1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context
{
28 struct dev_pagemap
*pgmap
;
29 unsigned int page_mask
;
33 * Return the compound head page with ref appropriately incremented,
34 * or NULL if that failed.
36 static inline struct page
*try_get_compound_head(struct page
*page
, int refs
)
38 struct page
*head
= compound_head(page
);
40 if (WARN_ON_ONCE(page_ref_count(head
) < 0))
42 if (unlikely(!page_cache_add_speculative(head
, refs
)))
48 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
49 * @pages: array of pages to be maybe marked dirty, and definitely released.
50 * @npages: number of pages in the @pages array.
51 * @make_dirty: whether to mark the pages dirty
53 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
54 * variants called on that page.
56 * For each page in the @pages array, make that page (or its head page, if a
57 * compound page) dirty, if @make_dirty is true, and if the page was previously
58 * listed as clean. In any case, releases all pages using unpin_user_page(),
59 * possibly via unpin_user_pages(), for the non-dirty case.
61 * Please see the unpin_user_page() documentation for details.
63 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
64 * required, then the caller should a) verify that this is really correct,
65 * because _lock() is usually required, and b) hand code it:
66 * set_page_dirty_lock(), unpin_user_page().
69 void unpin_user_pages_dirty_lock(struct page
**pages
, unsigned long npages
,
75 * TODO: this can be optimized for huge pages: if a series of pages is
76 * physically contiguous and part of the same compound page, then a
77 * single operation to the head page should suffice.
81 unpin_user_pages(pages
, npages
);
85 for (index
= 0; index
< npages
; index
++) {
86 struct page
*page
= compound_head(pages
[index
]);
88 * Checking PageDirty at this point may race with
89 * clear_page_dirty_for_io(), but that's OK. Two key
92 * 1) This code sees the page as already dirty, so it
93 * skips the call to set_page_dirty(). That could happen
94 * because clear_page_dirty_for_io() called
95 * page_mkclean(), followed by set_page_dirty().
96 * However, now the page is going to get written back,
97 * which meets the original intention of setting it
98 * dirty, so all is well: clear_page_dirty_for_io() goes
99 * on to call TestClearPageDirty(), and write the page
102 * 2) This code sees the page as clean, so it calls
103 * set_page_dirty(). The page stays dirty, despite being
104 * written back, so it gets written back again in the
105 * next writeback cycle. This is harmless.
107 if (!PageDirty(page
))
108 set_page_dirty_lock(page
);
109 unpin_user_page(page
);
112 EXPORT_SYMBOL(unpin_user_pages_dirty_lock
);
115 * unpin_user_pages() - release an array of gup-pinned pages.
116 * @pages: array of pages to be marked dirty and released.
117 * @npages: number of pages in the @pages array.
119 * For each page in the @pages array, release the page using unpin_user_page().
121 * Please see the unpin_user_page() documentation for details.
123 void unpin_user_pages(struct page
**pages
, unsigned long npages
)
128 * TODO: this can be optimized for huge pages: if a series of pages is
129 * physically contiguous and part of the same compound page, then a
130 * single operation to the head page should suffice.
132 for (index
= 0; index
< npages
; index
++)
133 unpin_user_page(pages
[index
]);
135 EXPORT_SYMBOL(unpin_user_pages
);
138 static struct page
*no_page_table(struct vm_area_struct
*vma
,
142 * When core dumping an enormous anonymous area that nobody
143 * has touched so far, we don't want to allocate unnecessary pages or
144 * page tables. Return error instead of NULL to skip handle_mm_fault,
145 * then get_dump_page() will return NULL to leave a hole in the dump.
146 * But we can only make this optimization where a hole would surely
147 * be zero-filled if handle_mm_fault() actually did handle it.
149 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
150 return ERR_PTR(-EFAULT
);
154 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
155 pte_t
*pte
, unsigned int flags
)
157 /* No page to get reference */
158 if (flags
& FOLL_GET
)
161 if (flags
& FOLL_TOUCH
) {
164 if (flags
& FOLL_WRITE
)
165 entry
= pte_mkdirty(entry
);
166 entry
= pte_mkyoung(entry
);
168 if (!pte_same(*pte
, entry
)) {
169 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
170 update_mmu_cache(vma
, address
, pte
);
174 /* Proper page table entry exists, but no corresponding struct page */
179 * FOLL_FORCE can write to even unwritable pte's, but only
180 * after we've gone through a COW cycle and they are dirty.
182 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
184 return pte_write(pte
) ||
185 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
188 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
189 unsigned long address
, pmd_t
*pmd
, unsigned int flags
,
190 struct dev_pagemap
**pgmap
)
192 struct mm_struct
*mm
= vma
->vm_mm
;
197 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
198 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
199 (FOLL_PIN
| FOLL_GET
)))
200 return ERR_PTR(-EINVAL
);
202 if (unlikely(pmd_bad(*pmd
)))
203 return no_page_table(vma
, flags
);
205 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
207 if (!pte_present(pte
)) {
210 * KSM's break_ksm() relies upon recognizing a ksm page
211 * even while it is being migrated, so for that case we
212 * need migration_entry_wait().
214 if (likely(!(flags
& FOLL_MIGRATION
)))
218 entry
= pte_to_swp_entry(pte
);
219 if (!is_migration_entry(entry
))
221 pte_unmap_unlock(ptep
, ptl
);
222 migration_entry_wait(mm
, pmd
, address
);
225 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
227 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
228 pte_unmap_unlock(ptep
, ptl
);
232 page
= vm_normal_page(vma
, address
, pte
);
233 if (!page
&& pte_devmap(pte
) && (flags
& FOLL_GET
)) {
235 * Only return device mapping pages in the FOLL_GET case since
236 * they are only valid while holding the pgmap reference.
238 *pgmap
= get_dev_pagemap(pte_pfn(pte
), *pgmap
);
240 page
= pte_page(pte
);
243 } else if (unlikely(!page
)) {
244 if (flags
& FOLL_DUMP
) {
245 /* Avoid special (like zero) pages in core dumps */
246 page
= ERR_PTR(-EFAULT
);
250 if (is_zero_pfn(pte_pfn(pte
))) {
251 page
= pte_page(pte
);
255 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
261 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
264 pte_unmap_unlock(ptep
, ptl
);
266 ret
= split_huge_page(page
);
274 if (flags
& FOLL_GET
) {
275 if (unlikely(!try_get_page(page
))) {
276 page
= ERR_PTR(-ENOMEM
);
280 if (flags
& FOLL_TOUCH
) {
281 if ((flags
& FOLL_WRITE
) &&
282 !pte_dirty(pte
) && !PageDirty(page
))
283 set_page_dirty(page
);
285 * pte_mkyoung() would be more correct here, but atomic care
286 * is needed to avoid losing the dirty bit: it is easier to use
287 * mark_page_accessed().
289 mark_page_accessed(page
);
291 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
292 /* Do not mlock pte-mapped THP */
293 if (PageTransCompound(page
))
297 * The preliminary mapping check is mainly to avoid the
298 * pointless overhead of lock_page on the ZERO_PAGE
299 * which might bounce very badly if there is contention.
301 * If the page is already locked, we don't need to
302 * handle it now - vmscan will handle it later if and
303 * when it attempts to reclaim the page.
305 if (page
->mapping
&& trylock_page(page
)) {
306 lru_add_drain(); /* push cached pages to LRU */
308 * Because we lock page here, and migration is
309 * blocked by the pte's page reference, and we
310 * know the page is still mapped, we don't even
311 * need to check for file-cache page truncation.
313 mlock_vma_page(page
);
318 pte_unmap_unlock(ptep
, ptl
);
321 pte_unmap_unlock(ptep
, ptl
);
324 return no_page_table(vma
, flags
);
327 static struct page
*follow_pmd_mask(struct vm_area_struct
*vma
,
328 unsigned long address
, pud_t
*pudp
,
330 struct follow_page_context
*ctx
)
335 struct mm_struct
*mm
= vma
->vm_mm
;
337 pmd
= pmd_offset(pudp
, address
);
339 * The READ_ONCE() will stabilize the pmdval in a register or
340 * on the stack so that it will stop changing under the code.
342 pmdval
= READ_ONCE(*pmd
);
343 if (pmd_none(pmdval
))
344 return no_page_table(vma
, flags
);
345 if (pmd_huge(pmdval
) && is_vm_hugetlb_page(vma
)) {
346 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
349 return no_page_table(vma
, flags
);
351 if (is_hugepd(__hugepd(pmd_val(pmdval
)))) {
352 page
= follow_huge_pd(vma
, address
,
353 __hugepd(pmd_val(pmdval
)), flags
,
357 return no_page_table(vma
, flags
);
360 if (!pmd_present(pmdval
)) {
361 if (likely(!(flags
& FOLL_MIGRATION
)))
362 return no_page_table(vma
, flags
);
363 VM_BUG_ON(thp_migration_supported() &&
364 !is_pmd_migration_entry(pmdval
));
365 if (is_pmd_migration_entry(pmdval
))
366 pmd_migration_entry_wait(mm
, pmd
);
367 pmdval
= READ_ONCE(*pmd
);
369 * MADV_DONTNEED may convert the pmd to null because
370 * mmap_sem is held in read mode
372 if (pmd_none(pmdval
))
373 return no_page_table(vma
, flags
);
376 if (pmd_devmap(pmdval
)) {
377 ptl
= pmd_lock(mm
, pmd
);
378 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
383 if (likely(!pmd_trans_huge(pmdval
)))
384 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
386 if ((flags
& FOLL_NUMA
) && pmd_protnone(pmdval
))
387 return no_page_table(vma
, flags
);
390 ptl
= pmd_lock(mm
, pmd
);
391 if (unlikely(pmd_none(*pmd
))) {
393 return no_page_table(vma
, flags
);
395 if (unlikely(!pmd_present(*pmd
))) {
397 if (likely(!(flags
& FOLL_MIGRATION
)))
398 return no_page_table(vma
, flags
);
399 pmd_migration_entry_wait(mm
, pmd
);
402 if (unlikely(!pmd_trans_huge(*pmd
))) {
404 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
406 if (flags
& (FOLL_SPLIT
| FOLL_SPLIT_PMD
)) {
408 page
= pmd_page(*pmd
);
409 if (is_huge_zero_page(page
)) {
412 split_huge_pmd(vma
, pmd
, address
);
413 if (pmd_trans_unstable(pmd
))
415 } else if (flags
& FOLL_SPLIT
) {
416 if (unlikely(!try_get_page(page
))) {
418 return ERR_PTR(-ENOMEM
);
422 ret
= split_huge_page(page
);
426 return no_page_table(vma
, flags
);
427 } else { /* flags & FOLL_SPLIT_PMD */
429 split_huge_pmd(vma
, pmd
, address
);
430 ret
= pte_alloc(mm
, pmd
) ? -ENOMEM
: 0;
433 return ret
? ERR_PTR(ret
) :
434 follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
436 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
438 ctx
->page_mask
= HPAGE_PMD_NR
- 1;
442 static struct page
*follow_pud_mask(struct vm_area_struct
*vma
,
443 unsigned long address
, p4d_t
*p4dp
,
445 struct follow_page_context
*ctx
)
450 struct mm_struct
*mm
= vma
->vm_mm
;
452 pud
= pud_offset(p4dp
, address
);
454 return no_page_table(vma
, flags
);
455 if (pud_huge(*pud
) && is_vm_hugetlb_page(vma
)) {
456 page
= follow_huge_pud(mm
, address
, pud
, flags
);
459 return no_page_table(vma
, flags
);
461 if (is_hugepd(__hugepd(pud_val(*pud
)))) {
462 page
= follow_huge_pd(vma
, address
,
463 __hugepd(pud_val(*pud
)), flags
,
467 return no_page_table(vma
, flags
);
469 if (pud_devmap(*pud
)) {
470 ptl
= pud_lock(mm
, pud
);
471 page
= follow_devmap_pud(vma
, address
, pud
, flags
, &ctx
->pgmap
);
476 if (unlikely(pud_bad(*pud
)))
477 return no_page_table(vma
, flags
);
479 return follow_pmd_mask(vma
, address
, pud
, flags
, ctx
);
482 static struct page
*follow_p4d_mask(struct vm_area_struct
*vma
,
483 unsigned long address
, pgd_t
*pgdp
,
485 struct follow_page_context
*ctx
)
490 p4d
= p4d_offset(pgdp
, address
);
492 return no_page_table(vma
, flags
);
493 BUILD_BUG_ON(p4d_huge(*p4d
));
494 if (unlikely(p4d_bad(*p4d
)))
495 return no_page_table(vma
, flags
);
497 if (is_hugepd(__hugepd(p4d_val(*p4d
)))) {
498 page
= follow_huge_pd(vma
, address
,
499 __hugepd(p4d_val(*p4d
)), flags
,
503 return no_page_table(vma
, flags
);
505 return follow_pud_mask(vma
, address
, p4d
, flags
, ctx
);
509 * follow_page_mask - look up a page descriptor from a user-virtual address
510 * @vma: vm_area_struct mapping @address
511 * @address: virtual address to look up
512 * @flags: flags modifying lookup behaviour
513 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
514 * pointer to output page_mask
516 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
518 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
519 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
521 * On output, the @ctx->page_mask is set according to the size of the page.
523 * Return: the mapped (struct page *), %NULL if no mapping exists, or
524 * an error pointer if there is a mapping to something not represented
525 * by a page descriptor (see also vm_normal_page()).
527 static struct page
*follow_page_mask(struct vm_area_struct
*vma
,
528 unsigned long address
, unsigned int flags
,
529 struct follow_page_context
*ctx
)
533 struct mm_struct
*mm
= vma
->vm_mm
;
537 /* make this handle hugepd */
538 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
540 BUG_ON(flags
& FOLL_GET
);
544 pgd
= pgd_offset(mm
, address
);
546 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
547 return no_page_table(vma
, flags
);
549 if (pgd_huge(*pgd
)) {
550 page
= follow_huge_pgd(mm
, address
, pgd
, flags
);
553 return no_page_table(vma
, flags
);
555 if (is_hugepd(__hugepd(pgd_val(*pgd
)))) {
556 page
= follow_huge_pd(vma
, address
,
557 __hugepd(pgd_val(*pgd
)), flags
,
561 return no_page_table(vma
, flags
);
564 return follow_p4d_mask(vma
, address
, pgd
, flags
, ctx
);
567 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
568 unsigned int foll_flags
)
570 struct follow_page_context ctx
= { NULL
};
573 page
= follow_page_mask(vma
, address
, foll_flags
, &ctx
);
575 put_dev_pagemap(ctx
.pgmap
);
579 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
580 unsigned int gup_flags
, struct vm_area_struct
**vma
,
590 /* user gate pages are read-only */
591 if (gup_flags
& FOLL_WRITE
)
593 if (address
> TASK_SIZE
)
594 pgd
= pgd_offset_k(address
);
596 pgd
= pgd_offset_gate(mm
, address
);
599 p4d
= p4d_offset(pgd
, address
);
602 pud
= pud_offset(p4d
, address
);
605 pmd
= pmd_offset(pud
, address
);
606 if (!pmd_present(*pmd
))
608 VM_BUG_ON(pmd_trans_huge(*pmd
));
609 pte
= pte_offset_map(pmd
, address
);
612 *vma
= get_gate_vma(mm
);
615 *page
= vm_normal_page(*vma
, address
, *pte
);
617 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
619 *page
= pte_page(*pte
);
621 if (unlikely(!try_get_page(*page
))) {
633 * mmap_sem must be held on entry. If @nonblocking != NULL and
634 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
635 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
637 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
638 unsigned long address
, unsigned int *flags
, int *nonblocking
)
640 unsigned int fault_flags
= 0;
643 /* mlock all present pages, but do not fault in new pages */
644 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
646 if (*flags
& FOLL_WRITE
)
647 fault_flags
|= FAULT_FLAG_WRITE
;
648 if (*flags
& FOLL_REMOTE
)
649 fault_flags
|= FAULT_FLAG_REMOTE
;
651 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
652 if (*flags
& FOLL_NOWAIT
)
653 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
654 if (*flags
& FOLL_TRIED
) {
655 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
656 fault_flags
|= FAULT_FLAG_TRIED
;
659 ret
= handle_mm_fault(vma
, address
, fault_flags
);
660 if (ret
& VM_FAULT_ERROR
) {
661 int err
= vm_fault_to_errno(ret
, *flags
);
669 if (ret
& VM_FAULT_MAJOR
)
675 if (ret
& VM_FAULT_RETRY
) {
676 if (nonblocking
&& !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
682 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
683 * necessary, even if maybe_mkwrite decided not to set pte_write. We
684 * can thus safely do subsequent page lookups as if they were reads.
685 * But only do so when looping for pte_write is futile: in some cases
686 * userspace may also be wanting to write to the gotten user page,
687 * which a read fault here might prevent (a readonly page might get
688 * reCOWed by userspace write).
690 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
695 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
697 vm_flags_t vm_flags
= vma
->vm_flags
;
698 int write
= (gup_flags
& FOLL_WRITE
);
699 int foreign
= (gup_flags
& FOLL_REMOTE
);
701 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
704 if (gup_flags
& FOLL_ANON
&& !vma_is_anonymous(vma
))
708 if (!(vm_flags
& VM_WRITE
)) {
709 if (!(gup_flags
& FOLL_FORCE
))
712 * We used to let the write,force case do COW in a
713 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
714 * set a breakpoint in a read-only mapping of an
715 * executable, without corrupting the file (yet only
716 * when that file had been opened for writing!).
717 * Anon pages in shared mappings are surprising: now
720 if (!is_cow_mapping(vm_flags
))
723 } else if (!(vm_flags
& VM_READ
)) {
724 if (!(gup_flags
& FOLL_FORCE
))
727 * Is there actually any vma we can reach here which does not
728 * have VM_MAYREAD set?
730 if (!(vm_flags
& VM_MAYREAD
))
734 * gups are always data accesses, not instruction
735 * fetches, so execute=false here
737 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
743 * __get_user_pages() - pin user pages in memory
744 * @tsk: task_struct of target task
745 * @mm: mm_struct of target mm
746 * @start: starting user address
747 * @nr_pages: number of pages from start to pin
748 * @gup_flags: flags modifying pin behaviour
749 * @pages: array that receives pointers to the pages pinned.
750 * Should be at least nr_pages long. Or NULL, if caller
751 * only intends to ensure the pages are faulted in.
752 * @vmas: array of pointers to vmas corresponding to each page.
753 * Or NULL if the caller does not require them.
754 * @nonblocking: whether waiting for disk IO or mmap_sem contention
756 * Returns either number of pages pinned (which may be less than the
757 * number requested), or an error. Details about the return value:
759 * -- If nr_pages is 0, returns 0.
760 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
761 * -- If nr_pages is >0, and some pages were pinned, returns the number of
762 * pages pinned. Again, this may be less than nr_pages.
764 * The caller is responsible for releasing returned @pages, via put_page().
766 * @vmas are valid only as long as mmap_sem is held.
768 * Must be called with mmap_sem held. It may be released. See below.
770 * __get_user_pages walks a process's page tables and takes a reference to
771 * each struct page that each user address corresponds to at a given
772 * instant. That is, it takes the page that would be accessed if a user
773 * thread accesses the given user virtual address at that instant.
775 * This does not guarantee that the page exists in the user mappings when
776 * __get_user_pages returns, and there may even be a completely different
777 * page there in some cases (eg. if mmapped pagecache has been invalidated
778 * and subsequently re faulted). However it does guarantee that the page
779 * won't be freed completely. And mostly callers simply care that the page
780 * contains data that was valid *at some point in time*. Typically, an IO
781 * or similar operation cannot guarantee anything stronger anyway because
782 * locks can't be held over the syscall boundary.
784 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
785 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
786 * appropriate) must be called after the page is finished with, and
787 * before put_page is called.
789 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
790 * or mmap_sem contention, and if waiting is needed to pin all pages,
791 * *@nonblocking will be set to 0. Further, if @gup_flags does not
792 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
795 * A caller using such a combination of @nonblocking and @gup_flags
796 * must therefore hold the mmap_sem for reading only, and recognize
797 * when it's been released. Otherwise, it must be held for either
798 * reading or writing and will not be released.
800 * In most cases, get_user_pages or get_user_pages_fast should be used
801 * instead of __get_user_pages. __get_user_pages should be used only if
802 * you need some special @gup_flags.
804 static long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
805 unsigned long start
, unsigned long nr_pages
,
806 unsigned int gup_flags
, struct page
**pages
,
807 struct vm_area_struct
**vmas
, int *nonblocking
)
810 struct vm_area_struct
*vma
= NULL
;
811 struct follow_page_context ctx
= { NULL
};
816 start
= untagged_addr(start
);
818 VM_BUG_ON(!!pages
!= !!(gup_flags
& (FOLL_GET
| FOLL_PIN
)));
821 * If FOLL_FORCE is set then do not force a full fault as the hinting
822 * fault information is unrelated to the reference behaviour of a task
823 * using the address space
825 if (!(gup_flags
& FOLL_FORCE
))
826 gup_flags
|= FOLL_NUMA
;
830 unsigned int foll_flags
= gup_flags
;
831 unsigned int page_increm
;
833 /* first iteration or cross vma bound */
834 if (!vma
|| start
>= vma
->vm_end
) {
835 vma
= find_extend_vma(mm
, start
);
836 if (!vma
&& in_gate_area(mm
, start
)) {
837 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
839 pages
? &pages
[i
] : NULL
);
846 if (!vma
|| check_vma_flags(vma
, gup_flags
)) {
850 if (is_vm_hugetlb_page(vma
)) {
851 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
852 &start
, &nr_pages
, i
,
853 gup_flags
, nonblocking
);
859 * If we have a pending SIGKILL, don't keep faulting pages and
860 * potentially allocating memory.
862 if (fatal_signal_pending(current
)) {
868 page
= follow_page_mask(vma
, start
, foll_flags
, &ctx
);
870 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
886 } else if (PTR_ERR(page
) == -EEXIST
) {
888 * Proper page table entry exists, but no corresponding
892 } else if (IS_ERR(page
)) {
898 flush_anon_page(vma
, page
, start
);
899 flush_dcache_page(page
);
907 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & ctx
.page_mask
);
908 if (page_increm
> nr_pages
)
909 page_increm
= nr_pages
;
911 start
+= page_increm
* PAGE_SIZE
;
912 nr_pages
-= page_increm
;
916 put_dev_pagemap(ctx
.pgmap
);
920 static bool vma_permits_fault(struct vm_area_struct
*vma
,
921 unsigned int fault_flags
)
923 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
924 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
925 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
927 if (!(vm_flags
& vma
->vm_flags
))
931 * The architecture might have a hardware protection
932 * mechanism other than read/write that can deny access.
934 * gup always represents data access, not instruction
935 * fetches, so execute=false here:
937 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
944 * fixup_user_fault() - manually resolve a user page fault
945 * @tsk: the task_struct to use for page fault accounting, or
946 * NULL if faults are not to be recorded.
947 * @mm: mm_struct of target mm
948 * @address: user address
949 * @fault_flags:flags to pass down to handle_mm_fault()
950 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
951 * does not allow retry
953 * This is meant to be called in the specific scenario where for locking reasons
954 * we try to access user memory in atomic context (within a pagefault_disable()
955 * section), this returns -EFAULT, and we want to resolve the user fault before
958 * Typically this is meant to be used by the futex code.
960 * The main difference with get_user_pages() is that this function will
961 * unconditionally call handle_mm_fault() which will in turn perform all the
962 * necessary SW fixup of the dirty and young bits in the PTE, while
963 * get_user_pages() only guarantees to update these in the struct page.
965 * This is important for some architectures where those bits also gate the
966 * access permission to the page because they are maintained in software. On
967 * such architectures, gup() will not be enough to make a subsequent access
970 * This function will not return with an unlocked mmap_sem. So it has not the
971 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
973 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
974 unsigned long address
, unsigned int fault_flags
,
977 struct vm_area_struct
*vma
;
978 vm_fault_t ret
, major
= 0;
980 address
= untagged_addr(address
);
983 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
986 vma
= find_extend_vma(mm
, address
);
987 if (!vma
|| address
< vma
->vm_start
)
990 if (!vma_permits_fault(vma
, fault_flags
))
993 ret
= handle_mm_fault(vma
, address
, fault_flags
);
994 major
|= ret
& VM_FAULT_MAJOR
;
995 if (ret
& VM_FAULT_ERROR
) {
996 int err
= vm_fault_to_errno(ret
, 0);
1003 if (ret
& VM_FAULT_RETRY
) {
1004 down_read(&mm
->mmap_sem
);
1005 if (!(fault_flags
& FAULT_FLAG_TRIED
)) {
1007 fault_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1008 fault_flags
|= FAULT_FLAG_TRIED
;
1021 EXPORT_SYMBOL_GPL(fixup_user_fault
);
1023 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
1024 struct mm_struct
*mm
,
1025 unsigned long start
,
1026 unsigned long nr_pages
,
1027 struct page
**pages
,
1028 struct vm_area_struct
**vmas
,
1032 long ret
, pages_done
;
1036 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1038 /* check caller initialized locked */
1039 BUG_ON(*locked
!= 1);
1043 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1044 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1045 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1046 * for FOLL_GET, not for the newer FOLL_PIN.
1048 * FOLL_PIN always expects pages to be non-null, but no need to assert
1049 * that here, as any failures will be obvious enough.
1051 if (pages
&& !(flags
& FOLL_PIN
))
1055 lock_dropped
= false;
1057 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
1060 /* VM_FAULT_RETRY couldn't trigger, bypass */
1063 /* VM_FAULT_RETRY cannot return errors */
1066 BUG_ON(ret
>= nr_pages
);
1077 * VM_FAULT_RETRY didn't trigger or it was a
1085 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1086 * For the prefault case (!pages) we only update counts.
1090 start
+= ret
<< PAGE_SHIFT
;
1093 * Repeat on the address that fired VM_FAULT_RETRY
1094 * without FAULT_FLAG_ALLOW_RETRY but with
1098 lock_dropped
= true;
1099 down_read(&mm
->mmap_sem
);
1100 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
1116 if (lock_dropped
&& *locked
) {
1118 * We must let the caller know we temporarily dropped the lock
1119 * and so the critical section protected by it was lost.
1121 up_read(&mm
->mmap_sem
);
1128 * populate_vma_page_range() - populate a range of pages in the vma.
1130 * @start: start address
1134 * This takes care of mlocking the pages too if VM_LOCKED is set.
1136 * return 0 on success, negative error code on error.
1138 * vma->vm_mm->mmap_sem must be held.
1140 * If @nonblocking is NULL, it may be held for read or write and will
1143 * If @nonblocking is non-NULL, it must held for read only and may be
1144 * released. If it's released, *@nonblocking will be set to 0.
1146 long populate_vma_page_range(struct vm_area_struct
*vma
,
1147 unsigned long start
, unsigned long end
, int *nonblocking
)
1149 struct mm_struct
*mm
= vma
->vm_mm
;
1150 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1153 VM_BUG_ON(start
& ~PAGE_MASK
);
1154 VM_BUG_ON(end
& ~PAGE_MASK
);
1155 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1156 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1157 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
1159 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
1160 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1161 gup_flags
&= ~FOLL_POPULATE
;
1163 * We want to touch writable mappings with a write fault in order
1164 * to break COW, except for shared mappings because these don't COW
1165 * and we would not want to dirty them for nothing.
1167 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1168 gup_flags
|= FOLL_WRITE
;
1171 * We want mlock to succeed for regions that have any permissions
1172 * other than PROT_NONE.
1174 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
1175 gup_flags
|= FOLL_FORCE
;
1178 * We made sure addr is within a VMA, so the following will
1179 * not result in a stack expansion that recurses back here.
1181 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
1182 NULL
, NULL
, nonblocking
);
1186 * __mm_populate - populate and/or mlock pages within a range of address space.
1188 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1189 * flags. VMAs must be already marked with the desired vm_flags, and
1190 * mmap_sem must not be held.
1192 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1194 struct mm_struct
*mm
= current
->mm
;
1195 unsigned long end
, nstart
, nend
;
1196 struct vm_area_struct
*vma
= NULL
;
1202 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1204 * We want to fault in pages for [nstart; end) address range.
1205 * Find first corresponding VMA.
1209 down_read(&mm
->mmap_sem
);
1210 vma
= find_vma(mm
, nstart
);
1211 } else if (nstart
>= vma
->vm_end
)
1213 if (!vma
|| vma
->vm_start
>= end
)
1216 * Set [nstart; nend) to intersection of desired address
1217 * range with the first VMA. Also, skip undesirable VMA types.
1219 nend
= min(end
, vma
->vm_end
);
1220 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1222 if (nstart
< vma
->vm_start
)
1223 nstart
= vma
->vm_start
;
1225 * Now fault in a range of pages. populate_vma_page_range()
1226 * double checks the vma flags, so that it won't mlock pages
1227 * if the vma was already munlocked.
1229 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1231 if (ignore_errors
) {
1233 continue; /* continue at next VMA */
1237 nend
= nstart
+ ret
* PAGE_SIZE
;
1241 up_read(&mm
->mmap_sem
);
1242 return ret
; /* 0 or negative error code */
1246 * get_dump_page() - pin user page in memory while writing it to core dump
1247 * @addr: user address
1249 * Returns struct page pointer of user page pinned for dump,
1250 * to be freed afterwards by put_page().
1252 * Returns NULL on any kind of failure - a hole must then be inserted into
1253 * the corefile, to preserve alignment with its headers; and also returns
1254 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1255 * allowing a hole to be left in the corefile to save diskspace.
1257 * Called without mmap_sem, but after all other threads have been killed.
1259 #ifdef CONFIG_ELF_CORE
1260 struct page
*get_dump_page(unsigned long addr
)
1262 struct vm_area_struct
*vma
;
1265 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1266 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1269 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1272 #endif /* CONFIG_ELF_CORE */
1273 #else /* CONFIG_MMU */
1274 static long __get_user_pages_locked(struct task_struct
*tsk
,
1275 struct mm_struct
*mm
, unsigned long start
,
1276 unsigned long nr_pages
, struct page
**pages
,
1277 struct vm_area_struct
**vmas
, int *locked
,
1278 unsigned int foll_flags
)
1280 struct vm_area_struct
*vma
;
1281 unsigned long vm_flags
;
1284 /* calculate required read or write permissions.
1285 * If FOLL_FORCE is set, we only require the "MAY" flags.
1287 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
1288 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1289 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
1290 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1292 for (i
= 0; i
< nr_pages
; i
++) {
1293 vma
= find_vma(mm
, start
);
1295 goto finish_or_fault
;
1297 /* protect what we can, including chardevs */
1298 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1299 !(vm_flags
& vma
->vm_flags
))
1300 goto finish_or_fault
;
1303 pages
[i
] = virt_to_page(start
);
1309 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
1315 return i
? : -EFAULT
;
1317 #endif /* !CONFIG_MMU */
1319 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1320 static bool check_dax_vmas(struct vm_area_struct
**vmas
, long nr_pages
)
1323 struct vm_area_struct
*vma_prev
= NULL
;
1325 for (i
= 0; i
< nr_pages
; i
++) {
1326 struct vm_area_struct
*vma
= vmas
[i
];
1328 if (vma
== vma_prev
)
1333 if (vma_is_fsdax(vma
))
1340 static struct page
*new_non_cma_page(struct page
*page
, unsigned long private)
1343 * We want to make sure we allocate the new page from the same node
1344 * as the source page.
1346 int nid
= page_to_nid(page
);
1348 * Trying to allocate a page for migration. Ignore allocation
1349 * failure warnings. We don't force __GFP_THISNODE here because
1350 * this node here is the node where we have CMA reservation and
1351 * in some case these nodes will have really less non movable
1352 * allocation memory.
1354 gfp_t gfp_mask
= GFP_USER
| __GFP_NOWARN
;
1356 if (PageHighMem(page
))
1357 gfp_mask
|= __GFP_HIGHMEM
;
1359 #ifdef CONFIG_HUGETLB_PAGE
1360 if (PageHuge(page
)) {
1361 struct hstate
*h
= page_hstate(page
);
1363 * We don't want to dequeue from the pool because pool pages will
1364 * mostly be from the CMA region.
1366 return alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1369 if (PageTransHuge(page
)) {
1372 * ignore allocation failure warnings
1374 gfp_t thp_gfpmask
= GFP_TRANSHUGE
| __GFP_NOWARN
;
1377 * Remove the movable mask so that we don't allocate from
1380 thp_gfpmask
&= ~__GFP_MOVABLE
;
1381 thp
= __alloc_pages_node(nid
, thp_gfpmask
, HPAGE_PMD_ORDER
);
1384 prep_transhuge_page(thp
);
1388 return __alloc_pages_node(nid
, gfp_mask
, 0);
1391 static long check_and_migrate_cma_pages(struct task_struct
*tsk
,
1392 struct mm_struct
*mm
,
1393 unsigned long start
,
1394 unsigned long nr_pages
,
1395 struct page
**pages
,
1396 struct vm_area_struct
**vmas
,
1397 unsigned int gup_flags
)
1401 bool drain_allow
= true;
1402 bool migrate_allow
= true;
1403 LIST_HEAD(cma_page_list
);
1404 long ret
= nr_pages
;
1407 for (i
= 0; i
< nr_pages
;) {
1409 struct page
*head
= compound_head(pages
[i
]);
1412 * gup may start from a tail page. Advance step by the left
1415 step
= compound_nr(head
) - (pages
[i
] - head
);
1417 * If we get a page from the CMA zone, since we are going to
1418 * be pinning these entries, we might as well move them out
1419 * of the CMA zone if possible.
1421 if (is_migrate_cma_page(head
)) {
1423 isolate_huge_page(head
, &cma_page_list
);
1425 if (!PageLRU(head
) && drain_allow
) {
1426 lru_add_drain_all();
1427 drain_allow
= false;
1430 if (!isolate_lru_page(head
)) {
1431 list_add_tail(&head
->lru
, &cma_page_list
);
1432 mod_node_page_state(page_pgdat(head
),
1434 page_is_file_cache(head
),
1435 hpage_nr_pages(head
));
1443 if (!list_empty(&cma_page_list
)) {
1445 * drop the above get_user_pages reference.
1447 for (i
= 0; i
< nr_pages
; i
++)
1450 if (migrate_pages(&cma_page_list
, new_non_cma_page
,
1451 NULL
, 0, MIGRATE_SYNC
, MR_CONTIG_RANGE
)) {
1453 * some of the pages failed migration. Do get_user_pages
1454 * without migration.
1456 migrate_allow
= false;
1458 if (!list_empty(&cma_page_list
))
1459 putback_movable_pages(&cma_page_list
);
1462 * We did migrate all the pages, Try to get the page references
1463 * again migrating any new CMA pages which we failed to isolate
1466 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
,
1470 if ((ret
> 0) && migrate_allow
) {
1480 static long check_and_migrate_cma_pages(struct task_struct
*tsk
,
1481 struct mm_struct
*mm
,
1482 unsigned long start
,
1483 unsigned long nr_pages
,
1484 struct page
**pages
,
1485 struct vm_area_struct
**vmas
,
1486 unsigned int gup_flags
)
1490 #endif /* CONFIG_CMA */
1493 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1494 * allows us to process the FOLL_LONGTERM flag.
1496 static long __gup_longterm_locked(struct task_struct
*tsk
,
1497 struct mm_struct
*mm
,
1498 unsigned long start
,
1499 unsigned long nr_pages
,
1500 struct page
**pages
,
1501 struct vm_area_struct
**vmas
,
1502 unsigned int gup_flags
)
1504 struct vm_area_struct
**vmas_tmp
= vmas
;
1505 unsigned long flags
= 0;
1508 if (gup_flags
& FOLL_LONGTERM
) {
1513 vmas_tmp
= kcalloc(nr_pages
,
1514 sizeof(struct vm_area_struct
*),
1519 flags
= memalloc_nocma_save();
1522 rc
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
,
1523 vmas_tmp
, NULL
, gup_flags
);
1525 if (gup_flags
& FOLL_LONGTERM
) {
1526 memalloc_nocma_restore(flags
);
1530 if (check_dax_vmas(vmas_tmp
, rc
)) {
1531 for (i
= 0; i
< rc
; i
++)
1537 rc
= check_and_migrate_cma_pages(tsk
, mm
, start
, rc
, pages
,
1538 vmas_tmp
, gup_flags
);
1542 if (vmas_tmp
!= vmas
)
1546 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1547 static __always_inline
long __gup_longterm_locked(struct task_struct
*tsk
,
1548 struct mm_struct
*mm
,
1549 unsigned long start
,
1550 unsigned long nr_pages
,
1551 struct page
**pages
,
1552 struct vm_area_struct
**vmas
,
1555 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
1558 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1561 * get_user_pages_remote() - pin user pages in memory
1562 * @tsk: the task_struct to use for page fault accounting, or
1563 * NULL if faults are not to be recorded.
1564 * @mm: mm_struct of target mm
1565 * @start: starting user address
1566 * @nr_pages: number of pages from start to pin
1567 * @gup_flags: flags modifying lookup behaviour
1568 * @pages: array that receives pointers to the pages pinned.
1569 * Should be at least nr_pages long. Or NULL, if caller
1570 * only intends to ensure the pages are faulted in.
1571 * @vmas: array of pointers to vmas corresponding to each page.
1572 * Or NULL if the caller does not require them.
1573 * @locked: pointer to lock flag indicating whether lock is held and
1574 * subsequently whether VM_FAULT_RETRY functionality can be
1575 * utilised. Lock must initially be held.
1577 * Returns either number of pages pinned (which may be less than the
1578 * number requested), or an error. Details about the return value:
1580 * -- If nr_pages is 0, returns 0.
1581 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1582 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1583 * pages pinned. Again, this may be less than nr_pages.
1585 * The caller is responsible for releasing returned @pages, via put_page().
1587 * @vmas are valid only as long as mmap_sem is held.
1589 * Must be called with mmap_sem held for read or write.
1591 * get_user_pages walks a process's page tables and takes a reference to
1592 * each struct page that each user address corresponds to at a given
1593 * instant. That is, it takes the page that would be accessed if a user
1594 * thread accesses the given user virtual address at that instant.
1596 * This does not guarantee that the page exists in the user mappings when
1597 * get_user_pages returns, and there may even be a completely different
1598 * page there in some cases (eg. if mmapped pagecache has been invalidated
1599 * and subsequently re faulted). However it does guarantee that the page
1600 * won't be freed completely. And mostly callers simply care that the page
1601 * contains data that was valid *at some point in time*. Typically, an IO
1602 * or similar operation cannot guarantee anything stronger anyway because
1603 * locks can't be held over the syscall boundary.
1605 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1606 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1607 * be called after the page is finished with, and before put_page is called.
1609 * get_user_pages is typically used for fewer-copy IO operations, to get a
1610 * handle on the memory by some means other than accesses via the user virtual
1611 * addresses. The pages may be submitted for DMA to devices or accessed via
1612 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1613 * use the correct cache flushing APIs.
1615 * See also get_user_pages_fast, for performance critical applications.
1617 * get_user_pages should be phased out in favor of
1618 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1619 * should use get_user_pages because it cannot pass
1620 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1623 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
1624 unsigned long start
, unsigned long nr_pages
,
1625 unsigned int gup_flags
, struct page
**pages
,
1626 struct vm_area_struct
**vmas
, int *locked
)
1629 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1630 * never directly by the caller, so enforce that with an assertion:
1632 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
1636 * Parts of FOLL_LONGTERM behavior are incompatible with
1637 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1638 * vmas. However, this only comes up if locked is set, and there are
1639 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1640 * allow what we can.
1642 if (gup_flags
& FOLL_LONGTERM
) {
1643 if (WARN_ON_ONCE(locked
))
1646 * This will check the vmas (even if our vmas arg is NULL)
1647 * and return -ENOTSUPP if DAX isn't allowed in this case:
1649 return __gup_longterm_locked(tsk
, mm
, start
, nr_pages
, pages
,
1650 vmas
, gup_flags
| FOLL_TOUCH
|
1654 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
1656 gup_flags
| FOLL_TOUCH
| FOLL_REMOTE
);
1658 EXPORT_SYMBOL(get_user_pages_remote
);
1660 #else /* CONFIG_MMU */
1661 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
1662 unsigned long start
, unsigned long nr_pages
,
1663 unsigned int gup_flags
, struct page
**pages
,
1664 struct vm_area_struct
**vmas
, int *locked
)
1668 #endif /* !CONFIG_MMU */
1671 * This is the same as get_user_pages_remote(), just with a
1672 * less-flexible calling convention where we assume that the task
1673 * and mm being operated on are the current task's and don't allow
1674 * passing of a locked parameter. We also obviously don't pass
1675 * FOLL_REMOTE in here.
1677 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
1678 unsigned int gup_flags
, struct page
**pages
,
1679 struct vm_area_struct
**vmas
)
1682 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1683 * never directly by the caller, so enforce that with an assertion:
1685 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
1688 return __gup_longterm_locked(current
, current
->mm
, start
, nr_pages
,
1689 pages
, vmas
, gup_flags
| FOLL_TOUCH
);
1691 EXPORT_SYMBOL(get_user_pages
);
1694 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1695 * paths better by using either get_user_pages_locked() or
1696 * get_user_pages_unlocked().
1698 * get_user_pages_locked() is suitable to replace the form:
1700 * down_read(&mm->mmap_sem);
1702 * get_user_pages(tsk, mm, ..., pages, NULL);
1703 * up_read(&mm->mmap_sem);
1708 * down_read(&mm->mmap_sem);
1710 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1712 * up_read(&mm->mmap_sem);
1714 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
1715 unsigned int gup_flags
, struct page
**pages
,
1719 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1720 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1721 * vmas. As there are no users of this flag in this call we simply
1722 * disallow this option for now.
1724 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
1727 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
1728 pages
, NULL
, locked
,
1729 gup_flags
| FOLL_TOUCH
);
1731 EXPORT_SYMBOL(get_user_pages_locked
);
1734 * get_user_pages_unlocked() is suitable to replace the form:
1736 * down_read(&mm->mmap_sem);
1737 * get_user_pages(tsk, mm, ..., pages, NULL);
1738 * up_read(&mm->mmap_sem);
1742 * get_user_pages_unlocked(tsk, mm, ..., pages);
1744 * It is functionally equivalent to get_user_pages_fast so
1745 * get_user_pages_fast should be used instead if specific gup_flags
1746 * (e.g. FOLL_FORCE) are not required.
1748 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
1749 struct page
**pages
, unsigned int gup_flags
)
1751 struct mm_struct
*mm
= current
->mm
;
1756 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1757 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1758 * vmas. As there are no users of this flag in this call we simply
1759 * disallow this option for now.
1761 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
1764 down_read(&mm
->mmap_sem
);
1765 ret
= __get_user_pages_locked(current
, mm
, start
, nr_pages
, pages
, NULL
,
1766 &locked
, gup_flags
| FOLL_TOUCH
);
1768 up_read(&mm
->mmap_sem
);
1771 EXPORT_SYMBOL(get_user_pages_unlocked
);
1776 * get_user_pages_fast attempts to pin user pages by walking the page
1777 * tables directly and avoids taking locks. Thus the walker needs to be
1778 * protected from page table pages being freed from under it, and should
1779 * block any THP splits.
1781 * One way to achieve this is to have the walker disable interrupts, and
1782 * rely on IPIs from the TLB flushing code blocking before the page table
1783 * pages are freed. This is unsuitable for architectures that do not need
1784 * to broadcast an IPI when invalidating TLBs.
1786 * Another way to achieve this is to batch up page table containing pages
1787 * belonging to more than one mm_user, then rcu_sched a callback to free those
1788 * pages. Disabling interrupts will allow the fast_gup walker to both block
1789 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1790 * (which is a relatively rare event). The code below adopts this strategy.
1792 * Before activating this code, please be aware that the following assumptions
1793 * are currently made:
1795 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1796 * free pages containing page tables or TLB flushing requires IPI broadcast.
1798 * *) ptes can be read atomically by the architecture.
1800 * *) access_ok is sufficient to validate userspace address ranges.
1802 * The last two assumptions can be relaxed by the addition of helper functions.
1804 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1806 #ifdef CONFIG_HAVE_FAST_GUP
1807 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1809 * WARNING: only to be used in the get_user_pages_fast() implementation.
1811 * With get_user_pages_fast(), we walk down the pagetables without taking any
1812 * locks. For this we would like to load the pointers atomically, but sometimes
1813 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1814 * we do have is the guarantee that a PTE will only either go from not present
1815 * to present, or present to not present or both -- it will not switch to a
1816 * completely different present page without a TLB flush in between; something
1817 * that we are blocking by holding interrupts off.
1819 * Setting ptes from not present to present goes:
1821 * ptep->pte_high = h;
1823 * ptep->pte_low = l;
1825 * And present to not present goes:
1827 * ptep->pte_low = 0;
1829 * ptep->pte_high = 0;
1831 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1832 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1833 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1834 * picked up a changed pte high. We might have gotten rubbish values from
1835 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1836 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1837 * operates on present ptes we're safe.
1839 static inline pte_t
gup_get_pte(pte_t
*ptep
)
1844 pte
.pte_low
= ptep
->pte_low
;
1846 pte
.pte_high
= ptep
->pte_high
;
1848 } while (unlikely(pte
.pte_low
!= ptep
->pte_low
));
1852 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1854 * We require that the PTE can be read atomically.
1856 static inline pte_t
gup_get_pte(pte_t
*ptep
)
1858 return READ_ONCE(*ptep
);
1860 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1862 static void __maybe_unused
undo_dev_pagemap(int *nr
, int nr_start
,
1863 struct page
**pages
)
1865 while ((*nr
) - nr_start
) {
1866 struct page
*page
= pages
[--(*nr
)];
1868 ClearPageReferenced(page
);
1873 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1874 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1875 unsigned int flags
, struct page
**pages
, int *nr
)
1877 struct dev_pagemap
*pgmap
= NULL
;
1878 int nr_start
= *nr
, ret
= 0;
1881 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1883 pte_t pte
= gup_get_pte(ptep
);
1884 struct page
*head
, *page
;
1887 * Similar to the PMD case below, NUMA hinting must take slow
1888 * path using the pte_protnone check.
1890 if (pte_protnone(pte
))
1893 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
1896 if (pte_devmap(pte
)) {
1897 if (unlikely(flags
& FOLL_LONGTERM
))
1900 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
1901 if (unlikely(!pgmap
)) {
1902 undo_dev_pagemap(nr
, nr_start
, pages
);
1905 } else if (pte_special(pte
))
1908 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1909 page
= pte_page(pte
);
1911 head
= try_get_compound_head(page
, 1);
1915 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1920 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1922 SetPageReferenced(page
);
1926 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1932 put_dev_pagemap(pgmap
);
1939 * If we can't determine whether or not a pte is special, then fail immediately
1940 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1943 * For a futex to be placed on a THP tail page, get_futex_key requires a
1944 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1945 * useful to have gup_huge_pmd even if we can't operate on ptes.
1947 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1948 unsigned int flags
, struct page
**pages
, int *nr
)
1952 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1954 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1955 static int __gup_device_huge(unsigned long pfn
, unsigned long addr
,
1956 unsigned long end
, struct page
**pages
, int *nr
)
1959 struct dev_pagemap
*pgmap
= NULL
;
1962 struct page
*page
= pfn_to_page(pfn
);
1964 pgmap
= get_dev_pagemap(pfn
, pgmap
);
1965 if (unlikely(!pgmap
)) {
1966 undo_dev_pagemap(nr
, nr_start
, pages
);
1969 SetPageReferenced(page
);
1974 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1977 put_dev_pagemap(pgmap
);
1981 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1982 unsigned long end
, struct page
**pages
, int *nr
)
1984 unsigned long fault_pfn
;
1987 fault_pfn
= pmd_pfn(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1988 if (!__gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
))
1991 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1992 undo_dev_pagemap(nr
, nr_start
, pages
);
1998 static int __gup_device_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1999 unsigned long end
, struct page
**pages
, int *nr
)
2001 unsigned long fault_pfn
;
2004 fault_pfn
= pud_pfn(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
2005 if (!__gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
))
2008 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
2009 undo_dev_pagemap(nr
, nr_start
, pages
);
2015 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
2016 unsigned long end
, struct page
**pages
, int *nr
)
2022 static int __gup_device_huge_pud(pud_t pud
, pud_t
*pudp
, unsigned long addr
,
2023 unsigned long end
, struct page
**pages
, int *nr
)
2030 static int record_subpages(struct page
*page
, unsigned long addr
,
2031 unsigned long end
, struct page
**pages
)
2035 for (nr
= 0; addr
!= end
; addr
+= PAGE_SIZE
)
2036 pages
[nr
++] = page
++;
2041 static void put_compound_head(struct page
*page
, int refs
)
2043 VM_BUG_ON_PAGE(page_ref_count(page
) < refs
, page
);
2045 * Calling put_page() for each ref is unnecessarily slow. Only the last
2046 * ref needs a put_page().
2049 page_ref_sub(page
, refs
- 1);
2053 #ifdef CONFIG_ARCH_HAS_HUGEPD
2054 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
2057 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
2058 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
2061 static int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
2062 unsigned long end
, unsigned int flags
,
2063 struct page
**pages
, int *nr
)
2065 unsigned long pte_end
;
2066 struct page
*head
, *page
;
2070 pte_end
= (addr
+ sz
) & ~(sz
-1);
2074 pte
= READ_ONCE(*ptep
);
2076 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
2079 /* hugepages are never "special" */
2080 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
2082 head
= pte_page(pte
);
2083 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
2084 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2086 head
= try_get_compound_head(head
, refs
);
2090 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
2091 put_compound_head(head
, refs
);
2096 SetPageReferenced(head
);
2100 static int gup_huge_pd(hugepd_t hugepd
, unsigned long addr
,
2101 unsigned int pdshift
, unsigned long end
, unsigned int flags
,
2102 struct page
**pages
, int *nr
)
2105 unsigned long sz
= 1UL << hugepd_shift(hugepd
);
2108 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
2110 next
= hugepte_addr_end(addr
, end
, sz
);
2111 if (!gup_hugepte(ptep
, sz
, addr
, end
, flags
, pages
, nr
))
2113 } while (ptep
++, addr
= next
, addr
!= end
);
2118 static inline int gup_huge_pd(hugepd_t hugepd
, unsigned long addr
,
2119 unsigned int pdshift
, unsigned long end
, unsigned int flags
,
2120 struct page
**pages
, int *nr
)
2124 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2126 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
2127 unsigned long end
, unsigned int flags
,
2128 struct page
**pages
, int *nr
)
2130 struct page
*head
, *page
;
2133 if (!pmd_access_permitted(orig
, flags
& FOLL_WRITE
))
2136 if (pmd_devmap(orig
)) {
2137 if (unlikely(flags
& FOLL_LONGTERM
))
2139 return __gup_device_huge_pmd(orig
, pmdp
, addr
, end
, pages
, nr
);
2142 page
= pmd_page(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
2143 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2145 head
= try_get_compound_head(pmd_page(orig
), refs
);
2149 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
2150 put_compound_head(head
, refs
);
2155 SetPageReferenced(head
);
2159 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
2160 unsigned long end
, unsigned int flags
, struct page
**pages
, int *nr
)
2162 struct page
*head
, *page
;
2165 if (!pud_access_permitted(orig
, flags
& FOLL_WRITE
))
2168 if (pud_devmap(orig
)) {
2169 if (unlikely(flags
& FOLL_LONGTERM
))
2171 return __gup_device_huge_pud(orig
, pudp
, addr
, end
, pages
, nr
);
2174 page
= pud_page(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
2175 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2177 head
= try_get_compound_head(pud_page(orig
), refs
);
2181 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
2182 put_compound_head(head
, refs
);
2187 SetPageReferenced(head
);
2191 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
2192 unsigned long end
, unsigned int flags
,
2193 struct page
**pages
, int *nr
)
2196 struct page
*head
, *page
;
2198 if (!pgd_access_permitted(orig
, flags
& FOLL_WRITE
))
2201 BUILD_BUG_ON(pgd_devmap(orig
));
2203 page
= pgd_page(orig
) + ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
2204 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2206 head
= try_get_compound_head(pgd_page(orig
), refs
);
2210 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
2211 put_compound_head(head
, refs
);
2216 SetPageReferenced(head
);
2220 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
2221 unsigned int flags
, struct page
**pages
, int *nr
)
2226 pmdp
= pmd_offset(&pud
, addr
);
2228 pmd_t pmd
= READ_ONCE(*pmdp
);
2230 next
= pmd_addr_end(addr
, end
);
2231 if (!pmd_present(pmd
))
2234 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
) ||
2237 * NUMA hinting faults need to be handled in the GUP
2238 * slowpath for accounting purposes and so that they
2239 * can be serialised against THP migration.
2241 if (pmd_protnone(pmd
))
2244 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, flags
,
2248 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
2250 * architecture have different format for hugetlbfs
2251 * pmd format and THP pmd format
2253 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
2254 PMD_SHIFT
, next
, flags
, pages
, nr
))
2256 } else if (!gup_pte_range(pmd
, addr
, next
, flags
, pages
, nr
))
2258 } while (pmdp
++, addr
= next
, addr
!= end
);
2263 static int gup_pud_range(p4d_t p4d
, unsigned long addr
, unsigned long end
,
2264 unsigned int flags
, struct page
**pages
, int *nr
)
2269 pudp
= pud_offset(&p4d
, addr
);
2271 pud_t pud
= READ_ONCE(*pudp
);
2273 next
= pud_addr_end(addr
, end
);
2274 if (unlikely(!pud_present(pud
)))
2276 if (unlikely(pud_huge(pud
))) {
2277 if (!gup_huge_pud(pud
, pudp
, addr
, next
, flags
,
2280 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
2281 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
2282 PUD_SHIFT
, next
, flags
, pages
, nr
))
2284 } else if (!gup_pmd_range(pud
, addr
, next
, flags
, pages
, nr
))
2286 } while (pudp
++, addr
= next
, addr
!= end
);
2291 static int gup_p4d_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
2292 unsigned int flags
, struct page
**pages
, int *nr
)
2297 p4dp
= p4d_offset(&pgd
, addr
);
2299 p4d_t p4d
= READ_ONCE(*p4dp
);
2301 next
= p4d_addr_end(addr
, end
);
2304 BUILD_BUG_ON(p4d_huge(p4d
));
2305 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d
))))) {
2306 if (!gup_huge_pd(__hugepd(p4d_val(p4d
)), addr
,
2307 P4D_SHIFT
, next
, flags
, pages
, nr
))
2309 } else if (!gup_pud_range(p4d
, addr
, next
, flags
, pages
, nr
))
2311 } while (p4dp
++, addr
= next
, addr
!= end
);
2316 static void gup_pgd_range(unsigned long addr
, unsigned long end
,
2317 unsigned int flags
, struct page
**pages
, int *nr
)
2322 pgdp
= pgd_offset(current
->mm
, addr
);
2324 pgd_t pgd
= READ_ONCE(*pgdp
);
2326 next
= pgd_addr_end(addr
, end
);
2329 if (unlikely(pgd_huge(pgd
))) {
2330 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, flags
,
2333 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
2334 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
2335 PGDIR_SHIFT
, next
, flags
, pages
, nr
))
2337 } else if (!gup_p4d_range(pgd
, addr
, next
, flags
, pages
, nr
))
2339 } while (pgdp
++, addr
= next
, addr
!= end
);
2342 static inline void gup_pgd_range(unsigned long addr
, unsigned long end
,
2343 unsigned int flags
, struct page
**pages
, int *nr
)
2346 #endif /* CONFIG_HAVE_FAST_GUP */
2348 #ifndef gup_fast_permitted
2350 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2351 * we need to fall back to the slow version:
2353 static bool gup_fast_permitted(unsigned long start
, unsigned long end
)
2360 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2362 * Note a difference with get_user_pages_fast: this always returns the
2363 * number of pages pinned, 0 if no pages were pinned.
2365 * If the architecture does not support this function, simply return with no
2368 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
2369 struct page
**pages
)
2371 unsigned long len
, end
;
2372 unsigned long flags
;
2375 start
= untagged_addr(start
) & PAGE_MASK
;
2376 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
2381 if (unlikely(!access_ok((void __user
*)start
, len
)))
2385 * Disable interrupts. We use the nested form as we can already have
2386 * interrupts disabled by get_futex_key.
2388 * With interrupts disabled, we block page table pages from being
2389 * freed from under us. See struct mmu_table_batch comments in
2390 * include/asm-generic/tlb.h for more details.
2392 * We do not adopt an rcu_read_lock(.) here as we also want to
2393 * block IPIs that come from THPs splitting.
2396 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP
) &&
2397 gup_fast_permitted(start
, end
)) {
2398 local_irq_save(flags
);
2399 gup_pgd_range(start
, end
, write
? FOLL_WRITE
: 0, pages
, &nr
);
2400 local_irq_restore(flags
);
2405 EXPORT_SYMBOL_GPL(__get_user_pages_fast
);
2407 static int __gup_longterm_unlocked(unsigned long start
, int nr_pages
,
2408 unsigned int gup_flags
, struct page
**pages
)
2413 * FIXME: FOLL_LONGTERM does not work with
2414 * get_user_pages_unlocked() (see comments in that function)
2416 if (gup_flags
& FOLL_LONGTERM
) {
2417 down_read(¤t
->mm
->mmap_sem
);
2418 ret
= __gup_longterm_locked(current
, current
->mm
,
2420 pages
, NULL
, gup_flags
);
2421 up_read(¤t
->mm
->mmap_sem
);
2423 ret
= get_user_pages_unlocked(start
, nr_pages
,
2430 static int internal_get_user_pages_fast(unsigned long start
, int nr_pages
,
2431 unsigned int gup_flags
,
2432 struct page
**pages
)
2434 unsigned long addr
, len
, end
;
2435 int nr
= 0, ret
= 0;
2437 if (WARN_ON_ONCE(gup_flags
& ~(FOLL_WRITE
| FOLL_LONGTERM
|
2438 FOLL_FORCE
| FOLL_PIN
)))
2441 start
= untagged_addr(start
) & PAGE_MASK
;
2443 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
2448 if (unlikely(!access_ok((void __user
*)start
, len
)))
2451 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP
) &&
2452 gup_fast_permitted(start
, end
)) {
2453 local_irq_disable();
2454 gup_pgd_range(addr
, end
, gup_flags
, pages
, &nr
);
2459 if (nr
< nr_pages
) {
2460 /* Try to get the remaining pages with get_user_pages */
2461 start
+= nr
<< PAGE_SHIFT
;
2464 ret
= __gup_longterm_unlocked(start
, nr_pages
- nr
,
2467 /* Have to be a bit careful with return values */
2480 * get_user_pages_fast() - pin user pages in memory
2481 * @start: starting user address
2482 * @nr_pages: number of pages from start to pin
2483 * @gup_flags: flags modifying pin behaviour
2484 * @pages: array that receives pointers to the pages pinned.
2485 * Should be at least nr_pages long.
2487 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2488 * If not successful, it will fall back to taking the lock and
2489 * calling get_user_pages().
2491 * Returns number of pages pinned. This may be fewer than the number requested.
2492 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2495 int get_user_pages_fast(unsigned long start
, int nr_pages
,
2496 unsigned int gup_flags
, struct page
**pages
)
2499 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2500 * never directly by the caller, so enforce that:
2502 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
2505 return internal_get_user_pages_fast(start
, nr_pages
, gup_flags
, pages
);
2507 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
2510 * pin_user_pages_fast() - pin user pages in memory without taking locks
2512 * For now, this is a placeholder function, until various call sites are
2513 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2514 * this is identical to get_user_pages_fast().
2516 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2517 * is NOT intended for Case 2 (RDMA: long-term pins).
2519 int pin_user_pages_fast(unsigned long start
, int nr_pages
,
2520 unsigned int gup_flags
, struct page
**pages
)
2523 * This is a placeholder, until the pin functionality is activated.
2524 * Until then, just behave like the corresponding get_user_pages*()
2527 return get_user_pages_fast(start
, nr_pages
, gup_flags
, pages
);
2529 EXPORT_SYMBOL_GPL(pin_user_pages_fast
);
2532 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2534 * For now, this is a placeholder function, until various call sites are
2535 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2536 * this is identical to get_user_pages_remote().
2538 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2539 * is NOT intended for Case 2 (RDMA: long-term pins).
2541 long pin_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
2542 unsigned long start
, unsigned long nr_pages
,
2543 unsigned int gup_flags
, struct page
**pages
,
2544 struct vm_area_struct
**vmas
, int *locked
)
2547 * This is a placeholder, until the pin functionality is activated.
2548 * Until then, just behave like the corresponding get_user_pages*()
2551 return get_user_pages_remote(tsk
, mm
, start
, nr_pages
, gup_flags
, pages
,
2554 EXPORT_SYMBOL(pin_user_pages_remote
);
2557 * pin_user_pages() - pin user pages in memory for use by other devices
2559 * For now, this is a placeholder function, until various call sites are
2560 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2561 * this is identical to get_user_pages().
2563 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2564 * is NOT intended for Case 2 (RDMA: long-term pins).
2566 long pin_user_pages(unsigned long start
, unsigned long nr_pages
,
2567 unsigned int gup_flags
, struct page
**pages
,
2568 struct vm_area_struct
**vmas
)
2571 * This is a placeholder, until the pin functionality is activated.
2572 * Until then, just behave like the corresponding get_user_pages*()
2575 return get_user_pages(start
, nr_pages
, gup_flags
, pages
, vmas
);
2577 EXPORT_SYMBOL(pin_user_pages
);