1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains common generic and tag-based KASAN code.
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
45 static inline int in_irqentry_text(unsigned long ptr
)
47 return (ptr
>= (unsigned long)&__irqentry_text_start
&&
48 ptr
< (unsigned long)&__irqentry_text_end
) ||
49 (ptr
>= (unsigned long)&__softirqentry_text_start
&&
50 ptr
< (unsigned long)&__softirqentry_text_end
);
53 static inline unsigned int filter_irq_stacks(unsigned long *entries
,
54 unsigned int nr_entries
)
58 for (i
= 0; i
< nr_entries
; i
++) {
59 if (in_irqentry_text(entries
[i
])) {
60 /* Include the irqentry function into the stack. */
67 static inline depot_stack_handle_t
save_stack(gfp_t flags
)
69 unsigned long entries
[KASAN_STACK_DEPTH
];
70 unsigned int nr_entries
;
72 nr_entries
= stack_trace_save(entries
, ARRAY_SIZE(entries
), 0);
73 nr_entries
= filter_irq_stacks(entries
, nr_entries
);
74 return stack_depot_save(entries
, nr_entries
, flags
);
77 static inline void set_track(struct kasan_track
*track
, gfp_t flags
)
79 track
->pid
= current
->pid
;
80 track
->stack
= save_stack(flags
);
83 void kasan_enable_current(void)
85 current
->kasan_depth
++;
88 void kasan_disable_current(void)
90 current
->kasan_depth
--;
93 bool __kasan_check_read(const volatile void *p
, unsigned int size
)
95 return check_memory_region((unsigned long)p
, size
, false, _RET_IP_
);
97 EXPORT_SYMBOL(__kasan_check_read
);
99 bool __kasan_check_write(const volatile void *p
, unsigned int size
)
101 return check_memory_region((unsigned long)p
, size
, true, _RET_IP_
);
103 EXPORT_SYMBOL(__kasan_check_write
);
106 void *memset(void *addr
, int c
, size_t len
)
108 check_memory_region((unsigned long)addr
, len
, true, _RET_IP_
);
110 return __memset(addr
, c
, len
);
113 #ifdef __HAVE_ARCH_MEMMOVE
115 void *memmove(void *dest
, const void *src
, size_t len
)
117 check_memory_region((unsigned long)src
, len
, false, _RET_IP_
);
118 check_memory_region((unsigned long)dest
, len
, true, _RET_IP_
);
120 return __memmove(dest
, src
, len
);
125 void *memcpy(void *dest
, const void *src
, size_t len
)
127 check_memory_region((unsigned long)src
, len
, false, _RET_IP_
);
128 check_memory_region((unsigned long)dest
, len
, true, _RET_IP_
);
130 return __memcpy(dest
, src
, len
);
134 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
135 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
137 void kasan_poison_shadow(const void *address
, size_t size
, u8 value
)
139 void *shadow_start
, *shadow_end
;
142 * Perform shadow offset calculation based on untagged address, as
143 * some of the callers (e.g. kasan_poison_object_data) pass tagged
144 * addresses to this function.
146 address
= reset_tag(address
);
148 shadow_start
= kasan_mem_to_shadow(address
);
149 shadow_end
= kasan_mem_to_shadow(address
+ size
);
151 __memset(shadow_start
, value
, shadow_end
- shadow_start
);
154 void kasan_unpoison_shadow(const void *address
, size_t size
)
156 u8 tag
= get_tag(address
);
159 * Perform shadow offset calculation based on untagged address, as
160 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
161 * addresses to this function.
163 address
= reset_tag(address
);
165 kasan_poison_shadow(address
, size
, tag
);
167 if (size
& KASAN_SHADOW_MASK
) {
168 u8
*shadow
= (u8
*)kasan_mem_to_shadow(address
+ size
);
170 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
173 *shadow
= size
& KASAN_SHADOW_MASK
;
177 static void __kasan_unpoison_stack(struct task_struct
*task
, const void *sp
)
179 void *base
= task_stack_page(task
);
180 size_t size
= sp
- base
;
182 kasan_unpoison_shadow(base
, size
);
185 /* Unpoison the entire stack for a task. */
186 void kasan_unpoison_task_stack(struct task_struct
*task
)
188 __kasan_unpoison_stack(task
, task_stack_page(task
) + THREAD_SIZE
);
191 /* Unpoison the stack for the current task beyond a watermark sp value. */
192 asmlinkage
void kasan_unpoison_task_stack_below(const void *watermark
)
195 * Calculate the task stack base address. Avoid using 'current'
196 * because this function is called by early resume code which hasn't
197 * yet set up the percpu register (%gs).
199 void *base
= (void *)((unsigned long)watermark
& ~(THREAD_SIZE
- 1));
201 kasan_unpoison_shadow(base
, watermark
- base
);
205 * Clear all poison for the region between the current SP and a provided
206 * watermark value, as is sometimes required prior to hand-crafted asm function
207 * returns in the middle of functions.
209 void kasan_unpoison_stack_above_sp_to(const void *watermark
)
211 const void *sp
= __builtin_frame_address(0);
212 size_t size
= watermark
- sp
;
214 if (WARN_ON(sp
> watermark
))
216 kasan_unpoison_shadow(sp
, size
);
219 void kasan_alloc_pages(struct page
*page
, unsigned int order
)
224 if (unlikely(PageHighMem(page
)))
228 for (i
= 0; i
< (1 << order
); i
++)
229 page_kasan_tag_set(page
+ i
, tag
);
230 kasan_unpoison_shadow(page_address(page
), PAGE_SIZE
<< order
);
233 void kasan_free_pages(struct page
*page
, unsigned int order
)
235 if (likely(!PageHighMem(page
)))
236 kasan_poison_shadow(page_address(page
),
242 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
243 * For larger allocations larger redzones are used.
245 static inline unsigned int optimal_redzone(unsigned int object_size
)
247 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
251 object_size
<= 64 - 16 ? 16 :
252 object_size
<= 128 - 32 ? 32 :
253 object_size
<= 512 - 64 ? 64 :
254 object_size
<= 4096 - 128 ? 128 :
255 object_size
<= (1 << 14) - 256 ? 256 :
256 object_size
<= (1 << 15) - 512 ? 512 :
257 object_size
<= (1 << 16) - 1024 ? 1024 : 2048;
260 void kasan_cache_create(struct kmem_cache
*cache
, unsigned int *size
,
263 unsigned int orig_size
= *size
;
264 unsigned int redzone_size
;
267 /* Add alloc meta. */
268 cache
->kasan_info
.alloc_meta_offset
= *size
;
269 *size
+= sizeof(struct kasan_alloc_meta
);
272 if (IS_ENABLED(CONFIG_KASAN_GENERIC
) &&
273 (cache
->flags
& SLAB_TYPESAFE_BY_RCU
|| cache
->ctor
||
274 cache
->object_size
< sizeof(struct kasan_free_meta
))) {
275 cache
->kasan_info
.free_meta_offset
= *size
;
276 *size
+= sizeof(struct kasan_free_meta
);
279 redzone_size
= optimal_redzone(cache
->object_size
);
280 redzone_adjust
= redzone_size
- (*size
- cache
->object_size
);
281 if (redzone_adjust
> 0)
282 *size
+= redzone_adjust
;
284 *size
= min_t(unsigned int, KMALLOC_MAX_SIZE
,
285 max(*size
, cache
->object_size
+ redzone_size
));
288 * If the metadata doesn't fit, don't enable KASAN at all.
290 if (*size
<= cache
->kasan_info
.alloc_meta_offset
||
291 *size
<= cache
->kasan_info
.free_meta_offset
) {
292 cache
->kasan_info
.alloc_meta_offset
= 0;
293 cache
->kasan_info
.free_meta_offset
= 0;
298 *flags
|= SLAB_KASAN
;
301 size_t kasan_metadata_size(struct kmem_cache
*cache
)
303 return (cache
->kasan_info
.alloc_meta_offset
?
304 sizeof(struct kasan_alloc_meta
) : 0) +
305 (cache
->kasan_info
.free_meta_offset
?
306 sizeof(struct kasan_free_meta
) : 0);
309 struct kasan_alloc_meta
*get_alloc_info(struct kmem_cache
*cache
,
312 return (void *)object
+ cache
->kasan_info
.alloc_meta_offset
;
315 struct kasan_free_meta
*get_free_info(struct kmem_cache
*cache
,
318 BUILD_BUG_ON(sizeof(struct kasan_free_meta
) > 32);
319 return (void *)object
+ cache
->kasan_info
.free_meta_offset
;
323 static void kasan_set_free_info(struct kmem_cache
*cache
,
324 void *object
, u8 tag
)
326 struct kasan_alloc_meta
*alloc_meta
;
329 alloc_meta
= get_alloc_info(cache
, object
);
331 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
332 idx
= alloc_meta
->free_track_idx
;
333 alloc_meta
->free_pointer_tag
[idx
] = tag
;
334 alloc_meta
->free_track_idx
= (idx
+ 1) % KASAN_NR_FREE_STACKS
;
337 set_track(&alloc_meta
->free_track
[idx
], GFP_NOWAIT
);
340 void kasan_poison_slab(struct page
*page
)
344 for (i
= 0; i
< compound_nr(page
); i
++)
345 page_kasan_tag_reset(page
+ i
);
346 kasan_poison_shadow(page_address(page
), page_size(page
),
347 KASAN_KMALLOC_REDZONE
);
350 void kasan_unpoison_object_data(struct kmem_cache
*cache
, void *object
)
352 kasan_unpoison_shadow(object
, cache
->object_size
);
355 void kasan_poison_object_data(struct kmem_cache
*cache
, void *object
)
357 kasan_poison_shadow(object
,
358 round_up(cache
->object_size
, KASAN_SHADOW_SCALE_SIZE
),
359 KASAN_KMALLOC_REDZONE
);
363 * This function assigns a tag to an object considering the following:
364 * 1. A cache might have a constructor, which might save a pointer to a slab
365 * object somewhere (e.g. in the object itself). We preassign a tag for
366 * each object in caches with constructors during slab creation and reuse
367 * the same tag each time a particular object is allocated.
368 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
369 * accessed after being freed. We preassign tags for objects in these
371 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
372 * is stored as an array of indexes instead of a linked list. Assign tags
373 * based on objects indexes, so that objects that are next to each other
374 * get different tags.
376 static u8
assign_tag(struct kmem_cache
*cache
, const void *object
,
377 bool init
, bool keep_tag
)
380 * 1. When an object is kmalloc()'ed, two hooks are called:
381 * kasan_slab_alloc() and kasan_kmalloc(). We assign the
382 * tag only in the first one.
383 * 2. We reuse the same tag for krealloc'ed objects.
386 return get_tag(object
);
389 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
390 * set, assign a tag when the object is being allocated (init == false).
392 if (!cache
->ctor
&& !(cache
->flags
& SLAB_TYPESAFE_BY_RCU
))
393 return init
? KASAN_TAG_KERNEL
: random_tag();
395 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
397 /* For SLAB assign tags based on the object index in the freelist. */
398 return (u8
)obj_to_index(cache
, virt_to_page(object
), (void *)object
);
401 * For SLUB assign a random tag during slab creation, otherwise reuse
402 * the already assigned tag.
404 return init
? random_tag() : get_tag(object
);
408 void * __must_check
kasan_init_slab_obj(struct kmem_cache
*cache
,
411 struct kasan_alloc_meta
*alloc_info
;
413 if (!(cache
->flags
& SLAB_KASAN
))
414 return (void *)object
;
416 alloc_info
= get_alloc_info(cache
, object
);
417 __memset(alloc_info
, 0, sizeof(*alloc_info
));
419 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
420 object
= set_tag(object
,
421 assign_tag(cache
, object
, true, false));
423 return (void *)object
;
426 static inline bool shadow_invalid(u8 tag
, s8 shadow_byte
)
428 if (IS_ENABLED(CONFIG_KASAN_GENERIC
))
429 return shadow_byte
< 0 ||
430 shadow_byte
>= KASAN_SHADOW_SCALE_SIZE
;
432 /* else CONFIG_KASAN_SW_TAGS: */
433 if ((u8
)shadow_byte
== KASAN_TAG_INVALID
)
435 if ((tag
!= KASAN_TAG_KERNEL
) && (tag
!= (u8
)shadow_byte
))
441 static bool __kasan_slab_free(struct kmem_cache
*cache
, void *object
,
442 unsigned long ip
, bool quarantine
)
447 unsigned long rounded_up_size
;
449 tag
= get_tag(object
);
450 tagged_object
= object
;
451 object
= reset_tag(object
);
453 if (unlikely(nearest_obj(cache
, virt_to_head_page(object
), object
) !=
455 kasan_report_invalid_free(tagged_object
, ip
);
459 /* RCU slabs could be legally used after free within the RCU period */
460 if (unlikely(cache
->flags
& SLAB_TYPESAFE_BY_RCU
))
463 shadow_byte
= READ_ONCE(*(s8
*)kasan_mem_to_shadow(object
));
464 if (shadow_invalid(tag
, shadow_byte
)) {
465 kasan_report_invalid_free(tagged_object
, ip
);
469 rounded_up_size
= round_up(cache
->object_size
, KASAN_SHADOW_SCALE_SIZE
);
470 kasan_poison_shadow(object
, rounded_up_size
, KASAN_KMALLOC_FREE
);
472 if ((IS_ENABLED(CONFIG_KASAN_GENERIC
) && !quarantine
) ||
473 unlikely(!(cache
->flags
& SLAB_KASAN
)))
476 kasan_set_free_info(cache
, object
, tag
);
478 quarantine_put(get_free_info(cache
, object
), cache
);
480 return IS_ENABLED(CONFIG_KASAN_GENERIC
);
483 bool kasan_slab_free(struct kmem_cache
*cache
, void *object
, unsigned long ip
)
485 return __kasan_slab_free(cache
, object
, ip
, true);
488 static void *__kasan_kmalloc(struct kmem_cache
*cache
, const void *object
,
489 size_t size
, gfp_t flags
, bool keep_tag
)
491 unsigned long redzone_start
;
492 unsigned long redzone_end
;
495 if (gfpflags_allow_blocking(flags
))
498 if (unlikely(object
== NULL
))
501 redzone_start
= round_up((unsigned long)(object
+ size
),
502 KASAN_SHADOW_SCALE_SIZE
);
503 redzone_end
= round_up((unsigned long)object
+ cache
->object_size
,
504 KASAN_SHADOW_SCALE_SIZE
);
506 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
507 tag
= assign_tag(cache
, object
, false, keep_tag
);
509 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
510 kasan_unpoison_shadow(set_tag(object
, tag
), size
);
511 kasan_poison_shadow((void *)redzone_start
, redzone_end
- redzone_start
,
512 KASAN_KMALLOC_REDZONE
);
514 if (cache
->flags
& SLAB_KASAN
)
515 set_track(&get_alloc_info(cache
, object
)->alloc_track
, flags
);
517 return set_tag(object
, tag
);
520 void * __must_check
kasan_slab_alloc(struct kmem_cache
*cache
, void *object
,
523 return __kasan_kmalloc(cache
, object
, cache
->object_size
, flags
, false);
526 void * __must_check
kasan_kmalloc(struct kmem_cache
*cache
, const void *object
,
527 size_t size
, gfp_t flags
)
529 return __kasan_kmalloc(cache
, object
, size
, flags
, true);
531 EXPORT_SYMBOL(kasan_kmalloc
);
533 void * __must_check
kasan_kmalloc_large(const void *ptr
, size_t size
,
537 unsigned long redzone_start
;
538 unsigned long redzone_end
;
540 if (gfpflags_allow_blocking(flags
))
543 if (unlikely(ptr
== NULL
))
546 page
= virt_to_page(ptr
);
547 redzone_start
= round_up((unsigned long)(ptr
+ size
),
548 KASAN_SHADOW_SCALE_SIZE
);
549 redzone_end
= (unsigned long)ptr
+ page_size(page
);
551 kasan_unpoison_shadow(ptr
, size
);
552 kasan_poison_shadow((void *)redzone_start
, redzone_end
- redzone_start
,
558 void * __must_check
kasan_krealloc(const void *object
, size_t size
, gfp_t flags
)
562 if (unlikely(object
== ZERO_SIZE_PTR
))
563 return (void *)object
;
565 page
= virt_to_head_page(object
);
567 if (unlikely(!PageSlab(page
)))
568 return kasan_kmalloc_large(object
, size
, flags
);
570 return __kasan_kmalloc(page
->slab_cache
, object
, size
,
574 void kasan_poison_kfree(void *ptr
, unsigned long ip
)
578 page
= virt_to_head_page(ptr
);
580 if (unlikely(!PageSlab(page
))) {
581 if (ptr
!= page_address(page
)) {
582 kasan_report_invalid_free(ptr
, ip
);
585 kasan_poison_shadow(ptr
, page_size(page
), KASAN_FREE_PAGE
);
587 __kasan_slab_free(page
->slab_cache
, ptr
, ip
, false);
591 void kasan_kfree_large(void *ptr
, unsigned long ip
)
593 if (ptr
!= page_address(virt_to_head_page(ptr
)))
594 kasan_report_invalid_free(ptr
, ip
);
595 /* The object will be poisoned by page_alloc. */
598 #ifndef CONFIG_KASAN_VMALLOC
599 int kasan_module_alloc(void *addr
, size_t size
)
604 unsigned long shadow_start
;
606 shadow_start
= (unsigned long)kasan_mem_to_shadow(addr
);
607 scaled_size
= (size
+ KASAN_SHADOW_MASK
) >> KASAN_SHADOW_SCALE_SHIFT
;
608 shadow_size
= round_up(scaled_size
, PAGE_SIZE
);
610 if (WARN_ON(!PAGE_ALIGNED(shadow_start
)))
613 ret
= __vmalloc_node_range(shadow_size
, 1, shadow_start
,
614 shadow_start
+ shadow_size
,
616 PAGE_KERNEL
, VM_NO_GUARD
, NUMA_NO_NODE
,
617 __builtin_return_address(0));
620 __memset(ret
, KASAN_SHADOW_INIT
, shadow_size
);
621 find_vm_area(addr
)->flags
|= VM_KASAN
;
622 kmemleak_ignore(ret
);
629 void kasan_free_shadow(const struct vm_struct
*vm
)
631 if (vm
->flags
& VM_KASAN
)
632 vfree(kasan_mem_to_shadow(vm
->addr
));
636 extern void __kasan_report(unsigned long addr
, size_t size
, bool is_write
, unsigned long ip
);
638 void kasan_report(unsigned long addr
, size_t size
, bool is_write
, unsigned long ip
)
640 unsigned long flags
= user_access_save();
641 __kasan_report(addr
, size
, is_write
, ip
);
642 user_access_restore(flags
);
645 #ifdef CONFIG_MEMORY_HOTPLUG
646 static bool shadow_mapped(unsigned long addr
)
648 pgd_t
*pgd
= pgd_offset_k(addr
);
656 p4d
= p4d_offset(pgd
, addr
);
659 pud
= pud_offset(p4d
, addr
);
664 * We can't use pud_large() or pud_huge(), the first one is
665 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
666 * pud_bad(), if pud is bad then it's bad because it's huge.
670 pmd
= pmd_offset(pud
, addr
);
676 pte
= pte_offset_kernel(pmd
, addr
);
677 return !pte_none(*pte
);
680 static int __meminit
kasan_mem_notifier(struct notifier_block
*nb
,
681 unsigned long action
, void *data
)
683 struct memory_notify
*mem_data
= data
;
684 unsigned long nr_shadow_pages
, start_kaddr
, shadow_start
;
685 unsigned long shadow_end
, shadow_size
;
687 nr_shadow_pages
= mem_data
->nr_pages
>> KASAN_SHADOW_SCALE_SHIFT
;
688 start_kaddr
= (unsigned long)pfn_to_kaddr(mem_data
->start_pfn
);
689 shadow_start
= (unsigned long)kasan_mem_to_shadow((void *)start_kaddr
);
690 shadow_size
= nr_shadow_pages
<< PAGE_SHIFT
;
691 shadow_end
= shadow_start
+ shadow_size
;
693 if (WARN_ON(mem_data
->nr_pages
% KASAN_SHADOW_SCALE_SIZE
) ||
694 WARN_ON(start_kaddr
% (KASAN_SHADOW_SCALE_SIZE
<< PAGE_SHIFT
)))
698 case MEM_GOING_ONLINE
: {
702 * If shadow is mapped already than it must have been mapped
703 * during the boot. This could happen if we onlining previously
706 if (shadow_mapped(shadow_start
))
709 ret
= __vmalloc_node_range(shadow_size
, PAGE_SIZE
, shadow_start
,
710 shadow_end
, GFP_KERNEL
,
711 PAGE_KERNEL
, VM_NO_GUARD
,
712 pfn_to_nid(mem_data
->start_pfn
),
713 __builtin_return_address(0));
717 kmemleak_ignore(ret
);
720 case MEM_CANCEL_ONLINE
:
722 struct vm_struct
*vm
;
725 * shadow_start was either mapped during boot by kasan_init()
726 * or during memory online by __vmalloc_node_range().
727 * In the latter case we can use vfree() to free shadow.
728 * Non-NULL result of the find_vm_area() will tell us if
729 * that was the second case.
731 * Currently it's not possible to free shadow mapped
732 * during boot by kasan_init(). It's because the code
733 * to do that hasn't been written yet. So we'll just
736 vm
= find_vm_area((void *)shadow_start
);
738 vfree((void *)shadow_start
);
745 static int __init
kasan_memhotplug_init(void)
747 hotplug_memory_notifier(kasan_mem_notifier
, 0);
752 core_initcall(kasan_memhotplug_init
);
755 #ifdef CONFIG_KASAN_VMALLOC
756 static int kasan_populate_vmalloc_pte(pte_t
*ptep
, unsigned long addr
,
762 if (likely(!pte_none(*ptep
)))
765 page
= __get_free_page(GFP_KERNEL
);
769 memset((void *)page
, KASAN_VMALLOC_INVALID
, PAGE_SIZE
);
770 pte
= pfn_pte(PFN_DOWN(__pa(page
)), PAGE_KERNEL
);
772 spin_lock(&init_mm
.page_table_lock
);
773 if (likely(pte_none(*ptep
))) {
774 set_pte_at(&init_mm
, addr
, ptep
, pte
);
777 spin_unlock(&init_mm
.page_table_lock
);
783 int kasan_populate_vmalloc(unsigned long addr
, unsigned long size
)
785 unsigned long shadow_start
, shadow_end
;
788 if (!is_vmalloc_or_module_addr((void *)addr
))
791 shadow_start
= (unsigned long)kasan_mem_to_shadow((void *)addr
);
792 shadow_start
= ALIGN_DOWN(shadow_start
, PAGE_SIZE
);
793 shadow_end
= (unsigned long)kasan_mem_to_shadow((void *)addr
+ size
);
794 shadow_end
= ALIGN(shadow_end
, PAGE_SIZE
);
796 ret
= apply_to_page_range(&init_mm
, shadow_start
,
797 shadow_end
- shadow_start
,
798 kasan_populate_vmalloc_pte
, NULL
);
802 flush_cache_vmap(shadow_start
, shadow_end
);
805 * We need to be careful about inter-cpu effects here. Consider:
808 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
811 * With compiler instrumentation, that ends up looking like this:
814 * // vmalloc() allocates memory
815 * // let a = area->addr
816 * // we reach kasan_populate_vmalloc
817 * // and call kasan_unpoison_shadow:
818 * STORE shadow(a), unpoison_val
820 * STORE shadow(a+99), unpoison_val x = LOAD p
821 * // rest of vmalloc process <data dependency>
822 * STORE p, a LOAD shadow(x+99)
824 * If there is no barrier between the end of unpoisioning the shadow
825 * and the store of the result to p, the stores could be committed
826 * in a different order by CPU#0, and CPU#1 could erroneously observe
827 * poison in the shadow.
829 * We need some sort of barrier between the stores.
831 * In the vmalloc() case, this is provided by a smp_wmb() in
832 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
833 * get_vm_area() and friends, the caller gets shadow allocated but
834 * doesn't have any pages mapped into the virtual address space that
835 * has been reserved. Mapping those pages in will involve taking and
836 * releasing a page-table lock, which will provide the barrier.
843 * Poison the shadow for a vmalloc region. Called as part of the
844 * freeing process at the time the region is freed.
846 void kasan_poison_vmalloc(const void *start
, unsigned long size
)
848 if (!is_vmalloc_or_module_addr(start
))
851 size
= round_up(size
, KASAN_SHADOW_SCALE_SIZE
);
852 kasan_poison_shadow(start
, size
, KASAN_VMALLOC_INVALID
);
855 void kasan_unpoison_vmalloc(const void *start
, unsigned long size
)
857 if (!is_vmalloc_or_module_addr(start
))
860 kasan_unpoison_shadow(start
, size
);
863 static int kasan_depopulate_vmalloc_pte(pte_t
*ptep
, unsigned long addr
,
868 page
= (unsigned long)__va(pte_pfn(*ptep
) << PAGE_SHIFT
);
870 spin_lock(&init_mm
.page_table_lock
);
872 if (likely(!pte_none(*ptep
))) {
873 pte_clear(&init_mm
, addr
, ptep
);
876 spin_unlock(&init_mm
.page_table_lock
);
882 * Release the backing for the vmalloc region [start, end), which
883 * lies within the free region [free_region_start, free_region_end).
885 * This can be run lazily, long after the region was freed. It runs
886 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
889 * How does this work?
890 * -------------------
892 * We have a region that is page aligned, labelled as A.
893 * That might not map onto the shadow in a way that is page-aligned:
897 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
898 * -------- -------- -------- -------- --------
901 * \-------\|/------/ |/---------------/
903 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
906 * First we align the start upwards and the end downwards, so that the
907 * shadow of the region aligns with shadow page boundaries. In the
908 * example, this gives us the shadow page (2). This is the shadow entirely
909 * covered by this allocation.
911 * Then we have the tricky bits. We want to know if we can free the
912 * partially covered shadow pages - (1) and (3) in the example. For this,
913 * we are given the start and end of the free region that contains this
914 * allocation. Extending our previous example, we could have:
916 * free_region_start free_region_end
919 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
920 * -------- -------- -------- -------- --------
923 * \-------\|/------/ |/---------------/
925 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
928 * Once again, we align the start of the free region up, and the end of
929 * the free region down so that the shadow is page aligned. So we can free
930 * page (1) - we know no allocation currently uses anything in that page,
931 * because all of it is in the vmalloc free region. But we cannot free
932 * page (3), because we can't be sure that the rest of it is unused.
934 * We only consider pages that contain part of the original region for
935 * freeing: we don't try to free other pages from the free region or we'd
936 * end up trying to free huge chunks of virtual address space.
941 * How do we know that we're not freeing a page that is simultaneously
942 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
944 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
945 * at the same time. While we run under free_vmap_area_lock, the population
948 * free_vmap_area_lock instead operates to ensure that the larger range
949 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
950 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
951 * no space identified as free will become used while we are running. This
952 * means that so long as we are careful with alignment and only free shadow
953 * pages entirely covered by the free region, we will not run in to any
954 * trouble - any simultaneous allocations will be for disjoint regions.
956 void kasan_release_vmalloc(unsigned long start
, unsigned long end
,
957 unsigned long free_region_start
,
958 unsigned long free_region_end
)
960 void *shadow_start
, *shadow_end
;
961 unsigned long region_start
, region_end
;
964 region_start
= ALIGN(start
, PAGE_SIZE
* KASAN_SHADOW_SCALE_SIZE
);
965 region_end
= ALIGN_DOWN(end
, PAGE_SIZE
* KASAN_SHADOW_SCALE_SIZE
);
967 free_region_start
= ALIGN(free_region_start
,
968 PAGE_SIZE
* KASAN_SHADOW_SCALE_SIZE
);
970 if (start
!= region_start
&&
971 free_region_start
< region_start
)
972 region_start
-= PAGE_SIZE
* KASAN_SHADOW_SCALE_SIZE
;
974 free_region_end
= ALIGN_DOWN(free_region_end
,
975 PAGE_SIZE
* KASAN_SHADOW_SCALE_SIZE
);
977 if (end
!= region_end
&&
978 free_region_end
> region_end
)
979 region_end
+= PAGE_SIZE
* KASAN_SHADOW_SCALE_SIZE
;
981 shadow_start
= kasan_mem_to_shadow((void *)region_start
);
982 shadow_end
= kasan_mem_to_shadow((void *)region_end
);
984 if (shadow_end
> shadow_start
) {
985 size
= shadow_end
- shadow_start
;
986 apply_to_existing_page_range(&init_mm
,
987 (unsigned long)shadow_start
,
988 size
, kasan_depopulate_vmalloc_pte
,
990 flush_tlb_kernel_range((unsigned long)shadow_start
,
991 (unsigned long)shadow_end
);