
1878 struct amba_pl011_data
*plat
;
1880 plat
= dev_get_platdata(uap
->port
.dev
);
1885 if (uap
->port
.ops
->flush_buffer
)
1886 uap
->port
.ops
->flush_buffer(port
);
1889 static void sbsa_uart_shutdown(struct uart_port
*port
)
1891 struct uart_amba_port
*uap
=
1892 container_of(port
, struct uart_amba_port
, port
);
1894 pl011_disable_interrupts(uap
);
1896 free_irq(uap
->port
.irq
, uap
);
1898 if (uap
->port
.ops
->flush_buffer
)
1899 uap
->port
.ops
->flush_buffer(port
);
1903 pl011_setup_status_masks(struct uart_port
*port
, struct ktermios
*termios
)
1905 port
->read_status_mask
= UART011_DR_OE
| 255;
1906 if (termios
->c_iflag
& INPCK
)
1907 port
->read_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1908 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
1909 port
->read_status_mask
|= UART011_DR_BE
;
1912 * Characters to ignore
1914 port
->ignore_status_mask
= 0;
1915 if (termios
->c_iflag
& IGNPAR
)
1916 port
->ignore_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1917 if (termios
->c_iflag
& IGNBRK
) {
1918 port
->ignore_status_mask
|= UART011_DR_BE
;
1920 * If we're ignoring parity and break indicators,
1921 * ignore overruns too (for real raw support).
1923 if (termios
->c_iflag
& IGNPAR
)
1924 port
->ignore_status_mask
|= UART011_DR_OE
;
1928 * Ignore all characters if CREAD is not set.
1930 if ((termios
->c_cflag
& CREAD
) == 0)
1931 port
->ignore_status_mask
|= UART_DUMMY_DR_RX
;
1935 pl011_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
1936 struct ktermios
*old
)
1938 struct uart_amba_port
*uap
=
1939 container_of(port
, struct uart_amba_port
, port
);
1940 unsigned int lcr_h
, old_cr
;
1941 unsigned long flags
;
1942 unsigned int baud
, quot
, clkdiv
;
1944 if (uap
->vendor
->oversampling
)
1950 * Ask the core to calculate the divisor for us.
1952 baud
= uart_get_baud_rate(port
, termios
, old
, 0,
1953 port
->uartclk
/ clkdiv
);
1954 #ifdef CONFIG_DMA_ENGINE
1956 * Adjust RX DMA polling rate with baud rate if not specified.
1958 if (uap
->dmarx
.auto_poll_rate
)
1959 uap
->dmarx
.poll_rate
= DIV_ROUND_UP(10000000, baud
);
1962 if (baud
> port
->uartclk
/16)
1963 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 8, baud
);
1965 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 4, baud
);
1967 switch (termios
->c_cflag
& CSIZE
) {
1969 lcr_h
= UART01x_LCRH_WLEN_5
;
1972 lcr_h
= UART01x_LCRH_WLEN_6
;
1975 lcr_h
= UART01x_LCRH_WLEN_7
;
1978 lcr_h
= UART01x_LCRH_WLEN_8
;
1981 if (termios
->c_cflag
& CSTOPB
)
1982 lcr_h
|= UART01x_LCRH_STP2
;
1983 if (termios
->c_cflag
& PARENB
) {
1984 lcr_h
|= UART01x_LCRH_PEN
;
1985 if (!(termios
->c_cflag
& PARODD
))
1986 lcr_h
|= UART01x_LCRH_EPS
;
1987 if (termios
->c_cflag
& CMSPAR
)
1988 lcr_h
|= UART011_LCRH_SPS
;
1990 if (uap
->fifosize
> 1)
1991 lcr_h
|= UART01x_LCRH_FEN
;
1993 spin_lock_irqsave(&port
->lock
, flags
);
1996 * Update the per-port timeout.
1998 uart_update_timeout(port
, termios
->c_cflag
, baud
);
2000 pl011_setup_status_masks(port
, termios
);
2002 if (UART_ENABLE_MS(port
, termios
->c_cflag
))
2003 pl011_enable_ms(port
);
2005 /* first, disable everything */
2006 old_cr
= pl011_read(uap
, REG_CR
);
2007 pl011_write(0, uap
, REG_CR
);
2009 if (termios
->c_cflag
& CRTSCTS
) {
2010 if (old_cr
& UART011_CR_RTS
)
2011 old_cr
|= UART011_CR_RTSEN
;
2013 old_cr
|= UART011_CR_CTSEN
;
2014 port
->status
|= UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
;
2016 old_cr
&= ~(UART011_CR_CTSEN
| UART011_CR_RTSEN
);
2017 port
->status
&= ~(UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
);
2020 if (uap
->vendor
->oversampling
) {
2021 if (baud
> port
->uartclk
/ 16)
2022 old_cr
|= ST_UART011_CR_OVSFACT
;
2024 old_cr
&= ~ST_UART011_CR_OVSFACT
;
2028 * Workaround for the ST Micro oversampling variants to
2029 * increase the bitrate slightly, by lowering the divisor,
2030 * to avoid delayed sampling of start bit at high speeds,
2031 * else we see data corruption.
2033 if (uap
->vendor
->oversampling
) {
2034 if ((baud
>= 3000000) && (baud
< 3250000) && (quot
> 1))
2036 else if ((baud
> 3250000) && (quot
> 2))
2040 pl011_write(quot
& 0x3f, uap
, REG_FBRD
);
2041 pl011_write(quot
>> 6, uap
, REG_IBRD
);
2044 * ----------v----------v----------v----------v-----
2045 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2046 * REG_FBRD & REG_IBRD.
2047 * ----------^----------^----------^----------^-----
2049 pl011_write_lcr_h(uap
, lcr_h
);
2050 pl011_write(old_cr
, uap
, REG_CR
);
2052 spin_unlock_irqrestore(&port
->lock
, flags
);
2056 sbsa_uart_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
2057 struct ktermios
*old
)
2059 struct uart_amba_port
*uap
=
2060 container_of(port
, struct uart_amba_port
, port
);
2061 unsigned long flags
;
2063 tty_termios_encode_baud_rate(termios
, uap
->fixed_baud
, uap
->fixed_baud
);
2065 /* The SBSA UART only supports 8n1 without hardware flow control. */
2066 termios
->c_cflag
&= ~(CSIZE
| CSTOPB
| PARENB
| PARODD
);
2067 termios
->c_cflag
&= ~(CMSPAR
| CRTSCTS
);
2068 termios
->c_cflag
|= CS8
| CLOCAL
;
2070 spin_lock_irqsave(&port
->lock
, flags
);
2071 uart_update_timeout(port
, CS8
, uap
->fixed_baud
);
2072 pl011_setup_status_masks(port
, termios
);
2073 spin_unlock_irqrestore(&port
->lock
, flags
);
2076 static const char *pl011_type(struct uart_port
*port
)
2078 struct uart_amba_port
*uap
=
2079 container_of(port
, struct uart_amba_port
, port
);
2080 return uap
->port
.type
== PORT_AMBA
? uap
->type
: NULL
;
2084 * Release the memory region(s) being used by 'port'
2086 static void pl011_release_port(struct uart_port
*port
)
2088 release_mem_region(port
->mapbase
, SZ_4K
);
2092 * Request the memory region(s) being used by 'port'
2094 static int pl011_request_port(struct uart_port
*port
)
2096 return request_mem_region(port
->mapbase
, SZ_4K
, "uart-pl011")
2097 != NULL
? 0 : -EBUSY
;
2101 * Configure/autoconfigure the port.
2103 static void pl011_config_port(struct uart_port
*port
, int flags
)
2105 if (flags
& UART_CONFIG_TYPE
) {
2106 port
->type
= PORT_AMBA
;
2107 pl011_request_port(port
);
2112 * verify the new serial_struct (for TIOCSSERIAL).
2114 static int pl011_verify_port(struct uart_port
*port
, struct serial_struct
*ser
)
2117 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_AMBA
)
2119 if (ser
->irq
< 0 || ser
->irq
>= nr_irqs
)
2121 if (ser
->baud_base
< 9600)
2126 static const struct uart_ops amba_pl011_pops
= {
2127 .tx_empty
= pl011_tx_empty
,
2128 .set_mctrl
= pl011_set_mctrl
,
2129 .get_mctrl
= pl011_get_mctrl
,
2130 .stop_tx
= pl011_stop_tx
,
2131 .start_tx
= pl011_start_tx
,
2132 .stop_rx
= pl011_stop_rx
,
2133 .enable_ms
= pl011_enable_ms
,
2134 .break_ctl
= pl011_break_ctl
,
2135 .startup
= pl011_startup
,
2136 .shutdown
= pl011_shutdown
,
2137 .flush_buffer
= pl011_dma_flush_buffer
,
2138 .set_termios
= pl011_set_termios
,
2140 .release_port
= pl011_release_port
,
2141 .request_port
= pl011_request_port
,
2142 .config_port
= pl011_config_port
,
2143 .verify_port
= pl011_verify_port
,
2144 #ifdef CONFIG_CONSOLE_POLL
2145 .poll_init
= pl011_hwinit
,
2146 .poll_get_char
= pl011_get_poll_char
,
2147 .poll_put_char
= pl011_put_poll_char
,
2151 static void sbsa_uart_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
2155 static unsigned int sbsa_uart_get_mctrl(struct uart_port
*port
)
2160 static const struct uart_ops sbsa_uart_pops
= {
2161 .tx_empty
= pl011_tx_empty
,
2162 .set_mctrl
= sbsa_uart_set_mctrl
,
2163 .get_mctrl
= sbsa_uart_get_mctrl
,
2164 .stop_tx
= pl011_stop_tx
,
2165 .start_tx
= pl011_start_tx
,
2166 .stop_rx
= pl011_stop_rx
,
2167 .startup
= sbsa_uart_startup
,
2168 .shutdown
= sbsa_uart_shutdown
,
2169 .set_termios
= sbsa_uart_set_termios
,
2171 .release_port
= pl011_release_port
,
2172 .request_port
= pl011_request_port
,
2173 .config_port
= pl011_config_port
,
2174 .verify_port
= pl011_verify_port
,
2175 #ifdef CONFIG_CONSOLE_POLL
2176 .poll_init
= pl011_hwinit
,
2177 .poll_get_char
= pl011_get_poll_char
,
2178 .poll_put_char
= pl011_put_poll_char
,
2182 static struct uart_amba_port
*amba_ports
[UART_NR
];
2184 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2186 static void pl011_console_putchar(struct uart_port
*port
, int ch
)
2188 struct uart_amba_port
*uap
=
2189 container_of(port
, struct uart_amba_port
, port
);
2191 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
2193 pl011_write(ch
, uap
, REG_DR
);
2197 pl011_console_write(struct console
*co
, const char *s
, unsigned int count
)
2199 struct uart_amba_port
*uap
= amba_ports
[co
->index
];
2200 unsigned int old_cr
= 0, new_cr
;
2201 unsigned long flags
;
2204 clk_enable(uap
->clk
);
2206 local_irq_save(flags
);
2207 if (uap
->port
.sysrq
)
2209 else if (oops_in_progress
)
2210 locked
= spin_trylock(&uap
->port
.lock
);
2212 spin_lock(&uap
->port
.lock
);
2215 * First save the CR then disable the interrupts
2217 if (!uap
->vendor
->always_enabled
) {
2218 old_cr
= pl011_read(uap
, REG_CR
);
2219 new_cr
= old_cr
& ~UART011_CR_CTSEN
;
2220 new_cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
2221 pl011_write(new_cr
, uap
, REG_CR
);
2224 uart_console_write(&uap
->port
, s
, count
, pl011_console_putchar
);
2227 * Finally, wait for transmitter to become empty and restore the
2228 * TCR. Allow feature register bits to be inverted to work around
2231 while ((pl011_read(uap
, REG_FR
) ^ uap
->vendor
->inv_fr
)
2232 & uap
->vendor
->fr_busy
)
2234 if (!uap
->vendor
->always_enabled
)
2235 pl011_write(old_cr
, uap
, REG_CR
);
2238 spin_unlock(&uap
->port
.lock
);
2239 local_irq_restore(flags
);
2241 clk_disable(uap
->clk
);
2245 pl011_console_get_options(struct uart_amba_port
*uap
, int *baud
,
2246 int *parity
, int *bits
)
2248 if (pl011_read(uap
, REG_CR
) & UART01x_CR_UARTEN
) {
2249 unsigned int lcr_h
, ibrd
, fbrd
;
2251 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
2254 if (lcr_h
& UART01x_LCRH_PEN
) {
2255 if (lcr_h
& UART01x_LCRH_EPS
)
2261 if ((lcr_h
& 0x60) == UART01x_LCRH_WLEN_7
)
2266 ibrd
= pl011_read(uap
, REG_IBRD
);
2267 fbrd
= pl011_read(uap
, REG_FBRD
);
2269 *baud
= uap
->port
.uartclk
* 4 / (64 * ibrd
+ fbrd
);
2271 if (uap
->vendor
->oversampling
) {
2272 if (pl011_read(uap
, REG_CR
)
2273 & ST_UART011_CR_OVSFACT
)
2279 static int __init
pl011_console_setup(struct console
*co
, char *options
)
2281 struct uart_amba_port
*uap
;
2289 * Check whether an invalid uart number has been specified, and
2290 * if so, search for the first available port that does have
2293 if (co
->index
>= UART_NR
)
2295 uap
= amba_ports
[co
->index
];
2299 /* Allow pins to be muxed in and configured */
2300 pinctrl_pm_select_default_state(uap
->port
.dev
);
2302 ret
= clk_prepare(uap
->clk
);
2306 if (dev_get_platdata(uap
->port
.dev
)) {
2307 struct amba_pl011_data
*plat
;
2309 plat
= dev_get_platdata(uap
->port
.dev
);
2314 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
2316 if (uap
->vendor
->fixed_options
) {
2317 baud
= uap
->fixed_baud
;
2320 uart_parse_options(options
,
2321 &baud
, &parity
, &bits
, &flow
);
2323 pl011_console_get_options(uap
, &baud
, &parity
, &bits
);
2326 return uart_set_options(&uap
->port
, co
, baud
, parity
, bits
, flow
);
2330 * pl011_console_match - non-standard console matching
2331 * @co: registering console
2332 * @name: name from console command line
2333 * @idx: index from console command line
2334 * @options: ptr to option string from console command line
2336 * Only attempts to match console command lines of the form:
2337 * console=pl011,mmio|mmio32,<addr>[,<options>]
2338 * console=pl011,0x<addr>[,<options>]
2339 * This form is used to register an initial earlycon boot console and
2340 * replace it with the amba_console at pl011 driver init.
2342 * Performs console setup for a match (as required by interface)
2343 * If no <options> are specified, then assume the h/w is already setup.
2345 * Returns 0 if console matches; otherwise non-zero to use default matching
2347 static int __init
pl011_console_match(struct console
*co
, char *name
, int idx
,
2350 unsigned char iotype
;
2351 resource_size_t addr
;
2355 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2356 * have a distinct console name, so make sure we check for that.
2357 * The actual implementation of the erratum occurs in the probe
2360 if ((strcmp(name
, "qdf2400_e44") != 0) && (strcmp(name
, "pl011") != 0))
2363 if (uart_parse_earlycon(options
, &iotype
, &addr
, &options
))
2366 if (iotype
!= UPIO_MEM
&& iotype
!= UPIO_MEM32
)
2369 /* try to match the port specified on the command line */
2370 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2371 struct uart_port
*port
;
2376 port
= &amba_ports
[i
]->port
;
2378 if (port
->mapbase
!= addr
)
2383 return pl011_console_setup(co
, options
);
2389 static struct uart_driver amba_reg
;
2390 static struct console amba_console
= {
2392 .write
= pl011_console_write
,
2393 .device
= uart_console_device
,
2394 .setup
= pl011_console_setup
,
2395 .match
= pl011_console_match
,
2396 .flags
= CON_PRINTBUFFER
| CON_ANYTIME
,
2401 #define AMBA_CONSOLE (&amba_console)
2403 static void qdf2400_e44_putc(struct uart_port
*port
, int c
)
2405 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2407 writel(c
, port
->membase
+ UART01x_DR
);
2408 while (!(readl(port
->membase
+ UART01x_FR
) & UART011_FR_TXFE
))
2412 static void qdf2400_e44_early_write(struct console
*con
, const char *s
, unsigned n
)
2414 struct earlycon_device
*dev
= con
->data
;
2416 uart_console_write(&dev
->port
, s
, n
, qdf2400_e44_putc
);
2419 static void pl011_putc(struct uart_port
*port
, int c
)
2421 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2423 if (port
->iotype
== UPIO_MEM32
)
2424 writel(c
, port
->membase
+ UART01x_DR
);
2426 writeb(c
, port
->membase
+ UART01x_DR
);
2427 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_BUSY
)
2431 static void pl011_early_write(struct console
*con
, const char *s
, unsigned n
)
2433 struct earlycon_device
*dev
= con
->data
;
2435 uart_console_write(&dev
->port
, s
, n
, pl011_putc
);
2439 * On non-ACPI systems, earlycon is enabled by specifying
2440 * "earlycon=pl011,<address>" on the kernel command line.
2442 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2443 * by specifying only "earlycon" on the command line. Because it requires
2444 * SPCR, the console starts after ACPI is parsed, which is later than a
2445 * traditional early console.
2447 * To get the traditional early console that starts before ACPI is parsed,
2448 * specify the full "earlycon=pl011,<address>" option.
2450 static int __init
pl011_early_console_setup(struct earlycon_device
*device
,
2453 if (!device
->port
.membase
)
2456 device
->con
->write
= pl011_early_write
;
2460 OF_EARLYCON_DECLARE(pl011
, "arm,pl011", pl011_early_console_setup
);
2461 OF_EARLYCON_DECLARE(pl011
, "arm,sbsa-uart", pl011_early_console_setup
);
2464 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2465 * Erratum 44, traditional earlycon can be enabled by specifying
2466 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2468 * Alternatively, you can just specify "earlycon", and the early console
2469 * will be enabled with the information from the SPCR table. In this
2470 * case, the SPCR code will detect the need for the E44 work-around,
2471 * and set the console name to "qdf2400_e44".
2474 qdf2400_e44_early_console_setup(struct earlycon_device
*device
,
2477 if (!device
->port
.membase
)
2480 device
->con
->write
= qdf2400_e44_early_write
;
2483 EARLYCON_DECLARE(qdf2400_e44
, qdf2400_e44_early_console_setup
);
2486 #define AMBA_CONSOLE NULL
2489 static struct uart_driver amba_reg
= {
2490 .owner
= THIS_MODULE
,
2491 .driver_name
= "ttyAMA",
2492 .dev_name
= "ttyAMA",
2493 .major
= SERIAL_AMBA_MAJOR
,
2494 .minor
= SERIAL_AMBA_MINOR
,
2496 .cons
= AMBA_CONSOLE
,
2499 static int pl011_probe_dt_alias(int index
, struct device
*dev
)
2501 struct device_node
*np
;
2502 static bool seen_dev_with_alias
= false;
2503 static bool seen_dev_without_alias
= false;
2506 if (!IS_ENABLED(CONFIG_OF
))
2513 ret
= of_alias_get_id(np
, "serial");
2515 seen_dev_without_alias
= true;
2518 seen_dev_with_alias
= true;
2519 if (ret
>= ARRAY_SIZE(amba_ports
) || amba_ports
[ret
] != NULL
) {
2520 dev_warn(dev
, "requested serial port %d not available.\n", ret
);
2525 if (seen_dev_with_alias
&& seen_dev_without_alias
)
2526 dev_warn(dev
, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2531 /* unregisters the driver also if no more ports are left */
2532 static void pl011_unregister_port(struct uart_amba_port
*uap
)
2537 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2538 if (amba_ports
[i
] == uap
)
2539 amba_ports
[i
] = NULL
;
2540 else if (amba_ports
[i
])
2543 pl011_dma_remove(uap
);
2545 uart_unregister_driver(&amba_reg
);
2548 static int pl011_find_free_port(void)
2552 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2553 if (amba_ports
[i
] == NULL
)
2559 static int pl011_setup_port(struct device
*dev
, struct uart_amba_port
*uap
,
2560 struct resource
*mmiobase
, int index
)
2564 base
= devm_ioremap_resource(dev
, mmiobase
);
2566 return PTR_ERR(base
);
2568 index
= pl011_probe_dt_alias(index
, dev
);
2571 uap
->port
.dev
= dev
;
2572 uap
->port
.mapbase
= mmiobase
->start
;
2573 uap
->port
.membase
= base
;
2574 uap
->port
.fifosize
= uap
->fifosize
;
2575 uap
->port
.has_sysrq
= IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE
);
2576 uap
->port
.flags
= UPF_BOOT_AUTOCONF
;
2577 uap
->port
.line
= index
;
2579 amba_ports
[index
] = uap
;
2584 static int pl011_register_port(struct uart_amba_port
*uap
)
2588 /* Ensure interrupts from this UART are masked and cleared */
2589 pl011_write(0, uap
, REG_IMSC
);
2590 pl011_write(0xffff, uap
, REG_ICR
);
2592 if (!amba_reg
.state
) {
2593 ret
= uart_register_driver(&amba_reg
);
2595 dev_err(uap
->port
.dev
,
2596 "Failed to register AMBA-PL011 driver\n");
2601 ret
= uart_add_one_port(&amba_reg
, &uap
->port
);
2603 pl011_unregister_port(uap
);
2608 static int pl011_probe(struct amba_device
*dev
, const struct amba_id
*id
)
2610 struct uart_amba_port
*uap
;
2611 struct vendor_data
*vendor
= id
->data
;
2614 portnr
= pl011_find_free_port();
2618 uap
= devm_kzalloc(&dev
->dev
, sizeof(struct uart_amba_port
),
2623 uap
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2624 if (IS_ERR(uap
->clk
))
2625 return PTR_ERR(uap
->clk
);
2627 uap
->reg_offset
= vendor
->reg_offset
;
2628 uap
->vendor
= vendor
;
2629 uap
->fifosize
= vendor
->get_fifosize(dev
);
2630 uap
->port
.iotype
= vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2631 uap
->port
.irq
= dev
->irq
[0];
2632 uap
->port
.ops
= &amba_pl011_pops
;
2634 snprintf(uap
->type
, sizeof(uap
->type
), "PL011 rev%u", amba_rev(dev
));
2636 ret
= pl011_setup_port(&dev
->dev
, uap
, &dev
->res
, portnr
);
2640 amba_set_drvdata(dev
, uap
);
2642 return pl011_register_port(uap
);
2645 static int pl011_remove(struct amba_device
*dev
)
2647 struct uart_amba_port
*uap
= amba_get_drvdata(dev
);
2649 uart_remove_one_port(&amba_reg
, &uap
->port
);
2650 pl011_unregister_port(uap
);
2654 #ifdef CONFIG_PM_SLEEP
2655 static int pl011_suspend(struct device
*dev
)
2657 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2662 return uart_suspend_port(&amba_reg
, &uap
->port
);
2665 static int pl011_resume(struct device
*dev
)
2667 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2672 return uart_resume_port(&amba_reg
, &uap
->port
);
2676 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops
, pl011_suspend
, pl011_resume
);
2678 static int sbsa_uart_probe(struct platform_device
*pdev
)
2680 struct uart_amba_port
*uap
;
2686 * Check the mandatory baud rate parameter in the DT node early
2687 * so that we can easily exit with the error.
2689 if (pdev
->dev
.of_node
) {
2690 struct device_node
*np
= pdev
->dev
.of_node
;
2692 ret
= of_property_read_u32(np
, "current-speed", &baudrate
);
2699 portnr
= pl011_find_free_port();
2703 uap
= devm_kzalloc(&pdev
->dev
, sizeof(struct uart_amba_port
),
2708 ret
= platform_get_irq(pdev
, 0);
2711 uap
->port
.irq
= ret
;
2713 #ifdef CONFIG_ACPI_SPCR_TABLE
2714 if (qdf2400_e44_present
) {
2715 dev_info(&pdev
->dev
, "working around QDF2400 SoC erratum 44\n");
2716 uap
->vendor
= &vendor_qdt_qdf2400_e44
;
2719 uap
->vendor
= &vendor_sbsa
;
2721 uap
->reg_offset
= uap
->vendor
->reg_offset
;
2723 uap
->port
.iotype
= uap
->vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2724 uap
->port
.ops
= &sbsa_uart_pops
;
2725 uap
->fixed_baud
= baudrate
;
2727 snprintf(uap
->type
, sizeof(uap
->type
), "SBSA");
2729 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2731 ret
= pl011_setup_port(&pdev
->dev
, uap
, r
, portnr
);
2735 platform_set_drvdata(pdev
, uap
);
2737 return pl011_register_port(uap
);
2740 static int sbsa_uart_remove(struct platform_device
*pdev
)
2742 struct uart_amba_port
*uap
= platform_get_drvdata(pdev
);
2744 uart_remove_one_port(&amba_reg
, &uap
->port
);
2745 pl011_unregister_port(uap
);
2749 static const struct of_device_id sbsa_uart_of_match
[] = {
2750 { .compatible
= "arm,sbsa-uart", },
2753 MODULE_DEVICE_TABLE(of
, sbsa_uart_of_match
);
2755 static const struct acpi_device_id sbsa_uart_acpi_match
[] = {
2759 MODULE_DEVICE_TABLE(acpi
, sbsa_uart_acpi_match
);
2761 static struct platform_driver arm_sbsa_uart_platform_driver
= {
2762 .probe
= sbsa_uart_probe
,
2763 .remove
= sbsa_uart_remove
,
2765 .name
= "sbsa-uart",
2766 .pm
= &pl011_dev_pm_ops
,
2767 .of_match_table
= of_match_ptr(sbsa_uart_of_match
),
2768 .acpi_match_table
= ACPI_PTR(sbsa_uart_acpi_match
),
2769 .suppress_bind_attrs
= IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011
),
2773 static const struct amba_id pl011_ids
[] = {
2777 .data
= &vendor_arm
,
2785 .id
= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2787 .data
= &vendor_zte
,
2792 MODULE_DEVICE_TABLE(amba
, pl011_ids
);
2794 static struct amba_driver pl011_driver
= {
2796 .name
= "uart-pl011",
2797 .pm
= &pl011_dev_pm_ops
,
2798 .suppress_bind_attrs
= IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011
),
2800 .id_table
= pl011_ids
,
2801 .probe
= pl011_probe
,
2802 .remove
= pl011_remove
,
2805 static int __init
pl011_init(void)
2807 printk(KERN_INFO
"Serial: AMBA PL011 UART driver\n");
2809 if (platform_driver_register(&arm_sbsa_uart_platform_driver
))
2810 pr_warn("could not register SBSA UART platform driver\n");
2811 return amba_driver_register(&pl011_driver
);
2814 static void __exit
pl011_exit(void)
2816 platform_driver_unregister(&arm_sbsa_uart_platform_driver
);
2817 amba_driver_unregister(&pl011_driver
);
2821 * While this can be a module, if builtin it's most likely the console
2822 * So let's leave module_exit but move module_init to an earlier place
2824 arch_initcall(pl011_init
);
2825 module_exit(pl011_exit
);
2827 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2828 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2829 MODULE_LICENSE("GPL");