treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / usb / gadget / function / u_fs.h
blobf9b0cf67360d4618f23bea0da241ff9c574f4bf5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * u_fs.h
5 * Utility definitions for the FunctionFS
7 * Copyright (c) 2013 Samsung Electronics Co., Ltd.
8 * http://www.samsung.com
10 * Author: Andrzej Pietrasiewicz <andrzejtp2010@gmail.com>
13 #ifndef U_FFS_H
14 #define U_FFS_H
16 #include <linux/usb/composite.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/workqueue.h>
20 #include <linux/refcount.h>
22 #ifdef VERBOSE_DEBUG
23 #ifndef pr_vdebug
24 # define pr_vdebug pr_debug
25 #endif /* pr_vdebug */
26 # define ffs_dump_mem(prefix, ptr, len) \
27 print_hex_dump_bytes(pr_fmt(prefix ": "), DUMP_PREFIX_NONE, ptr, len)
28 #else
29 #ifndef pr_vdebug
30 # define pr_vdebug(...) do { } while (0)
31 #endif /* pr_vdebug */
32 # define ffs_dump_mem(prefix, ptr, len) do { } while (0)
33 #endif /* VERBOSE_DEBUG */
35 #define ENTER() pr_vdebug("%s()\n", __func__)
37 struct f_fs_opts;
39 struct ffs_dev {
40 struct ffs_data *ffs_data;
41 struct f_fs_opts *opts;
42 struct list_head entry;
44 char name[41];
46 bool mounted;
47 bool desc_ready;
48 bool single;
50 int (*ffs_ready_callback)(struct ffs_data *ffs);
51 void (*ffs_closed_callback)(struct ffs_data *ffs);
52 void *(*ffs_acquire_dev_callback)(struct ffs_dev *dev);
53 void (*ffs_release_dev_callback)(struct ffs_dev *dev);
56 extern struct mutex ffs_lock;
58 static inline void ffs_dev_lock(void)
60 mutex_lock(&ffs_lock);
63 static inline void ffs_dev_unlock(void)
65 mutex_unlock(&ffs_lock);
68 int ffs_name_dev(struct ffs_dev *dev, const char *name);
69 int ffs_single_dev(struct ffs_dev *dev);
71 struct ffs_epfile;
72 struct ffs_function;
74 enum ffs_state {
76 * Waiting for descriptors and strings.
78 * In this state no open(2), read(2) or write(2) on epfiles
79 * may succeed (which should not be the problem as there
80 * should be no such files opened in the first place).
82 FFS_READ_DESCRIPTORS,
83 FFS_READ_STRINGS,
86 * We've got descriptors and strings. We are or have called
87 * functionfs_ready_callback(). functionfs_bind() may have
88 * been called but we don't know.
90 * This is the only state in which operations on epfiles may
91 * succeed.
93 FFS_ACTIVE,
96 * Function is visible to host, but it's not functional. All
97 * setup requests are stalled and transfers on another endpoints
98 * are refused. All epfiles, except ep0, are deleted so there
99 * is no way to perform any operations on them.
101 * This state is set after closing all functionfs files, when
102 * mount parameter "no_disconnect=1" has been set. Function will
103 * remain in deactivated state until filesystem is umounted or
104 * ep0 is opened again. In the second case functionfs state will
105 * be reset, and it will be ready for descriptors and strings
106 * writing.
108 * This is useful only when functionfs is composed to gadget
109 * with another function which can perform some critical
110 * operations, and it's strongly desired to have this operations
111 * completed, even after functionfs files closure.
113 FFS_DEACTIVATED,
116 * All endpoints have been closed. This state is also set if
117 * we encounter an unrecoverable error. The only
118 * unrecoverable error is situation when after reading strings
119 * from user space we fail to initialise epfiles or
120 * functionfs_ready_callback() returns with error (<0).
122 * In this state no open(2), read(2) or write(2) (both on ep0
123 * as well as epfile) may succeed (at this point epfiles are
124 * unlinked and all closed so this is not a problem; ep0 is
125 * also closed but ep0 file exists and so open(2) on ep0 must
126 * fail).
128 FFS_CLOSING
131 enum ffs_setup_state {
132 /* There is no setup request pending. */
133 FFS_NO_SETUP,
135 * User has read events and there was a setup request event
136 * there. The next read/write on ep0 will handle the
137 * request.
139 FFS_SETUP_PENDING,
141 * There was event pending but before user space handled it
142 * some other event was introduced which canceled existing
143 * setup. If this state is set read/write on ep0 return
144 * -EIDRM. This state is only set when adding event.
146 FFS_SETUP_CANCELLED
149 struct ffs_data {
150 struct usb_gadget *gadget;
153 * Protect access read/write operations, only one read/write
154 * at a time. As a consequence protects ep0req and company.
155 * While setup request is being processed (queued) this is
156 * held.
158 struct mutex mutex;
161 * Protect access to endpoint related structures (basically
162 * usb_ep_queue(), usb_ep_dequeue(), etc. calls) except for
163 * endpoint zero.
165 spinlock_t eps_lock;
168 * XXX REVISIT do we need our own request? Since we are not
169 * handling setup requests immediately user space may be so
170 * slow that another setup will be sent to the gadget but this
171 * time not to us but another function and then there could be
172 * a race. Is that the case? Or maybe we can use cdev->req
173 * after all, maybe we just need some spinlock for that?
175 struct usb_request *ep0req; /* P: mutex */
176 struct completion ep0req_completion; /* P: mutex */
178 /* reference counter */
179 refcount_t ref;
180 /* how many files are opened (EP0 and others) */
181 atomic_t opened;
183 /* EP0 state */
184 enum ffs_state state;
187 * Possible transitions:
188 * + FFS_NO_SETUP -> FFS_SETUP_PENDING -- P: ev.waitq.lock
189 * happens only in ep0 read which is P: mutex
190 * + FFS_SETUP_PENDING -> FFS_NO_SETUP -- P: ev.waitq.lock
191 * happens only in ep0 i/o which is P: mutex
192 * + FFS_SETUP_PENDING -> FFS_SETUP_CANCELLED -- P: ev.waitq.lock
193 * + FFS_SETUP_CANCELLED -> FFS_NO_SETUP -- cmpxchg
195 * This field should never be accessed directly and instead
196 * ffs_setup_state_clear_cancelled function should be used.
198 enum ffs_setup_state setup_state;
200 /* Events & such. */
201 struct {
202 u8 types[4];
203 unsigned short count;
204 /* XXX REVISIT need to update it in some places, or do we? */
205 unsigned short can_stall;
206 struct usb_ctrlrequest setup;
208 wait_queue_head_t waitq;
209 } ev; /* the whole structure, P: ev.waitq.lock */
211 /* Flags */
212 unsigned long flags;
213 #define FFS_FL_CALL_CLOSED_CALLBACK 0
214 #define FFS_FL_BOUND 1
216 /* For waking up blocked threads when function is enabled. */
217 wait_queue_head_t wait;
219 /* Active function */
220 struct ffs_function *func;
223 * Device name, write once when file system is mounted.
224 * Intended for user to read if she wants.
226 const char *dev_name;
227 /* Private data for our user (ie. gadget). Managed by user. */
228 void *private_data;
230 /* filled by __ffs_data_got_descs() */
232 * raw_descs is what you kfree, real_descs points inside of raw_descs,
233 * where full speed, high speed and super speed descriptors start.
234 * real_descs_length is the length of all those descriptors.
236 const void *raw_descs_data;
237 const void *raw_descs;
238 unsigned raw_descs_length;
239 unsigned fs_descs_count;
240 unsigned hs_descs_count;
241 unsigned ss_descs_count;
242 unsigned ms_os_descs_count;
243 unsigned ms_os_descs_ext_prop_count;
244 unsigned ms_os_descs_ext_prop_name_len;
245 unsigned ms_os_descs_ext_prop_data_len;
246 void *ms_os_descs_ext_prop_avail;
247 void *ms_os_descs_ext_prop_name_avail;
248 void *ms_os_descs_ext_prop_data_avail;
250 unsigned user_flags;
252 #define FFS_MAX_EPS_COUNT 31
253 u8 eps_addrmap[FFS_MAX_EPS_COUNT];
255 unsigned short strings_count;
256 unsigned short interfaces_count;
257 unsigned short eps_count;
258 unsigned short _pad1;
260 /* filled by __ffs_data_got_strings() */
261 /* ids in stringtabs are set in functionfs_bind() */
262 const void *raw_strings;
263 struct usb_gadget_strings **stringtabs;
266 * File system's super block, write once when file system is
267 * mounted.
269 struct super_block *sb;
271 /* File permissions, written once when fs is mounted */
272 struct ffs_file_perms {
273 umode_t mode;
274 kuid_t uid;
275 kgid_t gid;
276 } file_perms;
278 struct eventfd_ctx *ffs_eventfd;
279 struct workqueue_struct *io_completion_wq;
280 bool no_disconnect;
281 struct work_struct reset_work;
284 * The endpoint files, filled by ffs_epfiles_create(),
285 * destroyed by ffs_epfiles_destroy().
287 struct ffs_epfile *epfiles;
291 struct f_fs_opts {
292 struct usb_function_instance func_inst;
293 struct ffs_dev *dev;
294 unsigned refcnt;
295 bool no_configfs;
298 static inline struct f_fs_opts *to_f_fs_opts(struct usb_function_instance *fi)
300 return container_of(fi, struct f_fs_opts, func_inst);
303 #endif /* U_FFS_H */