treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / mm / kasan / common.c
blob6aa51723b92b9922c3b8063b02043419f317f3ee
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains common generic and tag-based KASAN code.
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
42 #include "kasan.h"
43 #include "../slab.h"
45 static inline int in_irqentry_text(unsigned long ptr)
47 return (ptr >= (unsigned long)&__irqentry_text_start &&
48 ptr < (unsigned long)&__irqentry_text_end) ||
49 (ptr >= (unsigned long)&__softirqentry_text_start &&
50 ptr < (unsigned long)&__softirqentry_text_end);
53 static inline unsigned int filter_irq_stacks(unsigned long *entries,
54 unsigned int nr_entries)
56 unsigned int i;
58 for (i = 0; i < nr_entries; i++) {
59 if (in_irqentry_text(entries[i])) {
60 /* Include the irqentry function into the stack. */
61 return i + 1;
64 return nr_entries;
67 static inline depot_stack_handle_t save_stack(gfp_t flags)
69 unsigned long entries[KASAN_STACK_DEPTH];
70 unsigned int nr_entries;
72 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
73 nr_entries = filter_irq_stacks(entries, nr_entries);
74 return stack_depot_save(entries, nr_entries, flags);
77 static inline void set_track(struct kasan_track *track, gfp_t flags)
79 track->pid = current->pid;
80 track->stack = save_stack(flags);
83 void kasan_enable_current(void)
85 current->kasan_depth++;
88 void kasan_disable_current(void)
90 current->kasan_depth--;
93 bool __kasan_check_read(const volatile void *p, unsigned int size)
95 return check_memory_region((unsigned long)p, size, false, _RET_IP_);
97 EXPORT_SYMBOL(__kasan_check_read);
99 bool __kasan_check_write(const volatile void *p, unsigned int size)
101 return check_memory_region((unsigned long)p, size, true, _RET_IP_);
103 EXPORT_SYMBOL(__kasan_check_write);
105 #undef memset
106 void *memset(void *addr, int c, size_t len)
108 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
110 return __memset(addr, c, len);
113 #ifdef __HAVE_ARCH_MEMMOVE
114 #undef memmove
115 void *memmove(void *dest, const void *src, size_t len)
117 check_memory_region((unsigned long)src, len, false, _RET_IP_);
118 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
120 return __memmove(dest, src, len);
122 #endif
124 #undef memcpy
125 void *memcpy(void *dest, const void *src, size_t len)
127 check_memory_region((unsigned long)src, len, false, _RET_IP_);
128 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
130 return __memcpy(dest, src, len);
134 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
135 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
137 void kasan_poison_shadow(const void *address, size_t size, u8 value)
139 void *shadow_start, *shadow_end;
142 * Perform shadow offset calculation based on untagged address, as
143 * some of the callers (e.g. kasan_poison_object_data) pass tagged
144 * addresses to this function.
146 address = reset_tag(address);
148 shadow_start = kasan_mem_to_shadow(address);
149 shadow_end = kasan_mem_to_shadow(address + size);
151 __memset(shadow_start, value, shadow_end - shadow_start);
154 void kasan_unpoison_shadow(const void *address, size_t size)
156 u8 tag = get_tag(address);
159 * Perform shadow offset calculation based on untagged address, as
160 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
161 * addresses to this function.
163 address = reset_tag(address);
165 kasan_poison_shadow(address, size, tag);
167 if (size & KASAN_SHADOW_MASK) {
168 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
170 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
171 *shadow = tag;
172 else
173 *shadow = size & KASAN_SHADOW_MASK;
177 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
179 void *base = task_stack_page(task);
180 size_t size = sp - base;
182 kasan_unpoison_shadow(base, size);
185 /* Unpoison the entire stack for a task. */
186 void kasan_unpoison_task_stack(struct task_struct *task)
188 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
191 /* Unpoison the stack for the current task beyond a watermark sp value. */
192 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
195 * Calculate the task stack base address. Avoid using 'current'
196 * because this function is called by early resume code which hasn't
197 * yet set up the percpu register (%gs).
199 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
201 kasan_unpoison_shadow(base, watermark - base);
205 * Clear all poison for the region between the current SP and a provided
206 * watermark value, as is sometimes required prior to hand-crafted asm function
207 * returns in the middle of functions.
209 void kasan_unpoison_stack_above_sp_to(const void *watermark)
211 const void *sp = __builtin_frame_address(0);
212 size_t size = watermark - sp;
214 if (WARN_ON(sp > watermark))
215 return;
216 kasan_unpoison_shadow(sp, size);
219 void kasan_alloc_pages(struct page *page, unsigned int order)
221 u8 tag;
222 unsigned long i;
224 if (unlikely(PageHighMem(page)))
225 return;
227 tag = random_tag();
228 for (i = 0; i < (1 << order); i++)
229 page_kasan_tag_set(page + i, tag);
230 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
233 void kasan_free_pages(struct page *page, unsigned int order)
235 if (likely(!PageHighMem(page)))
236 kasan_poison_shadow(page_address(page),
237 PAGE_SIZE << order,
238 KASAN_FREE_PAGE);
242 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
243 * For larger allocations larger redzones are used.
245 static inline unsigned int optimal_redzone(unsigned int object_size)
247 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
248 return 0;
250 return
251 object_size <= 64 - 16 ? 16 :
252 object_size <= 128 - 32 ? 32 :
253 object_size <= 512 - 64 ? 64 :
254 object_size <= 4096 - 128 ? 128 :
255 object_size <= (1 << 14) - 256 ? 256 :
256 object_size <= (1 << 15) - 512 ? 512 :
257 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
260 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
261 slab_flags_t *flags)
263 unsigned int orig_size = *size;
264 unsigned int redzone_size;
265 int redzone_adjust;
267 /* Add alloc meta. */
268 cache->kasan_info.alloc_meta_offset = *size;
269 *size += sizeof(struct kasan_alloc_meta);
271 /* Add free meta. */
272 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
273 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
274 cache->object_size < sizeof(struct kasan_free_meta))) {
275 cache->kasan_info.free_meta_offset = *size;
276 *size += sizeof(struct kasan_free_meta);
279 redzone_size = optimal_redzone(cache->object_size);
280 redzone_adjust = redzone_size - (*size - cache->object_size);
281 if (redzone_adjust > 0)
282 *size += redzone_adjust;
284 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
285 max(*size, cache->object_size + redzone_size));
288 * If the metadata doesn't fit, don't enable KASAN at all.
290 if (*size <= cache->kasan_info.alloc_meta_offset ||
291 *size <= cache->kasan_info.free_meta_offset) {
292 cache->kasan_info.alloc_meta_offset = 0;
293 cache->kasan_info.free_meta_offset = 0;
294 *size = orig_size;
295 return;
298 *flags |= SLAB_KASAN;
301 size_t kasan_metadata_size(struct kmem_cache *cache)
303 return (cache->kasan_info.alloc_meta_offset ?
304 sizeof(struct kasan_alloc_meta) : 0) +
305 (cache->kasan_info.free_meta_offset ?
306 sizeof(struct kasan_free_meta) : 0);
309 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
310 const void *object)
312 return (void *)object + cache->kasan_info.alloc_meta_offset;
315 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
316 const void *object)
318 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
319 return (void *)object + cache->kasan_info.free_meta_offset;
323 static void kasan_set_free_info(struct kmem_cache *cache,
324 void *object, u8 tag)
326 struct kasan_alloc_meta *alloc_meta;
327 u8 idx = 0;
329 alloc_meta = get_alloc_info(cache, object);
331 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
332 idx = alloc_meta->free_track_idx;
333 alloc_meta->free_pointer_tag[idx] = tag;
334 alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
335 #endif
337 set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
340 void kasan_poison_slab(struct page *page)
342 unsigned long i;
344 for (i = 0; i < compound_nr(page); i++)
345 page_kasan_tag_reset(page + i);
346 kasan_poison_shadow(page_address(page), page_size(page),
347 KASAN_KMALLOC_REDZONE);
350 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
352 kasan_unpoison_shadow(object, cache->object_size);
355 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
357 kasan_poison_shadow(object,
358 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
359 KASAN_KMALLOC_REDZONE);
363 * This function assigns a tag to an object considering the following:
364 * 1. A cache might have a constructor, which might save a pointer to a slab
365 * object somewhere (e.g. in the object itself). We preassign a tag for
366 * each object in caches with constructors during slab creation and reuse
367 * the same tag each time a particular object is allocated.
368 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
369 * accessed after being freed. We preassign tags for objects in these
370 * caches as well.
371 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
372 * is stored as an array of indexes instead of a linked list. Assign tags
373 * based on objects indexes, so that objects that are next to each other
374 * get different tags.
376 static u8 assign_tag(struct kmem_cache *cache, const void *object,
377 bool init, bool keep_tag)
380 * 1. When an object is kmalloc()'ed, two hooks are called:
381 * kasan_slab_alloc() and kasan_kmalloc(). We assign the
382 * tag only in the first one.
383 * 2. We reuse the same tag for krealloc'ed objects.
385 if (keep_tag)
386 return get_tag(object);
389 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
390 * set, assign a tag when the object is being allocated (init == false).
392 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
393 return init ? KASAN_TAG_KERNEL : random_tag();
395 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
396 #ifdef CONFIG_SLAB
397 /* For SLAB assign tags based on the object index in the freelist. */
398 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
399 #else
401 * For SLUB assign a random tag during slab creation, otherwise reuse
402 * the already assigned tag.
404 return init ? random_tag() : get_tag(object);
405 #endif
408 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
409 const void *object)
411 struct kasan_alloc_meta *alloc_info;
413 if (!(cache->flags & SLAB_KASAN))
414 return (void *)object;
416 alloc_info = get_alloc_info(cache, object);
417 __memset(alloc_info, 0, sizeof(*alloc_info));
419 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
420 object = set_tag(object,
421 assign_tag(cache, object, true, false));
423 return (void *)object;
426 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
428 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
429 return shadow_byte < 0 ||
430 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
432 /* else CONFIG_KASAN_SW_TAGS: */
433 if ((u8)shadow_byte == KASAN_TAG_INVALID)
434 return true;
435 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
436 return true;
438 return false;
441 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
442 unsigned long ip, bool quarantine)
444 s8 shadow_byte;
445 u8 tag;
446 void *tagged_object;
447 unsigned long rounded_up_size;
449 tag = get_tag(object);
450 tagged_object = object;
451 object = reset_tag(object);
453 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
454 object)) {
455 kasan_report_invalid_free(tagged_object, ip);
456 return true;
459 /* RCU slabs could be legally used after free within the RCU period */
460 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
461 return false;
463 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
464 if (shadow_invalid(tag, shadow_byte)) {
465 kasan_report_invalid_free(tagged_object, ip);
466 return true;
469 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
470 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
472 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
473 unlikely(!(cache->flags & SLAB_KASAN)))
474 return false;
476 kasan_set_free_info(cache, object, tag);
478 quarantine_put(get_free_info(cache, object), cache);
480 return IS_ENABLED(CONFIG_KASAN_GENERIC);
483 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
485 return __kasan_slab_free(cache, object, ip, true);
488 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
489 size_t size, gfp_t flags, bool keep_tag)
491 unsigned long redzone_start;
492 unsigned long redzone_end;
493 u8 tag = 0xff;
495 if (gfpflags_allow_blocking(flags))
496 quarantine_reduce();
498 if (unlikely(object == NULL))
499 return NULL;
501 redzone_start = round_up((unsigned long)(object + size),
502 KASAN_SHADOW_SCALE_SIZE);
503 redzone_end = round_up((unsigned long)object + cache->object_size,
504 KASAN_SHADOW_SCALE_SIZE);
506 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
507 tag = assign_tag(cache, object, false, keep_tag);
509 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
510 kasan_unpoison_shadow(set_tag(object, tag), size);
511 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
512 KASAN_KMALLOC_REDZONE);
514 if (cache->flags & SLAB_KASAN)
515 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
517 return set_tag(object, tag);
520 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
521 gfp_t flags)
523 return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
526 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
527 size_t size, gfp_t flags)
529 return __kasan_kmalloc(cache, object, size, flags, true);
531 EXPORT_SYMBOL(kasan_kmalloc);
533 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
534 gfp_t flags)
536 struct page *page;
537 unsigned long redzone_start;
538 unsigned long redzone_end;
540 if (gfpflags_allow_blocking(flags))
541 quarantine_reduce();
543 if (unlikely(ptr == NULL))
544 return NULL;
546 page = virt_to_page(ptr);
547 redzone_start = round_up((unsigned long)(ptr + size),
548 KASAN_SHADOW_SCALE_SIZE);
549 redzone_end = (unsigned long)ptr + page_size(page);
551 kasan_unpoison_shadow(ptr, size);
552 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
553 KASAN_PAGE_REDZONE);
555 return (void *)ptr;
558 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
560 struct page *page;
562 if (unlikely(object == ZERO_SIZE_PTR))
563 return (void *)object;
565 page = virt_to_head_page(object);
567 if (unlikely(!PageSlab(page)))
568 return kasan_kmalloc_large(object, size, flags);
569 else
570 return __kasan_kmalloc(page->slab_cache, object, size,
571 flags, true);
574 void kasan_poison_kfree(void *ptr, unsigned long ip)
576 struct page *page;
578 page = virt_to_head_page(ptr);
580 if (unlikely(!PageSlab(page))) {
581 if (ptr != page_address(page)) {
582 kasan_report_invalid_free(ptr, ip);
583 return;
585 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
586 } else {
587 __kasan_slab_free(page->slab_cache, ptr, ip, false);
591 void kasan_kfree_large(void *ptr, unsigned long ip)
593 if (ptr != page_address(virt_to_head_page(ptr)))
594 kasan_report_invalid_free(ptr, ip);
595 /* The object will be poisoned by page_alloc. */
598 #ifndef CONFIG_KASAN_VMALLOC
599 int kasan_module_alloc(void *addr, size_t size)
601 void *ret;
602 size_t scaled_size;
603 size_t shadow_size;
604 unsigned long shadow_start;
606 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
607 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
608 shadow_size = round_up(scaled_size, PAGE_SIZE);
610 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
611 return -EINVAL;
613 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
614 shadow_start + shadow_size,
615 GFP_KERNEL,
616 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
617 __builtin_return_address(0));
619 if (ret) {
620 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
621 find_vm_area(addr)->flags |= VM_KASAN;
622 kmemleak_ignore(ret);
623 return 0;
626 return -ENOMEM;
629 void kasan_free_shadow(const struct vm_struct *vm)
631 if (vm->flags & VM_KASAN)
632 vfree(kasan_mem_to_shadow(vm->addr));
634 #endif
636 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
638 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
640 unsigned long flags = user_access_save();
641 __kasan_report(addr, size, is_write, ip);
642 user_access_restore(flags);
645 #ifdef CONFIG_MEMORY_HOTPLUG
646 static bool shadow_mapped(unsigned long addr)
648 pgd_t *pgd = pgd_offset_k(addr);
649 p4d_t *p4d;
650 pud_t *pud;
651 pmd_t *pmd;
652 pte_t *pte;
654 if (pgd_none(*pgd))
655 return false;
656 p4d = p4d_offset(pgd, addr);
657 if (p4d_none(*p4d))
658 return false;
659 pud = pud_offset(p4d, addr);
660 if (pud_none(*pud))
661 return false;
664 * We can't use pud_large() or pud_huge(), the first one is
665 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
666 * pud_bad(), if pud is bad then it's bad because it's huge.
668 if (pud_bad(*pud))
669 return true;
670 pmd = pmd_offset(pud, addr);
671 if (pmd_none(*pmd))
672 return false;
674 if (pmd_bad(*pmd))
675 return true;
676 pte = pte_offset_kernel(pmd, addr);
677 return !pte_none(*pte);
680 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
681 unsigned long action, void *data)
683 struct memory_notify *mem_data = data;
684 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
685 unsigned long shadow_end, shadow_size;
687 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
688 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
689 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
690 shadow_size = nr_shadow_pages << PAGE_SHIFT;
691 shadow_end = shadow_start + shadow_size;
693 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
694 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
695 return NOTIFY_BAD;
697 switch (action) {
698 case MEM_GOING_ONLINE: {
699 void *ret;
702 * If shadow is mapped already than it must have been mapped
703 * during the boot. This could happen if we onlining previously
704 * offlined memory.
706 if (shadow_mapped(shadow_start))
707 return NOTIFY_OK;
709 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
710 shadow_end, GFP_KERNEL,
711 PAGE_KERNEL, VM_NO_GUARD,
712 pfn_to_nid(mem_data->start_pfn),
713 __builtin_return_address(0));
714 if (!ret)
715 return NOTIFY_BAD;
717 kmemleak_ignore(ret);
718 return NOTIFY_OK;
720 case MEM_CANCEL_ONLINE:
721 case MEM_OFFLINE: {
722 struct vm_struct *vm;
725 * shadow_start was either mapped during boot by kasan_init()
726 * or during memory online by __vmalloc_node_range().
727 * In the latter case we can use vfree() to free shadow.
728 * Non-NULL result of the find_vm_area() will tell us if
729 * that was the second case.
731 * Currently it's not possible to free shadow mapped
732 * during boot by kasan_init(). It's because the code
733 * to do that hasn't been written yet. So we'll just
734 * leak the memory.
736 vm = find_vm_area((void *)shadow_start);
737 if (vm)
738 vfree((void *)shadow_start);
742 return NOTIFY_OK;
745 static int __init kasan_memhotplug_init(void)
747 hotplug_memory_notifier(kasan_mem_notifier, 0);
749 return 0;
752 core_initcall(kasan_memhotplug_init);
753 #endif
755 #ifdef CONFIG_KASAN_VMALLOC
756 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
757 void *unused)
759 unsigned long page;
760 pte_t pte;
762 if (likely(!pte_none(*ptep)))
763 return 0;
765 page = __get_free_page(GFP_KERNEL);
766 if (!page)
767 return -ENOMEM;
769 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
770 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
772 spin_lock(&init_mm.page_table_lock);
773 if (likely(pte_none(*ptep))) {
774 set_pte_at(&init_mm, addr, ptep, pte);
775 page = 0;
777 spin_unlock(&init_mm.page_table_lock);
778 if (page)
779 free_page(page);
780 return 0;
783 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
785 unsigned long shadow_start, shadow_end;
786 int ret;
788 if (!is_vmalloc_or_module_addr((void *)addr))
789 return 0;
791 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
792 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
793 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
794 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
796 ret = apply_to_page_range(&init_mm, shadow_start,
797 shadow_end - shadow_start,
798 kasan_populate_vmalloc_pte, NULL);
799 if (ret)
800 return ret;
802 flush_cache_vmap(shadow_start, shadow_end);
805 * We need to be careful about inter-cpu effects here. Consider:
807 * CPU#0 CPU#1
808 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
809 * p[99] = 1;
811 * With compiler instrumentation, that ends up looking like this:
813 * CPU#0 CPU#1
814 * // vmalloc() allocates memory
815 * // let a = area->addr
816 * // we reach kasan_populate_vmalloc
817 * // and call kasan_unpoison_shadow:
818 * STORE shadow(a), unpoison_val
819 * ...
820 * STORE shadow(a+99), unpoison_val x = LOAD p
821 * // rest of vmalloc process <data dependency>
822 * STORE p, a LOAD shadow(x+99)
824 * If there is no barrier between the end of unpoisioning the shadow
825 * and the store of the result to p, the stores could be committed
826 * in a different order by CPU#0, and CPU#1 could erroneously observe
827 * poison in the shadow.
829 * We need some sort of barrier between the stores.
831 * In the vmalloc() case, this is provided by a smp_wmb() in
832 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
833 * get_vm_area() and friends, the caller gets shadow allocated but
834 * doesn't have any pages mapped into the virtual address space that
835 * has been reserved. Mapping those pages in will involve taking and
836 * releasing a page-table lock, which will provide the barrier.
839 return 0;
843 * Poison the shadow for a vmalloc region. Called as part of the
844 * freeing process at the time the region is freed.
846 void kasan_poison_vmalloc(const void *start, unsigned long size)
848 if (!is_vmalloc_or_module_addr(start))
849 return;
851 size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
852 kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
855 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
857 if (!is_vmalloc_or_module_addr(start))
858 return;
860 kasan_unpoison_shadow(start, size);
863 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
864 void *unused)
866 unsigned long page;
868 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
870 spin_lock(&init_mm.page_table_lock);
872 if (likely(!pte_none(*ptep))) {
873 pte_clear(&init_mm, addr, ptep);
874 free_page(page);
876 spin_unlock(&init_mm.page_table_lock);
878 return 0;
882 * Release the backing for the vmalloc region [start, end), which
883 * lies within the free region [free_region_start, free_region_end).
885 * This can be run lazily, long after the region was freed. It runs
886 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
887 * infrastructure.
889 * How does this work?
890 * -------------------
892 * We have a region that is page aligned, labelled as A.
893 * That might not map onto the shadow in a way that is page-aligned:
895 * start end
896 * v v
897 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
898 * -------- -------- -------- -------- --------
899 * | | | | |
900 * | | | /-------/ |
901 * \-------\|/------/ |/---------------/
902 * ||| ||
903 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
904 * (1) (2) (3)
906 * First we align the start upwards and the end downwards, so that the
907 * shadow of the region aligns with shadow page boundaries. In the
908 * example, this gives us the shadow page (2). This is the shadow entirely
909 * covered by this allocation.
911 * Then we have the tricky bits. We want to know if we can free the
912 * partially covered shadow pages - (1) and (3) in the example. For this,
913 * we are given the start and end of the free region that contains this
914 * allocation. Extending our previous example, we could have:
916 * free_region_start free_region_end
917 * | start end |
918 * v v v v
919 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
920 * -------- -------- -------- -------- --------
921 * | | | | |
922 * | | | /-------/ |
923 * \-------\|/------/ |/---------------/
924 * ||| ||
925 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
926 * (1) (2) (3)
928 * Once again, we align the start of the free region up, and the end of
929 * the free region down so that the shadow is page aligned. So we can free
930 * page (1) - we know no allocation currently uses anything in that page,
931 * because all of it is in the vmalloc free region. But we cannot free
932 * page (3), because we can't be sure that the rest of it is unused.
934 * We only consider pages that contain part of the original region for
935 * freeing: we don't try to free other pages from the free region or we'd
936 * end up trying to free huge chunks of virtual address space.
938 * Concurrency
939 * -----------
941 * How do we know that we're not freeing a page that is simultaneously
942 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
944 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
945 * at the same time. While we run under free_vmap_area_lock, the population
946 * code does not.
948 * free_vmap_area_lock instead operates to ensure that the larger range
949 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
950 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
951 * no space identified as free will become used while we are running. This
952 * means that so long as we are careful with alignment and only free shadow
953 * pages entirely covered by the free region, we will not run in to any
954 * trouble - any simultaneous allocations will be for disjoint regions.
956 void kasan_release_vmalloc(unsigned long start, unsigned long end,
957 unsigned long free_region_start,
958 unsigned long free_region_end)
960 void *shadow_start, *shadow_end;
961 unsigned long region_start, region_end;
962 unsigned long size;
964 region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
965 region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
967 free_region_start = ALIGN(free_region_start,
968 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
970 if (start != region_start &&
971 free_region_start < region_start)
972 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
974 free_region_end = ALIGN_DOWN(free_region_end,
975 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
977 if (end != region_end &&
978 free_region_end > region_end)
979 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
981 shadow_start = kasan_mem_to_shadow((void *)region_start);
982 shadow_end = kasan_mem_to_shadow((void *)region_end);
984 if (shadow_end > shadow_start) {
985 size = shadow_end - shadow_start;
986 apply_to_existing_page_range(&init_mm,
987 (unsigned long)shadow_start,
988 size, kasan_depopulate_vmalloc_pte,
989 NULL);
990 flush_tlb_kernel_range((unsigned long)shadow_start,
991 (unsigned long)shadow_end);
994 #endif