treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / ipc / mqueue.c
blob49a05ba3000dbab9f6821e3deb3a5223c29a528a
1 /*
2 * POSIX message queues filesystem for Linux.
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
13 * This file is released under the GPL.
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
43 #include <net/sock.h>
44 #include "util.h"
46 struct mqueue_fs_context {
47 struct ipc_namespace *ipc_ns;
50 #define MQUEUE_MAGIC 0x19800202
51 #define DIRENT_SIZE 20
52 #define FILENT_SIZE 80
54 #define SEND 0
55 #define RECV 1
57 #define STATE_NONE 0
58 #define STATE_READY 1
60 struct posix_msg_tree_node {
61 struct rb_node rb_node;
62 struct list_head msg_list;
63 int priority;
67 * Locking:
69 * Accesses to a message queue are synchronized by acquiring info->lock.
71 * There are two notable exceptions:
72 * - The actual wakeup of a sleeping task is performed using the wake_q
73 * framework. info->lock is already released when wake_up_q is called.
74 * - The exit codepaths after sleeping check ext_wait_queue->state without
75 * any locks. If it is STATE_READY, then the syscall is completed without
76 * acquiring info->lock.
78 * MQ_BARRIER:
79 * To achieve proper release/acquire memory barrier pairing, the state is set to
80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
83 * This prevents the following races:
85 * 1) With the simple wake_q_add(), the task could be gone already before
86 * the increase of the reference happens
87 * Thread A
88 * Thread B
89 * WRITE_ONCE(wait.state, STATE_NONE);
90 * schedule_hrtimeout()
91 * wake_q_add(A)
92 * if (cmpxchg()) // success
93 * ->state = STATE_READY (reordered)
94 * <timeout returns>
95 * if (wait.state == STATE_READY) return;
96 * sysret to user space
97 * sys_exit()
98 * get_task_struct() // UaF
100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
101 * the smp_store_release() that does ->state = STATE_READY.
103 * 2) Without proper _release/_acquire barriers, the woken up task
104 * could read stale data
106 * Thread A
107 * Thread B
108 * do_mq_timedreceive
109 * WRITE_ONCE(wait.state, STATE_NONE);
110 * schedule_hrtimeout()
111 * state = STATE_READY;
112 * <timeout returns>
113 * if (wait.state == STATE_READY) return;
114 * msg_ptr = wait.msg; // Access to stale data!
115 * receiver->msg = message; (reordered)
117 * Solution: use _release and _acquire barriers.
119 * 3) There is intentionally no barrier when setting current->state
120 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
121 * release memory barrier, and the wakeup is triggered when holding
122 * info->lock, i.e. spin_lock(&info->lock) provided a pairing
123 * acquire memory barrier.
126 struct ext_wait_queue { /* queue of sleeping tasks */
127 struct task_struct *task;
128 struct list_head list;
129 struct msg_msg *msg; /* ptr of loaded message */
130 int state; /* one of STATE_* values */
133 struct mqueue_inode_info {
134 spinlock_t lock;
135 struct inode vfs_inode;
136 wait_queue_head_t wait_q;
138 struct rb_root msg_tree;
139 struct rb_node *msg_tree_rightmost;
140 struct posix_msg_tree_node *node_cache;
141 struct mq_attr attr;
143 struct sigevent notify;
144 struct pid *notify_owner;
145 struct user_namespace *notify_user_ns;
146 struct user_struct *user; /* user who created, for accounting */
147 struct sock *notify_sock;
148 struct sk_buff *notify_cookie;
150 /* for tasks waiting for free space and messages, respectively */
151 struct ext_wait_queue e_wait_q[2];
153 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
156 static struct file_system_type mqueue_fs_type;
157 static const struct inode_operations mqueue_dir_inode_operations;
158 static const struct file_operations mqueue_file_operations;
159 static const struct super_operations mqueue_super_ops;
160 static const struct fs_context_operations mqueue_fs_context_ops;
161 static void remove_notification(struct mqueue_inode_info *info);
163 static struct kmem_cache *mqueue_inode_cachep;
165 static struct ctl_table_header *mq_sysctl_table;
167 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
169 return container_of(inode, struct mqueue_inode_info, vfs_inode);
173 * This routine should be called with the mq_lock held.
175 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
177 return get_ipc_ns(inode->i_sb->s_fs_info);
180 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
182 struct ipc_namespace *ns;
184 spin_lock(&mq_lock);
185 ns = __get_ns_from_inode(inode);
186 spin_unlock(&mq_lock);
187 return ns;
190 /* Auxiliary functions to manipulate messages' list */
191 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
193 struct rb_node **p, *parent = NULL;
194 struct posix_msg_tree_node *leaf;
195 bool rightmost = true;
197 p = &info->msg_tree.rb_node;
198 while (*p) {
199 parent = *p;
200 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
202 if (likely(leaf->priority == msg->m_type))
203 goto insert_msg;
204 else if (msg->m_type < leaf->priority) {
205 p = &(*p)->rb_left;
206 rightmost = false;
207 } else
208 p = &(*p)->rb_right;
210 if (info->node_cache) {
211 leaf = info->node_cache;
212 info->node_cache = NULL;
213 } else {
214 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
215 if (!leaf)
216 return -ENOMEM;
217 INIT_LIST_HEAD(&leaf->msg_list);
219 leaf->priority = msg->m_type;
221 if (rightmost)
222 info->msg_tree_rightmost = &leaf->rb_node;
224 rb_link_node(&leaf->rb_node, parent, p);
225 rb_insert_color(&leaf->rb_node, &info->msg_tree);
226 insert_msg:
227 info->attr.mq_curmsgs++;
228 info->qsize += msg->m_ts;
229 list_add_tail(&msg->m_list, &leaf->msg_list);
230 return 0;
233 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
234 struct mqueue_inode_info *info)
236 struct rb_node *node = &leaf->rb_node;
238 if (info->msg_tree_rightmost == node)
239 info->msg_tree_rightmost = rb_prev(node);
241 rb_erase(node, &info->msg_tree);
242 if (info->node_cache) {
243 kfree(leaf);
244 } else {
245 info->node_cache = leaf;
249 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
251 struct rb_node *parent = NULL;
252 struct posix_msg_tree_node *leaf;
253 struct msg_msg *msg;
255 try_again:
257 * During insert, low priorities go to the left and high to the
258 * right. On receive, we want the highest priorities first, so
259 * walk all the way to the right.
261 parent = info->msg_tree_rightmost;
262 if (!parent) {
263 if (info->attr.mq_curmsgs) {
264 pr_warn_once("Inconsistency in POSIX message queue, "
265 "no tree element, but supposedly messages "
266 "should exist!\n");
267 info->attr.mq_curmsgs = 0;
269 return NULL;
271 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
272 if (unlikely(list_empty(&leaf->msg_list))) {
273 pr_warn_once("Inconsistency in POSIX message queue, "
274 "empty leaf node but we haven't implemented "
275 "lazy leaf delete!\n");
276 msg_tree_erase(leaf, info);
277 goto try_again;
278 } else {
279 msg = list_first_entry(&leaf->msg_list,
280 struct msg_msg, m_list);
281 list_del(&msg->m_list);
282 if (list_empty(&leaf->msg_list)) {
283 msg_tree_erase(leaf, info);
286 info->attr.mq_curmsgs--;
287 info->qsize -= msg->m_ts;
288 return msg;
291 static struct inode *mqueue_get_inode(struct super_block *sb,
292 struct ipc_namespace *ipc_ns, umode_t mode,
293 struct mq_attr *attr)
295 struct user_struct *u = current_user();
296 struct inode *inode;
297 int ret = -ENOMEM;
299 inode = new_inode(sb);
300 if (!inode)
301 goto err;
303 inode->i_ino = get_next_ino();
304 inode->i_mode = mode;
305 inode->i_uid = current_fsuid();
306 inode->i_gid = current_fsgid();
307 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
309 if (S_ISREG(mode)) {
310 struct mqueue_inode_info *info;
311 unsigned long mq_bytes, mq_treesize;
313 inode->i_fop = &mqueue_file_operations;
314 inode->i_size = FILENT_SIZE;
315 /* mqueue specific info */
316 info = MQUEUE_I(inode);
317 spin_lock_init(&info->lock);
318 init_waitqueue_head(&info->wait_q);
319 INIT_LIST_HEAD(&info->e_wait_q[0].list);
320 INIT_LIST_HEAD(&info->e_wait_q[1].list);
321 info->notify_owner = NULL;
322 info->notify_user_ns = NULL;
323 info->qsize = 0;
324 info->user = NULL; /* set when all is ok */
325 info->msg_tree = RB_ROOT;
326 info->msg_tree_rightmost = NULL;
327 info->node_cache = NULL;
328 memset(&info->attr, 0, sizeof(info->attr));
329 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
330 ipc_ns->mq_msg_default);
331 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
332 ipc_ns->mq_msgsize_default);
333 if (attr) {
334 info->attr.mq_maxmsg = attr->mq_maxmsg;
335 info->attr.mq_msgsize = attr->mq_msgsize;
338 * We used to allocate a static array of pointers and account
339 * the size of that array as well as one msg_msg struct per
340 * possible message into the queue size. That's no longer
341 * accurate as the queue is now an rbtree and will grow and
342 * shrink depending on usage patterns. We can, however, still
343 * account one msg_msg struct per message, but the nodes are
344 * allocated depending on priority usage, and most programs
345 * only use one, or a handful, of priorities. However, since
346 * this is pinned memory, we need to assume worst case, so
347 * that means the min(mq_maxmsg, max_priorities) * struct
348 * posix_msg_tree_node.
351 ret = -EINVAL;
352 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
353 goto out_inode;
354 if (capable(CAP_SYS_RESOURCE)) {
355 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
356 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
357 goto out_inode;
358 } else {
359 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
360 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
361 goto out_inode;
363 ret = -EOVERFLOW;
364 /* check for overflow */
365 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
366 goto out_inode;
367 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
368 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
369 sizeof(struct posix_msg_tree_node);
370 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
371 if (mq_bytes + mq_treesize < mq_bytes)
372 goto out_inode;
373 mq_bytes += mq_treesize;
374 spin_lock(&mq_lock);
375 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
376 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
377 spin_unlock(&mq_lock);
378 /* mqueue_evict_inode() releases info->messages */
379 ret = -EMFILE;
380 goto out_inode;
382 u->mq_bytes += mq_bytes;
383 spin_unlock(&mq_lock);
385 /* all is ok */
386 info->user = get_uid(u);
387 } else if (S_ISDIR(mode)) {
388 inc_nlink(inode);
389 /* Some things misbehave if size == 0 on a directory */
390 inode->i_size = 2 * DIRENT_SIZE;
391 inode->i_op = &mqueue_dir_inode_operations;
392 inode->i_fop = &simple_dir_operations;
395 return inode;
396 out_inode:
397 iput(inode);
398 err:
399 return ERR_PTR(ret);
402 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
404 struct inode *inode;
405 struct ipc_namespace *ns = sb->s_fs_info;
407 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
408 sb->s_blocksize = PAGE_SIZE;
409 sb->s_blocksize_bits = PAGE_SHIFT;
410 sb->s_magic = MQUEUE_MAGIC;
411 sb->s_op = &mqueue_super_ops;
413 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
414 if (IS_ERR(inode))
415 return PTR_ERR(inode);
417 sb->s_root = d_make_root(inode);
418 if (!sb->s_root)
419 return -ENOMEM;
420 return 0;
423 static int mqueue_get_tree(struct fs_context *fc)
425 struct mqueue_fs_context *ctx = fc->fs_private;
427 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
430 static void mqueue_fs_context_free(struct fs_context *fc)
432 struct mqueue_fs_context *ctx = fc->fs_private;
434 put_ipc_ns(ctx->ipc_ns);
435 kfree(ctx);
438 static int mqueue_init_fs_context(struct fs_context *fc)
440 struct mqueue_fs_context *ctx;
442 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
443 if (!ctx)
444 return -ENOMEM;
446 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
447 put_user_ns(fc->user_ns);
448 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
449 fc->fs_private = ctx;
450 fc->ops = &mqueue_fs_context_ops;
451 return 0;
454 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
456 struct mqueue_fs_context *ctx;
457 struct fs_context *fc;
458 struct vfsmount *mnt;
460 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
461 if (IS_ERR(fc))
462 return ERR_CAST(fc);
464 ctx = fc->fs_private;
465 put_ipc_ns(ctx->ipc_ns);
466 ctx->ipc_ns = get_ipc_ns(ns);
467 put_user_ns(fc->user_ns);
468 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
470 mnt = fc_mount(fc);
471 put_fs_context(fc);
472 return mnt;
475 static void init_once(void *foo)
477 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
479 inode_init_once(&p->vfs_inode);
482 static struct inode *mqueue_alloc_inode(struct super_block *sb)
484 struct mqueue_inode_info *ei;
486 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
487 if (!ei)
488 return NULL;
489 return &ei->vfs_inode;
492 static void mqueue_free_inode(struct inode *inode)
494 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
497 static void mqueue_evict_inode(struct inode *inode)
499 struct mqueue_inode_info *info;
500 struct user_struct *user;
501 struct ipc_namespace *ipc_ns;
502 struct msg_msg *msg, *nmsg;
503 LIST_HEAD(tmp_msg);
505 clear_inode(inode);
507 if (S_ISDIR(inode->i_mode))
508 return;
510 ipc_ns = get_ns_from_inode(inode);
511 info = MQUEUE_I(inode);
512 spin_lock(&info->lock);
513 while ((msg = msg_get(info)) != NULL)
514 list_add_tail(&msg->m_list, &tmp_msg);
515 kfree(info->node_cache);
516 spin_unlock(&info->lock);
518 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
519 list_del(&msg->m_list);
520 free_msg(msg);
523 user = info->user;
524 if (user) {
525 unsigned long mq_bytes, mq_treesize;
527 /* Total amount of bytes accounted for the mqueue */
528 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
529 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
530 sizeof(struct posix_msg_tree_node);
532 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
533 info->attr.mq_msgsize);
535 spin_lock(&mq_lock);
536 user->mq_bytes -= mq_bytes;
538 * get_ns_from_inode() ensures that the
539 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
540 * to which we now hold a reference, or it is NULL.
541 * We can't put it here under mq_lock, though.
543 if (ipc_ns)
544 ipc_ns->mq_queues_count--;
545 spin_unlock(&mq_lock);
546 free_uid(user);
548 if (ipc_ns)
549 put_ipc_ns(ipc_ns);
552 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
554 struct inode *dir = dentry->d_parent->d_inode;
555 struct inode *inode;
556 struct mq_attr *attr = arg;
557 int error;
558 struct ipc_namespace *ipc_ns;
560 spin_lock(&mq_lock);
561 ipc_ns = __get_ns_from_inode(dir);
562 if (!ipc_ns) {
563 error = -EACCES;
564 goto out_unlock;
567 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
568 !capable(CAP_SYS_RESOURCE)) {
569 error = -ENOSPC;
570 goto out_unlock;
572 ipc_ns->mq_queues_count++;
573 spin_unlock(&mq_lock);
575 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
576 if (IS_ERR(inode)) {
577 error = PTR_ERR(inode);
578 spin_lock(&mq_lock);
579 ipc_ns->mq_queues_count--;
580 goto out_unlock;
583 put_ipc_ns(ipc_ns);
584 dir->i_size += DIRENT_SIZE;
585 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
587 d_instantiate(dentry, inode);
588 dget(dentry);
589 return 0;
590 out_unlock:
591 spin_unlock(&mq_lock);
592 if (ipc_ns)
593 put_ipc_ns(ipc_ns);
594 return error;
597 static int mqueue_create(struct inode *dir, struct dentry *dentry,
598 umode_t mode, bool excl)
600 return mqueue_create_attr(dentry, mode, NULL);
603 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
605 struct inode *inode = d_inode(dentry);
607 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
608 dir->i_size -= DIRENT_SIZE;
609 drop_nlink(inode);
610 dput(dentry);
611 return 0;
615 * This is routine for system read from queue file.
616 * To avoid mess with doing here some sort of mq_receive we allow
617 * to read only queue size & notification info (the only values
618 * that are interesting from user point of view and aren't accessible
619 * through std routines)
621 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
622 size_t count, loff_t *off)
624 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
625 char buffer[FILENT_SIZE];
626 ssize_t ret;
628 spin_lock(&info->lock);
629 snprintf(buffer, sizeof(buffer),
630 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
631 info->qsize,
632 info->notify_owner ? info->notify.sigev_notify : 0,
633 (info->notify_owner &&
634 info->notify.sigev_notify == SIGEV_SIGNAL) ?
635 info->notify.sigev_signo : 0,
636 pid_vnr(info->notify_owner));
637 spin_unlock(&info->lock);
638 buffer[sizeof(buffer)-1] = '\0';
640 ret = simple_read_from_buffer(u_data, count, off, buffer,
641 strlen(buffer));
642 if (ret <= 0)
643 return ret;
645 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
646 return ret;
649 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
651 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
653 spin_lock(&info->lock);
654 if (task_tgid(current) == info->notify_owner)
655 remove_notification(info);
657 spin_unlock(&info->lock);
658 return 0;
661 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
663 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
664 __poll_t retval = 0;
666 poll_wait(filp, &info->wait_q, poll_tab);
668 spin_lock(&info->lock);
669 if (info->attr.mq_curmsgs)
670 retval = EPOLLIN | EPOLLRDNORM;
672 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
673 retval |= EPOLLOUT | EPOLLWRNORM;
674 spin_unlock(&info->lock);
676 return retval;
679 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
680 static void wq_add(struct mqueue_inode_info *info, int sr,
681 struct ext_wait_queue *ewp)
683 struct ext_wait_queue *walk;
685 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
686 if (walk->task->prio <= current->prio) {
687 list_add_tail(&ewp->list, &walk->list);
688 return;
691 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
695 * Puts current task to sleep. Caller must hold queue lock. After return
696 * lock isn't held.
697 * sr: SEND or RECV
699 static int wq_sleep(struct mqueue_inode_info *info, int sr,
700 ktime_t *timeout, struct ext_wait_queue *ewp)
701 __releases(&info->lock)
703 int retval;
704 signed long time;
706 wq_add(info, sr, ewp);
708 for (;;) {
709 /* memory barrier not required, we hold info->lock */
710 __set_current_state(TASK_INTERRUPTIBLE);
712 spin_unlock(&info->lock);
713 time = schedule_hrtimeout_range_clock(timeout, 0,
714 HRTIMER_MODE_ABS, CLOCK_REALTIME);
716 if (READ_ONCE(ewp->state) == STATE_READY) {
717 /* see MQ_BARRIER for purpose/pairing */
718 smp_acquire__after_ctrl_dep();
719 retval = 0;
720 goto out;
722 spin_lock(&info->lock);
724 /* we hold info->lock, so no memory barrier required */
725 if (READ_ONCE(ewp->state) == STATE_READY) {
726 retval = 0;
727 goto out_unlock;
729 if (signal_pending(current)) {
730 retval = -ERESTARTSYS;
731 break;
733 if (time == 0) {
734 retval = -ETIMEDOUT;
735 break;
738 list_del(&ewp->list);
739 out_unlock:
740 spin_unlock(&info->lock);
741 out:
742 return retval;
746 * Returns waiting task that should be serviced first or NULL if none exists
748 static struct ext_wait_queue *wq_get_first_waiter(
749 struct mqueue_inode_info *info, int sr)
751 struct list_head *ptr;
753 ptr = info->e_wait_q[sr].list.prev;
754 if (ptr == &info->e_wait_q[sr].list)
755 return NULL;
756 return list_entry(ptr, struct ext_wait_queue, list);
760 static inline void set_cookie(struct sk_buff *skb, char code)
762 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
766 * The next function is only to split too long sys_mq_timedsend
768 static void __do_notify(struct mqueue_inode_info *info)
770 /* notification
771 * invoked when there is registered process and there isn't process
772 * waiting synchronously for message AND state of queue changed from
773 * empty to not empty. Here we are sure that no one is waiting
774 * synchronously. */
775 if (info->notify_owner &&
776 info->attr.mq_curmsgs == 1) {
777 struct kernel_siginfo sig_i;
778 switch (info->notify.sigev_notify) {
779 case SIGEV_NONE:
780 break;
781 case SIGEV_SIGNAL:
782 /* sends signal */
784 clear_siginfo(&sig_i);
785 sig_i.si_signo = info->notify.sigev_signo;
786 sig_i.si_errno = 0;
787 sig_i.si_code = SI_MESGQ;
788 sig_i.si_value = info->notify.sigev_value;
789 /* map current pid/uid into info->owner's namespaces */
790 rcu_read_lock();
791 sig_i.si_pid = task_tgid_nr_ns(current,
792 ns_of_pid(info->notify_owner));
793 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
794 rcu_read_unlock();
796 kill_pid_info(info->notify.sigev_signo,
797 &sig_i, info->notify_owner);
798 break;
799 case SIGEV_THREAD:
800 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
801 netlink_sendskb(info->notify_sock, info->notify_cookie);
802 break;
804 /* after notification unregisters process */
805 put_pid(info->notify_owner);
806 put_user_ns(info->notify_user_ns);
807 info->notify_owner = NULL;
808 info->notify_user_ns = NULL;
810 wake_up(&info->wait_q);
813 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
814 struct timespec64 *ts)
816 if (get_timespec64(ts, u_abs_timeout))
817 return -EFAULT;
818 if (!timespec64_valid(ts))
819 return -EINVAL;
820 return 0;
823 static void remove_notification(struct mqueue_inode_info *info)
825 if (info->notify_owner != NULL &&
826 info->notify.sigev_notify == SIGEV_THREAD) {
827 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
828 netlink_sendskb(info->notify_sock, info->notify_cookie);
830 put_pid(info->notify_owner);
831 put_user_ns(info->notify_user_ns);
832 info->notify_owner = NULL;
833 info->notify_user_ns = NULL;
836 static int prepare_open(struct dentry *dentry, int oflag, int ro,
837 umode_t mode, struct filename *name,
838 struct mq_attr *attr)
840 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
841 MAY_READ | MAY_WRITE };
842 int acc;
844 if (d_really_is_negative(dentry)) {
845 if (!(oflag & O_CREAT))
846 return -ENOENT;
847 if (ro)
848 return ro;
849 audit_inode_parent_hidden(name, dentry->d_parent);
850 return vfs_mkobj(dentry, mode & ~current_umask(),
851 mqueue_create_attr, attr);
853 /* it already existed */
854 audit_inode(name, dentry, 0);
855 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
856 return -EEXIST;
857 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
858 return -EINVAL;
859 acc = oflag2acc[oflag & O_ACCMODE];
860 return inode_permission(d_inode(dentry), acc);
863 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
864 struct mq_attr *attr)
866 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
867 struct dentry *root = mnt->mnt_root;
868 struct filename *name;
869 struct path path;
870 int fd, error;
871 int ro;
873 audit_mq_open(oflag, mode, attr);
875 if (IS_ERR(name = getname(u_name)))
876 return PTR_ERR(name);
878 fd = get_unused_fd_flags(O_CLOEXEC);
879 if (fd < 0)
880 goto out_putname;
882 ro = mnt_want_write(mnt); /* we'll drop it in any case */
883 inode_lock(d_inode(root));
884 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
885 if (IS_ERR(path.dentry)) {
886 error = PTR_ERR(path.dentry);
887 goto out_putfd;
889 path.mnt = mntget(mnt);
890 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
891 if (!error) {
892 struct file *file = dentry_open(&path, oflag, current_cred());
893 if (!IS_ERR(file))
894 fd_install(fd, file);
895 else
896 error = PTR_ERR(file);
898 path_put(&path);
899 out_putfd:
900 if (error) {
901 put_unused_fd(fd);
902 fd = error;
904 inode_unlock(d_inode(root));
905 if (!ro)
906 mnt_drop_write(mnt);
907 out_putname:
908 putname(name);
909 return fd;
912 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
913 struct mq_attr __user *, u_attr)
915 struct mq_attr attr;
916 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
917 return -EFAULT;
919 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
922 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
924 int err;
925 struct filename *name;
926 struct dentry *dentry;
927 struct inode *inode = NULL;
928 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
929 struct vfsmount *mnt = ipc_ns->mq_mnt;
931 name = getname(u_name);
932 if (IS_ERR(name))
933 return PTR_ERR(name);
935 audit_inode_parent_hidden(name, mnt->mnt_root);
936 err = mnt_want_write(mnt);
937 if (err)
938 goto out_name;
939 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
940 dentry = lookup_one_len(name->name, mnt->mnt_root,
941 strlen(name->name));
942 if (IS_ERR(dentry)) {
943 err = PTR_ERR(dentry);
944 goto out_unlock;
947 inode = d_inode(dentry);
948 if (!inode) {
949 err = -ENOENT;
950 } else {
951 ihold(inode);
952 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
954 dput(dentry);
956 out_unlock:
957 inode_unlock(d_inode(mnt->mnt_root));
958 if (inode)
959 iput(inode);
960 mnt_drop_write(mnt);
961 out_name:
962 putname(name);
964 return err;
967 /* Pipelined send and receive functions.
969 * If a receiver finds no waiting message, then it registers itself in the
970 * list of waiting receivers. A sender checks that list before adding the new
971 * message into the message array. If there is a waiting receiver, then it
972 * bypasses the message array and directly hands the message over to the
973 * receiver. The receiver accepts the message and returns without grabbing the
974 * queue spinlock:
976 * - Set pointer to message.
977 * - Queue the receiver task for later wakeup (without the info->lock).
978 * - Update its state to STATE_READY. Now the receiver can continue.
979 * - Wake up the process after the lock is dropped. Should the process wake up
980 * before this wakeup (due to a timeout or a signal) it will either see
981 * STATE_READY and continue or acquire the lock to check the state again.
983 * The same algorithm is used for senders.
986 static inline void __pipelined_op(struct wake_q_head *wake_q,
987 struct mqueue_inode_info *info,
988 struct ext_wait_queue *this)
990 list_del(&this->list);
991 get_task_struct(this->task);
993 /* see MQ_BARRIER for purpose/pairing */
994 smp_store_release(&this->state, STATE_READY);
995 wake_q_add_safe(wake_q, this->task);
998 /* pipelined_send() - send a message directly to the task waiting in
999 * sys_mq_timedreceive() (without inserting message into a queue).
1001 static inline void pipelined_send(struct wake_q_head *wake_q,
1002 struct mqueue_inode_info *info,
1003 struct msg_msg *message,
1004 struct ext_wait_queue *receiver)
1006 receiver->msg = message;
1007 __pipelined_op(wake_q, info, receiver);
1010 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1011 * gets its message and put to the queue (we have one free place for sure). */
1012 static inline void pipelined_receive(struct wake_q_head *wake_q,
1013 struct mqueue_inode_info *info)
1015 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1017 if (!sender) {
1018 /* for poll */
1019 wake_up_interruptible(&info->wait_q);
1020 return;
1022 if (msg_insert(sender->msg, info))
1023 return;
1025 __pipelined_op(wake_q, info, sender);
1028 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1029 size_t msg_len, unsigned int msg_prio,
1030 struct timespec64 *ts)
1032 struct fd f;
1033 struct inode *inode;
1034 struct ext_wait_queue wait;
1035 struct ext_wait_queue *receiver;
1036 struct msg_msg *msg_ptr;
1037 struct mqueue_inode_info *info;
1038 ktime_t expires, *timeout = NULL;
1039 struct posix_msg_tree_node *new_leaf = NULL;
1040 int ret = 0;
1041 DEFINE_WAKE_Q(wake_q);
1043 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1044 return -EINVAL;
1046 if (ts) {
1047 expires = timespec64_to_ktime(*ts);
1048 timeout = &expires;
1051 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1053 f = fdget(mqdes);
1054 if (unlikely(!f.file)) {
1055 ret = -EBADF;
1056 goto out;
1059 inode = file_inode(f.file);
1060 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1061 ret = -EBADF;
1062 goto out_fput;
1064 info = MQUEUE_I(inode);
1065 audit_file(f.file);
1067 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1068 ret = -EBADF;
1069 goto out_fput;
1072 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1073 ret = -EMSGSIZE;
1074 goto out_fput;
1077 /* First try to allocate memory, before doing anything with
1078 * existing queues. */
1079 msg_ptr = load_msg(u_msg_ptr, msg_len);
1080 if (IS_ERR(msg_ptr)) {
1081 ret = PTR_ERR(msg_ptr);
1082 goto out_fput;
1084 msg_ptr->m_ts = msg_len;
1085 msg_ptr->m_type = msg_prio;
1088 * msg_insert really wants us to have a valid, spare node struct so
1089 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1090 * fall back to that if necessary.
1092 if (!info->node_cache)
1093 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1095 spin_lock(&info->lock);
1097 if (!info->node_cache && new_leaf) {
1098 /* Save our speculative allocation into the cache */
1099 INIT_LIST_HEAD(&new_leaf->msg_list);
1100 info->node_cache = new_leaf;
1101 new_leaf = NULL;
1102 } else {
1103 kfree(new_leaf);
1106 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1107 if (f.file->f_flags & O_NONBLOCK) {
1108 ret = -EAGAIN;
1109 } else {
1110 wait.task = current;
1111 wait.msg = (void *) msg_ptr;
1113 /* memory barrier not required, we hold info->lock */
1114 WRITE_ONCE(wait.state, STATE_NONE);
1115 ret = wq_sleep(info, SEND, timeout, &wait);
1117 * wq_sleep must be called with info->lock held, and
1118 * returns with the lock released
1120 goto out_free;
1122 } else {
1123 receiver = wq_get_first_waiter(info, RECV);
1124 if (receiver) {
1125 pipelined_send(&wake_q, info, msg_ptr, receiver);
1126 } else {
1127 /* adds message to the queue */
1128 ret = msg_insert(msg_ptr, info);
1129 if (ret)
1130 goto out_unlock;
1131 __do_notify(info);
1133 inode->i_atime = inode->i_mtime = inode->i_ctime =
1134 current_time(inode);
1136 out_unlock:
1137 spin_unlock(&info->lock);
1138 wake_up_q(&wake_q);
1139 out_free:
1140 if (ret)
1141 free_msg(msg_ptr);
1142 out_fput:
1143 fdput(f);
1144 out:
1145 return ret;
1148 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1149 size_t msg_len, unsigned int __user *u_msg_prio,
1150 struct timespec64 *ts)
1152 ssize_t ret;
1153 struct msg_msg *msg_ptr;
1154 struct fd f;
1155 struct inode *inode;
1156 struct mqueue_inode_info *info;
1157 struct ext_wait_queue wait;
1158 ktime_t expires, *timeout = NULL;
1159 struct posix_msg_tree_node *new_leaf = NULL;
1161 if (ts) {
1162 expires = timespec64_to_ktime(*ts);
1163 timeout = &expires;
1166 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1168 f = fdget(mqdes);
1169 if (unlikely(!f.file)) {
1170 ret = -EBADF;
1171 goto out;
1174 inode = file_inode(f.file);
1175 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1176 ret = -EBADF;
1177 goto out_fput;
1179 info = MQUEUE_I(inode);
1180 audit_file(f.file);
1182 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1183 ret = -EBADF;
1184 goto out_fput;
1187 /* checks if buffer is big enough */
1188 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1189 ret = -EMSGSIZE;
1190 goto out_fput;
1194 * msg_insert really wants us to have a valid, spare node struct so
1195 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1196 * fall back to that if necessary.
1198 if (!info->node_cache)
1199 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1201 spin_lock(&info->lock);
1203 if (!info->node_cache && new_leaf) {
1204 /* Save our speculative allocation into the cache */
1205 INIT_LIST_HEAD(&new_leaf->msg_list);
1206 info->node_cache = new_leaf;
1207 } else {
1208 kfree(new_leaf);
1211 if (info->attr.mq_curmsgs == 0) {
1212 if (f.file->f_flags & O_NONBLOCK) {
1213 spin_unlock(&info->lock);
1214 ret = -EAGAIN;
1215 } else {
1216 wait.task = current;
1218 /* memory barrier not required, we hold info->lock */
1219 WRITE_ONCE(wait.state, STATE_NONE);
1220 ret = wq_sleep(info, RECV, timeout, &wait);
1221 msg_ptr = wait.msg;
1223 } else {
1224 DEFINE_WAKE_Q(wake_q);
1226 msg_ptr = msg_get(info);
1228 inode->i_atime = inode->i_mtime = inode->i_ctime =
1229 current_time(inode);
1231 /* There is now free space in queue. */
1232 pipelined_receive(&wake_q, info);
1233 spin_unlock(&info->lock);
1234 wake_up_q(&wake_q);
1235 ret = 0;
1237 if (ret == 0) {
1238 ret = msg_ptr->m_ts;
1240 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1241 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1242 ret = -EFAULT;
1244 free_msg(msg_ptr);
1246 out_fput:
1247 fdput(f);
1248 out:
1249 return ret;
1252 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1253 size_t, msg_len, unsigned int, msg_prio,
1254 const struct __kernel_timespec __user *, u_abs_timeout)
1256 struct timespec64 ts, *p = NULL;
1257 if (u_abs_timeout) {
1258 int res = prepare_timeout(u_abs_timeout, &ts);
1259 if (res)
1260 return res;
1261 p = &ts;
1263 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1266 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1267 size_t, msg_len, unsigned int __user *, u_msg_prio,
1268 const struct __kernel_timespec __user *, u_abs_timeout)
1270 struct timespec64 ts, *p = NULL;
1271 if (u_abs_timeout) {
1272 int res = prepare_timeout(u_abs_timeout, &ts);
1273 if (res)
1274 return res;
1275 p = &ts;
1277 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1281 * Notes: the case when user wants us to deregister (with NULL as pointer)
1282 * and he isn't currently owner of notification, will be silently discarded.
1283 * It isn't explicitly defined in the POSIX.
1285 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1287 int ret;
1288 struct fd f;
1289 struct sock *sock;
1290 struct inode *inode;
1291 struct mqueue_inode_info *info;
1292 struct sk_buff *nc;
1294 audit_mq_notify(mqdes, notification);
1296 nc = NULL;
1297 sock = NULL;
1298 if (notification != NULL) {
1299 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1300 notification->sigev_notify != SIGEV_SIGNAL &&
1301 notification->sigev_notify != SIGEV_THREAD))
1302 return -EINVAL;
1303 if (notification->sigev_notify == SIGEV_SIGNAL &&
1304 !valid_signal(notification->sigev_signo)) {
1305 return -EINVAL;
1307 if (notification->sigev_notify == SIGEV_THREAD) {
1308 long timeo;
1310 /* create the notify skb */
1311 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1312 if (!nc)
1313 return -ENOMEM;
1315 if (copy_from_user(nc->data,
1316 notification->sigev_value.sival_ptr,
1317 NOTIFY_COOKIE_LEN)) {
1318 ret = -EFAULT;
1319 goto free_skb;
1322 /* TODO: add a header? */
1323 skb_put(nc, NOTIFY_COOKIE_LEN);
1324 /* and attach it to the socket */
1325 retry:
1326 f = fdget(notification->sigev_signo);
1327 if (!f.file) {
1328 ret = -EBADF;
1329 goto out;
1331 sock = netlink_getsockbyfilp(f.file);
1332 fdput(f);
1333 if (IS_ERR(sock)) {
1334 ret = PTR_ERR(sock);
1335 goto free_skb;
1338 timeo = MAX_SCHEDULE_TIMEOUT;
1339 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1340 if (ret == 1) {
1341 sock = NULL;
1342 goto retry;
1344 if (ret)
1345 return ret;
1349 f = fdget(mqdes);
1350 if (!f.file) {
1351 ret = -EBADF;
1352 goto out;
1355 inode = file_inode(f.file);
1356 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1357 ret = -EBADF;
1358 goto out_fput;
1360 info = MQUEUE_I(inode);
1362 ret = 0;
1363 spin_lock(&info->lock);
1364 if (notification == NULL) {
1365 if (info->notify_owner == task_tgid(current)) {
1366 remove_notification(info);
1367 inode->i_atime = inode->i_ctime = current_time(inode);
1369 } else if (info->notify_owner != NULL) {
1370 ret = -EBUSY;
1371 } else {
1372 switch (notification->sigev_notify) {
1373 case SIGEV_NONE:
1374 info->notify.sigev_notify = SIGEV_NONE;
1375 break;
1376 case SIGEV_THREAD:
1377 info->notify_sock = sock;
1378 info->notify_cookie = nc;
1379 sock = NULL;
1380 nc = NULL;
1381 info->notify.sigev_notify = SIGEV_THREAD;
1382 break;
1383 case SIGEV_SIGNAL:
1384 info->notify.sigev_signo = notification->sigev_signo;
1385 info->notify.sigev_value = notification->sigev_value;
1386 info->notify.sigev_notify = SIGEV_SIGNAL;
1387 break;
1390 info->notify_owner = get_pid(task_tgid(current));
1391 info->notify_user_ns = get_user_ns(current_user_ns());
1392 inode->i_atime = inode->i_ctime = current_time(inode);
1394 spin_unlock(&info->lock);
1395 out_fput:
1396 fdput(f);
1397 out:
1398 if (sock)
1399 netlink_detachskb(sock, nc);
1400 else
1401 free_skb:
1402 dev_kfree_skb(nc);
1404 return ret;
1407 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1408 const struct sigevent __user *, u_notification)
1410 struct sigevent n, *p = NULL;
1411 if (u_notification) {
1412 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1413 return -EFAULT;
1414 p = &n;
1416 return do_mq_notify(mqdes, p);
1419 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1421 struct fd f;
1422 struct inode *inode;
1423 struct mqueue_inode_info *info;
1425 if (new && (new->mq_flags & (~O_NONBLOCK)))
1426 return -EINVAL;
1428 f = fdget(mqdes);
1429 if (!f.file)
1430 return -EBADF;
1432 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1433 fdput(f);
1434 return -EBADF;
1437 inode = file_inode(f.file);
1438 info = MQUEUE_I(inode);
1440 spin_lock(&info->lock);
1442 if (old) {
1443 *old = info->attr;
1444 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1446 if (new) {
1447 audit_mq_getsetattr(mqdes, new);
1448 spin_lock(&f.file->f_lock);
1449 if (new->mq_flags & O_NONBLOCK)
1450 f.file->f_flags |= O_NONBLOCK;
1451 else
1452 f.file->f_flags &= ~O_NONBLOCK;
1453 spin_unlock(&f.file->f_lock);
1455 inode->i_atime = inode->i_ctime = current_time(inode);
1458 spin_unlock(&info->lock);
1459 fdput(f);
1460 return 0;
1463 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1464 const struct mq_attr __user *, u_mqstat,
1465 struct mq_attr __user *, u_omqstat)
1467 int ret;
1468 struct mq_attr mqstat, omqstat;
1469 struct mq_attr *new = NULL, *old = NULL;
1471 if (u_mqstat) {
1472 new = &mqstat;
1473 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1474 return -EFAULT;
1476 if (u_omqstat)
1477 old = &omqstat;
1479 ret = do_mq_getsetattr(mqdes, new, old);
1480 if (ret || !old)
1481 return ret;
1483 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1484 return -EFAULT;
1485 return 0;
1488 #ifdef CONFIG_COMPAT
1490 struct compat_mq_attr {
1491 compat_long_t mq_flags; /* message queue flags */
1492 compat_long_t mq_maxmsg; /* maximum number of messages */
1493 compat_long_t mq_msgsize; /* maximum message size */
1494 compat_long_t mq_curmsgs; /* number of messages currently queued */
1495 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1498 static inline int get_compat_mq_attr(struct mq_attr *attr,
1499 const struct compat_mq_attr __user *uattr)
1501 struct compat_mq_attr v;
1503 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1504 return -EFAULT;
1506 memset(attr, 0, sizeof(*attr));
1507 attr->mq_flags = v.mq_flags;
1508 attr->mq_maxmsg = v.mq_maxmsg;
1509 attr->mq_msgsize = v.mq_msgsize;
1510 attr->mq_curmsgs = v.mq_curmsgs;
1511 return 0;
1514 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1515 struct compat_mq_attr __user *uattr)
1517 struct compat_mq_attr v;
1519 memset(&v, 0, sizeof(v));
1520 v.mq_flags = attr->mq_flags;
1521 v.mq_maxmsg = attr->mq_maxmsg;
1522 v.mq_msgsize = attr->mq_msgsize;
1523 v.mq_curmsgs = attr->mq_curmsgs;
1524 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1525 return -EFAULT;
1526 return 0;
1529 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1530 int, oflag, compat_mode_t, mode,
1531 struct compat_mq_attr __user *, u_attr)
1533 struct mq_attr attr, *p = NULL;
1534 if (u_attr && oflag & O_CREAT) {
1535 p = &attr;
1536 if (get_compat_mq_attr(&attr, u_attr))
1537 return -EFAULT;
1539 return do_mq_open(u_name, oflag, mode, p);
1542 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1543 const struct compat_sigevent __user *, u_notification)
1545 struct sigevent n, *p = NULL;
1546 if (u_notification) {
1547 if (get_compat_sigevent(&n, u_notification))
1548 return -EFAULT;
1549 if (n.sigev_notify == SIGEV_THREAD)
1550 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1551 p = &n;
1553 return do_mq_notify(mqdes, p);
1556 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1557 const struct compat_mq_attr __user *, u_mqstat,
1558 struct compat_mq_attr __user *, u_omqstat)
1560 int ret;
1561 struct mq_attr mqstat, omqstat;
1562 struct mq_attr *new = NULL, *old = NULL;
1564 if (u_mqstat) {
1565 new = &mqstat;
1566 if (get_compat_mq_attr(new, u_mqstat))
1567 return -EFAULT;
1569 if (u_omqstat)
1570 old = &omqstat;
1572 ret = do_mq_getsetattr(mqdes, new, old);
1573 if (ret || !old)
1574 return ret;
1576 if (put_compat_mq_attr(old, u_omqstat))
1577 return -EFAULT;
1578 return 0;
1580 #endif
1582 #ifdef CONFIG_COMPAT_32BIT_TIME
1583 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1584 struct timespec64 *ts)
1586 if (get_old_timespec32(ts, p))
1587 return -EFAULT;
1588 if (!timespec64_valid(ts))
1589 return -EINVAL;
1590 return 0;
1593 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1594 const char __user *, u_msg_ptr,
1595 unsigned int, msg_len, unsigned int, msg_prio,
1596 const struct old_timespec32 __user *, u_abs_timeout)
1598 struct timespec64 ts, *p = NULL;
1599 if (u_abs_timeout) {
1600 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1601 if (res)
1602 return res;
1603 p = &ts;
1605 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1608 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1609 char __user *, u_msg_ptr,
1610 unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1611 const struct old_timespec32 __user *, u_abs_timeout)
1613 struct timespec64 ts, *p = NULL;
1614 if (u_abs_timeout) {
1615 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1616 if (res)
1617 return res;
1618 p = &ts;
1620 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1622 #endif
1624 static const struct inode_operations mqueue_dir_inode_operations = {
1625 .lookup = simple_lookup,
1626 .create = mqueue_create,
1627 .unlink = mqueue_unlink,
1630 static const struct file_operations mqueue_file_operations = {
1631 .flush = mqueue_flush_file,
1632 .poll = mqueue_poll_file,
1633 .read = mqueue_read_file,
1634 .llseek = default_llseek,
1637 static const struct super_operations mqueue_super_ops = {
1638 .alloc_inode = mqueue_alloc_inode,
1639 .free_inode = mqueue_free_inode,
1640 .evict_inode = mqueue_evict_inode,
1641 .statfs = simple_statfs,
1644 static const struct fs_context_operations mqueue_fs_context_ops = {
1645 .free = mqueue_fs_context_free,
1646 .get_tree = mqueue_get_tree,
1649 static struct file_system_type mqueue_fs_type = {
1650 .name = "mqueue",
1651 .init_fs_context = mqueue_init_fs_context,
1652 .kill_sb = kill_litter_super,
1653 .fs_flags = FS_USERNS_MOUNT,
1656 int mq_init_ns(struct ipc_namespace *ns)
1658 struct vfsmount *m;
1660 ns->mq_queues_count = 0;
1661 ns->mq_queues_max = DFLT_QUEUESMAX;
1662 ns->mq_msg_max = DFLT_MSGMAX;
1663 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1664 ns->mq_msg_default = DFLT_MSG;
1665 ns->mq_msgsize_default = DFLT_MSGSIZE;
1667 m = mq_create_mount(ns);
1668 if (IS_ERR(m))
1669 return PTR_ERR(m);
1670 ns->mq_mnt = m;
1671 return 0;
1674 void mq_clear_sbinfo(struct ipc_namespace *ns)
1676 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1679 void mq_put_mnt(struct ipc_namespace *ns)
1681 kern_unmount(ns->mq_mnt);
1684 static int __init init_mqueue_fs(void)
1686 int error;
1688 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1689 sizeof(struct mqueue_inode_info), 0,
1690 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1691 if (mqueue_inode_cachep == NULL)
1692 return -ENOMEM;
1694 /* ignore failures - they are not fatal */
1695 mq_sysctl_table = mq_register_sysctl_table();
1697 error = register_filesystem(&mqueue_fs_type);
1698 if (error)
1699 goto out_sysctl;
1701 spin_lock_init(&mq_lock);
1703 error = mq_init_ns(&init_ipc_ns);
1704 if (error)
1705 goto out_filesystem;
1707 return 0;
1709 out_filesystem:
1710 unregister_filesystem(&mqueue_fs_type);
1711 out_sysctl:
1712 if (mq_sysctl_table)
1713 unregister_sysctl_table(mq_sysctl_table);
1714 kmem_cache_destroy(mqueue_inode_cachep);
1715 return error;
1718 device_initcall(init_mqueue_fs);