1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
91 #include <linux/uaccess.h>
94 /* One semaphore structure for each semaphore in the system. */
96 int semval
; /* current value */
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
105 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter
; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const
; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime
; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp
;
113 /* One sem_array data structure for each set of semaphores in the system. */
115 struct kern_ipc_perm sem_perm
; /* permissions .. see ipc.h */
116 time64_t sem_ctime
; /* create/last semctl() time */
117 struct list_head pending_alter
; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const
; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id
; /* undo requests on this array */
122 int sem_nsems
; /* no. of semaphores in array */
123 int complex_count
; /* pending complex operations */
124 unsigned int use_global_lock
;/* >0: global lock required */
127 } __randomize_layout
;
129 /* One queue for each sleeping process in the system. */
131 struct list_head list
; /* queue of pending operations */
132 struct task_struct
*sleeper
; /* this process */
133 struct sem_undo
*undo
; /* undo structure */
134 struct pid
*pid
; /* process id of requesting process */
135 int status
; /* completion status of operation */
136 struct sembuf
*sops
; /* array of pending operations */
137 struct sembuf
*blocking
; /* the operation that blocked */
138 int nsops
; /* number of operations */
139 bool alter
; /* does *sops alter the array? */
140 bool dupsop
; /* sops on more than one sem_num */
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
147 struct list_head list_proc
; /* per-process list: *
148 * all undos from one process
150 struct rcu_head rcu
; /* rcu struct for sem_undo */
151 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
152 struct list_head list_id
; /* per semaphore array list:
153 * all undos for one array */
154 int semid
; /* semaphore set identifier */
155 short *semadj
; /* array of adjustments */
156 /* one per semaphore */
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
162 struct sem_undo_list
{
165 struct list_head list_proc
;
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
171 static int newary(struct ipc_namespace
*, struct ipc_params
*);
172 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
189 * a) global sem_lock() for read/write
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
210 * 1) use_global_lock: (SEM_BARRIER_1)
211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
221 * 2) queue.status: (SEM_BARRIER_2)
222 * Initialization is done while holding sem_lock(), so no further barrier is
224 * Setting it to a result code is a RELEASE, this is ensured by both a
225 * smp_store_release() (for case a) and while holding sem_lock()
227 * The AQUIRE when reading the result code without holding sem_lock() is
228 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
230 * Reading the result code while holding sem_lock() needs no further barriers,
231 * the locks inside sem_lock() enforce ordering (case b above)
234 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
235 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
236 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
237 * when holding sem_lock(), no further barriers are required.
239 * See also ipc/mqueue.c for more details on the covered races.
242 #define sc_semmsl sem_ctls[0]
243 #define sc_semmns sem_ctls[1]
244 #define sc_semopm sem_ctls[2]
245 #define sc_semmni sem_ctls[3]
247 void sem_init_ns(struct ipc_namespace
*ns
)
249 ns
->sc_semmsl
= SEMMSL
;
250 ns
->sc_semmns
= SEMMNS
;
251 ns
->sc_semopm
= SEMOPM
;
252 ns
->sc_semmni
= SEMMNI
;
254 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
258 void sem_exit_ns(struct ipc_namespace
*ns
)
260 free_ipcs(ns
, &sem_ids(ns
), freeary
);
261 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
262 rhashtable_destroy(&ns
->ids
[IPC_SEM_IDS
].key_ht
);
266 void __init
sem_init(void)
268 sem_init_ns(&init_ipc_ns
);
269 ipc_init_proc_interface("sysvipc/sem",
270 " key semid perms nsems uid gid cuid cgid otime ctime\n",
271 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
275 * unmerge_queues - unmerge queues, if possible.
276 * @sma: semaphore array
278 * The function unmerges the wait queues if complex_count is 0.
279 * It must be called prior to dropping the global semaphore array lock.
281 static void unmerge_queues(struct sem_array
*sma
)
283 struct sem_queue
*q
, *tq
;
285 /* complex operations still around? */
286 if (sma
->complex_count
)
289 * We will switch back to simple mode.
290 * Move all pending operation back into the per-semaphore
293 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
295 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
297 list_add_tail(&q
->list
, &curr
->pending_alter
);
299 INIT_LIST_HEAD(&sma
->pending_alter
);
303 * merge_queues - merge single semop queues into global queue
304 * @sma: semaphore array
306 * This function merges all per-semaphore queues into the global queue.
307 * It is necessary to achieve FIFO ordering for the pending single-sop
308 * operations when a multi-semop operation must sleep.
309 * Only the alter operations must be moved, the const operations can stay.
311 static void merge_queues(struct sem_array
*sma
)
314 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
315 struct sem
*sem
= &sma
->sems
[i
];
317 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
321 static void sem_rcu_free(struct rcu_head
*head
)
323 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
324 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
326 security_sem_free(&sma
->sem_perm
);
331 * Enter the mode suitable for non-simple operations:
332 * Caller must own sem_perm.lock.
334 static void complexmode_enter(struct sem_array
*sma
)
339 if (sma
->use_global_lock
> 0) {
341 * We are already in global lock mode.
342 * Nothing to do, just reset the
343 * counter until we return to simple mode.
345 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
348 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
350 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
352 spin_lock(&sem
->lock
);
353 spin_unlock(&sem
->lock
);
358 * Try to leave the mode that disallows simple operations:
359 * Caller must own sem_perm.lock.
361 static void complexmode_tryleave(struct sem_array
*sma
)
363 if (sma
->complex_count
) {
364 /* Complex ops are sleeping.
365 * We must stay in complex mode
369 if (sma
->use_global_lock
== 1) {
371 /* See SEM_BARRIER_1 for purpose/pairing */
372 smp_store_release(&sma
->use_global_lock
, 0);
374 sma
->use_global_lock
--;
378 #define SEM_GLOBAL_LOCK (-1)
380 * If the request contains only one semaphore operation, and there are
381 * no complex transactions pending, lock only the semaphore involved.
382 * Otherwise, lock the entire semaphore array, since we either have
383 * multiple semaphores in our own semops, or we need to look at
384 * semaphores from other pending complex operations.
386 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
393 /* Complex operation - acquire a full lock */
394 ipc_lock_object(&sma
->sem_perm
);
396 /* Prevent parallel simple ops */
397 complexmode_enter(sma
);
398 return SEM_GLOBAL_LOCK
;
402 * Only one semaphore affected - try to optimize locking.
403 * Optimized locking is possible if no complex operation
404 * is either enqueued or processed right now.
406 * Both facts are tracked by use_global_mode.
408 idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
409 sem
= &sma
->sems
[idx
];
412 * Initial check for use_global_lock. Just an optimization,
413 * no locking, no memory barrier.
415 if (!sma
->use_global_lock
) {
417 * It appears that no complex operation is around.
418 * Acquire the per-semaphore lock.
420 spin_lock(&sem
->lock
);
422 /* see SEM_BARRIER_1 for purpose/pairing */
423 if (!smp_load_acquire(&sma
->use_global_lock
)) {
424 /* fast path successful! */
425 return sops
->sem_num
;
427 spin_unlock(&sem
->lock
);
430 /* slow path: acquire the full lock */
431 ipc_lock_object(&sma
->sem_perm
);
433 if (sma
->use_global_lock
== 0) {
435 * The use_global_lock mode ended while we waited for
436 * sma->sem_perm.lock. Thus we must switch to locking
438 * Unlike in the fast path, there is no need to recheck
439 * sma->use_global_lock after we have acquired sem->lock:
440 * We own sma->sem_perm.lock, thus use_global_lock cannot
443 spin_lock(&sem
->lock
);
445 ipc_unlock_object(&sma
->sem_perm
);
446 return sops
->sem_num
;
449 * Not a false alarm, thus continue to use the global lock
450 * mode. No need for complexmode_enter(), this was done by
451 * the caller that has set use_global_mode to non-zero.
453 return SEM_GLOBAL_LOCK
;
457 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
459 if (locknum
== SEM_GLOBAL_LOCK
) {
461 complexmode_tryleave(sma
);
462 ipc_unlock_object(&sma
->sem_perm
);
464 struct sem
*sem
= &sma
->sems
[locknum
];
465 spin_unlock(&sem
->lock
);
470 * sem_lock_(check_) routines are called in the paths where the rwsem
473 * The caller holds the RCU read lock.
475 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
477 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
480 return ERR_CAST(ipcp
);
482 return container_of(ipcp
, struct sem_array
, sem_perm
);
485 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
488 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
491 return ERR_CAST(ipcp
);
493 return container_of(ipcp
, struct sem_array
, sem_perm
);
496 static inline void sem_lock_and_putref(struct sem_array
*sma
)
498 sem_lock(sma
, NULL
, -1);
499 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
502 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
504 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
507 static struct sem_array
*sem_alloc(size_t nsems
)
509 struct sem_array
*sma
;
511 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
514 sma
= kvzalloc(struct_size(sma
, sems
, nsems
), GFP_KERNEL
);
522 * newary - Create a new semaphore set
524 * @params: ptr to the structure that contains key, semflg and nsems
526 * Called with sem_ids.rwsem held (as a writer)
528 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
531 struct sem_array
*sma
;
532 key_t key
= params
->key
;
533 int nsems
= params
->u
.nsems
;
534 int semflg
= params
->flg
;
539 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
542 sma
= sem_alloc(nsems
);
546 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
547 sma
->sem_perm
.key
= key
;
549 sma
->sem_perm
.security
= NULL
;
550 retval
= security_sem_alloc(&sma
->sem_perm
);
556 for (i
= 0; i
< nsems
; i
++) {
557 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
558 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
559 spin_lock_init(&sma
->sems
[i
].lock
);
562 sma
->complex_count
= 0;
563 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
564 INIT_LIST_HEAD(&sma
->pending_alter
);
565 INIT_LIST_HEAD(&sma
->pending_const
);
566 INIT_LIST_HEAD(&sma
->list_id
);
567 sma
->sem_nsems
= nsems
;
568 sma
->sem_ctime
= ktime_get_real_seconds();
570 /* ipc_addid() locks sma upon success. */
571 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
573 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
576 ns
->used_sems
+= nsems
;
581 return sma
->sem_perm
.id
;
586 * Called with sem_ids.rwsem and ipcp locked.
588 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
589 struct ipc_params
*params
)
591 struct sem_array
*sma
;
593 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
594 if (params
->u
.nsems
> sma
->sem_nsems
)
600 long ksys_semget(key_t key
, int nsems
, int semflg
)
602 struct ipc_namespace
*ns
;
603 static const struct ipc_ops sem_ops
= {
605 .associate
= security_sem_associate
,
606 .more_checks
= sem_more_checks
,
608 struct ipc_params sem_params
;
610 ns
= current
->nsproxy
->ipc_ns
;
612 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
615 sem_params
.key
= key
;
616 sem_params
.flg
= semflg
;
617 sem_params
.u
.nsems
= nsems
;
619 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
622 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
624 return ksys_semget(key
, nsems
, semflg
);
628 * perform_atomic_semop[_slow] - Attempt to perform semaphore
629 * operations on a given array.
630 * @sma: semaphore array
631 * @q: struct sem_queue that describes the operation
633 * Caller blocking are as follows, based the value
634 * indicated by the semaphore operation (sem_op):
636 * (1) >0 never blocks.
637 * (2) 0 (wait-for-zero operation): semval is non-zero.
638 * (3) <0 attempting to decrement semval to a value smaller than zero.
640 * Returns 0 if the operation was possible.
641 * Returns 1 if the operation is impossible, the caller must sleep.
642 * Returns <0 for error codes.
644 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
646 int result
, sem_op
, nsops
;
657 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
658 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
659 curr
= &sma
->sems
[idx
];
660 sem_op
= sop
->sem_op
;
661 result
= curr
->semval
;
663 if (!sem_op
&& result
)
672 if (sop
->sem_flg
& SEM_UNDO
) {
673 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
674 /* Exceeding the undo range is an error. */
675 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
677 un
->semadj
[sop
->sem_num
] = undo
;
680 curr
->semval
= result
;
685 while (sop
>= sops
) {
686 ipc_update_pid(&sma
->sems
[sop
->sem_num
].sempid
, pid
);
699 if (sop
->sem_flg
& IPC_NOWAIT
)
706 while (sop
>= sops
) {
707 sem_op
= sop
->sem_op
;
708 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
709 if (sop
->sem_flg
& SEM_UNDO
)
710 un
->semadj
[sop
->sem_num
] += sem_op
;
717 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
719 int result
, sem_op
, nsops
;
729 if (unlikely(q
->dupsop
))
730 return perform_atomic_semop_slow(sma
, q
);
733 * We scan the semaphore set twice, first to ensure that the entire
734 * operation can succeed, therefore avoiding any pointless writes
735 * to shared memory and having to undo such changes in order to block
736 * until the operations can go through.
738 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
739 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
741 curr
= &sma
->sems
[idx
];
742 sem_op
= sop
->sem_op
;
743 result
= curr
->semval
;
745 if (!sem_op
&& result
)
746 goto would_block
; /* wait-for-zero */
755 if (sop
->sem_flg
& SEM_UNDO
) {
756 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
758 /* Exceeding the undo range is an error. */
759 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
764 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
765 curr
= &sma
->sems
[sop
->sem_num
];
766 sem_op
= sop
->sem_op
;
767 result
= curr
->semval
;
769 if (sop
->sem_flg
& SEM_UNDO
) {
770 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
772 un
->semadj
[sop
->sem_num
] = undo
;
774 curr
->semval
+= sem_op
;
775 ipc_update_pid(&curr
->sempid
, q
->pid
);
782 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
785 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
786 struct wake_q_head
*wake_q
)
788 get_task_struct(q
->sleeper
);
790 /* see SEM_BARRIER_2 for purpuse/pairing */
791 smp_store_release(&q
->status
, error
);
793 wake_q_add_safe(wake_q
, q
->sleeper
);
796 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
800 sma
->complex_count
--;
803 /** check_restart(sma, q)
804 * @sma: semaphore array
805 * @q: the operation that just completed
807 * update_queue is O(N^2) when it restarts scanning the whole queue of
808 * waiting operations. Therefore this function checks if the restart is
809 * really necessary. It is called after a previously waiting operation
810 * modified the array.
811 * Note that wait-for-zero operations are handled without restart.
813 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
815 /* pending complex alter operations are too difficult to analyse */
816 if (!list_empty(&sma
->pending_alter
))
819 /* we were a sleeping complex operation. Too difficult */
823 /* It is impossible that someone waits for the new value:
824 * - complex operations always restart.
825 * - wait-for-zero are handled seperately.
826 * - q is a previously sleeping simple operation that
827 * altered the array. It must be a decrement, because
828 * simple increments never sleep.
829 * - If there are older (higher priority) decrements
830 * in the queue, then they have observed the original
831 * semval value and couldn't proceed. The operation
832 * decremented to value - thus they won't proceed either.
838 * wake_const_ops - wake up non-alter tasks
839 * @sma: semaphore array.
840 * @semnum: semaphore that was modified.
841 * @wake_q: lockless wake-queue head.
843 * wake_const_ops must be called after a semaphore in a semaphore array
844 * was set to 0. If complex const operations are pending, wake_const_ops must
845 * be called with semnum = -1, as well as with the number of each modified
847 * The tasks that must be woken up are added to @wake_q. The return code
848 * is stored in q->pid.
849 * The function returns 1 if at least one operation was completed successfully.
851 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
852 struct wake_q_head
*wake_q
)
854 struct sem_queue
*q
, *tmp
;
855 struct list_head
*pending_list
;
856 int semop_completed
= 0;
859 pending_list
= &sma
->pending_const
;
861 pending_list
= &sma
->sems
[semnum
].pending_const
;
863 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
864 int error
= perform_atomic_semop(sma
, q
);
868 /* operation completed, remove from queue & wakeup */
869 unlink_queue(sma
, q
);
871 wake_up_sem_queue_prepare(q
, error
, wake_q
);
876 return semop_completed
;
880 * do_smart_wakeup_zero - wakeup all wait for zero tasks
881 * @sma: semaphore array
882 * @sops: operations that were performed
883 * @nsops: number of operations
884 * @wake_q: lockless wake-queue head
886 * Checks all required queue for wait-for-zero operations, based
887 * on the actual changes that were performed on the semaphore array.
888 * The function returns 1 if at least one operation was completed successfully.
890 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
891 int nsops
, struct wake_q_head
*wake_q
)
894 int semop_completed
= 0;
897 /* first: the per-semaphore queues, if known */
899 for (i
= 0; i
< nsops
; i
++) {
900 int num
= sops
[i
].sem_num
;
902 if (sma
->sems
[num
].semval
== 0) {
904 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
909 * No sops means modified semaphores not known.
910 * Assume all were changed.
912 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
913 if (sma
->sems
[i
].semval
== 0) {
915 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
920 * If one of the modified semaphores got 0,
921 * then check the global queue, too.
924 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
926 return semop_completed
;
931 * update_queue - look for tasks that can be completed.
932 * @sma: semaphore array.
933 * @semnum: semaphore that was modified.
934 * @wake_q: lockless wake-queue head.
936 * update_queue must be called after a semaphore in a semaphore array
937 * was modified. If multiple semaphores were modified, update_queue must
938 * be called with semnum = -1, as well as with the number of each modified
940 * The tasks that must be woken up are added to @wake_q. The return code
941 * is stored in q->pid.
942 * The function internally checks if const operations can now succeed.
944 * The function return 1 if at least one semop was completed successfully.
946 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
948 struct sem_queue
*q
, *tmp
;
949 struct list_head
*pending_list
;
950 int semop_completed
= 0;
953 pending_list
= &sma
->pending_alter
;
955 pending_list
= &sma
->sems
[semnum
].pending_alter
;
958 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
961 /* If we are scanning the single sop, per-semaphore list of
962 * one semaphore and that semaphore is 0, then it is not
963 * necessary to scan further: simple increments
964 * that affect only one entry succeed immediately and cannot
965 * be in the per semaphore pending queue, and decrements
966 * cannot be successful if the value is already 0.
968 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
971 error
= perform_atomic_semop(sma
, q
);
973 /* Does q->sleeper still need to sleep? */
977 unlink_queue(sma
, q
);
983 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
984 restart
= check_restart(sma
, q
);
987 wake_up_sem_queue_prepare(q
, error
, wake_q
);
991 return semop_completed
;
995 * set_semotime - set sem_otime
996 * @sma: semaphore array
997 * @sops: operations that modified the array, may be NULL
999 * sem_otime is replicated to avoid cache line trashing.
1000 * This function sets one instance to the current time.
1002 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
1005 sma
->sems
[0].sem_otime
= ktime_get_real_seconds();
1007 sma
->sems
[sops
[0].sem_num
].sem_otime
=
1008 ktime_get_real_seconds();
1013 * do_smart_update - optimized update_queue
1014 * @sma: semaphore array
1015 * @sops: operations that were performed
1016 * @nsops: number of operations
1017 * @otime: force setting otime
1018 * @wake_q: lockless wake-queue head
1020 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1021 * based on the actual changes that were performed on the semaphore array.
1022 * Note that the function does not do the actual wake-up: the caller is
1023 * responsible for calling wake_up_q().
1024 * It is safe to perform this call after dropping all locks.
1026 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
1027 int otime
, struct wake_q_head
*wake_q
)
1031 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
1033 if (!list_empty(&sma
->pending_alter
)) {
1034 /* semaphore array uses the global queue - just process it. */
1035 otime
|= update_queue(sma
, -1, wake_q
);
1039 * No sops, thus the modified semaphores are not
1042 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1043 otime
|= update_queue(sma
, i
, wake_q
);
1046 * Check the semaphores that were increased:
1047 * - No complex ops, thus all sleeping ops are
1049 * - if we decreased the value, then any sleeping
1050 * semaphore ops wont be able to run: If the
1051 * previous value was too small, then the new
1052 * value will be too small, too.
1054 for (i
= 0; i
< nsops
; i
++) {
1055 if (sops
[i
].sem_op
> 0) {
1056 otime
|= update_queue(sma
,
1057 sops
[i
].sem_num
, wake_q
);
1063 set_semotime(sma
, sops
);
1067 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1069 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1072 struct sembuf
*sop
= q
->blocking
;
1075 * Linux always (since 0.99.10) reported a task as sleeping on all
1076 * semaphores. This violates SUS, therefore it was changed to the
1077 * standard compliant behavior.
1078 * Give the administrators a chance to notice that an application
1079 * might misbehave because it relies on the Linux behavior.
1081 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1082 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1083 current
->comm
, task_pid_nr(current
));
1085 if (sop
->sem_num
!= semnum
)
1088 if (count_zero
&& sop
->sem_op
== 0)
1090 if (!count_zero
&& sop
->sem_op
< 0)
1096 /* The following counts are associated to each semaphore:
1097 * semncnt number of tasks waiting on semval being nonzero
1098 * semzcnt number of tasks waiting on semval being zero
1100 * Per definition, a task waits only on the semaphore of the first semop
1101 * that cannot proceed, even if additional operation would block, too.
1103 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1106 struct list_head
*l
;
1107 struct sem_queue
*q
;
1111 /* First: check the simple operations. They are easy to evaluate */
1113 l
= &sma
->sems
[semnum
].pending_const
;
1115 l
= &sma
->sems
[semnum
].pending_alter
;
1117 list_for_each_entry(q
, l
, list
) {
1118 /* all task on a per-semaphore list sleep on exactly
1124 /* Then: check the complex operations. */
1125 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1126 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1129 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1130 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1136 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1137 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1138 * remains locked on exit.
1140 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1142 struct sem_undo
*un
, *tu
;
1143 struct sem_queue
*q
, *tq
;
1144 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1146 DEFINE_WAKE_Q(wake_q
);
1148 /* Free the existing undo structures for this semaphore set. */
1149 ipc_assert_locked_object(&sma
->sem_perm
);
1150 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1151 list_del(&un
->list_id
);
1152 spin_lock(&un
->ulp
->lock
);
1154 list_del_rcu(&un
->list_proc
);
1155 spin_unlock(&un
->ulp
->lock
);
1159 /* Wake up all pending processes and let them fail with EIDRM. */
1160 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1161 unlink_queue(sma
, q
);
1162 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1165 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1166 unlink_queue(sma
, q
);
1167 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1169 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1170 struct sem
*sem
= &sma
->sems
[i
];
1171 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1172 unlink_queue(sma
, q
);
1173 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1175 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1176 unlink_queue(sma
, q
);
1177 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1179 ipc_update_pid(&sem
->sempid
, NULL
);
1182 /* Remove the semaphore set from the IDR */
1184 sem_unlock(sma
, -1);
1188 ns
->used_sems
-= sma
->sem_nsems
;
1189 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1192 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1196 return copy_to_user(buf
, in
, sizeof(*in
));
1199 struct semid_ds out
;
1201 memset(&out
, 0, sizeof(out
));
1203 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1205 out
.sem_otime
= in
->sem_otime
;
1206 out
.sem_ctime
= in
->sem_ctime
;
1207 out
.sem_nsems
= in
->sem_nsems
;
1209 return copy_to_user(buf
, &out
, sizeof(out
));
1216 static time64_t
get_semotime(struct sem_array
*sma
)
1221 res
= sma
->sems
[0].sem_otime
;
1222 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1223 time64_t to
= sma
->sems
[i
].sem_otime
;
1231 static int semctl_stat(struct ipc_namespace
*ns
, int semid
,
1232 int cmd
, struct semid64_ds
*semid64
)
1234 struct sem_array
*sma
;
1238 memset(semid64
, 0, sizeof(*semid64
));
1241 if (cmd
== SEM_STAT
|| cmd
== SEM_STAT_ANY
) {
1242 sma
= sem_obtain_object(ns
, semid
);
1247 } else { /* IPC_STAT */
1248 sma
= sem_obtain_object_check(ns
, semid
);
1255 /* see comment for SHM_STAT_ANY */
1256 if (cmd
== SEM_STAT_ANY
)
1257 audit_ipc_obj(&sma
->sem_perm
);
1260 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1264 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1268 ipc_lock_object(&sma
->sem_perm
);
1270 if (!ipc_valid_object(&sma
->sem_perm
)) {
1271 ipc_unlock_object(&sma
->sem_perm
);
1276 kernel_to_ipc64_perm(&sma
->sem_perm
, &semid64
->sem_perm
);
1277 semotime
= get_semotime(sma
);
1278 semid64
->sem_otime
= semotime
;
1279 semid64
->sem_ctime
= sma
->sem_ctime
;
1280 #ifndef CONFIG_64BIT
1281 semid64
->sem_otime_high
= semotime
>> 32;
1282 semid64
->sem_ctime_high
= sma
->sem_ctime
>> 32;
1284 semid64
->sem_nsems
= sma
->sem_nsems
;
1286 if (cmd
== IPC_STAT
) {
1288 * As defined in SUS:
1289 * Return 0 on success
1294 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1295 * Return the full id, including the sequence number
1297 err
= sma
->sem_perm
.id
;
1299 ipc_unlock_object(&sma
->sem_perm
);
1305 static int semctl_info(struct ipc_namespace
*ns
, int semid
,
1306 int cmd
, void __user
*p
)
1308 struct seminfo seminfo
;
1312 err
= security_sem_semctl(NULL
, cmd
);
1316 memset(&seminfo
, 0, sizeof(seminfo
));
1317 seminfo
.semmni
= ns
->sc_semmni
;
1318 seminfo
.semmns
= ns
->sc_semmns
;
1319 seminfo
.semmsl
= ns
->sc_semmsl
;
1320 seminfo
.semopm
= ns
->sc_semopm
;
1321 seminfo
.semvmx
= SEMVMX
;
1322 seminfo
.semmnu
= SEMMNU
;
1323 seminfo
.semmap
= SEMMAP
;
1324 seminfo
.semume
= SEMUME
;
1325 down_read(&sem_ids(ns
).rwsem
);
1326 if (cmd
== SEM_INFO
) {
1327 seminfo
.semusz
= sem_ids(ns
).in_use
;
1328 seminfo
.semaem
= ns
->used_sems
;
1330 seminfo
.semusz
= SEMUSZ
;
1331 seminfo
.semaem
= SEMAEM
;
1333 max_idx
= ipc_get_maxidx(&sem_ids(ns
));
1334 up_read(&sem_ids(ns
).rwsem
);
1335 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1337 return (max_idx
< 0) ? 0 : max_idx
;
1340 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1343 struct sem_undo
*un
;
1344 struct sem_array
*sma
;
1347 DEFINE_WAKE_Q(wake_q
);
1349 if (val
> SEMVMX
|| val
< 0)
1353 sma
= sem_obtain_object_check(ns
, semid
);
1356 return PTR_ERR(sma
);
1359 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1365 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1370 err
= security_sem_semctl(&sma
->sem_perm
, SETVAL
);
1376 sem_lock(sma
, NULL
, -1);
1378 if (!ipc_valid_object(&sma
->sem_perm
)) {
1379 sem_unlock(sma
, -1);
1384 semnum
= array_index_nospec(semnum
, sma
->sem_nsems
);
1385 curr
= &sma
->sems
[semnum
];
1387 ipc_assert_locked_object(&sma
->sem_perm
);
1388 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1389 un
->semadj
[semnum
] = 0;
1392 ipc_update_pid(&curr
->sempid
, task_tgid(current
));
1393 sma
->sem_ctime
= ktime_get_real_seconds();
1394 /* maybe some queued-up processes were waiting for this */
1395 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1396 sem_unlock(sma
, -1);
1402 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1403 int cmd
, void __user
*p
)
1405 struct sem_array
*sma
;
1408 ushort fast_sem_io
[SEMMSL_FAST
];
1409 ushort
*sem_io
= fast_sem_io
;
1410 DEFINE_WAKE_Q(wake_q
);
1413 sma
= sem_obtain_object_check(ns
, semid
);
1416 return PTR_ERR(sma
);
1419 nsems
= sma
->sem_nsems
;
1422 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1423 goto out_rcu_wakeup
;
1425 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1427 goto out_rcu_wakeup
;
1433 ushort __user
*array
= p
;
1436 sem_lock(sma
, NULL
, -1);
1437 if (!ipc_valid_object(&sma
->sem_perm
)) {
1441 if (nsems
> SEMMSL_FAST
) {
1442 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1446 sem_unlock(sma
, -1);
1448 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1450 if (sem_io
== NULL
) {
1451 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1456 sem_lock_and_putref(sma
);
1457 if (!ipc_valid_object(&sma
->sem_perm
)) {
1462 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1463 sem_io
[i
] = sma
->sems
[i
].semval
;
1464 sem_unlock(sma
, -1);
1467 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1474 struct sem_undo
*un
;
1476 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1478 goto out_rcu_wakeup
;
1482 if (nsems
> SEMMSL_FAST
) {
1483 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1485 if (sem_io
== NULL
) {
1486 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1491 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1492 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1497 for (i
= 0; i
< nsems
; i
++) {
1498 if (sem_io
[i
] > SEMVMX
) {
1499 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1505 sem_lock_and_putref(sma
);
1506 if (!ipc_valid_object(&sma
->sem_perm
)) {
1511 for (i
= 0; i
< nsems
; i
++) {
1512 sma
->sems
[i
].semval
= sem_io
[i
];
1513 ipc_update_pid(&sma
->sems
[i
].sempid
, task_tgid(current
));
1516 ipc_assert_locked_object(&sma
->sem_perm
);
1517 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1518 for (i
= 0; i
< nsems
; i
++)
1521 sma
->sem_ctime
= ktime_get_real_seconds();
1522 /* maybe some queued-up processes were waiting for this */
1523 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1527 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1530 if (semnum
< 0 || semnum
>= nsems
)
1531 goto out_rcu_wakeup
;
1533 sem_lock(sma
, NULL
, -1);
1534 if (!ipc_valid_object(&sma
->sem_perm
)) {
1539 semnum
= array_index_nospec(semnum
, nsems
);
1540 curr
= &sma
->sems
[semnum
];
1547 err
= pid_vnr(curr
->sempid
);
1550 err
= count_semcnt(sma
, semnum
, 0);
1553 err
= count_semcnt(sma
, semnum
, 1);
1558 sem_unlock(sma
, -1);
1563 if (sem_io
!= fast_sem_io
)
1568 static inline unsigned long
1569 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1573 if (copy_from_user(out
, buf
, sizeof(*out
)))
1578 struct semid_ds tbuf_old
;
1580 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1583 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1584 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1585 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1595 * This function handles some semctl commands which require the rwsem
1596 * to be held in write mode.
1597 * NOTE: no locks must be held, the rwsem is taken inside this function.
1599 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1600 int cmd
, struct semid64_ds
*semid64
)
1602 struct sem_array
*sma
;
1604 struct kern_ipc_perm
*ipcp
;
1606 down_write(&sem_ids(ns
).rwsem
);
1609 ipcp
= ipcctl_obtain_check(ns
, &sem_ids(ns
), semid
, cmd
,
1610 &semid64
->sem_perm
, 0);
1612 err
= PTR_ERR(ipcp
);
1616 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1618 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1624 sem_lock(sma
, NULL
, -1);
1625 /* freeary unlocks the ipc object and rcu */
1629 sem_lock(sma
, NULL
, -1);
1630 err
= ipc_update_perm(&semid64
->sem_perm
, ipcp
);
1633 sma
->sem_ctime
= ktime_get_real_seconds();
1641 sem_unlock(sma
, -1);
1645 up_write(&sem_ids(ns
).rwsem
);
1649 static long ksys_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
, int version
)
1651 struct ipc_namespace
*ns
;
1652 void __user
*p
= (void __user
*)arg
;
1653 struct semid64_ds semid64
;
1659 ns
= current
->nsproxy
->ipc_ns
;
1664 return semctl_info(ns
, semid
, cmd
, p
);
1668 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1671 if (copy_semid_to_user(p
, &semid64
, version
))
1680 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1683 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1684 /* big-endian 64bit */
1687 /* 32bit or little-endian 64bit */
1690 return semctl_setval(ns
, semid
, semnum
, val
);
1693 if (copy_semid_from_user(&semid64
, p
, version
))
1697 return semctl_down(ns
, semid
, cmd
, &semid64
);
1703 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1705 return ksys_semctl(semid
, semnum
, cmd
, arg
, IPC_64
);
1708 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1709 long ksys_old_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
)
1711 int version
= ipc_parse_version(&cmd
);
1713 return ksys_semctl(semid
, semnum
, cmd
, arg
, version
);
1716 SYSCALL_DEFINE4(old_semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1718 return ksys_old_semctl(semid
, semnum
, cmd
, arg
);
1722 #ifdef CONFIG_COMPAT
1724 struct compat_semid_ds
{
1725 struct compat_ipc_perm sem_perm
;
1726 old_time32_t sem_otime
;
1727 old_time32_t sem_ctime
;
1728 compat_uptr_t sem_base
;
1729 compat_uptr_t sem_pending
;
1730 compat_uptr_t sem_pending_last
;
1732 unsigned short sem_nsems
;
1735 static int copy_compat_semid_from_user(struct semid64_ds
*out
, void __user
*buf
,
1738 memset(out
, 0, sizeof(*out
));
1739 if (version
== IPC_64
) {
1740 struct compat_semid64_ds __user
*p
= buf
;
1741 return get_compat_ipc64_perm(&out
->sem_perm
, &p
->sem_perm
);
1743 struct compat_semid_ds __user
*p
= buf
;
1744 return get_compat_ipc_perm(&out
->sem_perm
, &p
->sem_perm
);
1748 static int copy_compat_semid_to_user(void __user
*buf
, struct semid64_ds
*in
,
1751 if (version
== IPC_64
) {
1752 struct compat_semid64_ds v
;
1753 memset(&v
, 0, sizeof(v
));
1754 to_compat_ipc64_perm(&v
.sem_perm
, &in
->sem_perm
);
1755 v
.sem_otime
= lower_32_bits(in
->sem_otime
);
1756 v
.sem_otime_high
= upper_32_bits(in
->sem_otime
);
1757 v
.sem_ctime
= lower_32_bits(in
->sem_ctime
);
1758 v
.sem_ctime_high
= upper_32_bits(in
->sem_ctime
);
1759 v
.sem_nsems
= in
->sem_nsems
;
1760 return copy_to_user(buf
, &v
, sizeof(v
));
1762 struct compat_semid_ds v
;
1763 memset(&v
, 0, sizeof(v
));
1764 to_compat_ipc_perm(&v
.sem_perm
, &in
->sem_perm
);
1765 v
.sem_otime
= in
->sem_otime
;
1766 v
.sem_ctime
= in
->sem_ctime
;
1767 v
.sem_nsems
= in
->sem_nsems
;
1768 return copy_to_user(buf
, &v
, sizeof(v
));
1772 static long compat_ksys_semctl(int semid
, int semnum
, int cmd
, int arg
, int version
)
1774 void __user
*p
= compat_ptr(arg
);
1775 struct ipc_namespace
*ns
;
1776 struct semid64_ds semid64
;
1779 ns
= current
->nsproxy
->ipc_ns
;
1784 switch (cmd
& (~IPC_64
)) {
1787 return semctl_info(ns
, semid
, cmd
, p
);
1791 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1794 if (copy_compat_semid_to_user(p
, &semid64
, version
))
1803 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1805 return semctl_setval(ns
, semid
, semnum
, arg
);
1807 if (copy_compat_semid_from_user(&semid64
, p
, version
))
1811 return semctl_down(ns
, semid
, cmd
, &semid64
);
1817 COMPAT_SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1819 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
, IPC_64
);
1822 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1823 long compat_ksys_old_semctl(int semid
, int semnum
, int cmd
, int arg
)
1825 int version
= compat_ipc_parse_version(&cmd
);
1827 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
, version
);
1830 COMPAT_SYSCALL_DEFINE4(old_semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1832 return compat_ksys_old_semctl(semid
, semnum
, cmd
, arg
);
1837 /* If the task doesn't already have a undo_list, then allocate one
1838 * here. We guarantee there is only one thread using this undo list,
1839 * and current is THE ONE
1841 * If this allocation and assignment succeeds, but later
1842 * portions of this code fail, there is no need to free the sem_undo_list.
1843 * Just let it stay associated with the task, and it'll be freed later
1846 * This can block, so callers must hold no locks.
1848 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1850 struct sem_undo_list
*undo_list
;
1852 undo_list
= current
->sysvsem
.undo_list
;
1854 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1855 if (undo_list
== NULL
)
1857 spin_lock_init(&undo_list
->lock
);
1858 refcount_set(&undo_list
->refcnt
, 1);
1859 INIT_LIST_HEAD(&undo_list
->list_proc
);
1861 current
->sysvsem
.undo_list
= undo_list
;
1863 *undo_listp
= undo_list
;
1867 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1869 struct sem_undo
*un
;
1871 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
,
1872 spin_is_locked(&ulp
->lock
)) {
1873 if (un
->semid
== semid
)
1879 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1881 struct sem_undo
*un
;
1883 assert_spin_locked(&ulp
->lock
);
1885 un
= __lookup_undo(ulp
, semid
);
1887 list_del_rcu(&un
->list_proc
);
1888 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1894 * find_alloc_undo - lookup (and if not present create) undo array
1896 * @semid: semaphore array id
1898 * The function looks up (and if not present creates) the undo structure.
1899 * The size of the undo structure depends on the size of the semaphore
1900 * array, thus the alloc path is not that straightforward.
1901 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1902 * performs a rcu_read_lock().
1904 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1906 struct sem_array
*sma
;
1907 struct sem_undo_list
*ulp
;
1908 struct sem_undo
*un
, *new;
1911 error
= get_undo_list(&ulp
);
1913 return ERR_PTR(error
);
1916 spin_lock(&ulp
->lock
);
1917 un
= lookup_undo(ulp
, semid
);
1918 spin_unlock(&ulp
->lock
);
1919 if (likely(un
!= NULL
))
1922 /* no undo structure around - allocate one. */
1923 /* step 1: figure out the size of the semaphore array */
1924 sma
= sem_obtain_object_check(ns
, semid
);
1927 return ERR_CAST(sma
);
1930 nsems
= sma
->sem_nsems
;
1931 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1933 un
= ERR_PTR(-EIDRM
);
1938 /* step 2: allocate new undo structure */
1939 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1941 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1942 return ERR_PTR(-ENOMEM
);
1945 /* step 3: Acquire the lock on semaphore array */
1947 sem_lock_and_putref(sma
);
1948 if (!ipc_valid_object(&sma
->sem_perm
)) {
1949 sem_unlock(sma
, -1);
1952 un
= ERR_PTR(-EIDRM
);
1955 spin_lock(&ulp
->lock
);
1958 * step 4: check for races: did someone else allocate the undo struct?
1960 un
= lookup_undo(ulp
, semid
);
1965 /* step 5: initialize & link new undo structure */
1966 new->semadj
= (short *) &new[1];
1969 assert_spin_locked(&ulp
->lock
);
1970 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1971 ipc_assert_locked_object(&sma
->sem_perm
);
1972 list_add(&new->list_id
, &sma
->list_id
);
1976 spin_unlock(&ulp
->lock
);
1977 sem_unlock(sma
, -1);
1982 static long do_semtimedop(int semid
, struct sembuf __user
*tsops
,
1983 unsigned nsops
, const struct timespec64
*timeout
)
1985 int error
= -EINVAL
;
1986 struct sem_array
*sma
;
1987 struct sembuf fast_sops
[SEMOPM_FAST
];
1988 struct sembuf
*sops
= fast_sops
, *sop
;
1989 struct sem_undo
*un
;
1991 bool undos
= false, alter
= false, dupsop
= false;
1992 struct sem_queue queue
;
1993 unsigned long dup
= 0, jiffies_left
= 0;
1994 struct ipc_namespace
*ns
;
1996 ns
= current
->nsproxy
->ipc_ns
;
1998 if (nsops
< 1 || semid
< 0)
2000 if (nsops
> ns
->sc_semopm
)
2002 if (nsops
> SEMOPM_FAST
) {
2003 sops
= kvmalloc_array(nsops
, sizeof(*sops
), GFP_KERNEL
);
2008 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
2014 if (timeout
->tv_sec
< 0 || timeout
->tv_nsec
< 0 ||
2015 timeout
->tv_nsec
>= 1000000000L) {
2019 jiffies_left
= timespec64_to_jiffies(timeout
);
2023 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
2024 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
2026 if (sop
->sem_num
>= max
)
2028 if (sop
->sem_flg
& SEM_UNDO
)
2032 * There was a previous alter access that appears
2033 * to have accessed the same semaphore, thus use
2034 * the dupsop logic. "appears", because the detection
2035 * can only check % BITS_PER_LONG.
2039 if (sop
->sem_op
!= 0) {
2046 /* On success, find_alloc_undo takes the rcu_read_lock */
2047 un
= find_alloc_undo(ns
, semid
);
2049 error
= PTR_ERR(un
);
2057 sma
= sem_obtain_object_check(ns
, semid
);
2060 error
= PTR_ERR(sma
);
2065 if (max
>= sma
->sem_nsems
) {
2071 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
2076 error
= security_sem_semop(&sma
->sem_perm
, sops
, nsops
, alter
);
2083 locknum
= sem_lock(sma
, sops
, nsops
);
2085 * We eventually might perform the following check in a lockless
2086 * fashion, considering ipc_valid_object() locking constraints.
2087 * If nsops == 1 and there is no contention for sem_perm.lock, then
2088 * only a per-semaphore lock is held and it's OK to proceed with the
2089 * check below. More details on the fine grained locking scheme
2090 * entangled here and why it's RMID race safe on comments at sem_lock()
2092 if (!ipc_valid_object(&sma
->sem_perm
))
2093 goto out_unlock_free
;
2095 * semid identifiers are not unique - find_alloc_undo may have
2096 * allocated an undo structure, it was invalidated by an RMID
2097 * and now a new array with received the same id. Check and fail.
2098 * This case can be detected checking un->semid. The existence of
2099 * "un" itself is guaranteed by rcu.
2101 if (un
&& un
->semid
== -1)
2102 goto out_unlock_free
;
2105 queue
.nsops
= nsops
;
2107 queue
.pid
= task_tgid(current
);
2108 queue
.alter
= alter
;
2109 queue
.dupsop
= dupsop
;
2111 error
= perform_atomic_semop(sma
, &queue
);
2112 if (error
== 0) { /* non-blocking succesfull path */
2113 DEFINE_WAKE_Q(wake_q
);
2116 * If the operation was successful, then do
2117 * the required updates.
2120 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
2122 set_semotime(sma
, sops
);
2124 sem_unlock(sma
, locknum
);
2130 if (error
< 0) /* non-blocking error path */
2131 goto out_unlock_free
;
2134 * We need to sleep on this operation, so we put the current
2135 * task into the pending queue and go to sleep.
2139 int idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
2140 curr
= &sma
->sems
[idx
];
2143 if (sma
->complex_count
) {
2144 list_add_tail(&queue
.list
,
2145 &sma
->pending_alter
);
2148 list_add_tail(&queue
.list
,
2149 &curr
->pending_alter
);
2152 list_add_tail(&queue
.list
, &curr
->pending_const
);
2155 if (!sma
->complex_count
)
2159 list_add_tail(&queue
.list
, &sma
->pending_alter
);
2161 list_add_tail(&queue
.list
, &sma
->pending_const
);
2163 sma
->complex_count
++;
2167 /* memory ordering ensured by the lock in sem_lock() */
2168 WRITE_ONCE(queue
.status
, -EINTR
);
2169 queue
.sleeper
= current
;
2171 /* memory ordering is ensured by the lock in sem_lock() */
2172 __set_current_state(TASK_INTERRUPTIBLE
);
2173 sem_unlock(sma
, locknum
);
2177 jiffies_left
= schedule_timeout(jiffies_left
);
2182 * fastpath: the semop has completed, either successfully or
2183 * not, from the syscall pov, is quite irrelevant to us at this
2184 * point; we're done.
2186 * We _do_ care, nonetheless, about being awoken by a signal or
2187 * spuriously. The queue.status is checked again in the
2188 * slowpath (aka after taking sem_lock), such that we can detect
2189 * scenarios where we were awakened externally, during the
2190 * window between wake_q_add() and wake_up_q().
2192 error
= READ_ONCE(queue
.status
);
2193 if (error
!= -EINTR
) {
2194 /* see SEM_BARRIER_2 for purpose/pairing */
2195 smp_acquire__after_ctrl_dep();
2200 locknum
= sem_lock(sma
, sops
, nsops
);
2202 if (!ipc_valid_object(&sma
->sem_perm
))
2203 goto out_unlock_free
;
2206 * No necessity for any barrier: We are protect by sem_lock()
2208 error
= READ_ONCE(queue
.status
);
2211 * If queue.status != -EINTR we are woken up by another process.
2212 * Leave without unlink_queue(), but with sem_unlock().
2214 if (error
!= -EINTR
)
2215 goto out_unlock_free
;
2218 * If an interrupt occurred we have to clean up the queue.
2220 if (timeout
&& jiffies_left
== 0)
2222 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2224 unlink_queue(sma
, &queue
);
2227 sem_unlock(sma
, locknum
);
2230 if (sops
!= fast_sops
)
2235 long ksys_semtimedop(int semid
, struct sembuf __user
*tsops
,
2236 unsigned int nsops
, const struct __kernel_timespec __user
*timeout
)
2239 struct timespec64 ts
;
2240 if (get_timespec64(&ts
, timeout
))
2242 return do_semtimedop(semid
, tsops
, nsops
, &ts
);
2244 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2247 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
2248 unsigned int, nsops
, const struct __kernel_timespec __user
*, timeout
)
2250 return ksys_semtimedop(semid
, tsops
, nsops
, timeout
);
2253 #ifdef CONFIG_COMPAT_32BIT_TIME
2254 long compat_ksys_semtimedop(int semid
, struct sembuf __user
*tsems
,
2256 const struct old_timespec32 __user
*timeout
)
2259 struct timespec64 ts
;
2260 if (get_old_timespec32(&ts
, timeout
))
2262 return do_semtimedop(semid
, tsems
, nsops
, &ts
);
2264 return do_semtimedop(semid
, tsems
, nsops
, NULL
);
2267 SYSCALL_DEFINE4(semtimedop_time32
, int, semid
, struct sembuf __user
*, tsems
,
2268 unsigned int, nsops
,
2269 const struct old_timespec32 __user
*, timeout
)
2271 return compat_ksys_semtimedop(semid
, tsems
, nsops
, timeout
);
2275 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2278 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2281 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2282 * parent and child tasks.
2285 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2287 struct sem_undo_list
*undo_list
;
2290 if (clone_flags
& CLONE_SYSVSEM
) {
2291 error
= get_undo_list(&undo_list
);
2294 refcount_inc(&undo_list
->refcnt
);
2295 tsk
->sysvsem
.undo_list
= undo_list
;
2297 tsk
->sysvsem
.undo_list
= NULL
;
2303 * add semadj values to semaphores, free undo structures.
2304 * undo structures are not freed when semaphore arrays are destroyed
2305 * so some of them may be out of date.
2306 * IMPLEMENTATION NOTE: There is some confusion over whether the
2307 * set of adjustments that needs to be done should be done in an atomic
2308 * manner or not. That is, if we are attempting to decrement the semval
2309 * should we queue up and wait until we can do so legally?
2310 * The original implementation attempted to do this (queue and wait).
2311 * The current implementation does not do so. The POSIX standard
2312 * and SVID should be consulted to determine what behavior is mandated.
2314 void exit_sem(struct task_struct
*tsk
)
2316 struct sem_undo_list
*ulp
;
2318 ulp
= tsk
->sysvsem
.undo_list
;
2321 tsk
->sysvsem
.undo_list
= NULL
;
2323 if (!refcount_dec_and_test(&ulp
->refcnt
))
2327 struct sem_array
*sma
;
2328 struct sem_undo
*un
;
2330 DEFINE_WAKE_Q(wake_q
);
2335 un
= list_entry_rcu(ulp
->list_proc
.next
,
2336 struct sem_undo
, list_proc
);
2337 if (&un
->list_proc
== &ulp
->list_proc
) {
2339 * We must wait for freeary() before freeing this ulp,
2340 * in case we raced with last sem_undo. There is a small
2341 * possibility where we exit while freeary() didn't
2342 * finish unlocking sem_undo_list.
2344 spin_lock(&ulp
->lock
);
2345 spin_unlock(&ulp
->lock
);
2349 spin_lock(&ulp
->lock
);
2351 spin_unlock(&ulp
->lock
);
2353 /* exit_sem raced with IPC_RMID, nothing to do */
2359 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2360 /* exit_sem raced with IPC_RMID, nothing to do */
2366 sem_lock(sma
, NULL
, -1);
2367 /* exit_sem raced with IPC_RMID, nothing to do */
2368 if (!ipc_valid_object(&sma
->sem_perm
)) {
2369 sem_unlock(sma
, -1);
2373 un
= __lookup_undo(ulp
, semid
);
2375 /* exit_sem raced with IPC_RMID+semget() that created
2376 * exactly the same semid. Nothing to do.
2378 sem_unlock(sma
, -1);
2383 /* remove un from the linked lists */
2384 ipc_assert_locked_object(&sma
->sem_perm
);
2385 list_del(&un
->list_id
);
2387 /* we are the last process using this ulp, acquiring ulp->lock
2388 * isn't required. Besides that, we are also protected against
2389 * IPC_RMID as we hold sma->sem_perm lock now
2391 list_del_rcu(&un
->list_proc
);
2393 /* perform adjustments registered in un */
2394 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2395 struct sem
*semaphore
= &sma
->sems
[i
];
2396 if (un
->semadj
[i
]) {
2397 semaphore
->semval
+= un
->semadj
[i
];
2399 * Range checks of the new semaphore value,
2400 * not defined by sus:
2401 * - Some unices ignore the undo entirely
2402 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2403 * - some cap the value (e.g. FreeBSD caps
2404 * at 0, but doesn't enforce SEMVMX)
2406 * Linux caps the semaphore value, both at 0
2409 * Manfred <manfred@colorfullife.com>
2411 if (semaphore
->semval
< 0)
2412 semaphore
->semval
= 0;
2413 if (semaphore
->semval
> SEMVMX
)
2414 semaphore
->semval
= SEMVMX
;
2415 ipc_update_pid(&semaphore
->sempid
, task_tgid(current
));
2418 /* maybe some queued-up processes were waiting for this */
2419 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2420 sem_unlock(sma
, -1);
2429 #ifdef CONFIG_PROC_FS
2430 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2432 struct user_namespace
*user_ns
= seq_user_ns(s
);
2433 struct kern_ipc_perm
*ipcp
= it
;
2434 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2438 * The proc interface isn't aware of sem_lock(), it calls
2439 * ipc_lock_object() directly (in sysvipc_find_ipc).
2440 * In order to stay compatible with sem_lock(), we must
2441 * enter / leave complex_mode.
2443 complexmode_enter(sma
);
2445 sem_otime
= get_semotime(sma
);
2448 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2453 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2454 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2455 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2456 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2460 complexmode_tryleave(sma
);