1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req
*our_req(struct usb_request
*req
)
39 return container_of(req
, struct dwc2_hsotg_req
, req
);
42 static inline struct dwc2_hsotg_ep
*our_ep(struct usb_ep
*ep
)
44 return container_of(ep
, struct dwc2_hsotg_ep
, ep
);
47 static inline struct dwc2_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
49 return container_of(gadget
, struct dwc2_hsotg
, gadget
);
52 static inline void dwc2_set_bit(struct dwc2_hsotg
*hsotg
, u32 offset
, u32 val
)
54 dwc2_writel(hsotg
, dwc2_readl(hsotg
, offset
) | val
, offset
);
57 static inline void dwc2_clear_bit(struct dwc2_hsotg
*hsotg
, u32 offset
, u32 val
)
59 dwc2_writel(hsotg
, dwc2_readl(hsotg
, offset
) & ~val
, offset
);
62 static inline struct dwc2_hsotg_ep
*index_to_ep(struct dwc2_hsotg
*hsotg
,
63 u32 ep_index
, u32 dir_in
)
66 return hsotg
->eps_in
[ep_index
];
68 return hsotg
->eps_out
[ep_index
];
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
);
75 * using_dma - return the DMA status of the driver.
76 * @hsotg: The driver state.
78 * Return true if we're using DMA.
80 * Currently, we have the DMA support code worked into everywhere
81 * that needs it, but the AMBA DMA implementation in the hardware can
82 * only DMA from 32bit aligned addresses. This means that gadgets such
83 * as the CDC Ethernet cannot work as they often pass packets which are
86 * Unfortunately the choice to use DMA or not is global to the controller
87 * and seems to be only settable when the controller is being put through
88 * a core reset. This means we either need to fix the gadgets to take
89 * account of DMA alignment, or add bounce buffers (yuerk).
91 * g_using_dma is set depending on dts flag.
93 static inline bool using_dma(struct dwc2_hsotg
*hsotg
)
95 return hsotg
->params
.g_dma
;
99 * using_desc_dma - return the descriptor DMA status of the driver.
100 * @hsotg: The driver state.
102 * Return true if we're using descriptor DMA.
104 static inline bool using_desc_dma(struct dwc2_hsotg
*hsotg
)
106 return hsotg
->params
.g_dma_desc
;
110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111 * @hs_ep: The endpoint
113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep
*hs_ep
)
118 hs_ep
->target_frame
+= hs_ep
->interval
;
119 if (hs_ep
->target_frame
> DSTS_SOFFN_LIMIT
) {
120 hs_ep
->frame_overrun
= true;
121 hs_ep
->target_frame
&= DSTS_SOFFN_LIMIT
;
123 hs_ep
->frame_overrun
= false;
128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
130 * @hs_ep: The endpoint.
132 * This function used in service interval based scheduling flow to calculate
133 * descriptor frame number filed value. For service interval mode frame
134 * number in descriptor should point to last (u)frame in the interval.
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep
*hs_ep
)
139 if (hs_ep
->target_frame
)
140 hs_ep
->target_frame
-= 1;
142 hs_ep
->target_frame
= DSTS_SOFFN_LIMIT
;
146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147 * @hsotg: The device state
148 * @ints: A bitmask of the interrupts to enable
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
152 u32 gsintmsk
= dwc2_readl(hsotg
, GINTMSK
);
155 new_gsintmsk
= gsintmsk
| ints
;
157 if (new_gsintmsk
!= gsintmsk
) {
158 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
159 dwc2_writel(hsotg
, new_gsintmsk
, GINTMSK
);
164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165 * @hsotg: The device state
166 * @ints: A bitmask of the interrupts to enable
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
170 u32 gsintmsk
= dwc2_readl(hsotg
, GINTMSK
);
173 new_gsintmsk
= gsintmsk
& ~ints
;
175 if (new_gsintmsk
!= gsintmsk
)
176 dwc2_writel(hsotg
, new_gsintmsk
, GINTMSK
);
180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181 * @hsotg: The device state
182 * @ep: The endpoint index
183 * @dir_in: True if direction is in.
184 * @en: The enable value, true to enable
186 * Set or clear the mask for an individual endpoint's interrupt
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg
*hsotg
,
190 unsigned int ep
, unsigned int dir_in
,
200 local_irq_save(flags
);
201 daint
= dwc2_readl(hsotg
, DAINTMSK
);
206 dwc2_writel(hsotg
, daint
, DAINTMSK
);
207 local_irq_restore(flags
);
211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
213 * @hsotg: Programming view of the DWC_otg controller
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg
*hsotg
)
217 if (hsotg
->hw_params
.en_multiple_tx_fifo
)
218 /* In dedicated FIFO mode we need count of IN EPs */
219 return hsotg
->hw_params
.num_dev_in_eps
;
221 /* In shared FIFO mode we need count of Periodic IN EPs */
222 return hsotg
->hw_params
.num_dev_perio_in_ep
;
226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227 * device mode TX FIFOs
229 * @hsotg: Programming view of the DWC_otg controller
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg
*hsotg
)
237 np_tx_fifo_size
= min_t(u32
, hsotg
->hw_params
.dev_nperio_tx_fifo_size
,
238 hsotg
->params
.g_np_tx_fifo_size
);
240 /* Get Endpoint Info Control block size in DWORDs. */
241 tx_addr_max
= hsotg
->hw_params
.total_fifo_size
;
243 addr
= hsotg
->params
.g_rx_fifo_size
+ np_tx_fifo_size
;
244 if (tx_addr_max
<= addr
)
247 return tx_addr_max
- addr
;
251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
253 * @hsotg: Programming view of the DWC_otg controller
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg
*hsotg
)
261 gintsts2
= dwc2_readl(hsotg
, GINTSTS2
);
262 gintmsk2
= dwc2_readl(hsotg
, GINTMSK2
);
264 if (gintsts2
& GINTSTS2_WKUP_ALERT_INT
) {
265 dev_dbg(hsotg
->dev
, "%s: Wkup_Alert_Int\n", __func__
);
266 dwc2_set_bit(hsotg
, GINTSTS2
, GINTSTS2_WKUP_ALERT_INT
);
267 dwc2_set_bit(hsotg
, DCTL
, DCTL_RMTWKUPSIG
);
272 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
275 * @hsotg: Programming view of the DWC_otg controller
277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg
*hsotg
)
282 tx_fifo_depth
= dwc2_hsotg_tx_fifo_total_depth(hsotg
);
284 tx_fifo_count
= dwc2_hsotg_tx_fifo_count(hsotg
);
287 return tx_fifo_depth
;
289 return tx_fifo_depth
/ tx_fifo_count
;
293 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
294 * @hsotg: The device instance.
296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg
*hsotg
)
303 u32
*txfsz
= hsotg
->params
.g_tx_fifo_size
;
305 /* Reset fifo map if not correctly cleared during previous session */
306 WARN_ON(hsotg
->fifo_map
);
309 /* set RX/NPTX FIFO sizes */
310 dwc2_writel(hsotg
, hsotg
->params
.g_rx_fifo_size
, GRXFSIZ
);
311 dwc2_writel(hsotg
, (hsotg
->params
.g_rx_fifo_size
<<
312 FIFOSIZE_STARTADDR_SHIFT
) |
313 (hsotg
->params
.g_np_tx_fifo_size
<< FIFOSIZE_DEPTH_SHIFT
),
317 * arange all the rest of the TX FIFOs, as some versions of this
318 * block have overlapping default addresses. This also ensures
319 * that if the settings have been changed, then they are set to
323 /* start at the end of the GNPTXFSIZ, rounded up */
324 addr
= hsotg
->params
.g_rx_fifo_size
+ hsotg
->params
.g_np_tx_fifo_size
;
327 * Configure fifos sizes from provided configuration and assign
328 * them to endpoints dynamically according to maxpacket size value of
331 for (ep
= 1; ep
< MAX_EPS_CHANNELS
; ep
++) {
335 val
|= txfsz
[ep
] << FIFOSIZE_DEPTH_SHIFT
;
336 WARN_ONCE(addr
+ txfsz
[ep
] > hsotg
->fifo_mem
,
337 "insufficient fifo memory");
340 dwc2_writel(hsotg
, val
, DPTXFSIZN(ep
));
341 val
= dwc2_readl(hsotg
, DPTXFSIZN(ep
));
344 dwc2_writel(hsotg
, hsotg
->hw_params
.total_fifo_size
|
345 addr
<< GDFIFOCFG_EPINFOBASE_SHIFT
,
348 * according to p428 of the design guide, we need to ensure that
349 * all fifos are flushed before continuing
352 dwc2_writel(hsotg
, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH
|
353 GRSTCTL_RXFFLSH
, GRSTCTL
);
355 /* wait until the fifos are both flushed */
358 val
= dwc2_readl(hsotg
, GRSTCTL
);
360 if ((val
& (GRSTCTL_TXFFLSH
| GRSTCTL_RXFFLSH
)) == 0)
363 if (--timeout
== 0) {
365 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
373 dev_dbg(hsotg
->dev
, "FIFOs reset, timeout at %d\n", timeout
);
377 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
378 * @ep: USB endpoint to allocate request for.
379 * @flags: Allocation flags
381 * Allocate a new USB request structure appropriate for the specified endpoint
383 static struct usb_request
*dwc2_hsotg_ep_alloc_request(struct usb_ep
*ep
,
386 struct dwc2_hsotg_req
*req
;
388 req
= kzalloc(sizeof(*req
), flags
);
392 INIT_LIST_HEAD(&req
->queue
);
398 * is_ep_periodic - return true if the endpoint is in periodic mode.
399 * @hs_ep: The endpoint to query.
401 * Returns true if the endpoint is in periodic mode, meaning it is being
402 * used for an Interrupt or ISO transfer.
404 static inline int is_ep_periodic(struct dwc2_hsotg_ep
*hs_ep
)
406 return hs_ep
->periodic
;
410 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
411 * @hsotg: The device state.
412 * @hs_ep: The endpoint for the request
413 * @hs_req: The request being processed.
415 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
416 * of a request to ensure the buffer is ready for access by the caller.
418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg
*hsotg
,
419 struct dwc2_hsotg_ep
*hs_ep
,
420 struct dwc2_hsotg_req
*hs_req
)
422 struct usb_request
*req
= &hs_req
->req
;
424 usb_gadget_unmap_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
428 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
429 * for Control endpoint
430 * @hsotg: The device state.
432 * This function will allocate 4 descriptor chains for EP 0: 2 for
433 * Setup stage, per one for IN and OUT data/status transactions.
435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg
*hsotg
)
437 hsotg
->setup_desc
[0] =
438 dmam_alloc_coherent(hsotg
->dev
,
439 sizeof(struct dwc2_dma_desc
),
440 &hsotg
->setup_desc_dma
[0],
442 if (!hsotg
->setup_desc
[0])
445 hsotg
->setup_desc
[1] =
446 dmam_alloc_coherent(hsotg
->dev
,
447 sizeof(struct dwc2_dma_desc
),
448 &hsotg
->setup_desc_dma
[1],
450 if (!hsotg
->setup_desc
[1])
453 hsotg
->ctrl_in_desc
=
454 dmam_alloc_coherent(hsotg
->dev
,
455 sizeof(struct dwc2_dma_desc
),
456 &hsotg
->ctrl_in_desc_dma
,
458 if (!hsotg
->ctrl_in_desc
)
461 hsotg
->ctrl_out_desc
=
462 dmam_alloc_coherent(hsotg
->dev
,
463 sizeof(struct dwc2_dma_desc
),
464 &hsotg
->ctrl_out_desc_dma
,
466 if (!hsotg
->ctrl_out_desc
)
476 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
477 * @hsotg: The controller state.
478 * @hs_ep: The endpoint we're going to write for.
479 * @hs_req: The request to write data for.
481 * This is called when the TxFIFO has some space in it to hold a new
482 * transmission and we have something to give it. The actual setup of
483 * the data size is done elsewhere, so all we have to do is to actually
486 * The return value is zero if there is more space (or nothing was done)
487 * otherwise -ENOSPC is returned if the FIFO space was used up.
489 * This routine is only needed for PIO
491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg
*hsotg
,
492 struct dwc2_hsotg_ep
*hs_ep
,
493 struct dwc2_hsotg_req
*hs_req
)
495 bool periodic
= is_ep_periodic(hs_ep
);
496 u32 gnptxsts
= dwc2_readl(hsotg
, GNPTXSTS
);
497 int buf_pos
= hs_req
->req
.actual
;
498 int to_write
= hs_ep
->size_loaded
;
504 to_write
-= (buf_pos
- hs_ep
->last_load
);
506 /* if there's nothing to write, get out early */
510 if (periodic
&& !hsotg
->dedicated_fifos
) {
511 u32 epsize
= dwc2_readl(hsotg
, DIEPTSIZ(hs_ep
->index
));
516 * work out how much data was loaded so we can calculate
517 * how much data is left in the fifo.
520 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
523 * if shared fifo, we cannot write anything until the
524 * previous data has been completely sent.
526 if (hs_ep
->fifo_load
!= 0) {
527 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
531 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
533 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
535 /* how much of the data has moved */
536 size_done
= hs_ep
->size_loaded
- size_left
;
538 /* how much data is left in the fifo */
539 can_write
= hs_ep
->fifo_load
- size_done
;
540 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
541 __func__
, can_write
);
543 can_write
= hs_ep
->fifo_size
- can_write
;
544 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
545 __func__
, can_write
);
547 if (can_write
<= 0) {
548 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
551 } else if (hsotg
->dedicated_fifos
&& hs_ep
->index
!= 0) {
552 can_write
= dwc2_readl(hsotg
,
553 DTXFSTS(hs_ep
->fifo_index
));
558 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts
) == 0) {
560 "%s: no queue slots available (0x%08x)\n",
563 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_NPTXFEMP
);
567 can_write
= GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts
);
568 can_write
*= 4; /* fifo size is in 32bit quantities. */
571 max_transfer
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
573 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
574 __func__
, gnptxsts
, can_write
, to_write
, max_transfer
);
577 * limit to 512 bytes of data, it seems at least on the non-periodic
578 * FIFO, requests of >512 cause the endpoint to get stuck with a
579 * fragment of the end of the transfer in it.
581 if (can_write
> 512 && !periodic
)
585 * limit the write to one max-packet size worth of data, but allow
586 * the transfer to return that it did not run out of fifo space
589 if (to_write
> max_transfer
) {
590 to_write
= max_transfer
;
592 /* it's needed only when we do not use dedicated fifos */
593 if (!hsotg
->dedicated_fifos
)
594 dwc2_hsotg_en_gsint(hsotg
,
595 periodic
? GINTSTS_PTXFEMP
:
599 /* see if we can write data */
601 if (to_write
> can_write
) {
602 to_write
= can_write
;
603 pkt_round
= to_write
% max_transfer
;
606 * Round the write down to an
607 * exact number of packets.
609 * Note, we do not currently check to see if we can ever
610 * write a full packet or not to the FIFO.
614 to_write
-= pkt_round
;
617 * enable correct FIFO interrupt to alert us when there
621 /* it's needed only when we do not use dedicated fifos */
622 if (!hsotg
->dedicated_fifos
)
623 dwc2_hsotg_en_gsint(hsotg
,
624 periodic
? GINTSTS_PTXFEMP
:
628 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
629 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
634 hs_req
->req
.actual
= buf_pos
+ to_write
;
635 hs_ep
->total_data
+= to_write
;
638 hs_ep
->fifo_load
+= to_write
;
640 to_write
= DIV_ROUND_UP(to_write
, 4);
641 data
= hs_req
->req
.buf
+ buf_pos
;
643 dwc2_writel_rep(hsotg
, EPFIFO(hs_ep
->index
), data
, to_write
);
645 return (to_write
>= can_write
) ? -ENOSPC
: 0;
649 * get_ep_limit - get the maximum data legnth for this endpoint
650 * @hs_ep: The endpoint
652 * Return the maximum data that can be queued in one go on a given endpoint
653 * so that transfers that are too long can be split.
655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep
*hs_ep
)
657 int index
= hs_ep
->index
;
658 unsigned int maxsize
;
662 maxsize
= DXEPTSIZ_XFERSIZE_LIMIT
+ 1;
663 maxpkt
= DXEPTSIZ_PKTCNT_LIMIT
+ 1;
667 maxpkt
= DIEPTSIZ0_PKTCNT_LIMIT
+ 1;
672 /* we made the constant loading easier above by using +1 */
677 * constrain by packet count if maxpkts*pktsize is greater
678 * than the length register size.
681 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
682 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
688 * dwc2_hsotg_read_frameno - read current frame number
689 * @hsotg: The device instance
691 * Return the current frame number
693 static u32
dwc2_hsotg_read_frameno(struct dwc2_hsotg
*hsotg
)
697 dsts
= dwc2_readl(hsotg
, DSTS
);
698 dsts
&= DSTS_SOFFN_MASK
;
699 dsts
>>= DSTS_SOFFN_SHIFT
;
705 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
706 * DMA descriptor chain prepared for specific endpoint
707 * @hs_ep: The endpoint
709 * Return the maximum data that can be queued in one go on a given endpoint
710 * depending on its descriptor chain capacity so that transfers that
711 * are too long can be split.
713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep
*hs_ep
)
715 int is_isoc
= hs_ep
->isochronous
;
716 unsigned int maxsize
;
719 maxsize
= (hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_LIMIT
:
720 DEV_DMA_ISOC_RX_NBYTES_LIMIT
) *
721 MAX_DMA_DESC_NUM_HS_ISOC
;
723 maxsize
= DEV_DMA_NBYTES_LIMIT
* MAX_DMA_DESC_NUM_GENERIC
;
729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
730 * @hs_ep: The endpoint
731 * @mask: RX/TX bytes mask to be defined
733 * Returns maximum data payload for one descriptor after analyzing endpoint
735 * DMA descriptor transfer bytes limit depends on EP type:
737 * Isochronous - descriptor rx/tx bytes bitfield limit,
738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
739 * have concatenations from various descriptors within one packet.
741 * Selects corresponding mask for RX/TX bytes as well.
743 static u32
dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep
*hs_ep
, u32
*mask
)
745 u32 mps
= hs_ep
->ep
.maxpacket
;
746 int dir_in
= hs_ep
->dir_in
;
749 if (!hs_ep
->index
&& !dir_in
) {
751 *mask
= DEV_DMA_NBYTES_MASK
;
752 } else if (hs_ep
->isochronous
) {
754 desc_size
= DEV_DMA_ISOC_TX_NBYTES_LIMIT
;
755 *mask
= DEV_DMA_ISOC_TX_NBYTES_MASK
;
757 desc_size
= DEV_DMA_ISOC_RX_NBYTES_LIMIT
;
758 *mask
= DEV_DMA_ISOC_RX_NBYTES_MASK
;
761 desc_size
= DEV_DMA_NBYTES_LIMIT
;
762 *mask
= DEV_DMA_NBYTES_MASK
;
764 /* Round down desc_size to be mps multiple */
765 desc_size
-= desc_size
% mps
;
771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep
*hs_ep
,
772 struct dwc2_dma_desc
**desc
,
777 int dir_in
= hs_ep
->dir_in
;
778 u32 mps
= hs_ep
->ep
.maxpacket
;
784 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
786 hs_ep
->desc_count
= (len
/ maxsize
) +
787 ((len
% maxsize
) ? 1 : 0);
789 hs_ep
->desc_count
= 1;
791 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
793 (*desc
)->status
|= (DEV_DMA_BUFF_STS_HBUSY
794 << DEV_DMA_BUFF_STS_SHIFT
);
797 if (!hs_ep
->index
&& !dir_in
)
798 (*desc
)->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
801 maxsize
<< DEV_DMA_NBYTES_SHIFT
& mask
;
802 (*desc
)->buf
= dma_buff
+ offset
;
808 (*desc
)->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
811 (*desc
)->status
|= (len
% mps
) ? DEV_DMA_SHORT
:
812 ((hs_ep
->send_zlp
&& true_last
) ?
816 len
<< DEV_DMA_NBYTES_SHIFT
& mask
;
817 (*desc
)->buf
= dma_buff
+ offset
;
820 (*desc
)->status
&= ~DEV_DMA_BUFF_STS_MASK
;
821 (*desc
)->status
|= (DEV_DMA_BUFF_STS_HREADY
822 << DEV_DMA_BUFF_STS_SHIFT
);
828 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
829 * @hs_ep: The endpoint
830 * @ureq: Request to transfer
831 * @offset: offset in bytes
832 * @len: Length of the transfer
834 * This function will iterate over descriptor chain and fill its entries
835 * with corresponding information based on transfer data.
837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep
*hs_ep
,
841 struct usb_request
*ureq
= NULL
;
842 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
843 struct scatterlist
*sg
;
848 ureq
= &hs_ep
->req
->req
;
850 /* non-DMA sg buffer */
851 if (!ureq
|| !ureq
->num_sgs
) {
852 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep
, &desc
,
853 dma_buff
, len
, true);
858 for_each_sg(ureq
->sg
, sg
, ureq
->num_sgs
, i
) {
859 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep
, &desc
,
860 sg_dma_address(sg
) + sg
->offset
, sg_dma_len(sg
),
862 desc_count
+= hs_ep
->desc_count
;
865 hs_ep
->desc_count
= desc_count
;
869 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
870 * @hs_ep: The isochronous endpoint.
871 * @dma_buff: usb requests dma buffer.
872 * @len: usb request transfer length.
874 * Fills next free descriptor with the data of the arrived usb request,
875 * frame info, sets Last and IOC bits increments next_desc. If filled
876 * descriptor is not the first one, removes L bit from the previous descriptor
879 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep
*hs_ep
,
880 dma_addr_t dma_buff
, unsigned int len
)
882 struct dwc2_dma_desc
*desc
;
883 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
889 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
891 index
= hs_ep
->next_desc
;
892 desc
= &hs_ep
->desc_list
[index
];
894 /* Check if descriptor chain full */
895 if ((desc
->status
>> DEV_DMA_BUFF_STS_SHIFT
) ==
896 DEV_DMA_BUFF_STS_HREADY
) {
897 dev_dbg(hsotg
->dev
, "%s: desc chain full\n", __func__
);
901 /* Clear L bit of previous desc if more than one entries in the chain */
902 if (hs_ep
->next_desc
)
903 hs_ep
->desc_list
[index
- 1].status
&= ~DEV_DMA_L
;
905 dev_dbg(hsotg
->dev
, "%s: Filling ep %d, dir %s isoc desc # %d\n",
906 __func__
, hs_ep
->index
, hs_ep
->dir_in
? "in" : "out", index
);
909 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
<< DEV_DMA_BUFF_STS_SHIFT
);
911 desc
->buf
= dma_buff
;
912 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
|
913 ((len
<< DEV_DMA_NBYTES_SHIFT
) & mask
));
917 pid
= DIV_ROUND_UP(len
, hs_ep
->ep
.maxpacket
);
920 desc
->status
|= ((pid
<< DEV_DMA_ISOC_PID_SHIFT
) &
921 DEV_DMA_ISOC_PID_MASK
) |
922 ((len
% hs_ep
->ep
.maxpacket
) ?
924 ((hs_ep
->target_frame
<<
925 DEV_DMA_ISOC_FRNUM_SHIFT
) &
926 DEV_DMA_ISOC_FRNUM_MASK
);
929 desc
->status
&= ~DEV_DMA_BUFF_STS_MASK
;
930 desc
->status
|= (DEV_DMA_BUFF_STS_HREADY
<< DEV_DMA_BUFF_STS_SHIFT
);
932 /* Increment frame number by interval for IN */
934 dwc2_gadget_incr_frame_num(hs_ep
);
936 /* Update index of last configured entry in the chain */
938 if (hs_ep
->next_desc
>= MAX_DMA_DESC_NUM_HS_ISOC
)
939 hs_ep
->next_desc
= 0;
945 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
946 * @hs_ep: The isochronous endpoint.
948 * Prepare descriptor chain for isochronous endpoints. Afterwards
949 * write DMA address to HW and enable the endpoint.
951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep
*hs_ep
)
953 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
954 struct dwc2_hsotg_req
*hs_req
, *treq
;
955 int index
= hs_ep
->index
;
961 struct dwc2_dma_desc
*desc
;
963 if (list_empty(&hs_ep
->queue
)) {
964 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
965 dev_dbg(hsotg
->dev
, "%s: No requests in queue\n", __func__
);
969 /* Initialize descriptor chain by Host Busy status */
970 for (i
= 0; i
< MAX_DMA_DESC_NUM_HS_ISOC
; i
++) {
971 desc
= &hs_ep
->desc_list
[i
];
973 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
974 << DEV_DMA_BUFF_STS_SHIFT
);
977 hs_ep
->next_desc
= 0;
978 list_for_each_entry_safe(hs_req
, treq
, &hs_ep
->queue
, queue
) {
979 dma_addr_t dma_addr
= hs_req
->req
.dma
;
981 if (hs_req
->req
.num_sgs
) {
982 WARN_ON(hs_req
->req
.num_sgs
> 1);
983 dma_addr
= sg_dma_address(hs_req
->req
.sg
);
985 ret
= dwc2_gadget_fill_isoc_desc(hs_ep
, dma_addr
,
991 hs_ep
->compl_desc
= 0;
992 depctl
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
993 dma_reg
= hs_ep
->dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
995 /* write descriptor chain address to control register */
996 dwc2_writel(hsotg
, hs_ep
->desc_list_dma
, dma_reg
);
998 ctrl
= dwc2_readl(hsotg
, depctl
);
999 ctrl
|= DXEPCTL_EPENA
| DXEPCTL_CNAK
;
1000 dwc2_writel(hsotg
, ctrl
, depctl
);
1004 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1005 * @hsotg: The controller state.
1006 * @hs_ep: The endpoint to process a request for
1007 * @hs_req: The request to start.
1008 * @continuing: True if we are doing more for the current request.
1010 * Start the given request running by setting the endpoint registers
1011 * appropriately, and writing any data to the FIFOs.
1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg
*hsotg
,
1014 struct dwc2_hsotg_ep
*hs_ep
,
1015 struct dwc2_hsotg_req
*hs_req
,
1018 struct usb_request
*ureq
= &hs_req
->req
;
1019 int index
= hs_ep
->index
;
1020 int dir_in
= hs_ep
->dir_in
;
1025 unsigned int length
;
1026 unsigned int packets
;
1027 unsigned int maxreq
;
1028 unsigned int dma_reg
;
1031 if (hs_ep
->req
&& !continuing
) {
1032 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
1035 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
1037 "%s: continue different req\n", __func__
);
1043 dma_reg
= dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
1044 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
1045 epsize_reg
= dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
1047 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1048 __func__
, dwc2_readl(hsotg
, epctrl_reg
), index
,
1049 hs_ep
->dir_in
? "in" : "out");
1051 /* If endpoint is stalled, we will restart request later */
1052 ctrl
= dwc2_readl(hsotg
, epctrl_reg
);
1054 if (index
&& ctrl
& DXEPCTL_STALL
) {
1055 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
1059 length
= ureq
->length
- ureq
->actual
;
1060 dev_dbg(hsotg
->dev
, "ureq->length:%d ureq->actual:%d\n",
1061 ureq
->length
, ureq
->actual
);
1063 if (!using_desc_dma(hsotg
))
1064 maxreq
= get_ep_limit(hs_ep
);
1066 maxreq
= dwc2_gadget_get_chain_limit(hs_ep
);
1068 if (length
> maxreq
) {
1069 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
1071 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
1072 __func__
, length
, maxreq
, round
);
1074 /* round down to multiple of packets */
1082 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
1084 packets
= 1; /* send one packet if length is zero. */
1086 if (hs_ep
->isochronous
&& length
> (hs_ep
->mc
* hs_ep
->ep
.maxpacket
)) {
1087 dev_err(hsotg
->dev
, "req length > maxpacket*mc\n");
1091 if (dir_in
&& index
!= 0)
1092 if (hs_ep
->isochronous
)
1093 epsize
= DXEPTSIZ_MC(packets
);
1095 epsize
= DXEPTSIZ_MC(1);
1100 * zero length packet should be programmed on its own and should not
1101 * be counted in DIEPTSIZ.PktCnt with other packets.
1103 if (dir_in
&& ureq
->zero
&& !continuing
) {
1104 /* Test if zlp is actually required. */
1105 if ((ureq
->length
>= hs_ep
->ep
.maxpacket
) &&
1106 !(ureq
->length
% hs_ep
->ep
.maxpacket
))
1107 hs_ep
->send_zlp
= 1;
1110 epsize
|= DXEPTSIZ_PKTCNT(packets
);
1111 epsize
|= DXEPTSIZ_XFERSIZE(length
);
1113 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1114 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
1116 /* store the request as the current one we're doing */
1117 hs_ep
->req
= hs_req
;
1119 if (using_desc_dma(hsotg
)) {
1121 u32 mps
= hs_ep
->ep
.maxpacket
;
1123 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1127 else if (length
% mps
)
1128 length
+= (mps
- (length
% mps
));
1132 * If more data to send, adjust DMA for EP0 out data stage.
1133 * ureq->dma stays unchanged, hence increment it by already
1134 * passed passed data count before starting new transaction.
1136 if (!index
&& hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
&&
1138 offset
= ureq
->actual
;
1140 /* Fill DDMA chain entries */
1141 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, ureq
->dma
+ offset
,
1144 /* write descriptor chain address to control register */
1145 dwc2_writel(hsotg
, hs_ep
->desc_list_dma
, dma_reg
);
1147 dev_dbg(hsotg
->dev
, "%s: %08x pad => 0x%08x\n",
1148 __func__
, (u32
)hs_ep
->desc_list_dma
, dma_reg
);
1150 /* write size / packets */
1151 dwc2_writel(hsotg
, epsize
, epsize_reg
);
1153 if (using_dma(hsotg
) && !continuing
&& (length
!= 0)) {
1155 * write DMA address to control register, buffer
1156 * already synced by dwc2_hsotg_ep_queue().
1159 dwc2_writel(hsotg
, ureq
->dma
, dma_reg
);
1161 dev_dbg(hsotg
->dev
, "%s: %pad => 0x%08x\n",
1162 __func__
, &ureq
->dma
, dma_reg
);
1166 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1) {
1167 hs_ep
->target_frame
= dwc2_hsotg_read_frameno(hsotg
);
1168 dwc2_gadget_incr_frame_num(hs_ep
);
1170 if (hs_ep
->target_frame
& 0x1)
1171 ctrl
|= DXEPCTL_SETODDFR
;
1173 ctrl
|= DXEPCTL_SETEVENFR
;
1176 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
1178 dev_dbg(hsotg
->dev
, "ep0 state:%d\n", hsotg
->ep0_state
);
1180 /* For Setup request do not clear NAK */
1181 if (!(index
== 0 && hsotg
->ep0_state
== DWC2_EP0_SETUP
))
1182 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
1184 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
1185 dwc2_writel(hsotg
, ctrl
, epctrl_reg
);
1188 * set these, it seems that DMA support increments past the end
1189 * of the packet buffer so we need to calculate the length from
1192 hs_ep
->size_loaded
= length
;
1193 hs_ep
->last_load
= ureq
->actual
;
1195 if (dir_in
&& !using_dma(hsotg
)) {
1196 /* set these anyway, we may need them for non-periodic in */
1197 hs_ep
->fifo_load
= 0;
1199 dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1203 * Note, trying to clear the NAK here causes problems with transmit
1204 * on the S3C6400 ending up with the TXFIFO becoming full.
1207 /* check ep is enabled */
1208 if (!(dwc2_readl(hsotg
, epctrl_reg
) & DXEPCTL_EPENA
))
1210 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1211 index
, dwc2_readl(hsotg
, epctrl_reg
));
1213 dev_dbg(hsotg
->dev
, "%s: DXEPCTL=0x%08x\n",
1214 __func__
, dwc2_readl(hsotg
, epctrl_reg
));
1216 /* enable ep interrupts */
1217 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 1);
1221 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1222 * @hsotg: The device state.
1223 * @hs_ep: The endpoint the request is on.
1224 * @req: The request being processed.
1226 * We've been asked to queue a request, so ensure that the memory buffer
1227 * is correctly setup for DMA. If we've been passed an extant DMA address
1228 * then ensure the buffer has been synced to memory. If our buffer has no
1229 * DMA memory, then we map the memory and mark our request to allow us to
1230 * cleanup on completion.
1232 static int dwc2_hsotg_map_dma(struct dwc2_hsotg
*hsotg
,
1233 struct dwc2_hsotg_ep
*hs_ep
,
1234 struct usb_request
*req
)
1238 ret
= usb_gadget_map_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
1245 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
1246 __func__
, req
->buf
, req
->length
);
1251 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg
*hsotg
,
1252 struct dwc2_hsotg_ep
*hs_ep
,
1253 struct dwc2_hsotg_req
*hs_req
)
1255 void *req_buf
= hs_req
->req
.buf
;
1257 /* If dma is not being used or buffer is aligned */
1258 if (!using_dma(hsotg
) || !((long)req_buf
& 3))
1261 WARN_ON(hs_req
->saved_req_buf
);
1263 dev_dbg(hsotg
->dev
, "%s: %s: buf=%p length=%d\n", __func__
,
1264 hs_ep
->ep
.name
, req_buf
, hs_req
->req
.length
);
1266 hs_req
->req
.buf
= kmalloc(hs_req
->req
.length
, GFP_ATOMIC
);
1267 if (!hs_req
->req
.buf
) {
1268 hs_req
->req
.buf
= req_buf
;
1270 "%s: unable to allocate memory for bounce buffer\n",
1275 /* Save actual buffer */
1276 hs_req
->saved_req_buf
= req_buf
;
1279 memcpy(hs_req
->req
.buf
, req_buf
, hs_req
->req
.length
);
1284 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg
*hsotg
,
1285 struct dwc2_hsotg_ep
*hs_ep
,
1286 struct dwc2_hsotg_req
*hs_req
)
1288 /* If dma is not being used or buffer was aligned */
1289 if (!using_dma(hsotg
) || !hs_req
->saved_req_buf
)
1292 dev_dbg(hsotg
->dev
, "%s: %s: status=%d actual-length=%d\n", __func__
,
1293 hs_ep
->ep
.name
, hs_req
->req
.status
, hs_req
->req
.actual
);
1295 /* Copy data from bounce buffer on successful out transfer */
1296 if (!hs_ep
->dir_in
&& !hs_req
->req
.status
)
1297 memcpy(hs_req
->saved_req_buf
, hs_req
->req
.buf
,
1298 hs_req
->req
.actual
);
1300 /* Free bounce buffer */
1301 kfree(hs_req
->req
.buf
);
1303 hs_req
->req
.buf
= hs_req
->saved_req_buf
;
1304 hs_req
->saved_req_buf
= NULL
;
1308 * dwc2_gadget_target_frame_elapsed - Checks target frame
1309 * @hs_ep: The driver endpoint to check
1311 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1312 * corresponding transfer.
1314 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep
*hs_ep
)
1316 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1317 u32 target_frame
= hs_ep
->target_frame
;
1318 u32 current_frame
= hsotg
->frame_number
;
1319 bool frame_overrun
= hs_ep
->frame_overrun
;
1321 if (!frame_overrun
&& current_frame
>= target_frame
)
1324 if (frame_overrun
&& current_frame
>= target_frame
&&
1325 ((current_frame
- target_frame
) < DSTS_SOFFN_LIMIT
/ 2))
1332 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1333 * @hsotg: The driver state
1334 * @hs_ep: the ep descriptor chain is for
1336 * Called to update EP0 structure's pointers depend on stage of
1339 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg
*hsotg
,
1340 struct dwc2_hsotg_ep
*hs_ep
)
1342 switch (hsotg
->ep0_state
) {
1343 case DWC2_EP0_SETUP
:
1344 case DWC2_EP0_STATUS_OUT
:
1345 hs_ep
->desc_list
= hsotg
->setup_desc
[0];
1346 hs_ep
->desc_list_dma
= hsotg
->setup_desc_dma
[0];
1348 case DWC2_EP0_DATA_IN
:
1349 case DWC2_EP0_STATUS_IN
:
1350 hs_ep
->desc_list
= hsotg
->ctrl_in_desc
;
1351 hs_ep
->desc_list_dma
= hsotg
->ctrl_in_desc_dma
;
1353 case DWC2_EP0_DATA_OUT
:
1354 hs_ep
->desc_list
= hsotg
->ctrl_out_desc
;
1355 hs_ep
->desc_list_dma
= hsotg
->ctrl_out_desc_dma
;
1358 dev_err(hsotg
->dev
, "invalid EP 0 state in queue %d\n",
1366 static int dwc2_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
1369 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1370 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1371 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1378 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1379 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
1380 req
->zero
, req
->short_not_ok
);
1382 /* Prevent new request submission when controller is suspended */
1383 if (hs
->lx_state
!= DWC2_L0
) {
1384 dev_dbg(hs
->dev
, "%s: submit request only in active state\n",
1389 /* initialise status of the request */
1390 INIT_LIST_HEAD(&hs_req
->queue
);
1392 req
->status
= -EINPROGRESS
;
1394 /* In DDMA mode for ISOC's don't queue request if length greater
1395 * than descriptor limits.
1397 if (using_desc_dma(hs
) && hs_ep
->isochronous
) {
1398 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
1399 if (hs_ep
->dir_in
&& req
->length
> maxsize
) {
1400 dev_err(hs
->dev
, "wrong length %d (maxsize=%d)\n",
1401 req
->length
, maxsize
);
1405 if (!hs_ep
->dir_in
&& req
->length
> hs_ep
->ep
.maxpacket
) {
1406 dev_err(hs
->dev
, "ISOC OUT: wrong length %d (mps=%d)\n",
1407 req
->length
, hs_ep
->ep
.maxpacket
);
1412 ret
= dwc2_hsotg_handle_unaligned_buf_start(hs
, hs_ep
, hs_req
);
1416 /* if we're using DMA, sync the buffers as necessary */
1417 if (using_dma(hs
)) {
1418 ret
= dwc2_hsotg_map_dma(hs
, hs_ep
, req
);
1422 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1423 if (using_desc_dma(hs
) && !hs_ep
->index
) {
1424 ret
= dwc2_gadget_set_ep0_desc_chain(hs
, hs_ep
);
1429 first
= list_empty(&hs_ep
->queue
);
1430 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
1433 * Handle DDMA isochronous transfers separately - just add new entry
1434 * to the descriptor chain.
1435 * Transfer will be started once SW gets either one of NAK or
1436 * OutTknEpDis interrupts.
1438 if (using_desc_dma(hs
) && hs_ep
->isochronous
) {
1439 if (hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
) {
1440 dma_addr_t dma_addr
= hs_req
->req
.dma
;
1442 if (hs_req
->req
.num_sgs
) {
1443 WARN_ON(hs_req
->req
.num_sgs
> 1);
1444 dma_addr
= sg_dma_address(hs_req
->req
.sg
);
1446 dwc2_gadget_fill_isoc_desc(hs_ep
, dma_addr
,
1447 hs_req
->req
.length
);
1452 /* Change EP direction if status phase request is after data out */
1453 if (!hs_ep
->index
&& !req
->length
&& !hs_ep
->dir_in
&&
1454 hs
->ep0_state
== DWC2_EP0_DATA_OUT
)
1458 if (!hs_ep
->isochronous
) {
1459 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1463 /* Update current frame number value. */
1464 hs
->frame_number
= dwc2_hsotg_read_frameno(hs
);
1465 while (dwc2_gadget_target_frame_elapsed(hs_ep
)) {
1466 dwc2_gadget_incr_frame_num(hs_ep
);
1467 /* Update current frame number value once more as it
1470 hs
->frame_number
= dwc2_hsotg_read_frameno(hs
);
1473 if (hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
)
1474 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1479 static int dwc2_hsotg_ep_queue_lock(struct usb_ep
*ep
, struct usb_request
*req
,
1482 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1483 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1484 unsigned long flags
= 0;
1487 spin_lock_irqsave(&hs
->lock
, flags
);
1488 ret
= dwc2_hsotg_ep_queue(ep
, req
, gfp_flags
);
1489 spin_unlock_irqrestore(&hs
->lock
, flags
);
1494 static void dwc2_hsotg_ep_free_request(struct usb_ep
*ep
,
1495 struct usb_request
*req
)
1497 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1503 * dwc2_hsotg_complete_oursetup - setup completion callback
1504 * @ep: The endpoint the request was on.
1505 * @req: The request completed.
1507 * Called on completion of any requests the driver itself
1508 * submitted that need cleaning up.
1510 static void dwc2_hsotg_complete_oursetup(struct usb_ep
*ep
,
1511 struct usb_request
*req
)
1513 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1514 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1516 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
1518 dwc2_hsotg_ep_free_request(ep
, req
);
1522 * ep_from_windex - convert control wIndex value to endpoint
1523 * @hsotg: The driver state.
1524 * @windex: The control request wIndex field (in host order).
1526 * Convert the given wIndex into a pointer to an driver endpoint
1527 * structure, or return NULL if it is not a valid endpoint.
1529 static struct dwc2_hsotg_ep
*ep_from_windex(struct dwc2_hsotg
*hsotg
,
1532 struct dwc2_hsotg_ep
*ep
;
1533 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
1534 int idx
= windex
& 0x7F;
1536 if (windex
>= 0x100)
1539 if (idx
> hsotg
->num_of_eps
)
1542 ep
= index_to_ep(hsotg
, idx
, dir
);
1544 if (idx
&& ep
->dir_in
!= dir
)
1551 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1552 * @hsotg: The driver state.
1553 * @testmode: requested usb test mode
1554 * Enable usb Test Mode requested by the Host.
1556 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg
*hsotg
, int testmode
)
1558 int dctl
= dwc2_readl(hsotg
, DCTL
);
1560 dctl
&= ~DCTL_TSTCTL_MASK
;
1567 dctl
|= testmode
<< DCTL_TSTCTL_SHIFT
;
1572 dwc2_writel(hsotg
, dctl
, DCTL
);
1577 * dwc2_hsotg_send_reply - send reply to control request
1578 * @hsotg: The device state
1580 * @buff: Buffer for request
1581 * @length: Length of reply.
1583 * Create a request and queue it on the given endpoint. This is useful as
1584 * an internal method of sending replies to certain control requests, etc.
1586 static int dwc2_hsotg_send_reply(struct dwc2_hsotg
*hsotg
,
1587 struct dwc2_hsotg_ep
*ep
,
1591 struct usb_request
*req
;
1594 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
1596 req
= dwc2_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
1597 hsotg
->ep0_reply
= req
;
1599 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
1603 req
->buf
= hsotg
->ep0_buff
;
1604 req
->length
= length
;
1606 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1610 req
->complete
= dwc2_hsotg_complete_oursetup
;
1613 memcpy(req
->buf
, buff
, length
);
1615 ret
= dwc2_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
1617 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
1625 * dwc2_hsotg_process_req_status - process request GET_STATUS
1626 * @hsotg: The device state
1627 * @ctrl: USB control request
1629 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg
*hsotg
,
1630 struct usb_ctrlrequest
*ctrl
)
1632 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1633 struct dwc2_hsotg_ep
*ep
;
1637 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
1640 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
1644 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
1645 case USB_RECIP_DEVICE
:
1647 * bit 0 => self powered
1648 * bit 1 => remote wakeup
1650 reply
= cpu_to_le16(0);
1653 case USB_RECIP_INTERFACE
:
1654 /* currently, the data result should be zero */
1655 reply
= cpu_to_le16(0);
1658 case USB_RECIP_ENDPOINT
:
1659 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1663 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
1670 if (le16_to_cpu(ctrl
->wLength
) != 2)
1673 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
1675 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
1682 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
);
1685 * get_ep_head - return the first request on the endpoint
1686 * @hs_ep: The controller endpoint to get
1688 * Get the first request on the endpoint.
1690 static struct dwc2_hsotg_req
*get_ep_head(struct dwc2_hsotg_ep
*hs_ep
)
1692 return list_first_entry_or_null(&hs_ep
->queue
, struct dwc2_hsotg_req
,
1697 * dwc2_gadget_start_next_request - Starts next request from ep queue
1698 * @hs_ep: Endpoint structure
1700 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1701 * in its handler. Hence we need to unmask it here to be able to do
1702 * resynchronization.
1704 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep
*hs_ep
)
1707 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1708 int dir_in
= hs_ep
->dir_in
;
1709 struct dwc2_hsotg_req
*hs_req
;
1710 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
1712 if (!list_empty(&hs_ep
->queue
)) {
1713 hs_req
= get_ep_head(hs_ep
);
1714 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1717 if (!hs_ep
->isochronous
)
1721 dev_dbg(hsotg
->dev
, "%s: No more ISOC-IN requests\n",
1724 dev_dbg(hsotg
->dev
, "%s: No more ISOC-OUT requests\n",
1726 mask
= dwc2_readl(hsotg
, epmsk_reg
);
1727 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
1728 dwc2_writel(hsotg
, mask
, epmsk_reg
);
1733 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1734 * @hsotg: The device state
1735 * @ctrl: USB control request
1737 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg
*hsotg
,
1738 struct usb_ctrlrequest
*ctrl
)
1740 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1741 struct dwc2_hsotg_req
*hs_req
;
1742 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
1743 struct dwc2_hsotg_ep
*ep
;
1750 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
1751 __func__
, set
? "SET" : "CLEAR");
1753 wValue
= le16_to_cpu(ctrl
->wValue
);
1754 wIndex
= le16_to_cpu(ctrl
->wIndex
);
1755 recip
= ctrl
->bRequestType
& USB_RECIP_MASK
;
1758 case USB_RECIP_DEVICE
:
1760 case USB_DEVICE_REMOTE_WAKEUP
:
1761 hsotg
->remote_wakeup_allowed
= 1;
1764 case USB_DEVICE_TEST_MODE
:
1765 if ((wIndex
& 0xff) != 0)
1770 hsotg
->test_mode
= wIndex
>> 8;
1771 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1774 "%s: failed to send reply\n", __func__
);
1783 case USB_RECIP_ENDPOINT
:
1784 ep
= ep_from_windex(hsotg
, wIndex
);
1786 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
1792 case USB_ENDPOINT_HALT
:
1793 halted
= ep
->halted
;
1795 dwc2_hsotg_ep_sethalt(&ep
->ep
, set
, true);
1797 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1800 "%s: failed to send reply\n", __func__
);
1805 * we have to complete all requests for ep if it was
1806 * halted, and the halt was cleared by CLEAR_FEATURE
1809 if (!set
&& halted
) {
1811 * If we have request in progress,
1817 list_del_init(&hs_req
->queue
);
1818 if (hs_req
->req
.complete
) {
1819 spin_unlock(&hsotg
->lock
);
1820 usb_gadget_giveback_request(
1821 &ep
->ep
, &hs_req
->req
);
1822 spin_lock(&hsotg
->lock
);
1826 /* If we have pending request, then start it */
1828 dwc2_gadget_start_next_request(ep
);
1843 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
);
1846 * dwc2_hsotg_stall_ep0 - stall ep0
1847 * @hsotg: The device state
1849 * Set stall for ep0 as response for setup request.
1851 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg
*hsotg
)
1853 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1857 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1858 reg
= (ep0
->dir_in
) ? DIEPCTL0
: DOEPCTL0
;
1861 * DxEPCTL_Stall will be cleared by EP once it has
1862 * taken effect, so no need to clear later.
1865 ctrl
= dwc2_readl(hsotg
, reg
);
1866 ctrl
|= DXEPCTL_STALL
;
1867 ctrl
|= DXEPCTL_CNAK
;
1868 dwc2_writel(hsotg
, ctrl
, reg
);
1871 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1872 ctrl
, reg
, dwc2_readl(hsotg
, reg
));
1875 * complete won't be called, so we enqueue
1876 * setup request here
1878 dwc2_hsotg_enqueue_setup(hsotg
);
1882 * dwc2_hsotg_process_control - process a control request
1883 * @hsotg: The device state
1884 * @ctrl: The control request received
1886 * The controller has received the SETUP phase of a control request, and
1887 * needs to work out what to do next (and whether to pass it on to the
1890 static void dwc2_hsotg_process_control(struct dwc2_hsotg
*hsotg
,
1891 struct usb_ctrlrequest
*ctrl
)
1893 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1898 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1899 ctrl
->bRequestType
, ctrl
->bRequest
, ctrl
->wValue
,
1900 ctrl
->wIndex
, ctrl
->wLength
);
1902 if (ctrl
->wLength
== 0) {
1904 hsotg
->ep0_state
= DWC2_EP0_STATUS_IN
;
1905 } else if (ctrl
->bRequestType
& USB_DIR_IN
) {
1907 hsotg
->ep0_state
= DWC2_EP0_DATA_IN
;
1910 hsotg
->ep0_state
= DWC2_EP0_DATA_OUT
;
1913 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1914 switch (ctrl
->bRequest
) {
1915 case USB_REQ_SET_ADDRESS
:
1916 hsotg
->connected
= 1;
1917 dcfg
= dwc2_readl(hsotg
, DCFG
);
1918 dcfg
&= ~DCFG_DEVADDR_MASK
;
1919 dcfg
|= (le16_to_cpu(ctrl
->wValue
) <<
1920 DCFG_DEVADDR_SHIFT
) & DCFG_DEVADDR_MASK
;
1921 dwc2_writel(hsotg
, dcfg
, DCFG
);
1923 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1925 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1928 case USB_REQ_GET_STATUS
:
1929 ret
= dwc2_hsotg_process_req_status(hsotg
, ctrl
);
1932 case USB_REQ_CLEAR_FEATURE
:
1933 case USB_REQ_SET_FEATURE
:
1934 ret
= dwc2_hsotg_process_req_feature(hsotg
, ctrl
);
1939 /* as a fallback, try delivering it to the driver to deal with */
1941 if (ret
== 0 && hsotg
->driver
) {
1942 spin_unlock(&hsotg
->lock
);
1943 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1944 spin_lock(&hsotg
->lock
);
1946 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1949 hsotg
->delayed_status
= false;
1950 if (ret
== USB_GADGET_DELAYED_STATUS
)
1951 hsotg
->delayed_status
= true;
1954 * the request is either unhandlable, or is not formatted correctly
1955 * so respond with a STALL for the status stage to indicate failure.
1959 dwc2_hsotg_stall_ep0(hsotg
);
1963 * dwc2_hsotg_complete_setup - completion of a setup transfer
1964 * @ep: The endpoint the request was on.
1965 * @req: The request completed.
1967 * Called on completion of any requests the driver itself submitted for
1970 static void dwc2_hsotg_complete_setup(struct usb_ep
*ep
,
1971 struct usb_request
*req
)
1973 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1974 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1976 if (req
->status
< 0) {
1977 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
1981 spin_lock(&hsotg
->lock
);
1982 if (req
->actual
== 0)
1983 dwc2_hsotg_enqueue_setup(hsotg
);
1985 dwc2_hsotg_process_control(hsotg
, req
->buf
);
1986 spin_unlock(&hsotg
->lock
);
1990 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1991 * @hsotg: The device state.
1993 * Enqueue a request on EP0 if necessary to received any SETUP packets
1994 * received from the host.
1996 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
)
1998 struct usb_request
*req
= hsotg
->ctrl_req
;
1999 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
2002 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
2006 req
->buf
= hsotg
->ctrl_buff
;
2007 req
->complete
= dwc2_hsotg_complete_setup
;
2009 if (!list_empty(&hs_req
->queue
)) {
2010 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
2014 hsotg
->eps_out
[0]->dir_in
= 0;
2015 hsotg
->eps_out
[0]->send_zlp
= 0;
2016 hsotg
->ep0_state
= DWC2_EP0_SETUP
;
2018 ret
= dwc2_hsotg_ep_queue(&hsotg
->eps_out
[0]->ep
, req
, GFP_ATOMIC
);
2020 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
2022 * Don't think there's much we can do other than watch the
2028 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg
*hsotg
,
2029 struct dwc2_hsotg_ep
*hs_ep
)
2032 u8 index
= hs_ep
->index
;
2033 u32 epctl_reg
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
2034 u32 epsiz_reg
= hs_ep
->dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
2037 dev_dbg(hsotg
->dev
, "Sending zero-length packet on ep%d\n",
2040 dev_dbg(hsotg
->dev
, "Receiving zero-length packet on ep%d\n",
2042 if (using_desc_dma(hsotg
)) {
2043 /* Not specific buffer needed for ep0 ZLP */
2044 dma_addr_t dma
= hs_ep
->desc_list_dma
;
2047 dwc2_gadget_set_ep0_desc_chain(hsotg
, hs_ep
);
2049 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, dma
, 0);
2051 dwc2_writel(hsotg
, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2052 DXEPTSIZ_XFERSIZE(0),
2056 ctrl
= dwc2_readl(hsotg
, epctl_reg
);
2057 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
2058 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
2059 ctrl
|= DXEPCTL_USBACTEP
;
2060 dwc2_writel(hsotg
, ctrl
, epctl_reg
);
2064 * dwc2_hsotg_complete_request - complete a request given to us
2065 * @hsotg: The device state.
2066 * @hs_ep: The endpoint the request was on.
2067 * @hs_req: The request to complete.
2068 * @result: The result code (0 => Ok, otherwise errno)
2070 * The given request has finished, so call the necessary completion
2071 * if it has one and then look to see if we can start a new request
2074 * Note, expects the ep to already be locked as appropriate.
2076 static void dwc2_hsotg_complete_request(struct dwc2_hsotg
*hsotg
,
2077 struct dwc2_hsotg_ep
*hs_ep
,
2078 struct dwc2_hsotg_req
*hs_req
,
2082 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
2086 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
2087 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
2090 * only replace the status if we've not already set an error
2091 * from a previous transaction
2094 if (hs_req
->req
.status
== -EINPROGRESS
)
2095 hs_req
->req
.status
= result
;
2097 if (using_dma(hsotg
))
2098 dwc2_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
2100 dwc2_hsotg_handle_unaligned_buf_complete(hsotg
, hs_ep
, hs_req
);
2103 list_del_init(&hs_req
->queue
);
2106 * call the complete request with the locks off, just in case the
2107 * request tries to queue more work for this endpoint.
2110 if (hs_req
->req
.complete
) {
2111 spin_unlock(&hsotg
->lock
);
2112 usb_gadget_giveback_request(&hs_ep
->ep
, &hs_req
->req
);
2113 spin_lock(&hsotg
->lock
);
2116 /* In DDMA don't need to proceed to starting of next ISOC request */
2117 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
)
2121 * Look to see if there is anything else to do. Note, the completion
2122 * of the previous request may have caused a new request to be started
2123 * so be careful when doing this.
2126 if (!hs_ep
->req
&& result
>= 0)
2127 dwc2_gadget_start_next_request(hs_ep
);
2131 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2132 * @hs_ep: The endpoint the request was on.
2134 * Get first request from the ep queue, determine descriptor on which complete
2135 * happened. SW discovers which descriptor currently in use by HW, adjusts
2136 * dma_address and calculates index of completed descriptor based on the value
2137 * of DEPDMA register. Update actual length of request, giveback to gadget.
2139 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2141 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2142 struct dwc2_hsotg_req
*hs_req
;
2143 struct usb_request
*ureq
;
2147 desc_sts
= hs_ep
->desc_list
[hs_ep
->compl_desc
].status
;
2149 /* Process only descriptors with buffer status set to DMA done */
2150 while ((desc_sts
& DEV_DMA_BUFF_STS_MASK
) >>
2151 DEV_DMA_BUFF_STS_SHIFT
== DEV_DMA_BUFF_STS_DMADONE
) {
2153 hs_req
= get_ep_head(hs_ep
);
2155 dev_warn(hsotg
->dev
, "%s: ISOC EP queue empty\n", __func__
);
2158 ureq
= &hs_req
->req
;
2160 /* Check completion status */
2161 if ((desc_sts
& DEV_DMA_STS_MASK
) >> DEV_DMA_STS_SHIFT
==
2163 mask
= hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_MASK
:
2164 DEV_DMA_ISOC_RX_NBYTES_MASK
;
2165 ureq
->actual
= ureq
->length
- ((desc_sts
& mask
) >>
2166 DEV_DMA_ISOC_NBYTES_SHIFT
);
2168 /* Adjust actual len for ISOC Out if len is
2171 if (!hs_ep
->dir_in
&& ureq
->length
& 0x3)
2172 ureq
->actual
+= 4 - (ureq
->length
& 0x3);
2174 /* Set actual frame number for completed transfers */
2175 ureq
->frame_number
=
2176 (desc_sts
& DEV_DMA_ISOC_FRNUM_MASK
) >>
2177 DEV_DMA_ISOC_FRNUM_SHIFT
;
2180 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2182 hs_ep
->compl_desc
++;
2183 if (hs_ep
->compl_desc
> (MAX_DMA_DESC_NUM_HS_ISOC
- 1))
2184 hs_ep
->compl_desc
= 0;
2185 desc_sts
= hs_ep
->desc_list
[hs_ep
->compl_desc
].status
;
2190 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2191 * @hs_ep: The isochronous endpoint.
2193 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2194 * interrupt. Reset target frame and next_desc to allow to start
2195 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2196 * interrupt for OUT direction.
2198 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep
*hs_ep
)
2200 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2203 dwc2_flush_rx_fifo(hsotg
);
2204 dwc2_hsotg_complete_request(hsotg
, hs_ep
, get_ep_head(hs_ep
), 0);
2206 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
2207 hs_ep
->next_desc
= 0;
2208 hs_ep
->compl_desc
= 0;
2212 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2213 * @hsotg: The device state.
2214 * @ep_idx: The endpoint index for the data
2215 * @size: The size of data in the fifo, in bytes
2217 * The FIFO status shows there is data to read from the FIFO for a given
2218 * endpoint, so sort out whether we need to read the data into a request
2219 * that has been made for that endpoint.
2221 static void dwc2_hsotg_rx_data(struct dwc2_hsotg
*hsotg
, int ep_idx
, int size
)
2223 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[ep_idx
];
2224 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2230 u32 epctl
= dwc2_readl(hsotg
, DOEPCTL(ep_idx
));
2234 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2235 __func__
, size
, ep_idx
, epctl
);
2237 /* dump the data from the FIFO, we've nothing we can do */
2238 for (ptr
= 0; ptr
< size
; ptr
+= 4)
2239 (void)dwc2_readl(hsotg
, EPFIFO(ep_idx
));
2245 read_ptr
= hs_req
->req
.actual
;
2246 max_req
= hs_req
->req
.length
- read_ptr
;
2248 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
2249 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
2251 if (to_read
> max_req
) {
2253 * more data appeared than we where willing
2254 * to deal with in this request.
2257 /* currently we don't deal this */
2261 hs_ep
->total_data
+= to_read
;
2262 hs_req
->req
.actual
+= to_read
;
2263 to_read
= DIV_ROUND_UP(to_read
, 4);
2266 * note, we might over-write the buffer end by 3 bytes depending on
2267 * alignment of the data.
2269 dwc2_readl_rep(hsotg
, EPFIFO(ep_idx
),
2270 hs_req
->req
.buf
+ read_ptr
, to_read
);
2274 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2275 * @hsotg: The device instance
2276 * @dir_in: If IN zlp
2278 * Generate a zero-length IN packet request for terminating a SETUP
2281 * Note, since we don't write any data to the TxFIFO, then it is
2282 * currently believed that we do not need to wait for any space in
2285 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg
*hsotg
, bool dir_in
)
2287 /* eps_out[0] is used in both directions */
2288 hsotg
->eps_out
[0]->dir_in
= dir_in
;
2289 hsotg
->ep0_state
= dir_in
? DWC2_EP0_STATUS_IN
: DWC2_EP0_STATUS_OUT
;
2291 dwc2_hsotg_program_zlp(hsotg
, hsotg
->eps_out
[0]);
2294 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg
*hsotg
,
2299 ctrl
= dwc2_readl(hsotg
, epctl_reg
);
2300 if (ctrl
& DXEPCTL_EOFRNUM
)
2301 ctrl
|= DXEPCTL_SETEVENFR
;
2303 ctrl
|= DXEPCTL_SETODDFR
;
2304 dwc2_writel(hsotg
, ctrl
, epctl_reg
);
2308 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2309 * @hs_ep - The endpoint on which transfer went
2311 * Iterate over endpoints descriptor chain and get info on bytes remained
2312 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2314 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2316 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2317 unsigned int bytes_rem
= 0;
2318 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
2325 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
2326 status
= desc
->status
;
2327 bytes_rem
+= status
& DEV_DMA_NBYTES_MASK
;
2329 if (status
& DEV_DMA_STS_MASK
)
2330 dev_err(hsotg
->dev
, "descriptor %d closed with %x\n",
2331 i
, status
& DEV_DMA_STS_MASK
);
2339 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2340 * @hsotg: The device instance
2341 * @epnum: The endpoint received from
2343 * The RXFIFO has delivered an OutDone event, which means that the data
2344 * transfer for an OUT endpoint has been completed, either by a short
2345 * packet or by the finish of a transfer.
2347 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg
*hsotg
, int epnum
)
2349 u32 epsize
= dwc2_readl(hsotg
, DOEPTSIZ(epnum
));
2350 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[epnum
];
2351 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2352 struct usb_request
*req
= &hs_req
->req
;
2353 unsigned int size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2357 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
2361 if (epnum
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_OUT
) {
2362 dev_dbg(hsotg
->dev
, "zlp packet received\n");
2363 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2364 dwc2_hsotg_enqueue_setup(hsotg
);
2368 if (using_desc_dma(hsotg
))
2369 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2371 if (using_dma(hsotg
)) {
2372 unsigned int size_done
;
2375 * Calculate the size of the transfer by checking how much
2376 * is left in the endpoint size register and then working it
2377 * out from the amount we loaded for the transfer.
2379 * We need to do this as DMA pointers are always 32bit aligned
2380 * so may overshoot/undershoot the transfer.
2383 size_done
= hs_ep
->size_loaded
- size_left
;
2384 size_done
+= hs_ep
->last_load
;
2386 req
->actual
= size_done
;
2389 /* if there is more request to do, schedule new transfer */
2390 if (req
->actual
< req
->length
&& size_left
== 0) {
2391 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2395 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
2396 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
2397 __func__
, req
->actual
, req
->length
);
2400 * todo - what should we return here? there's no one else
2401 * even bothering to check the status.
2405 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2406 if (!using_desc_dma(hsotg
) && epnum
== 0 &&
2407 hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
2408 /* Move to STATUS IN */
2409 if (!hsotg
->delayed_status
)
2410 dwc2_hsotg_ep0_zlp(hsotg
, true);
2414 * Slave mode OUT transfers do not go through XferComplete so
2415 * adjust the ISOC parity here.
2417 if (!using_dma(hsotg
)) {
2418 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1)
2419 dwc2_hsotg_change_ep_iso_parity(hsotg
, DOEPCTL(epnum
));
2420 else if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
2421 dwc2_gadget_incr_frame_num(hs_ep
);
2424 /* Set actual frame number for completed transfers */
2425 if (!using_desc_dma(hsotg
) && hs_ep
->isochronous
)
2426 req
->frame_number
= hsotg
->frame_number
;
2428 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
2432 * dwc2_hsotg_handle_rx - RX FIFO has data
2433 * @hsotg: The device instance
2435 * The IRQ handler has detected that the RX FIFO has some data in it
2436 * that requires processing, so find out what is in there and do the
2439 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2440 * chunks, so if you have x packets received on an endpoint you'll get x
2441 * FIFO events delivered, each with a packet's worth of data in it.
2443 * When using DMA, we should not be processing events from the RXFIFO
2444 * as the actual data should be sent to the memory directly and we turn
2445 * on the completion interrupts to get notifications of transfer completion.
2447 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg
*hsotg
)
2449 u32 grxstsr
= dwc2_readl(hsotg
, GRXSTSP
);
2450 u32 epnum
, status
, size
;
2452 WARN_ON(using_dma(hsotg
));
2454 epnum
= grxstsr
& GRXSTS_EPNUM_MASK
;
2455 status
= grxstsr
& GRXSTS_PKTSTS_MASK
;
2457 size
= grxstsr
& GRXSTS_BYTECNT_MASK
;
2458 size
>>= GRXSTS_BYTECNT_SHIFT
;
2460 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2461 __func__
, grxstsr
, size
, epnum
);
2463 switch ((status
& GRXSTS_PKTSTS_MASK
) >> GRXSTS_PKTSTS_SHIFT
) {
2464 case GRXSTS_PKTSTS_GLOBALOUTNAK
:
2465 dev_dbg(hsotg
->dev
, "GLOBALOUTNAK\n");
2468 case GRXSTS_PKTSTS_OUTDONE
:
2469 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
2470 dwc2_hsotg_read_frameno(hsotg
));
2472 if (!using_dma(hsotg
))
2473 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2476 case GRXSTS_PKTSTS_SETUPDONE
:
2478 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2479 dwc2_hsotg_read_frameno(hsotg
),
2480 dwc2_readl(hsotg
, DOEPCTL(0)));
2482 * Call dwc2_hsotg_handle_outdone here if it was not called from
2483 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2484 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2486 if (hsotg
->ep0_state
== DWC2_EP0_SETUP
)
2487 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2490 case GRXSTS_PKTSTS_OUTRX
:
2491 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2494 case GRXSTS_PKTSTS_SETUPRX
:
2496 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2497 dwc2_hsotg_read_frameno(hsotg
),
2498 dwc2_readl(hsotg
, DOEPCTL(0)));
2500 WARN_ON(hsotg
->ep0_state
!= DWC2_EP0_SETUP
);
2502 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2506 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
2509 dwc2_hsotg_dump(hsotg
);
2515 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2516 * @mps: The maximum packet size in bytes.
2518 static u32
dwc2_hsotg_ep0_mps(unsigned int mps
)
2522 return D0EPCTL_MPS_64
;
2524 return D0EPCTL_MPS_32
;
2526 return D0EPCTL_MPS_16
;
2528 return D0EPCTL_MPS_8
;
2531 /* bad max packet size, warn and return invalid result */
2537 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2538 * @hsotg: The driver state.
2539 * @ep: The index number of the endpoint
2540 * @mps: The maximum packet size in bytes
2541 * @mc: The multicount value
2542 * @dir_in: True if direction is in.
2544 * Configure the maximum packet size for the given endpoint, updating
2545 * the hardware control registers to reflect this.
2547 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg
*hsotg
,
2548 unsigned int ep
, unsigned int mps
,
2549 unsigned int mc
, unsigned int dir_in
)
2551 struct dwc2_hsotg_ep
*hs_ep
;
2554 hs_ep
= index_to_ep(hsotg
, ep
, dir_in
);
2559 u32 mps_bytes
= mps
;
2561 /* EP0 is a special case */
2562 mps
= dwc2_hsotg_ep0_mps(mps_bytes
);
2565 hs_ep
->ep
.maxpacket
= mps_bytes
;
2573 hs_ep
->ep
.maxpacket
= mps
;
2577 reg
= dwc2_readl(hsotg
, DIEPCTL(ep
));
2578 reg
&= ~DXEPCTL_MPS_MASK
;
2580 dwc2_writel(hsotg
, reg
, DIEPCTL(ep
));
2582 reg
= dwc2_readl(hsotg
, DOEPCTL(ep
));
2583 reg
&= ~DXEPCTL_MPS_MASK
;
2585 dwc2_writel(hsotg
, reg
, DOEPCTL(ep
));
2591 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
2595 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2596 * @hsotg: The driver state
2597 * @idx: The index for the endpoint (0..15)
2599 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg
*hsotg
, unsigned int idx
)
2601 dwc2_writel(hsotg
, GRSTCTL_TXFNUM(idx
) | GRSTCTL_TXFFLSH
,
2604 /* wait until the fifo is flushed */
2605 if (dwc2_hsotg_wait_bit_clear(hsotg
, GRSTCTL
, GRSTCTL_TXFFLSH
, 100))
2606 dev_warn(hsotg
->dev
, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2611 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2612 * @hsotg: The driver state
2613 * @hs_ep: The driver endpoint to check.
2615 * Check to see if there is a request that has data to send, and if so
2616 * make an attempt to write data into the FIFO.
2618 static int dwc2_hsotg_trytx(struct dwc2_hsotg
*hsotg
,
2619 struct dwc2_hsotg_ep
*hs_ep
)
2621 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2623 if (!hs_ep
->dir_in
|| !hs_req
) {
2625 * if request is not enqueued, we disable interrupts
2626 * for endpoints, excepting ep0
2628 if (hs_ep
->index
!= 0)
2629 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
,
2634 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
2635 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
2637 return dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
2644 * dwc2_hsotg_complete_in - complete IN transfer
2645 * @hsotg: The device state.
2646 * @hs_ep: The endpoint that has just completed.
2648 * An IN transfer has been completed, update the transfer's state and then
2649 * call the relevant completion routines.
2651 static void dwc2_hsotg_complete_in(struct dwc2_hsotg
*hsotg
,
2652 struct dwc2_hsotg_ep
*hs_ep
)
2654 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2655 u32 epsize
= dwc2_readl(hsotg
, DIEPTSIZ(hs_ep
->index
));
2656 int size_left
, size_done
;
2659 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
2663 /* Finish ZLP handling for IN EP0 transactions */
2664 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_IN
) {
2665 dev_dbg(hsotg
->dev
, "zlp packet sent\n");
2668 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2669 * changed to IN. Change back to complete OUT transfer request
2673 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2674 if (hsotg
->test_mode
) {
2677 ret
= dwc2_hsotg_set_test_mode(hsotg
, hsotg
->test_mode
);
2679 dev_dbg(hsotg
->dev
, "Invalid Test #%d\n",
2681 dwc2_hsotg_stall_ep0(hsotg
);
2685 dwc2_hsotg_enqueue_setup(hsotg
);
2690 * Calculate the size of the transfer by checking how much is left
2691 * in the endpoint size register and then working it out from
2692 * the amount we loaded for the transfer.
2694 * We do this even for DMA, as the transfer may have incremented
2695 * past the end of the buffer (DMA transfers are always 32bit
2698 if (using_desc_dma(hsotg
)) {
2699 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2701 dev_err(hsotg
->dev
, "error parsing DDMA results %d\n",
2704 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2707 size_done
= hs_ep
->size_loaded
- size_left
;
2708 size_done
+= hs_ep
->last_load
;
2710 if (hs_req
->req
.actual
!= size_done
)
2711 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
2712 __func__
, hs_req
->req
.actual
, size_done
);
2714 hs_req
->req
.actual
= size_done
;
2715 dev_dbg(hsotg
->dev
, "req->length:%d req->actual:%d req->zero:%d\n",
2716 hs_req
->req
.length
, hs_req
->req
.actual
, hs_req
->req
.zero
);
2718 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
2719 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
2720 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2724 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2725 if (hs_ep
->send_zlp
) {
2726 dwc2_hsotg_program_zlp(hsotg
, hs_ep
);
2727 hs_ep
->send_zlp
= 0;
2728 /* transfer will be completed on next complete interrupt */
2732 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_DATA_IN
) {
2733 /* Move to STATUS OUT */
2734 dwc2_hsotg_ep0_zlp(hsotg
, false);
2738 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2742 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2743 * @hsotg: The device state.
2744 * @idx: Index of ep.
2745 * @dir_in: Endpoint direction 1-in 0-out.
2747 * Reads for endpoint with given index and direction, by masking
2748 * epint_reg with coresponding mask.
2750 static u32
dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg
*hsotg
,
2751 unsigned int idx
, int dir_in
)
2753 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
2754 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
2759 mask
= dwc2_readl(hsotg
, epmsk_reg
);
2760 diepempmsk
= dwc2_readl(hsotg
, DIEPEMPMSK
);
2761 mask
|= ((diepempmsk
>> idx
) & 0x1) ? DIEPMSK_TXFIFOEMPTY
: 0;
2762 mask
|= DXEPINT_SETUP_RCVD
;
2764 ints
= dwc2_readl(hsotg
, epint_reg
);
2770 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2771 * @hs_ep: The endpoint on which interrupt is asserted.
2773 * This interrupt indicates that the endpoint has been disabled per the
2774 * application's request.
2776 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2777 * in case of ISOC completes current request.
2779 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2780 * request starts it.
2782 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep
*hs_ep
)
2784 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2785 struct dwc2_hsotg_req
*hs_req
;
2786 unsigned char idx
= hs_ep
->index
;
2787 int dir_in
= hs_ep
->dir_in
;
2788 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
2789 int dctl
= dwc2_readl(hsotg
, DCTL
);
2791 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
2794 int epctl
= dwc2_readl(hsotg
, epctl_reg
);
2796 dwc2_hsotg_txfifo_flush(hsotg
, hs_ep
->fifo_index
);
2798 if (hs_ep
->isochronous
) {
2799 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
2803 if ((epctl
& DXEPCTL_STALL
) && (epctl
& DXEPCTL_EPTYPE_BULK
)) {
2804 int dctl
= dwc2_readl(hsotg
, DCTL
);
2806 dctl
|= DCTL_CGNPINNAK
;
2807 dwc2_writel(hsotg
, dctl
, DCTL
);
2812 if (dctl
& DCTL_GOUTNAKSTS
) {
2813 dctl
|= DCTL_CGOUTNAK
;
2814 dwc2_writel(hsotg
, dctl
, DCTL
);
2817 if (!hs_ep
->isochronous
)
2820 if (list_empty(&hs_ep
->queue
)) {
2821 dev_dbg(hsotg
->dev
, "%s: complete_ep 0x%p, ep->queue empty!\n",
2827 hs_req
= get_ep_head(hs_ep
);
2829 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
,
2831 dwc2_gadget_incr_frame_num(hs_ep
);
2832 /* Update current frame number value. */
2833 hsotg
->frame_number
= dwc2_hsotg_read_frameno(hsotg
);
2834 } while (dwc2_gadget_target_frame_elapsed(hs_ep
));
2836 dwc2_gadget_start_next_request(hs_ep
);
2840 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2841 * @ep: The endpoint on which interrupt is asserted.
2843 * This is starting point for ISOC-OUT transfer, synchronization done with
2844 * first out token received from host while corresponding EP is disabled.
2846 * Device does not know initial frame in which out token will come. For this
2847 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2848 * getting this interrupt SW starts calculation for next transfer frame.
2850 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep
*ep
)
2852 struct dwc2_hsotg
*hsotg
= ep
->parent
;
2853 int dir_in
= ep
->dir_in
;
2856 if (dir_in
|| !ep
->isochronous
)
2859 if (using_desc_dma(hsotg
)) {
2860 if (ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2861 /* Start first ISO Out */
2862 ep
->target_frame
= hsotg
->frame_number
;
2863 dwc2_gadget_start_isoc_ddma(ep
);
2868 if (ep
->interval
> 1 &&
2869 ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2872 ep
->target_frame
= hsotg
->frame_number
;
2873 dwc2_gadget_incr_frame_num(ep
);
2875 ctrl
= dwc2_readl(hsotg
, DOEPCTL(ep
->index
));
2876 if (ep
->target_frame
& 0x1)
2877 ctrl
|= DXEPCTL_SETODDFR
;
2879 ctrl
|= DXEPCTL_SETEVENFR
;
2881 dwc2_writel(hsotg
, ctrl
, DOEPCTL(ep
->index
));
2884 dwc2_gadget_start_next_request(ep
);
2885 doepmsk
= dwc2_readl(hsotg
, DOEPMSK
);
2886 doepmsk
&= ~DOEPMSK_OUTTKNEPDISMSK
;
2887 dwc2_writel(hsotg
, doepmsk
, DOEPMSK
);
2891 * dwc2_gadget_handle_nak - handle NAK interrupt
2892 * @hs_ep: The endpoint on which interrupt is asserted.
2894 * This is starting point for ISOC-IN transfer, synchronization done with
2895 * first IN token received from host while corresponding EP is disabled.
2897 * Device does not know when first one token will arrive from host. On first
2898 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2899 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2900 * sent in response to that as there was no data in FIFO. SW is basing on this
2901 * interrupt to obtain frame in which token has come and then based on the
2902 * interval calculates next frame for transfer.
2904 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep
*hs_ep
)
2906 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2907 int dir_in
= hs_ep
->dir_in
;
2909 if (!dir_in
|| !hs_ep
->isochronous
)
2912 if (hs_ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2914 if (using_desc_dma(hsotg
)) {
2915 hs_ep
->target_frame
= hsotg
->frame_number
;
2916 dwc2_gadget_incr_frame_num(hs_ep
);
2918 /* In service interval mode target_frame must
2919 * be set to last (u)frame of the service interval.
2921 if (hsotg
->params
.service_interval
) {
2922 /* Set target_frame to the first (u)frame of
2923 * the service interval
2925 hs_ep
->target_frame
&= ~hs_ep
->interval
+ 1;
2927 /* Set target_frame to the last (u)frame of
2928 * the service interval
2930 dwc2_gadget_incr_frame_num(hs_ep
);
2931 dwc2_gadget_dec_frame_num_by_one(hs_ep
);
2934 dwc2_gadget_start_isoc_ddma(hs_ep
);
2938 hs_ep
->target_frame
= hsotg
->frame_number
;
2939 if (hs_ep
->interval
> 1) {
2940 u32 ctrl
= dwc2_readl(hsotg
,
2941 DIEPCTL(hs_ep
->index
));
2942 if (hs_ep
->target_frame
& 0x1)
2943 ctrl
|= DXEPCTL_SETODDFR
;
2945 ctrl
|= DXEPCTL_SETEVENFR
;
2947 dwc2_writel(hsotg
, ctrl
, DIEPCTL(hs_ep
->index
));
2950 dwc2_hsotg_complete_request(hsotg
, hs_ep
,
2951 get_ep_head(hs_ep
), 0);
2954 if (!using_desc_dma(hsotg
))
2955 dwc2_gadget_incr_frame_num(hs_ep
);
2959 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2960 * @hsotg: The driver state
2961 * @idx: The index for the endpoint (0..15)
2962 * @dir_in: Set if this is an IN endpoint
2964 * Process and clear any interrupt pending for an individual endpoint
2966 static void dwc2_hsotg_epint(struct dwc2_hsotg
*hsotg
, unsigned int idx
,
2969 struct dwc2_hsotg_ep
*hs_ep
= index_to_ep(hsotg
, idx
, dir_in
);
2970 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
2971 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
2972 u32 epsiz_reg
= dir_in
? DIEPTSIZ(idx
) : DOEPTSIZ(idx
);
2976 ints
= dwc2_gadget_read_ep_interrupts(hsotg
, idx
, dir_in
);
2977 ctrl
= dwc2_readl(hsotg
, epctl_reg
);
2979 /* Clear endpoint interrupts */
2980 dwc2_writel(hsotg
, ints
, epint_reg
);
2983 dev_err(hsotg
->dev
, "%s:Interrupt for unconfigured ep%d(%s)\n",
2984 __func__
, idx
, dir_in
? "in" : "out");
2988 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2989 __func__
, idx
, dir_in
? "in" : "out", ints
);
2991 /* Don't process XferCompl interrupt if it is a setup packet */
2992 if (idx
== 0 && (ints
& (DXEPINT_SETUP
| DXEPINT_SETUP_RCVD
)))
2993 ints
&= ~DXEPINT_XFERCOMPL
;
2996 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2997 * stage and xfercomplete was generated without SETUP phase done
2998 * interrupt. SW should parse received setup packet only after host's
2999 * exit from setup phase of control transfer.
3001 if (using_desc_dma(hsotg
) && idx
== 0 && !hs_ep
->dir_in
&&
3002 hsotg
->ep0_state
== DWC2_EP0_SETUP
&& !(ints
& DXEPINT_SETUP
))
3003 ints
&= ~DXEPINT_XFERCOMPL
;
3005 if (ints
& DXEPINT_XFERCOMPL
) {
3007 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3008 __func__
, dwc2_readl(hsotg
, epctl_reg
),
3009 dwc2_readl(hsotg
, epsiz_reg
));
3011 /* In DDMA handle isochronous requests separately */
3012 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
) {
3013 /* XferCompl set along with BNA */
3014 if (!(ints
& DXEPINT_BNAINTR
))
3015 dwc2_gadget_complete_isoc_request_ddma(hs_ep
);
3016 } else if (dir_in
) {
3018 * We get OutDone from the FIFO, so we only
3019 * need to look at completing IN requests here
3020 * if operating slave mode
3022 if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
3023 dwc2_gadget_incr_frame_num(hs_ep
);
3025 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
3026 if (ints
& DXEPINT_NAKINTRPT
)
3027 ints
&= ~DXEPINT_NAKINTRPT
;
3029 if (idx
== 0 && !hs_ep
->req
)
3030 dwc2_hsotg_enqueue_setup(hsotg
);
3031 } else if (using_dma(hsotg
)) {
3033 * We're using DMA, we need to fire an OutDone here
3034 * as we ignore the RXFIFO.
3036 if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
3037 dwc2_gadget_incr_frame_num(hs_ep
);
3039 dwc2_hsotg_handle_outdone(hsotg
, idx
);
3043 if (ints
& DXEPINT_EPDISBLD
)
3044 dwc2_gadget_handle_ep_disabled(hs_ep
);
3046 if (ints
& DXEPINT_OUTTKNEPDIS
)
3047 dwc2_gadget_handle_out_token_ep_disabled(hs_ep
);
3049 if (ints
& DXEPINT_NAKINTRPT
)
3050 dwc2_gadget_handle_nak(hs_ep
);
3052 if (ints
& DXEPINT_AHBERR
)
3053 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
3055 if (ints
& DXEPINT_SETUP
) { /* Setup or Timeout */
3056 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
3058 if (using_dma(hsotg
) && idx
== 0) {
3060 * this is the notification we've received a
3061 * setup packet. In non-DMA mode we'd get this
3062 * from the RXFIFO, instead we need to process
3069 dwc2_hsotg_handle_outdone(hsotg
, 0);
3073 if (ints
& DXEPINT_STSPHSERCVD
) {
3074 dev_dbg(hsotg
->dev
, "%s: StsPhseRcvd\n", __func__
);
3076 /* Safety check EP0 state when STSPHSERCVD asserted */
3077 if (hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
3078 /* Move to STATUS IN for DDMA */
3079 if (using_desc_dma(hsotg
)) {
3080 if (!hsotg
->delayed_status
)
3081 dwc2_hsotg_ep0_zlp(hsotg
, true);
3083 /* In case of 3 stage Control Write with delayed
3084 * status, when Status IN transfer started
3085 * before STSPHSERCVD asserted, NAKSTS bit not
3086 * cleared by CNAK in dwc2_hsotg_start_req()
3087 * function. Clear now NAKSTS to allow complete
3090 dwc2_set_bit(hsotg
, DIEPCTL(0),
3097 if (ints
& DXEPINT_BACK2BACKSETUP
)
3098 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
3100 if (ints
& DXEPINT_BNAINTR
) {
3101 dev_dbg(hsotg
->dev
, "%s: BNA interrupt\n", __func__
);
3102 if (hs_ep
->isochronous
)
3103 dwc2_gadget_handle_isoc_bna(hs_ep
);
3106 if (dir_in
&& !hs_ep
->isochronous
) {
3107 /* not sure if this is important, but we'll clear it anyway */
3108 if (ints
& DXEPINT_INTKNTXFEMP
) {
3109 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
3113 /* this probably means something bad is happening */
3114 if (ints
& DXEPINT_INTKNEPMIS
) {
3115 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
3119 /* FIFO has space or is empty (see GAHBCFG) */
3120 if (hsotg
->dedicated_fifos
&&
3121 ints
& DXEPINT_TXFEMP
) {
3122 dev_dbg(hsotg
->dev
, "%s: ep%d: TxFIFOEmpty\n",
3124 if (!using_dma(hsotg
))
3125 dwc2_hsotg_trytx(hsotg
, hs_ep
);
3131 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3132 * @hsotg: The device state.
3134 * Handle updating the device settings after the enumeration phase has
3137 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg
*hsotg
)
3139 u32 dsts
= dwc2_readl(hsotg
, DSTS
);
3140 int ep0_mps
= 0, ep_mps
= 8;
3143 * This should signal the finish of the enumeration phase
3144 * of the USB handshaking, so we should now know what rate
3148 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
3151 * note, since we're limited by the size of transfer on EP0, and
3152 * it seems IN transfers must be a even number of packets we do
3153 * not advertise a 64byte MPS on EP0.
3156 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3157 switch ((dsts
& DSTS_ENUMSPD_MASK
) >> DSTS_ENUMSPD_SHIFT
) {
3158 case DSTS_ENUMSPD_FS
:
3159 case DSTS_ENUMSPD_FS48
:
3160 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
3161 ep0_mps
= EP0_MPS_LIMIT
;
3165 case DSTS_ENUMSPD_HS
:
3166 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
3167 ep0_mps
= EP0_MPS_LIMIT
;
3171 case DSTS_ENUMSPD_LS
:
3172 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
3176 * note, we don't actually support LS in this driver at the
3177 * moment, and the documentation seems to imply that it isn't
3178 * supported by the PHYs on some of the devices.
3182 dev_info(hsotg
->dev
, "new device is %s\n",
3183 usb_speed_string(hsotg
->gadget
.speed
));
3186 * we should now know the maximum packet size for an
3187 * endpoint, so set the endpoints to a default value.
3192 /* Initialize ep0 for both in and out directions */
3193 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 1);
3194 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 0);
3195 for (i
= 1; i
< hsotg
->num_of_eps
; i
++) {
3196 if (hsotg
->eps_in
[i
])
3197 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3199 if (hsotg
->eps_out
[i
])
3200 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3205 /* ensure after enumeration our EP0 is active */
3207 dwc2_hsotg_enqueue_setup(hsotg
);
3209 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3210 dwc2_readl(hsotg
, DIEPCTL0
),
3211 dwc2_readl(hsotg
, DOEPCTL0
));
3215 * kill_all_requests - remove all requests from the endpoint's queue
3216 * @hsotg: The device state.
3217 * @ep: The endpoint the requests may be on.
3218 * @result: The result code to use.
3220 * Go through the requests on the given endpoint and mark them
3221 * completed with the given result code.
3223 static void kill_all_requests(struct dwc2_hsotg
*hsotg
,
3224 struct dwc2_hsotg_ep
*ep
,
3231 while (!list_empty(&ep
->queue
)) {
3232 struct dwc2_hsotg_req
*req
= get_ep_head(ep
);
3234 dwc2_hsotg_complete_request(hsotg
, ep
, req
, result
);
3237 if (!hsotg
->dedicated_fifos
)
3239 size
= (dwc2_readl(hsotg
, DTXFSTS(ep
->fifo_index
)) & 0xffff) * 4;
3240 if (size
< ep
->fifo_size
)
3241 dwc2_hsotg_txfifo_flush(hsotg
, ep
->fifo_index
);
3245 * dwc2_hsotg_disconnect - disconnect service
3246 * @hsotg: The device state.
3248 * The device has been disconnected. Remove all current
3249 * transactions and signal the gadget driver that this
3252 void dwc2_hsotg_disconnect(struct dwc2_hsotg
*hsotg
)
3256 if (!hsotg
->connected
)
3259 hsotg
->connected
= 0;
3260 hsotg
->test_mode
= 0;
3262 /* all endpoints should be shutdown */
3263 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
3264 if (hsotg
->eps_in
[ep
])
3265 kill_all_requests(hsotg
, hsotg
->eps_in
[ep
],
3267 if (hsotg
->eps_out
[ep
])
3268 kill_all_requests(hsotg
, hsotg
->eps_out
[ep
],
3272 call_gadget(hsotg
, disconnect
);
3273 hsotg
->lx_state
= DWC2_L3
;
3275 usb_gadget_set_state(&hsotg
->gadget
, USB_STATE_NOTATTACHED
);
3279 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3280 * @hsotg: The device state:
3281 * @periodic: True if this is a periodic FIFO interrupt
3283 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg
*hsotg
, bool periodic
)
3285 struct dwc2_hsotg_ep
*ep
;
3288 /* look through for any more data to transmit */
3289 for (epno
= 0; epno
< hsotg
->num_of_eps
; epno
++) {
3290 ep
= index_to_ep(hsotg
, epno
, 1);
3298 if ((periodic
&& !ep
->periodic
) ||
3299 (!periodic
&& ep
->periodic
))
3302 ret
= dwc2_hsotg_trytx(hsotg
, ep
);
3308 /* IRQ flags which will trigger a retry around the IRQ loop */
3309 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3313 static int dwc2_hsotg_ep_disable(struct usb_ep
*ep
);
3315 * dwc2_hsotg_core_init - issue softreset to the core
3316 * @hsotg: The device state
3317 * @is_usb_reset: Usb resetting flag
3319 * Issue a soft reset to the core, and await the core finishing it.
3321 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg
*hsotg
,
3330 /* Kill any ep0 requests as controller will be reinitialized */
3331 kill_all_requests(hsotg
, hsotg
->eps_out
[0], -ECONNRESET
);
3333 if (!is_usb_reset
) {
3334 if (dwc2_core_reset(hsotg
, true))
3337 /* all endpoints should be shutdown */
3338 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
3339 if (hsotg
->eps_in
[ep
])
3340 dwc2_hsotg_ep_disable(&hsotg
->eps_in
[ep
]->ep
);
3341 if (hsotg
->eps_out
[ep
])
3342 dwc2_hsotg_ep_disable(&hsotg
->eps_out
[ep
]->ep
);
3347 * we must now enable ep0 ready for host detection and then
3348 * set configuration.
3351 /* keep other bits untouched (so e.g. forced modes are not lost) */
3352 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
3353 usbcfg
&= ~GUSBCFG_TOUTCAL_MASK
;
3354 usbcfg
|= GUSBCFG_TOUTCAL(7);
3356 /* remove the HNP/SRP and set the PHY */
3357 usbcfg
&= ~(GUSBCFG_SRPCAP
| GUSBCFG_HNPCAP
);
3358 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
3360 dwc2_phy_init(hsotg
, true);
3362 dwc2_hsotg_init_fifo(hsotg
);
3365 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3367 dcfg
|= DCFG_EPMISCNT(1);
3369 switch (hsotg
->params
.speed
) {
3370 case DWC2_SPEED_PARAM_LOW
:
3371 dcfg
|= DCFG_DEVSPD_LS
;
3373 case DWC2_SPEED_PARAM_FULL
:
3374 if (hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
)
3375 dcfg
|= DCFG_DEVSPD_FS48
;
3377 dcfg
|= DCFG_DEVSPD_FS
;
3380 dcfg
|= DCFG_DEVSPD_HS
;
3383 if (hsotg
->params
.ipg_isoc_en
)
3384 dcfg
|= DCFG_IPG_ISOC_SUPPORDED
;
3386 dwc2_writel(hsotg
, dcfg
, DCFG
);
3388 /* Clear any pending OTG interrupts */
3389 dwc2_writel(hsotg
, 0xffffffff, GOTGINT
);
3391 /* Clear any pending interrupts */
3392 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
3393 intmsk
= GINTSTS_ERLYSUSP
| GINTSTS_SESSREQINT
|
3394 GINTSTS_GOUTNAKEFF
| GINTSTS_GINNAKEFF
|
3395 GINTSTS_USBRST
| GINTSTS_RESETDET
|
3396 GINTSTS_ENUMDONE
| GINTSTS_OTGINT
|
3397 GINTSTS_USBSUSP
| GINTSTS_WKUPINT
|
3398 GINTSTS_LPMTRANRCVD
;
3400 if (!using_desc_dma(hsotg
))
3401 intmsk
|= GINTSTS_INCOMPL_SOIN
| GINTSTS_INCOMPL_SOOUT
;
3403 if (!hsotg
->params
.external_id_pin_ctl
)
3404 intmsk
|= GINTSTS_CONIDSTSCHNG
;
3406 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
3408 if (using_dma(hsotg
)) {
3409 dwc2_writel(hsotg
, GAHBCFG_GLBL_INTR_EN
| GAHBCFG_DMA_EN
|
3410 hsotg
->params
.ahbcfg
,
3413 /* Set DDMA mode support in the core if needed */
3414 if (using_desc_dma(hsotg
))
3415 dwc2_set_bit(hsotg
, DCFG
, DCFG_DESCDMA_EN
);
3418 dwc2_writel(hsotg
, ((hsotg
->dedicated_fifos
) ?
3419 (GAHBCFG_NP_TXF_EMP_LVL
|
3420 GAHBCFG_P_TXF_EMP_LVL
) : 0) |
3421 GAHBCFG_GLBL_INTR_EN
, GAHBCFG
);
3425 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3426 * when we have no data to transfer. Otherwise we get being flooded by
3430 dwc2_writel(hsotg
, ((hsotg
->dedicated_fifos
&& !using_dma(hsotg
)) ?
3431 DIEPMSK_TXFIFOEMPTY
| DIEPMSK_INTKNTXFEMPMSK
: 0) |
3432 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
|
3433 DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
,
3437 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3438 * DMA mode we may need this and StsPhseRcvd.
3440 dwc2_writel(hsotg
, (using_dma(hsotg
) ? (DIEPMSK_XFERCOMPLMSK
|
3441 DOEPMSK_STSPHSERCVDMSK
) : 0) |
3442 DOEPMSK_EPDISBLDMSK
| DOEPMSK_AHBERRMSK
|
3446 /* Enable BNA interrupt for DDMA */
3447 if (using_desc_dma(hsotg
)) {
3448 dwc2_set_bit(hsotg
, DOEPMSK
, DOEPMSK_BNAMSK
);
3449 dwc2_set_bit(hsotg
, DIEPMSK
, DIEPMSK_BNAININTRMSK
);
3452 /* Enable Service Interval mode if supported */
3453 if (using_desc_dma(hsotg
) && hsotg
->params
.service_interval
)
3454 dwc2_set_bit(hsotg
, DCTL
, DCTL_SERVICE_INTERVAL_SUPPORTED
);
3456 dwc2_writel(hsotg
, 0, DAINTMSK
);
3458 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3459 dwc2_readl(hsotg
, DIEPCTL0
),
3460 dwc2_readl(hsotg
, DOEPCTL0
));
3462 /* enable in and out endpoint interrupts */
3463 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_OEPINT
| GINTSTS_IEPINT
);
3466 * Enable the RXFIFO when in slave mode, as this is how we collect
3467 * the data. In DMA mode, we get events from the FIFO but also
3468 * things we cannot process, so do not use it.
3470 if (!using_dma(hsotg
))
3471 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_RXFLVL
);
3473 /* Enable interrupts for EP0 in and out */
3474 dwc2_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
3475 dwc2_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
3477 if (!is_usb_reset
) {
3478 dwc2_set_bit(hsotg
, DCTL
, DCTL_PWRONPRGDONE
);
3479 udelay(10); /* see openiboot */
3480 dwc2_clear_bit(hsotg
, DCTL
, DCTL_PWRONPRGDONE
);
3483 dev_dbg(hsotg
->dev
, "DCTL=0x%08x\n", dwc2_readl(hsotg
, DCTL
));
3486 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3487 * writing to the EPCTL register..
3490 /* set to read 1 8byte packet */
3491 dwc2_writel(hsotg
, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3492 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0
);
3494 dwc2_writel(hsotg
, dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3495 DXEPCTL_CNAK
| DXEPCTL_EPENA
|
3499 /* enable, but don't activate EP0in */
3500 dwc2_writel(hsotg
, dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3501 DXEPCTL_USBACTEP
, DIEPCTL0
);
3503 /* clear global NAKs */
3504 val
= DCTL_CGOUTNAK
| DCTL_CGNPINNAK
;
3506 val
|= DCTL_SFTDISCON
;
3507 dwc2_set_bit(hsotg
, DCTL
, val
);
3509 /* configure the core to support LPM */
3510 dwc2_gadget_init_lpm(hsotg
);
3512 /* program GREFCLK register if needed */
3513 if (using_desc_dma(hsotg
) && hsotg
->params
.service_interval
)
3514 dwc2_gadget_program_ref_clk(hsotg
);
3516 /* must be at-least 3ms to allow bus to see disconnect */
3519 hsotg
->lx_state
= DWC2_L0
;
3521 dwc2_hsotg_enqueue_setup(hsotg
);
3523 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3524 dwc2_readl(hsotg
, DIEPCTL0
),
3525 dwc2_readl(hsotg
, DOEPCTL0
));
3528 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg
*hsotg
)
3530 /* set the soft-disconnect bit */
3531 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3534 void dwc2_hsotg_core_connect(struct dwc2_hsotg
*hsotg
)
3536 /* remove the soft-disconnect and let's go */
3537 dwc2_clear_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3541 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3542 * @hsotg: The device state:
3544 * This interrupt indicates one of the following conditions occurred while
3545 * transmitting an ISOC transaction.
3546 * - Corrupted IN Token for ISOC EP.
3547 * - Packet not complete in FIFO.
3549 * The following actions will be taken:
3550 * - Determine the EP
3551 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3553 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg
*hsotg
)
3555 struct dwc2_hsotg_ep
*hs_ep
;
3560 dev_dbg(hsotg
->dev
, "Incomplete isoc in interrupt received:\n");
3562 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3564 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3565 hs_ep
= hsotg
->eps_in
[idx
];
3566 /* Proceed only unmasked ISOC EPs */
3567 if ((BIT(idx
) & ~daintmsk
) || !hs_ep
->isochronous
)
3570 epctrl
= dwc2_readl(hsotg
, DIEPCTL(idx
));
3571 if ((epctrl
& DXEPCTL_EPENA
) &&
3572 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3573 epctrl
|= DXEPCTL_SNAK
;
3574 epctrl
|= DXEPCTL_EPDIS
;
3575 dwc2_writel(hsotg
, epctrl
, DIEPCTL(idx
));
3579 /* Clear interrupt */
3580 dwc2_writel(hsotg
, GINTSTS_INCOMPL_SOIN
, GINTSTS
);
3584 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3585 * @hsotg: The device state:
3587 * This interrupt indicates one of the following conditions occurred while
3588 * transmitting an ISOC transaction.
3589 * - Corrupted OUT Token for ISOC EP.
3590 * - Packet not complete in FIFO.
3592 * The following actions will be taken:
3593 * - Determine the EP
3594 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3596 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg
*hsotg
)
3602 struct dwc2_hsotg_ep
*hs_ep
;
3605 dev_dbg(hsotg
->dev
, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__
);
3607 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3608 daintmsk
>>= DAINT_OUTEP_SHIFT
;
3610 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3611 hs_ep
= hsotg
->eps_out
[idx
];
3612 /* Proceed only unmasked ISOC EPs */
3613 if ((BIT(idx
) & ~daintmsk
) || !hs_ep
->isochronous
)
3616 epctrl
= dwc2_readl(hsotg
, DOEPCTL(idx
));
3617 if ((epctrl
& DXEPCTL_EPENA
) &&
3618 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3619 /* Unmask GOUTNAKEFF interrupt */
3620 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3621 gintmsk
|= GINTSTS_GOUTNAKEFF
;
3622 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3624 gintsts
= dwc2_readl(hsotg
, GINTSTS
);
3625 if (!(gintsts
& GINTSTS_GOUTNAKEFF
)) {
3626 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGOUTNAK
);
3632 /* Clear interrupt */
3633 dwc2_writel(hsotg
, GINTSTS_INCOMPL_SOOUT
, GINTSTS
);
3637 * dwc2_hsotg_irq - handle device interrupt
3638 * @irq: The IRQ number triggered
3639 * @pw: The pw value when registered the handler.
3641 static irqreturn_t
dwc2_hsotg_irq(int irq
, void *pw
)
3643 struct dwc2_hsotg
*hsotg
= pw
;
3644 int retry_count
= 8;
3648 if (!dwc2_is_device_mode(hsotg
))
3651 spin_lock(&hsotg
->lock
);
3653 gintsts
= dwc2_readl(hsotg
, GINTSTS
);
3654 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3656 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
3657 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
3661 if (gintsts
& GINTSTS_RESETDET
) {
3662 dev_dbg(hsotg
->dev
, "%s: USBRstDet\n", __func__
);
3664 dwc2_writel(hsotg
, GINTSTS_RESETDET
, GINTSTS
);
3666 /* This event must be used only if controller is suspended */
3667 if (hsotg
->lx_state
== DWC2_L2
) {
3668 dwc2_exit_partial_power_down(hsotg
, true);
3669 hsotg
->lx_state
= DWC2_L0
;
3673 if (gintsts
& (GINTSTS_USBRST
| GINTSTS_RESETDET
)) {
3674 u32 usb_status
= dwc2_readl(hsotg
, GOTGCTL
);
3675 u32 connected
= hsotg
->connected
;
3677 dev_dbg(hsotg
->dev
, "%s: USBRst\n", __func__
);
3678 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
3679 dwc2_readl(hsotg
, GNPTXSTS
));
3681 dwc2_writel(hsotg
, GINTSTS_USBRST
, GINTSTS
);
3683 /* Report disconnection if it is not already done. */
3684 dwc2_hsotg_disconnect(hsotg
);
3686 /* Reset device address to zero */
3687 dwc2_clear_bit(hsotg
, DCFG
, DCFG_DEVADDR_MASK
);
3689 if (usb_status
& GOTGCTL_BSESVLD
&& connected
)
3690 dwc2_hsotg_core_init_disconnected(hsotg
, true);
3693 if (gintsts
& GINTSTS_ENUMDONE
) {
3694 dwc2_writel(hsotg
, GINTSTS_ENUMDONE
, GINTSTS
);
3696 dwc2_hsotg_irq_enumdone(hsotg
);
3699 if (gintsts
& (GINTSTS_OEPINT
| GINTSTS_IEPINT
)) {
3700 u32 daint
= dwc2_readl(hsotg
, DAINT
);
3701 u32 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3702 u32 daint_out
, daint_in
;
3706 daint_out
= daint
>> DAINT_OUTEP_SHIFT
;
3707 daint_in
= daint
& ~(daint_out
<< DAINT_OUTEP_SHIFT
);
3709 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
3711 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_out
;
3712 ep
++, daint_out
>>= 1) {
3714 dwc2_hsotg_epint(hsotg
, ep
, 0);
3717 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_in
;
3718 ep
++, daint_in
>>= 1) {
3720 dwc2_hsotg_epint(hsotg
, ep
, 1);
3724 /* check both FIFOs */
3726 if (gintsts
& GINTSTS_NPTXFEMP
) {
3727 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
3730 * Disable the interrupt to stop it happening again
3731 * unless one of these endpoint routines decides that
3732 * it needs re-enabling
3735 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_NPTXFEMP
);
3736 dwc2_hsotg_irq_fifoempty(hsotg
, false);
3739 if (gintsts
& GINTSTS_PTXFEMP
) {
3740 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
3742 /* See note in GINTSTS_NPTxFEmp */
3744 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_PTXFEMP
);
3745 dwc2_hsotg_irq_fifoempty(hsotg
, true);
3748 if (gintsts
& GINTSTS_RXFLVL
) {
3750 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3751 * we need to retry dwc2_hsotg_handle_rx if this is still
3755 dwc2_hsotg_handle_rx(hsotg
);
3758 if (gintsts
& GINTSTS_ERLYSUSP
) {
3759 dev_dbg(hsotg
->dev
, "GINTSTS_ErlySusp\n");
3760 dwc2_writel(hsotg
, GINTSTS_ERLYSUSP
, GINTSTS
);
3764 * these next two seem to crop-up occasionally causing the core
3765 * to shutdown the USB transfer, so try clearing them and logging
3769 if (gintsts
& GINTSTS_GOUTNAKEFF
) {
3774 struct dwc2_hsotg_ep
*hs_ep
;
3776 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3777 daintmsk
>>= DAINT_OUTEP_SHIFT
;
3778 /* Mask this interrupt */
3779 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3780 gintmsk
&= ~GINTSTS_GOUTNAKEFF
;
3781 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3783 dev_dbg(hsotg
->dev
, "GOUTNakEff triggered\n");
3784 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3785 hs_ep
= hsotg
->eps_out
[idx
];
3786 /* Proceed only unmasked ISOC EPs */
3787 if (BIT(idx
) & ~daintmsk
)
3790 epctrl
= dwc2_readl(hsotg
, DOEPCTL(idx
));
3793 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
) {
3794 epctrl
|= DXEPCTL_SNAK
;
3795 epctrl
|= DXEPCTL_EPDIS
;
3796 dwc2_writel(hsotg
, epctrl
, DOEPCTL(idx
));
3801 if (hs_ep
->halted
) {
3802 if (!(epctrl
& DXEPCTL_EPENA
))
3803 epctrl
|= DXEPCTL_EPENA
;
3804 epctrl
|= DXEPCTL_EPDIS
;
3805 epctrl
|= DXEPCTL_STALL
;
3806 dwc2_writel(hsotg
, epctrl
, DOEPCTL(idx
));
3810 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3813 if (gintsts
& GINTSTS_GINNAKEFF
) {
3814 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
3816 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGNPINNAK
);
3818 dwc2_hsotg_dump(hsotg
);
3821 if (gintsts
& GINTSTS_INCOMPL_SOIN
)
3822 dwc2_gadget_handle_incomplete_isoc_in(hsotg
);
3824 if (gintsts
& GINTSTS_INCOMPL_SOOUT
)
3825 dwc2_gadget_handle_incomplete_isoc_out(hsotg
);
3828 * if we've had fifo events, we should try and go around the
3829 * loop again to see if there's any point in returning yet.
3832 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
3835 /* Check WKUP_ALERT interrupt*/
3836 if (hsotg
->params
.service_interval
)
3837 dwc2_gadget_wkup_alert_handler(hsotg
);
3839 spin_unlock(&hsotg
->lock
);
3844 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg
*hsotg
,
3845 struct dwc2_hsotg_ep
*hs_ep
)
3850 epctrl_reg
= hs_ep
->dir_in
? DIEPCTL(hs_ep
->index
) :
3851 DOEPCTL(hs_ep
->index
);
3852 epint_reg
= hs_ep
->dir_in
? DIEPINT(hs_ep
->index
) :
3853 DOEPINT(hs_ep
->index
);
3855 dev_dbg(hsotg
->dev
, "%s: stopping transfer on %s\n", __func__
,
3858 if (hs_ep
->dir_in
) {
3859 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
) {
3860 dwc2_set_bit(hsotg
, epctrl_reg
, DXEPCTL_SNAK
);
3861 /* Wait for Nak effect */
3862 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
,
3863 DXEPINT_INEPNAKEFF
, 100))
3864 dev_warn(hsotg
->dev
,
3865 "%s: timeout DIEPINT.NAKEFF\n",
3868 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGNPINNAK
);
3869 /* Wait for Nak effect */
3870 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3871 GINTSTS_GINNAKEFF
, 100))
3872 dev_warn(hsotg
->dev
,
3873 "%s: timeout GINTSTS.GINNAKEFF\n",
3877 if (!(dwc2_readl(hsotg
, GINTSTS
) & GINTSTS_GOUTNAKEFF
))
3878 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGOUTNAK
);
3880 /* Wait for global nak to take effect */
3881 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3882 GINTSTS_GOUTNAKEFF
, 100))
3883 dev_warn(hsotg
->dev
, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3888 dwc2_set_bit(hsotg
, epctrl_reg
, DXEPCTL_EPDIS
| DXEPCTL_SNAK
);
3890 /* Wait for ep to be disabled */
3891 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
, DXEPINT_EPDISBLD
, 100))
3892 dev_warn(hsotg
->dev
,
3893 "%s: timeout DOEPCTL.EPDisable\n", __func__
);
3895 /* Clear EPDISBLD interrupt */
3896 dwc2_set_bit(hsotg
, epint_reg
, DXEPINT_EPDISBLD
);
3898 if (hs_ep
->dir_in
) {
3899 unsigned short fifo_index
;
3901 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
)
3902 fifo_index
= hs_ep
->fifo_index
;
3907 dwc2_flush_tx_fifo(hsotg
, fifo_index
);
3909 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3910 if (!hsotg
->dedicated_fifos
&& !hs_ep
->periodic
)
3911 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGNPINNAK
);
3914 /* Remove global NAKs */
3915 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGOUTNAK
);
3920 * dwc2_hsotg_ep_enable - enable the given endpoint
3921 * @ep: The USB endpint to configure
3922 * @desc: The USB endpoint descriptor to configure with.
3924 * This is called from the USB gadget code's usb_ep_enable().
3926 static int dwc2_hsotg_ep_enable(struct usb_ep
*ep
,
3927 const struct usb_endpoint_descriptor
*desc
)
3929 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
3930 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
3931 unsigned long flags
;
3932 unsigned int index
= hs_ep
->index
;
3938 unsigned int dir_in
;
3939 unsigned int i
, val
, size
;
3941 unsigned char ep_type
;
3945 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3946 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
3947 desc
->wMaxPacketSize
, desc
->bInterval
);
3949 /* not to be called for EP0 */
3951 dev_err(hsotg
->dev
, "%s: called for EP 0\n", __func__
);
3955 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
3956 if (dir_in
!= hs_ep
->dir_in
) {
3957 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
3961 ep_type
= desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
;
3962 mps
= usb_endpoint_maxp(desc
);
3963 mc
= usb_endpoint_maxp_mult(desc
);
3965 /* ISOC IN in DDMA supported bInterval up to 10 */
3966 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
&&
3967 dir_in
&& desc
->bInterval
> 10) {
3969 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__
);
3973 /* High bandwidth ISOC OUT in DDMA not supported */
3974 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
&&
3975 !dir_in
&& mc
> 1) {
3977 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__
);
3981 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3983 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
3984 epctrl
= dwc2_readl(hsotg
, epctrl_reg
);
3986 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3987 __func__
, epctrl
, epctrl_reg
);
3989 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
)
3990 desc_num
= MAX_DMA_DESC_NUM_HS_ISOC
;
3992 desc_num
= MAX_DMA_DESC_NUM_GENERIC
;
3994 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3995 if (using_desc_dma(hsotg
) && !hs_ep
->desc_list
) {
3996 hs_ep
->desc_list
= dmam_alloc_coherent(hsotg
->dev
,
3997 desc_num
* sizeof(struct dwc2_dma_desc
),
3998 &hs_ep
->desc_list_dma
, GFP_ATOMIC
);
3999 if (!hs_ep
->desc_list
) {
4005 spin_lock_irqsave(&hsotg
->lock
, flags
);
4007 epctrl
&= ~(DXEPCTL_EPTYPE_MASK
| DXEPCTL_MPS_MASK
);
4008 epctrl
|= DXEPCTL_MPS(mps
);
4011 * mark the endpoint as active, otherwise the core may ignore
4012 * transactions entirely for this endpoint
4014 epctrl
|= DXEPCTL_USBACTEP
;
4016 /* update the endpoint state */
4017 dwc2_hsotg_set_ep_maxpacket(hsotg
, hs_ep
->index
, mps
, mc
, dir_in
);
4019 /* default, set to non-periodic */
4020 hs_ep
->isochronous
= 0;
4021 hs_ep
->periodic
= 0;
4023 hs_ep
->interval
= desc
->bInterval
;
4026 case USB_ENDPOINT_XFER_ISOC
:
4027 epctrl
|= DXEPCTL_EPTYPE_ISO
;
4028 epctrl
|= DXEPCTL_SETEVENFR
;
4029 hs_ep
->isochronous
= 1;
4030 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
4031 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
4032 hs_ep
->next_desc
= 0;
4033 hs_ep
->compl_desc
= 0;
4035 hs_ep
->periodic
= 1;
4036 mask
= dwc2_readl(hsotg
, DIEPMSK
);
4037 mask
|= DIEPMSK_NAKMSK
;
4038 dwc2_writel(hsotg
, mask
, DIEPMSK
);
4040 mask
= dwc2_readl(hsotg
, DOEPMSK
);
4041 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
4042 dwc2_writel(hsotg
, mask
, DOEPMSK
);
4046 case USB_ENDPOINT_XFER_BULK
:
4047 epctrl
|= DXEPCTL_EPTYPE_BULK
;
4050 case USB_ENDPOINT_XFER_INT
:
4052 hs_ep
->periodic
= 1;
4054 if (hsotg
->gadget
.speed
== USB_SPEED_HIGH
)
4055 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
4057 epctrl
|= DXEPCTL_EPTYPE_INTERRUPT
;
4060 case USB_ENDPOINT_XFER_CONTROL
:
4061 epctrl
|= DXEPCTL_EPTYPE_CONTROL
;
4066 * if the hardware has dedicated fifos, we must give each IN EP
4067 * a unique tx-fifo even if it is non-periodic.
4069 if (dir_in
&& hsotg
->dedicated_fifos
) {
4070 unsigned fifo_count
= dwc2_hsotg_tx_fifo_count(hsotg
);
4072 u32 fifo_size
= UINT_MAX
;
4074 size
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
4075 for (i
= 1; i
<= fifo_count
; ++i
) {
4076 if (hsotg
->fifo_map
& (1 << i
))
4078 val
= dwc2_readl(hsotg
, DPTXFSIZN(i
));
4079 val
= (val
>> FIFOSIZE_DEPTH_SHIFT
) * 4;
4082 /* Search for smallest acceptable fifo */
4083 if (val
< fifo_size
) {
4090 "%s: No suitable fifo found\n", __func__
);
4094 epctrl
&= ~(DXEPCTL_TXFNUM_LIMIT
<< DXEPCTL_TXFNUM_SHIFT
);
4095 hsotg
->fifo_map
|= 1 << fifo_index
;
4096 epctrl
|= DXEPCTL_TXFNUM(fifo_index
);
4097 hs_ep
->fifo_index
= fifo_index
;
4098 hs_ep
->fifo_size
= fifo_size
;
4101 /* for non control endpoints, set PID to D0 */
4102 if (index
&& !hs_ep
->isochronous
)
4103 epctrl
|= DXEPCTL_SETD0PID
;
4105 /* WA for Full speed ISOC IN in DDMA mode.
4106 * By Clear NAK status of EP, core will send ZLP
4107 * to IN token and assert NAK interrupt relying
4108 * on TxFIFO status only
4111 if (hsotg
->gadget
.speed
== USB_SPEED_FULL
&&
4112 hs_ep
->isochronous
&& dir_in
) {
4113 /* The WA applies only to core versions from 2.72a
4114 * to 4.00a (including both). Also for FS_IOT_1.00a
4117 u32 gsnpsid
= dwc2_readl(hsotg
, GSNPSID
);
4119 if ((gsnpsid
>= DWC2_CORE_REV_2_72a
&&
4120 gsnpsid
<= DWC2_CORE_REV_4_00a
) ||
4121 gsnpsid
== DWC2_FS_IOT_REV_1_00a
||
4122 gsnpsid
== DWC2_HS_IOT_REV_1_00a
)
4123 epctrl
|= DXEPCTL_CNAK
;
4126 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
4129 dwc2_writel(hsotg
, epctrl
, epctrl_reg
);
4130 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
4131 __func__
, dwc2_readl(hsotg
, epctrl_reg
));
4133 /* enable the endpoint interrupt */
4134 dwc2_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
4137 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4140 if (ret
&& using_desc_dma(hsotg
) && hs_ep
->desc_list
) {
4141 dmam_free_coherent(hsotg
->dev
, desc_num
*
4142 sizeof(struct dwc2_dma_desc
),
4143 hs_ep
->desc_list
, hs_ep
->desc_list_dma
);
4144 hs_ep
->desc_list
= NULL
;
4151 * dwc2_hsotg_ep_disable - disable given endpoint
4152 * @ep: The endpoint to disable.
4154 static int dwc2_hsotg_ep_disable(struct usb_ep
*ep
)
4156 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4157 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
4158 int dir_in
= hs_ep
->dir_in
;
4159 int index
= hs_ep
->index
;
4163 dev_dbg(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
4165 if (ep
== &hsotg
->eps_out
[0]->ep
) {
4166 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
4170 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
4171 dev_err(hsotg
->dev
, "%s: called in host mode?\n", __func__
);
4175 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
4177 ctrl
= dwc2_readl(hsotg
, epctrl_reg
);
4179 if (ctrl
& DXEPCTL_EPENA
)
4180 dwc2_hsotg_ep_stop_xfr(hsotg
, hs_ep
);
4182 ctrl
&= ~DXEPCTL_EPENA
;
4183 ctrl
&= ~DXEPCTL_USBACTEP
;
4184 ctrl
|= DXEPCTL_SNAK
;
4186 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
4187 dwc2_writel(hsotg
, ctrl
, epctrl_reg
);
4189 /* disable endpoint interrupts */
4190 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
4192 /* terminate all requests with shutdown */
4193 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
);
4195 hsotg
->fifo_map
&= ~(1 << hs_ep
->fifo_index
);
4196 hs_ep
->fifo_index
= 0;
4197 hs_ep
->fifo_size
= 0;
4202 static int dwc2_hsotg_ep_disable_lock(struct usb_ep
*ep
)
4204 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4205 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
4206 unsigned long flags
;
4209 spin_lock_irqsave(&hsotg
->lock
, flags
);
4210 ret
= dwc2_hsotg_ep_disable(ep
);
4211 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4216 * on_list - check request is on the given endpoint
4217 * @ep: The endpoint to check.
4218 * @test: The request to test if it is on the endpoint.
4220 static bool on_list(struct dwc2_hsotg_ep
*ep
, struct dwc2_hsotg_req
*test
)
4222 struct dwc2_hsotg_req
*req
, *treq
;
4224 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
4233 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4234 * @ep: The endpoint to dequeue.
4235 * @req: The request to be removed from a queue.
4237 static int dwc2_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
4239 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
4240 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4241 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4242 unsigned long flags
;
4244 dev_dbg(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
4246 spin_lock_irqsave(&hs
->lock
, flags
);
4248 if (!on_list(hs_ep
, hs_req
)) {
4249 spin_unlock_irqrestore(&hs
->lock
, flags
);
4253 /* Dequeue already started request */
4254 if (req
== &hs_ep
->req
->req
)
4255 dwc2_hsotg_ep_stop_xfr(hs
, hs_ep
);
4257 dwc2_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
4258 spin_unlock_irqrestore(&hs
->lock
, flags
);
4264 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4265 * @ep: The endpoint to set halt.
4266 * @value: Set or unset the halt.
4267 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4268 * the endpoint is busy processing requests.
4270 * We need to stall the endpoint immediately if request comes from set_feature
4271 * protocol command handler.
4273 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
)
4275 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4276 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4277 int index
= hs_ep
->index
;
4282 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
4286 dwc2_hsotg_stall_ep0(hs
);
4289 "%s: can't clear halt on ep0\n", __func__
);
4293 if (hs_ep
->isochronous
) {
4294 dev_err(hs
->dev
, "%s is Isochronous Endpoint\n", ep
->name
);
4298 if (!now
&& value
&& !list_empty(&hs_ep
->queue
)) {
4299 dev_dbg(hs
->dev
, "%s request is pending, cannot halt\n",
4304 if (hs_ep
->dir_in
) {
4305 epreg
= DIEPCTL(index
);
4306 epctl
= dwc2_readl(hs
, epreg
);
4309 epctl
|= DXEPCTL_STALL
| DXEPCTL_SNAK
;
4310 if (epctl
& DXEPCTL_EPENA
)
4311 epctl
|= DXEPCTL_EPDIS
;
4313 epctl
&= ~DXEPCTL_STALL
;
4314 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4315 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4316 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4317 epctl
|= DXEPCTL_SETD0PID
;
4319 dwc2_writel(hs
, epctl
, epreg
);
4321 epreg
= DOEPCTL(index
);
4322 epctl
= dwc2_readl(hs
, epreg
);
4325 if (!(dwc2_readl(hs
, GINTSTS
) & GINTSTS_GOUTNAKEFF
))
4326 dwc2_set_bit(hs
, DCTL
, DCTL_SGOUTNAK
);
4327 // STALL bit will be set in GOUTNAKEFF interrupt handler
4329 epctl
&= ~DXEPCTL_STALL
;
4330 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4331 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4332 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4333 epctl
|= DXEPCTL_SETD0PID
;
4334 dwc2_writel(hs
, epctl
, epreg
);
4338 hs_ep
->halted
= value
;
4343 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4344 * @ep: The endpoint to set halt.
4345 * @value: Set or unset the halt.
4347 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep
*ep
, int value
)
4349 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4350 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4351 unsigned long flags
= 0;
4354 spin_lock_irqsave(&hs
->lock
, flags
);
4355 ret
= dwc2_hsotg_ep_sethalt(ep
, value
, false);
4356 spin_unlock_irqrestore(&hs
->lock
, flags
);
4361 static const struct usb_ep_ops dwc2_hsotg_ep_ops
= {
4362 .enable
= dwc2_hsotg_ep_enable
,
4363 .disable
= dwc2_hsotg_ep_disable_lock
,
4364 .alloc_request
= dwc2_hsotg_ep_alloc_request
,
4365 .free_request
= dwc2_hsotg_ep_free_request
,
4366 .queue
= dwc2_hsotg_ep_queue_lock
,
4367 .dequeue
= dwc2_hsotg_ep_dequeue
,
4368 .set_halt
= dwc2_hsotg_ep_sethalt_lock
,
4369 /* note, don't believe we have any call for the fifo routines */
4373 * dwc2_hsotg_init - initialize the usb core
4374 * @hsotg: The driver state
4376 static void dwc2_hsotg_init(struct dwc2_hsotg
*hsotg
)
4378 /* unmask subset of endpoint interrupts */
4380 dwc2_writel(hsotg
, DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
|
4381 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
,
4384 dwc2_writel(hsotg
, DOEPMSK_SETUPMSK
| DOEPMSK_AHBERRMSK
|
4385 DOEPMSK_EPDISBLDMSK
| DOEPMSK_XFERCOMPLMSK
,
4388 dwc2_writel(hsotg
, 0, DAINTMSK
);
4390 /* Be in disconnected state until gadget is registered */
4391 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
4395 dev_dbg(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4396 dwc2_readl(hsotg
, GRXFSIZ
),
4397 dwc2_readl(hsotg
, GNPTXFSIZ
));
4399 dwc2_hsotg_init_fifo(hsotg
);
4401 if (using_dma(hsotg
))
4402 dwc2_set_bit(hsotg
, GAHBCFG
, GAHBCFG_DMA_EN
);
4406 * dwc2_hsotg_udc_start - prepare the udc for work
4407 * @gadget: The usb gadget state
4408 * @driver: The usb gadget driver
4410 * Perform initialization to prepare udc device and driver
4413 static int dwc2_hsotg_udc_start(struct usb_gadget
*gadget
,
4414 struct usb_gadget_driver
*driver
)
4416 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4417 unsigned long flags
;
4421 pr_err("%s: called with no device\n", __func__
);
4426 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
4430 if (driver
->max_speed
< USB_SPEED_FULL
)
4431 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
4433 if (!driver
->setup
) {
4434 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
4438 WARN_ON(hsotg
->driver
);
4440 driver
->driver
.bus
= NULL
;
4441 hsotg
->driver
= driver
;
4442 hsotg
->gadget
.dev
.of_node
= hsotg
->dev
->of_node
;
4443 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4445 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
) {
4446 ret
= dwc2_lowlevel_hw_enable(hsotg
);
4451 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4452 otg_set_peripheral(hsotg
->uphy
->otg
, &hsotg
->gadget
);
4454 spin_lock_irqsave(&hsotg
->lock
, flags
);
4455 if (dwc2_hw_is_device(hsotg
)) {
4456 dwc2_hsotg_init(hsotg
);
4457 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4461 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4463 gadget
->sg_supported
= using_desc_dma(hsotg
);
4464 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
4469 hsotg
->driver
= NULL
;
4474 * dwc2_hsotg_udc_stop - stop the udc
4475 * @gadget: The usb gadget state
4477 * Stop udc hw block and stay tunned for future transmissions
4479 static int dwc2_hsotg_udc_stop(struct usb_gadget
*gadget
)
4481 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4482 unsigned long flags
= 0;
4488 /* all endpoints should be shutdown */
4489 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
4490 if (hsotg
->eps_in
[ep
])
4491 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_in
[ep
]->ep
);
4492 if (hsotg
->eps_out
[ep
])
4493 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_out
[ep
]->ep
);
4496 spin_lock_irqsave(&hsotg
->lock
, flags
);
4498 hsotg
->driver
= NULL
;
4499 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4502 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4504 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4505 otg_set_peripheral(hsotg
->uphy
->otg
, NULL
);
4507 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4508 dwc2_lowlevel_hw_disable(hsotg
);
4514 * dwc2_hsotg_gadget_getframe - read the frame number
4515 * @gadget: The usb gadget state
4517 * Read the {micro} frame number
4519 static int dwc2_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
4521 return dwc2_hsotg_read_frameno(to_hsotg(gadget
));
4525 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4526 * @gadget: The usb gadget state
4527 * @is_on: Current state of the USB PHY
4529 * Connect/Disconnect the USB PHY pullup
4531 static int dwc2_hsotg_pullup(struct usb_gadget
*gadget
, int is_on
)
4533 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4534 unsigned long flags
= 0;
4536 dev_dbg(hsotg
->dev
, "%s: is_on: %d op_state: %d\n", __func__
, is_on
,
4539 /* Don't modify pullup state while in host mode */
4540 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
4541 hsotg
->enabled
= is_on
;
4545 spin_lock_irqsave(&hsotg
->lock
, flags
);
4548 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4549 /* Enable ACG feature in device mode,if supported */
4550 dwc2_enable_acg(hsotg
);
4551 dwc2_hsotg_core_connect(hsotg
);
4553 dwc2_hsotg_core_disconnect(hsotg
);
4554 dwc2_hsotg_disconnect(hsotg
);
4558 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4559 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4564 static int dwc2_hsotg_vbus_session(struct usb_gadget
*gadget
, int is_active
)
4566 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4567 unsigned long flags
;
4569 dev_dbg(hsotg
->dev
, "%s: is_active: %d\n", __func__
, is_active
);
4570 spin_lock_irqsave(&hsotg
->lock
, flags
);
4573 * If controller is hibernated, it must exit from power_down
4574 * before being initialized / de-initialized
4576 if (hsotg
->lx_state
== DWC2_L2
)
4577 dwc2_exit_partial_power_down(hsotg
, false);
4580 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4582 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4583 if (hsotg
->enabled
) {
4584 /* Enable ACG feature in device mode,if supported */
4585 dwc2_enable_acg(hsotg
);
4586 dwc2_hsotg_core_connect(hsotg
);
4589 dwc2_hsotg_core_disconnect(hsotg
);
4590 dwc2_hsotg_disconnect(hsotg
);
4593 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4598 * dwc2_hsotg_vbus_draw - report bMaxPower field
4599 * @gadget: The usb gadget state
4600 * @mA: Amount of current
4602 * Report how much power the device may consume to the phy.
4604 static int dwc2_hsotg_vbus_draw(struct usb_gadget
*gadget
, unsigned int mA
)
4606 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4608 if (IS_ERR_OR_NULL(hsotg
->uphy
))
4610 return usb_phy_set_power(hsotg
->uphy
, mA
);
4613 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops
= {
4614 .get_frame
= dwc2_hsotg_gadget_getframe
,
4615 .udc_start
= dwc2_hsotg_udc_start
,
4616 .udc_stop
= dwc2_hsotg_udc_stop
,
4617 .pullup
= dwc2_hsotg_pullup
,
4618 .vbus_session
= dwc2_hsotg_vbus_session
,
4619 .vbus_draw
= dwc2_hsotg_vbus_draw
,
4623 * dwc2_hsotg_initep - initialise a single endpoint
4624 * @hsotg: The device state.
4625 * @hs_ep: The endpoint to be initialised.
4626 * @epnum: The endpoint number
4627 * @dir_in: True if direction is in.
4629 * Initialise the given endpoint (as part of the probe and device state
4630 * creation) to give to the gadget driver. Setup the endpoint name, any
4631 * direction information and other state that may be required.
4633 static void dwc2_hsotg_initep(struct dwc2_hsotg
*hsotg
,
4634 struct dwc2_hsotg_ep
*hs_ep
,
4647 hs_ep
->dir_in
= dir_in
;
4648 hs_ep
->index
= epnum
;
4650 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
4652 INIT_LIST_HEAD(&hs_ep
->queue
);
4653 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
4655 /* add to the list of endpoints known by the gadget driver */
4657 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
4659 hs_ep
->parent
= hsotg
;
4660 hs_ep
->ep
.name
= hs_ep
->name
;
4662 if (hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
)
4663 usb_ep_set_maxpacket_limit(&hs_ep
->ep
, 8);
4665 usb_ep_set_maxpacket_limit(&hs_ep
->ep
,
4666 epnum
? 1024 : EP0_MPS_LIMIT
);
4667 hs_ep
->ep
.ops
= &dwc2_hsotg_ep_ops
;
4670 hs_ep
->ep
.caps
.type_control
= true;
4672 if (hsotg
->params
.speed
!= DWC2_SPEED_PARAM_LOW
) {
4673 hs_ep
->ep
.caps
.type_iso
= true;
4674 hs_ep
->ep
.caps
.type_bulk
= true;
4676 hs_ep
->ep
.caps
.type_int
= true;
4680 hs_ep
->ep
.caps
.dir_in
= true;
4682 hs_ep
->ep
.caps
.dir_out
= true;
4685 * if we're using dma, we need to set the next-endpoint pointer
4686 * to be something valid.
4689 if (using_dma(hsotg
)) {
4690 u32 next
= DXEPCTL_NEXTEP((epnum
+ 1) % 15);
4693 dwc2_writel(hsotg
, next
, DIEPCTL(epnum
));
4695 dwc2_writel(hsotg
, next
, DOEPCTL(epnum
));
4700 * dwc2_hsotg_hw_cfg - read HW configuration registers
4701 * @hsotg: Programming view of the DWC_otg controller
4703 * Read the USB core HW configuration registers
4705 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg
*hsotg
)
4711 /* check hardware configuration */
4713 hsotg
->num_of_eps
= hsotg
->hw_params
.num_dev_ep
;
4716 hsotg
->num_of_eps
++;
4718 hsotg
->eps_in
[0] = devm_kzalloc(hsotg
->dev
,
4719 sizeof(struct dwc2_hsotg_ep
),
4721 if (!hsotg
->eps_in
[0])
4723 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4724 hsotg
->eps_out
[0] = hsotg
->eps_in
[0];
4726 cfg
= hsotg
->hw_params
.dev_ep_dirs
;
4727 for (i
= 1, cfg
>>= 2; i
< hsotg
->num_of_eps
; i
++, cfg
>>= 2) {
4729 /* Direction in or both */
4730 if (!(ep_type
& 2)) {
4731 hsotg
->eps_in
[i
] = devm_kzalloc(hsotg
->dev
,
4732 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4733 if (!hsotg
->eps_in
[i
])
4736 /* Direction out or both */
4737 if (!(ep_type
& 1)) {
4738 hsotg
->eps_out
[i
] = devm_kzalloc(hsotg
->dev
,
4739 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4740 if (!hsotg
->eps_out
[i
])
4745 hsotg
->fifo_mem
= hsotg
->hw_params
.total_fifo_size
;
4746 hsotg
->dedicated_fifos
= hsotg
->hw_params
.en_multiple_tx_fifo
;
4748 dev_info(hsotg
->dev
, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4750 hsotg
->dedicated_fifos
? "dedicated" : "shared",
4756 * dwc2_hsotg_dump - dump state of the udc
4757 * @hsotg: Programming view of the DWC_otg controller
4760 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
)
4763 struct device
*dev
= hsotg
->dev
;
4767 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4768 dwc2_readl(hsotg
, DCFG
), dwc2_readl(hsotg
, DCTL
),
4769 dwc2_readl(hsotg
, DIEPMSK
));
4771 dev_info(dev
, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4772 dwc2_readl(hsotg
, GAHBCFG
), dwc2_readl(hsotg
, GHWCFG1
));
4774 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4775 dwc2_readl(hsotg
, GRXFSIZ
), dwc2_readl(hsotg
, GNPTXFSIZ
));
4777 /* show periodic fifo settings */
4779 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
4780 val
= dwc2_readl(hsotg
, DPTXFSIZN(idx
));
4781 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
4782 val
>> FIFOSIZE_DEPTH_SHIFT
,
4783 val
& FIFOSIZE_STARTADDR_MASK
);
4786 for (idx
= 0; idx
< hsotg
->num_of_eps
; idx
++) {
4788 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
4789 dwc2_readl(hsotg
, DIEPCTL(idx
)),
4790 dwc2_readl(hsotg
, DIEPTSIZ(idx
)),
4791 dwc2_readl(hsotg
, DIEPDMA(idx
)));
4793 val
= dwc2_readl(hsotg
, DOEPCTL(idx
));
4795 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4796 idx
, dwc2_readl(hsotg
, DOEPCTL(idx
)),
4797 dwc2_readl(hsotg
, DOEPTSIZ(idx
)),
4798 dwc2_readl(hsotg
, DOEPDMA(idx
)));
4801 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4802 dwc2_readl(hsotg
, DVBUSDIS
), dwc2_readl(hsotg
, DVBUSPULSE
));
4807 * dwc2_gadget_init - init function for gadget
4808 * @hsotg: Programming view of the DWC_otg controller
4811 int dwc2_gadget_init(struct dwc2_hsotg
*hsotg
)
4813 struct device
*dev
= hsotg
->dev
;
4817 /* Dump fifo information */
4818 dev_dbg(dev
, "NonPeriodic TXFIFO size: %d\n",
4819 hsotg
->params
.g_np_tx_fifo_size
);
4820 dev_dbg(dev
, "RXFIFO size: %d\n", hsotg
->params
.g_rx_fifo_size
);
4822 hsotg
->gadget
.max_speed
= USB_SPEED_HIGH
;
4823 hsotg
->gadget
.ops
= &dwc2_hsotg_gadget_ops
;
4824 hsotg
->gadget
.name
= dev_name(dev
);
4825 hsotg
->remote_wakeup_allowed
= 0;
4827 if (hsotg
->params
.lpm
)
4828 hsotg
->gadget
.lpm_capable
= true;
4830 if (hsotg
->dr_mode
== USB_DR_MODE_OTG
)
4831 hsotg
->gadget
.is_otg
= 1;
4832 else if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4833 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4835 ret
= dwc2_hsotg_hw_cfg(hsotg
);
4837 dev_err(hsotg
->dev
, "Hardware configuration failed: %d\n", ret
);
4841 hsotg
->ctrl_buff
= devm_kzalloc(hsotg
->dev
,
4842 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
4843 if (!hsotg
->ctrl_buff
)
4846 hsotg
->ep0_buff
= devm_kzalloc(hsotg
->dev
,
4847 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
4848 if (!hsotg
->ep0_buff
)
4851 if (using_desc_dma(hsotg
)) {
4852 ret
= dwc2_gadget_alloc_ctrl_desc_chains(hsotg
);
4857 ret
= devm_request_irq(hsotg
->dev
, hsotg
->irq
, dwc2_hsotg_irq
,
4858 IRQF_SHARED
, dev_name(hsotg
->dev
), hsotg
);
4860 dev_err(dev
, "cannot claim IRQ for gadget\n");
4864 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4866 if (hsotg
->num_of_eps
== 0) {
4867 dev_err(dev
, "wrong number of EPs (zero)\n");
4871 /* setup endpoint information */
4873 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
4874 hsotg
->gadget
.ep0
= &hsotg
->eps_out
[0]->ep
;
4876 /* allocate EP0 request */
4878 hsotg
->ctrl_req
= dwc2_hsotg_ep_alloc_request(&hsotg
->eps_out
[0]->ep
,
4880 if (!hsotg
->ctrl_req
) {
4881 dev_err(dev
, "failed to allocate ctrl req\n");
4885 /* initialise the endpoints now the core has been initialised */
4886 for (epnum
= 0; epnum
< hsotg
->num_of_eps
; epnum
++) {
4887 if (hsotg
->eps_in
[epnum
])
4888 dwc2_hsotg_initep(hsotg
, hsotg
->eps_in
[epnum
],
4890 if (hsotg
->eps_out
[epnum
])
4891 dwc2_hsotg_initep(hsotg
, hsotg
->eps_out
[epnum
],
4895 ret
= usb_add_gadget_udc(dev
, &hsotg
->gadget
);
4897 dwc2_hsotg_ep_free_request(&hsotg
->eps_out
[0]->ep
,
4901 dwc2_hsotg_dump(hsotg
);
4907 * dwc2_hsotg_remove - remove function for hsotg driver
4908 * @hsotg: Programming view of the DWC_otg controller
4911 int dwc2_hsotg_remove(struct dwc2_hsotg
*hsotg
)
4913 usb_del_gadget_udc(&hsotg
->gadget
);
4914 dwc2_hsotg_ep_free_request(&hsotg
->eps_out
[0]->ep
, hsotg
->ctrl_req
);
4919 int dwc2_hsotg_suspend(struct dwc2_hsotg
*hsotg
)
4921 unsigned long flags
;
4923 if (hsotg
->lx_state
!= DWC2_L0
)
4926 if (hsotg
->driver
) {
4929 dev_info(hsotg
->dev
, "suspending usb gadget %s\n",
4930 hsotg
->driver
->driver
.name
);
4932 spin_lock_irqsave(&hsotg
->lock
, flags
);
4934 dwc2_hsotg_core_disconnect(hsotg
);
4935 dwc2_hsotg_disconnect(hsotg
);
4936 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4937 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4939 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
4940 if (hsotg
->eps_in
[ep
])
4941 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_in
[ep
]->ep
);
4942 if (hsotg
->eps_out
[ep
])
4943 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_out
[ep
]->ep
);
4950 int dwc2_hsotg_resume(struct dwc2_hsotg
*hsotg
)
4952 unsigned long flags
;
4954 if (hsotg
->lx_state
== DWC2_L2
)
4957 if (hsotg
->driver
) {
4958 dev_info(hsotg
->dev
, "resuming usb gadget %s\n",
4959 hsotg
->driver
->driver
.name
);
4961 spin_lock_irqsave(&hsotg
->lock
, flags
);
4962 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4963 if (hsotg
->enabled
) {
4964 /* Enable ACG feature in device mode,if supported */
4965 dwc2_enable_acg(hsotg
);
4966 dwc2_hsotg_core_connect(hsotg
);
4968 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4975 * dwc2_backup_device_registers() - Backup controller device registers.
4976 * When suspending usb bus, registers needs to be backuped
4977 * if controller power is disabled once suspended.
4979 * @hsotg: Programming view of the DWC_otg controller
4981 int dwc2_backup_device_registers(struct dwc2_hsotg
*hsotg
)
4983 struct dwc2_dregs_backup
*dr
;
4986 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
4988 /* Backup dev regs */
4989 dr
= &hsotg
->dr_backup
;
4991 dr
->dcfg
= dwc2_readl(hsotg
, DCFG
);
4992 dr
->dctl
= dwc2_readl(hsotg
, DCTL
);
4993 dr
->daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
4994 dr
->diepmsk
= dwc2_readl(hsotg
, DIEPMSK
);
4995 dr
->doepmsk
= dwc2_readl(hsotg
, DOEPMSK
);
4997 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
4999 dr
->diepctl
[i
] = dwc2_readl(hsotg
, DIEPCTL(i
));
5001 /* Ensure DATA PID is correctly configured */
5002 if (dr
->diepctl
[i
] & DXEPCTL_DPID
)
5003 dr
->diepctl
[i
] |= DXEPCTL_SETD1PID
;
5005 dr
->diepctl
[i
] |= DXEPCTL_SETD0PID
;
5007 dr
->dieptsiz
[i
] = dwc2_readl(hsotg
, DIEPTSIZ(i
));
5008 dr
->diepdma
[i
] = dwc2_readl(hsotg
, DIEPDMA(i
));
5010 /* Backup OUT EPs */
5011 dr
->doepctl
[i
] = dwc2_readl(hsotg
, DOEPCTL(i
));
5013 /* Ensure DATA PID is correctly configured */
5014 if (dr
->doepctl
[i
] & DXEPCTL_DPID
)
5015 dr
->doepctl
[i
] |= DXEPCTL_SETD1PID
;
5017 dr
->doepctl
[i
] |= DXEPCTL_SETD0PID
;
5019 dr
->doeptsiz
[i
] = dwc2_readl(hsotg
, DOEPTSIZ(i
));
5020 dr
->doepdma
[i
] = dwc2_readl(hsotg
, DOEPDMA(i
));
5021 dr
->dtxfsiz
[i
] = dwc2_readl(hsotg
, DPTXFSIZN(i
));
5028 * dwc2_restore_device_registers() - Restore controller device registers.
5029 * When resuming usb bus, device registers needs to be restored
5030 * if controller power were disabled.
5032 * @hsotg: Programming view of the DWC_otg controller
5033 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5035 * Return: 0 if successful, negative error code otherwise
5037 int dwc2_restore_device_registers(struct dwc2_hsotg
*hsotg
, int remote_wakeup
)
5039 struct dwc2_dregs_backup
*dr
;
5042 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5044 /* Restore dev regs */
5045 dr
= &hsotg
->dr_backup
;
5047 dev_err(hsotg
->dev
, "%s: no device registers to restore\n",
5054 dwc2_writel(hsotg
, dr
->dctl
, DCTL
);
5056 dwc2_writel(hsotg
, dr
->daintmsk
, DAINTMSK
);
5057 dwc2_writel(hsotg
, dr
->diepmsk
, DIEPMSK
);
5058 dwc2_writel(hsotg
, dr
->doepmsk
, DOEPMSK
);
5060 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
5061 /* Restore IN EPs */
5062 dwc2_writel(hsotg
, dr
->dieptsiz
[i
], DIEPTSIZ(i
));
5063 dwc2_writel(hsotg
, dr
->diepdma
[i
], DIEPDMA(i
));
5064 dwc2_writel(hsotg
, dr
->doeptsiz
[i
], DOEPTSIZ(i
));
5065 /** WA for enabled EPx's IN in DDMA mode. On entering to
5066 * hibernation wrong value read and saved from DIEPDMAx,
5067 * as result BNA interrupt asserted on hibernation exit
5068 * by restoring from saved area.
5070 if (hsotg
->params
.g_dma_desc
&&
5071 (dr
->diepctl
[i
] & DXEPCTL_EPENA
))
5072 dr
->diepdma
[i
] = hsotg
->eps_in
[i
]->desc_list_dma
;
5073 dwc2_writel(hsotg
, dr
->dtxfsiz
[i
], DPTXFSIZN(i
));
5074 dwc2_writel(hsotg
, dr
->diepctl
[i
], DIEPCTL(i
));
5075 /* Restore OUT EPs */
5076 dwc2_writel(hsotg
, dr
->doeptsiz
[i
], DOEPTSIZ(i
));
5077 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5078 * hibernation wrong value read and saved from DOEPDMAx,
5079 * as result BNA interrupt asserted on hibernation exit
5080 * by restoring from saved area.
5082 if (hsotg
->params
.g_dma_desc
&&
5083 (dr
->doepctl
[i
] & DXEPCTL_EPENA
))
5084 dr
->doepdma
[i
] = hsotg
->eps_out
[i
]->desc_list_dma
;
5085 dwc2_writel(hsotg
, dr
->doepdma
[i
], DOEPDMA(i
));
5086 dwc2_writel(hsotg
, dr
->doepctl
[i
], DOEPCTL(i
));
5093 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5095 * @hsotg: Programming view of DWC_otg controller
5098 void dwc2_gadget_init_lpm(struct dwc2_hsotg
*hsotg
)
5102 if (!hsotg
->params
.lpm
)
5105 val
= GLPMCFG_LPMCAP
| GLPMCFG_APPL1RES
;
5106 val
|= hsotg
->params
.hird_threshold_en
? GLPMCFG_HIRD_THRES_EN
: 0;
5107 val
|= hsotg
->params
.lpm_clock_gating
? GLPMCFG_ENBLSLPM
: 0;
5108 val
|= hsotg
->params
.hird_threshold
<< GLPMCFG_HIRD_THRES_SHIFT
;
5109 val
|= hsotg
->params
.besl
? GLPMCFG_ENBESL
: 0;
5110 val
|= GLPMCFG_LPM_REJECT_CTRL_CONTROL
;
5111 val
|= GLPMCFG_LPM_ACCEPT_CTRL_ISOC
;
5112 dwc2_writel(hsotg
, val
, GLPMCFG
);
5113 dev_dbg(hsotg
->dev
, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg
, GLPMCFG
));
5115 /* Unmask WKUP_ALERT Interrupt */
5116 if (hsotg
->params
.service_interval
)
5117 dwc2_set_bit(hsotg
, GINTMSK2
, GINTMSK2_WKUP_ALERT_INT_MSK
);
5121 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5123 * @hsotg: Programming view of DWC_otg controller
5126 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg
*hsotg
)
5130 val
|= GREFCLK_REF_CLK_MODE
;
5131 val
|= hsotg
->params
.ref_clk_per
<< GREFCLK_REFCLKPER_SHIFT
;
5132 val
|= hsotg
->params
.sof_cnt_wkup_alert
<<
5133 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT
;
5135 dwc2_writel(hsotg
, val
, GREFCLK
);
5136 dev_dbg(hsotg
->dev
, "GREFCLK=0x%08x\n", dwc2_readl(hsotg
, GREFCLK
));
5140 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5142 * @hsotg: Programming view of the DWC_otg controller
5144 * Return non-zero if failed to enter to hibernation.
5146 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg
*hsotg
)
5151 /* Change to L2(suspend) state */
5152 hsotg
->lx_state
= DWC2_L2
;
5153 dev_dbg(hsotg
->dev
, "Start of hibernation completed\n");
5154 ret
= dwc2_backup_global_registers(hsotg
);
5156 dev_err(hsotg
->dev
, "%s: failed to backup global registers\n",
5160 ret
= dwc2_backup_device_registers(hsotg
);
5162 dev_err(hsotg
->dev
, "%s: failed to backup device registers\n",
5167 gpwrdn
= GPWRDN_PWRDNRSTN
;
5168 gpwrdn
|= GPWRDN_PMUACTV
;
5169 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5172 /* Set flag to indicate that we are in hibernation */
5173 hsotg
->hibernated
= 1;
5175 /* Enable interrupts from wake up logic */
5176 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5177 gpwrdn
|= GPWRDN_PMUINTSEL
;
5178 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5181 /* Unmask device mode interrupts in GPWRDN */
5182 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5183 gpwrdn
|= GPWRDN_RST_DET_MSK
;
5184 gpwrdn
|= GPWRDN_LNSTSCHG_MSK
;
5185 gpwrdn
|= GPWRDN_STS_CHGINT_MSK
;
5186 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5189 /* Enable Power Down Clamp */
5190 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5191 gpwrdn
|= GPWRDN_PWRDNCLMP
;
5192 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5195 /* Switch off VDD */
5196 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5197 gpwrdn
|= GPWRDN_PWRDNSWTCH
;
5198 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5201 /* Save gpwrdn register for further usage if stschng interrupt */
5202 hsotg
->gr_backup
.gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5203 dev_dbg(hsotg
->dev
, "Hibernation completed\n");
5209 * dwc2_gadget_exit_hibernation()
5210 * This function is for exiting from Device mode hibernation by host initiated
5211 * resume/reset and device initiated remote-wakeup.
5213 * @hsotg: Programming view of the DWC_otg controller
5214 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5215 * @reset: indicates whether resume is initiated by Reset.
5217 * Return non-zero if failed to exit from hibernation.
5219 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg
*hsotg
,
5220 int rem_wakeup
, int reset
)
5226 struct dwc2_gregs_backup
*gr
;
5227 struct dwc2_dregs_backup
*dr
;
5229 gr
= &hsotg
->gr_backup
;
5230 dr
= &hsotg
->dr_backup
;
5232 if (!hsotg
->hibernated
) {
5233 dev_dbg(hsotg
->dev
, "Already exited from Hibernation\n");
5237 "%s: called with rem_wakeup = %d reset = %d\n",
5238 __func__
, rem_wakeup
, reset
);
5240 dwc2_hib_restore_common(hsotg
, rem_wakeup
, 0);
5243 /* Clear all pending interupts */
5244 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5247 /* De-assert Restore */
5248 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5249 gpwrdn
&= ~GPWRDN_RESTORE
;
5250 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5254 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5255 pcgcctl
&= ~PCGCTL_RSTPDWNMODULE
;
5256 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5259 /* Restore GUSBCFG, DCFG and DCTL */
5260 dwc2_writel(hsotg
, gr
->gusbcfg
, GUSBCFG
);
5261 dwc2_writel(hsotg
, dr
->dcfg
, DCFG
);
5262 dwc2_writel(hsotg
, dr
->dctl
, DCTL
);
5264 /* De-assert Wakeup Logic */
5265 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5266 gpwrdn
&= ~GPWRDN_PMUACTV
;
5267 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5271 /* Start Remote Wakeup Signaling */
5272 dwc2_writel(hsotg
, dr
->dctl
| DCTL_RMTWKUPSIG
, DCTL
);
5275 /* Set Device programming done bit */
5276 dctl
= dwc2_readl(hsotg
, DCTL
);
5277 dctl
|= DCTL_PWRONPRGDONE
;
5278 dwc2_writel(hsotg
, dctl
, DCTL
);
5280 /* Wait for interrupts which must be cleared */
5282 /* Clear all pending interupts */
5283 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5285 /* Restore global registers */
5286 ret
= dwc2_restore_global_registers(hsotg
);
5288 dev_err(hsotg
->dev
, "%s: failed to restore registers\n",
5293 /* Restore device registers */
5294 ret
= dwc2_restore_device_registers(hsotg
, rem_wakeup
);
5296 dev_err(hsotg
->dev
, "%s: failed to restore device registers\n",
5303 dctl
= dwc2_readl(hsotg
, DCTL
);
5304 dctl
&= ~DCTL_RMTWKUPSIG
;
5305 dwc2_writel(hsotg
, dctl
, DCTL
);
5308 hsotg
->hibernated
= 0;
5309 hsotg
->lx_state
= DWC2_L0
;
5310 dev_dbg(hsotg
->dev
, "Hibernation recovery completes here\n");