treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / mm / nommu.c
blobbd2b4e5ef14457eab36c1905ee558eea5e33f213
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
8 * See Documentation/nommu-mmap.txt
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
55 atomic_long_t mmap_pages_allocated;
57 EXPORT_SYMBOL(mem_map);
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
64 const struct vm_operations_struct generic_file_vm_ops = {
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
71 * Doesn't have to be accurate, i.e. may have races.
73 unsigned int kobjsize(const void *objp)
75 struct page *page;
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
84 page = virt_to_head_page(objp);
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
90 if (PageSlab(page))
91 return ksize(objp);
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
111 return page_size(page);
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
120 * Only IO mappings and raw PFN mappings are allowed.
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
133 EXPORT_SYMBOL(follow_pfn);
135 LIST_HEAD(vmap_area_list);
137 void vfree(const void *addr)
139 kfree(addr);
141 EXPORT_SYMBOL(vfree);
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
151 EXPORT_SYMBOL(__vmalloc);
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
155 return __vmalloc(size, flags, PAGE_KERNEL);
158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
160 void *ret;
162 ret = __vmalloc(size, flags, PAGE_KERNEL);
163 if (ret) {
164 struct vm_area_struct *vma;
166 down_write(&current->mm->mmap_sem);
167 vma = find_vma(current->mm, (unsigned long)ret);
168 if (vma)
169 vma->vm_flags |= VM_USERMAP;
170 up_write(&current->mm->mmap_sem);
173 return ret;
176 void *vmalloc_user(unsigned long size)
178 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
180 EXPORT_SYMBOL(vmalloc_user);
182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
184 return __vmalloc_user_flags(size, flags | __GFP_ZERO);
186 EXPORT_SYMBOL(vmalloc_user_node_flags);
188 struct page *vmalloc_to_page(const void *addr)
190 return virt_to_page(addr);
192 EXPORT_SYMBOL(vmalloc_to_page);
194 unsigned long vmalloc_to_pfn(const void *addr)
196 return page_to_pfn(virt_to_page(addr));
198 EXPORT_SYMBOL(vmalloc_to_pfn);
200 long vread(char *buf, char *addr, unsigned long count)
202 /* Don't allow overflow */
203 if ((unsigned long) buf + count < count)
204 count = -(unsigned long) buf;
206 memcpy(buf, addr, count);
207 return count;
210 long vwrite(char *buf, char *addr, unsigned long count)
212 /* Don't allow overflow */
213 if ((unsigned long) addr + count < count)
214 count = -(unsigned long) addr;
216 memcpy(addr, buf, count);
217 return count;
221 * vmalloc - allocate virtually contiguous memory
223 * @size: allocation size
225 * Allocate enough pages to cover @size from the page level
226 * allocator and map them into contiguous kernel virtual space.
228 * For tight control over page level allocator and protection flags
229 * use __vmalloc() instead.
231 void *vmalloc(unsigned long size)
233 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
235 EXPORT_SYMBOL(vmalloc);
238 * vzalloc - allocate virtually contiguous memory with zero fill
240 * @size: allocation size
242 * Allocate enough pages to cover @size from the page level
243 * allocator and map them into contiguous kernel virtual space.
244 * The memory allocated is set to zero.
246 * For tight control over page level allocator and protection flags
247 * use __vmalloc() instead.
249 void *vzalloc(unsigned long size)
251 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252 PAGE_KERNEL);
254 EXPORT_SYMBOL(vzalloc);
257 * vmalloc_node - allocate memory on a specific node
258 * @size: allocation size
259 * @node: numa node
261 * Allocate enough pages to cover @size from the page level
262 * allocator and map them into contiguous kernel virtual space.
264 * For tight control over page level allocator and protection flags
265 * use __vmalloc() instead.
267 void *vmalloc_node(unsigned long size, int node)
269 return vmalloc(size);
271 EXPORT_SYMBOL(vmalloc_node);
274 * vzalloc_node - allocate memory on a specific node with zero fill
275 * @size: allocation size
276 * @node: numa node
278 * Allocate enough pages to cover @size from the page level
279 * allocator and map them into contiguous kernel virtual space.
280 * The memory allocated is set to zero.
282 * For tight control over page level allocator and protection flags
283 * use __vmalloc() instead.
285 void *vzalloc_node(unsigned long size, int node)
287 return vzalloc(size);
289 EXPORT_SYMBOL(vzalloc_node);
292 * vmalloc_exec - allocate virtually contiguous, executable memory
293 * @size: allocation size
295 * Kernel-internal function to allocate enough pages to cover @size
296 * the page level allocator and map them into contiguous and
297 * executable kernel virtual space.
299 * For tight control over page level allocator and protection flags
300 * use __vmalloc() instead.
303 void *vmalloc_exec(unsigned long size)
305 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
309 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
310 * @size: allocation size
312 * Allocate enough 32bit PA addressable pages to cover @size from the
313 * page level allocator and map them into contiguous kernel virtual space.
315 void *vmalloc_32(unsigned long size)
317 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
319 EXPORT_SYMBOL(vmalloc_32);
322 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
323 * @size: allocation size
325 * The resulting memory area is 32bit addressable and zeroed so it can be
326 * mapped to userspace without leaking data.
328 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
329 * remap_vmalloc_range() are permissible.
331 void *vmalloc_32_user(unsigned long size)
334 * We'll have to sort out the ZONE_DMA bits for 64-bit,
335 * but for now this can simply use vmalloc_user() directly.
337 return vmalloc_user(size);
339 EXPORT_SYMBOL(vmalloc_32_user);
341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
343 BUG();
344 return NULL;
346 EXPORT_SYMBOL(vmap);
348 void vunmap(const void *addr)
350 BUG();
352 EXPORT_SYMBOL(vunmap);
354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
356 BUG();
357 return NULL;
359 EXPORT_SYMBOL(vm_map_ram);
361 void vm_unmap_ram(const void *mem, unsigned int count)
363 BUG();
365 EXPORT_SYMBOL(vm_unmap_ram);
367 void vm_unmap_aliases(void)
370 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
373 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
374 * have one.
376 void __weak vmalloc_sync_all(void)
380 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
382 BUG();
383 return NULL;
385 EXPORT_SYMBOL_GPL(alloc_vm_area);
387 void free_vm_area(struct vm_struct *area)
389 BUG();
391 EXPORT_SYMBOL_GPL(free_vm_area);
393 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
394 struct page *page)
396 return -EINVAL;
398 EXPORT_SYMBOL(vm_insert_page);
400 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
401 unsigned long num)
403 return -EINVAL;
405 EXPORT_SYMBOL(vm_map_pages);
407 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
408 unsigned long num)
410 return -EINVAL;
412 EXPORT_SYMBOL(vm_map_pages_zero);
415 * sys_brk() for the most part doesn't need the global kernel
416 * lock, except when an application is doing something nasty
417 * like trying to un-brk an area that has already been mapped
418 * to a regular file. in this case, the unmapping will need
419 * to invoke file system routines that need the global lock.
421 SYSCALL_DEFINE1(brk, unsigned long, brk)
423 struct mm_struct *mm = current->mm;
425 if (brk < mm->start_brk || brk > mm->context.end_brk)
426 return mm->brk;
428 if (mm->brk == brk)
429 return mm->brk;
432 * Always allow shrinking brk
434 if (brk <= mm->brk) {
435 mm->brk = brk;
436 return brk;
440 * Ok, looks good - let it rip.
442 flush_icache_range(mm->brk, brk);
443 return mm->brk = brk;
447 * initialise the percpu counter for VM and region record slabs
449 void __init mmap_init(void)
451 int ret;
453 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
454 VM_BUG_ON(ret);
455 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
459 * validate the region tree
460 * - the caller must hold the region lock
462 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
463 static noinline void validate_nommu_regions(void)
465 struct vm_region *region, *last;
466 struct rb_node *p, *lastp;
468 lastp = rb_first(&nommu_region_tree);
469 if (!lastp)
470 return;
472 last = rb_entry(lastp, struct vm_region, vm_rb);
473 BUG_ON(last->vm_end <= last->vm_start);
474 BUG_ON(last->vm_top < last->vm_end);
476 while ((p = rb_next(lastp))) {
477 region = rb_entry(p, struct vm_region, vm_rb);
478 last = rb_entry(lastp, struct vm_region, vm_rb);
480 BUG_ON(region->vm_end <= region->vm_start);
481 BUG_ON(region->vm_top < region->vm_end);
482 BUG_ON(region->vm_start < last->vm_top);
484 lastp = p;
487 #else
488 static void validate_nommu_regions(void)
491 #endif
494 * add a region into the global tree
496 static void add_nommu_region(struct vm_region *region)
498 struct vm_region *pregion;
499 struct rb_node **p, *parent;
501 validate_nommu_regions();
503 parent = NULL;
504 p = &nommu_region_tree.rb_node;
505 while (*p) {
506 parent = *p;
507 pregion = rb_entry(parent, struct vm_region, vm_rb);
508 if (region->vm_start < pregion->vm_start)
509 p = &(*p)->rb_left;
510 else if (region->vm_start > pregion->vm_start)
511 p = &(*p)->rb_right;
512 else if (pregion == region)
513 return;
514 else
515 BUG();
518 rb_link_node(&region->vm_rb, parent, p);
519 rb_insert_color(&region->vm_rb, &nommu_region_tree);
521 validate_nommu_regions();
525 * delete a region from the global tree
527 static void delete_nommu_region(struct vm_region *region)
529 BUG_ON(!nommu_region_tree.rb_node);
531 validate_nommu_regions();
532 rb_erase(&region->vm_rb, &nommu_region_tree);
533 validate_nommu_regions();
537 * free a contiguous series of pages
539 static void free_page_series(unsigned long from, unsigned long to)
541 for (; from < to; from += PAGE_SIZE) {
542 struct page *page = virt_to_page(from);
544 atomic_long_dec(&mmap_pages_allocated);
545 put_page(page);
550 * release a reference to a region
551 * - the caller must hold the region semaphore for writing, which this releases
552 * - the region may not have been added to the tree yet, in which case vm_top
553 * will equal vm_start
555 static void __put_nommu_region(struct vm_region *region)
556 __releases(nommu_region_sem)
558 BUG_ON(!nommu_region_tree.rb_node);
560 if (--region->vm_usage == 0) {
561 if (region->vm_top > region->vm_start)
562 delete_nommu_region(region);
563 up_write(&nommu_region_sem);
565 if (region->vm_file)
566 fput(region->vm_file);
568 /* IO memory and memory shared directly out of the pagecache
569 * from ramfs/tmpfs mustn't be released here */
570 if (region->vm_flags & VM_MAPPED_COPY)
571 free_page_series(region->vm_start, region->vm_top);
572 kmem_cache_free(vm_region_jar, region);
573 } else {
574 up_write(&nommu_region_sem);
579 * release a reference to a region
581 static void put_nommu_region(struct vm_region *region)
583 down_write(&nommu_region_sem);
584 __put_nommu_region(region);
588 * add a VMA into a process's mm_struct in the appropriate place in the list
589 * and tree and add to the address space's page tree also if not an anonymous
590 * page
591 * - should be called with mm->mmap_sem held writelocked
593 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
595 struct vm_area_struct *pvma, *prev;
596 struct address_space *mapping;
597 struct rb_node **p, *parent, *rb_prev;
599 BUG_ON(!vma->vm_region);
601 mm->map_count++;
602 vma->vm_mm = mm;
604 /* add the VMA to the mapping */
605 if (vma->vm_file) {
606 mapping = vma->vm_file->f_mapping;
608 i_mmap_lock_write(mapping);
609 flush_dcache_mmap_lock(mapping);
610 vma_interval_tree_insert(vma, &mapping->i_mmap);
611 flush_dcache_mmap_unlock(mapping);
612 i_mmap_unlock_write(mapping);
615 /* add the VMA to the tree */
616 parent = rb_prev = NULL;
617 p = &mm->mm_rb.rb_node;
618 while (*p) {
619 parent = *p;
620 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
622 /* sort by: start addr, end addr, VMA struct addr in that order
623 * (the latter is necessary as we may get identical VMAs) */
624 if (vma->vm_start < pvma->vm_start)
625 p = &(*p)->rb_left;
626 else if (vma->vm_start > pvma->vm_start) {
627 rb_prev = parent;
628 p = &(*p)->rb_right;
629 } else if (vma->vm_end < pvma->vm_end)
630 p = &(*p)->rb_left;
631 else if (vma->vm_end > pvma->vm_end) {
632 rb_prev = parent;
633 p = &(*p)->rb_right;
634 } else if (vma < pvma)
635 p = &(*p)->rb_left;
636 else if (vma > pvma) {
637 rb_prev = parent;
638 p = &(*p)->rb_right;
639 } else
640 BUG();
643 rb_link_node(&vma->vm_rb, parent, p);
644 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
646 /* add VMA to the VMA list also */
647 prev = NULL;
648 if (rb_prev)
649 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
651 __vma_link_list(mm, vma, prev);
655 * delete a VMA from its owning mm_struct and address space
657 static void delete_vma_from_mm(struct vm_area_struct *vma)
659 int i;
660 struct address_space *mapping;
661 struct mm_struct *mm = vma->vm_mm;
662 struct task_struct *curr = current;
664 mm->map_count--;
665 for (i = 0; i < VMACACHE_SIZE; i++) {
666 /* if the vma is cached, invalidate the entire cache */
667 if (curr->vmacache.vmas[i] == vma) {
668 vmacache_invalidate(mm);
669 break;
673 /* remove the VMA from the mapping */
674 if (vma->vm_file) {
675 mapping = vma->vm_file->f_mapping;
677 i_mmap_lock_write(mapping);
678 flush_dcache_mmap_lock(mapping);
679 vma_interval_tree_remove(vma, &mapping->i_mmap);
680 flush_dcache_mmap_unlock(mapping);
681 i_mmap_unlock_write(mapping);
684 /* remove from the MM's tree and list */
685 rb_erase(&vma->vm_rb, &mm->mm_rb);
687 __vma_unlink_list(mm, vma);
691 * destroy a VMA record
693 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
695 if (vma->vm_ops && vma->vm_ops->close)
696 vma->vm_ops->close(vma);
697 if (vma->vm_file)
698 fput(vma->vm_file);
699 put_nommu_region(vma->vm_region);
700 vm_area_free(vma);
704 * look up the first VMA in which addr resides, NULL if none
705 * - should be called with mm->mmap_sem at least held readlocked
707 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
709 struct vm_area_struct *vma;
711 /* check the cache first */
712 vma = vmacache_find(mm, addr);
713 if (likely(vma))
714 return vma;
716 /* trawl the list (there may be multiple mappings in which addr
717 * resides) */
718 for (vma = mm->mmap; vma; vma = vma->vm_next) {
719 if (vma->vm_start > addr)
720 return NULL;
721 if (vma->vm_end > addr) {
722 vmacache_update(addr, vma);
723 return vma;
727 return NULL;
729 EXPORT_SYMBOL(find_vma);
732 * find a VMA
733 * - we don't extend stack VMAs under NOMMU conditions
735 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
737 return find_vma(mm, addr);
741 * expand a stack to a given address
742 * - not supported under NOMMU conditions
744 int expand_stack(struct vm_area_struct *vma, unsigned long address)
746 return -ENOMEM;
750 * look up the first VMA exactly that exactly matches addr
751 * - should be called with mm->mmap_sem at least held readlocked
753 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
754 unsigned long addr,
755 unsigned long len)
757 struct vm_area_struct *vma;
758 unsigned long end = addr + len;
760 /* check the cache first */
761 vma = vmacache_find_exact(mm, addr, end);
762 if (vma)
763 return vma;
765 /* trawl the list (there may be multiple mappings in which addr
766 * resides) */
767 for (vma = mm->mmap; vma; vma = vma->vm_next) {
768 if (vma->vm_start < addr)
769 continue;
770 if (vma->vm_start > addr)
771 return NULL;
772 if (vma->vm_end == end) {
773 vmacache_update(addr, vma);
774 return vma;
778 return NULL;
782 * determine whether a mapping should be permitted and, if so, what sort of
783 * mapping we're capable of supporting
785 static int validate_mmap_request(struct file *file,
786 unsigned long addr,
787 unsigned long len,
788 unsigned long prot,
789 unsigned long flags,
790 unsigned long pgoff,
791 unsigned long *_capabilities)
793 unsigned long capabilities, rlen;
794 int ret;
796 /* do the simple checks first */
797 if (flags & MAP_FIXED)
798 return -EINVAL;
800 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
801 (flags & MAP_TYPE) != MAP_SHARED)
802 return -EINVAL;
804 if (!len)
805 return -EINVAL;
807 /* Careful about overflows.. */
808 rlen = PAGE_ALIGN(len);
809 if (!rlen || rlen > TASK_SIZE)
810 return -ENOMEM;
812 /* offset overflow? */
813 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
814 return -EOVERFLOW;
816 if (file) {
817 /* files must support mmap */
818 if (!file->f_op->mmap)
819 return -ENODEV;
821 /* work out if what we've got could possibly be shared
822 * - we support chardevs that provide their own "memory"
823 * - we support files/blockdevs that are memory backed
825 if (file->f_op->mmap_capabilities) {
826 capabilities = file->f_op->mmap_capabilities(file);
827 } else {
828 /* no explicit capabilities set, so assume some
829 * defaults */
830 switch (file_inode(file)->i_mode & S_IFMT) {
831 case S_IFREG:
832 case S_IFBLK:
833 capabilities = NOMMU_MAP_COPY;
834 break;
836 case S_IFCHR:
837 capabilities =
838 NOMMU_MAP_DIRECT |
839 NOMMU_MAP_READ |
840 NOMMU_MAP_WRITE;
841 break;
843 default:
844 return -EINVAL;
848 /* eliminate any capabilities that we can't support on this
849 * device */
850 if (!file->f_op->get_unmapped_area)
851 capabilities &= ~NOMMU_MAP_DIRECT;
852 if (!(file->f_mode & FMODE_CAN_READ))
853 capabilities &= ~NOMMU_MAP_COPY;
855 /* The file shall have been opened with read permission. */
856 if (!(file->f_mode & FMODE_READ))
857 return -EACCES;
859 if (flags & MAP_SHARED) {
860 /* do checks for writing, appending and locking */
861 if ((prot & PROT_WRITE) &&
862 !(file->f_mode & FMODE_WRITE))
863 return -EACCES;
865 if (IS_APPEND(file_inode(file)) &&
866 (file->f_mode & FMODE_WRITE))
867 return -EACCES;
869 if (locks_verify_locked(file))
870 return -EAGAIN;
872 if (!(capabilities & NOMMU_MAP_DIRECT))
873 return -ENODEV;
875 /* we mustn't privatise shared mappings */
876 capabilities &= ~NOMMU_MAP_COPY;
877 } else {
878 /* we're going to read the file into private memory we
879 * allocate */
880 if (!(capabilities & NOMMU_MAP_COPY))
881 return -ENODEV;
883 /* we don't permit a private writable mapping to be
884 * shared with the backing device */
885 if (prot & PROT_WRITE)
886 capabilities &= ~NOMMU_MAP_DIRECT;
889 if (capabilities & NOMMU_MAP_DIRECT) {
890 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
891 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
892 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
894 capabilities &= ~NOMMU_MAP_DIRECT;
895 if (flags & MAP_SHARED) {
896 pr_warn("MAP_SHARED not completely supported on !MMU\n");
897 return -EINVAL;
902 /* handle executable mappings and implied executable
903 * mappings */
904 if (path_noexec(&file->f_path)) {
905 if (prot & PROT_EXEC)
906 return -EPERM;
907 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
908 /* handle implication of PROT_EXEC by PROT_READ */
909 if (current->personality & READ_IMPLIES_EXEC) {
910 if (capabilities & NOMMU_MAP_EXEC)
911 prot |= PROT_EXEC;
913 } else if ((prot & PROT_READ) &&
914 (prot & PROT_EXEC) &&
915 !(capabilities & NOMMU_MAP_EXEC)
917 /* backing file is not executable, try to copy */
918 capabilities &= ~NOMMU_MAP_DIRECT;
920 } else {
921 /* anonymous mappings are always memory backed and can be
922 * privately mapped
924 capabilities = NOMMU_MAP_COPY;
926 /* handle PROT_EXEC implication by PROT_READ */
927 if ((prot & PROT_READ) &&
928 (current->personality & READ_IMPLIES_EXEC))
929 prot |= PROT_EXEC;
932 /* allow the security API to have its say */
933 ret = security_mmap_addr(addr);
934 if (ret < 0)
935 return ret;
937 /* looks okay */
938 *_capabilities = capabilities;
939 return 0;
943 * we've determined that we can make the mapping, now translate what we
944 * now know into VMA flags
946 static unsigned long determine_vm_flags(struct file *file,
947 unsigned long prot,
948 unsigned long flags,
949 unsigned long capabilities)
951 unsigned long vm_flags;
953 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
954 /* vm_flags |= mm->def_flags; */
956 if (!(capabilities & NOMMU_MAP_DIRECT)) {
957 /* attempt to share read-only copies of mapped file chunks */
958 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
959 if (file && !(prot & PROT_WRITE))
960 vm_flags |= VM_MAYSHARE;
961 } else {
962 /* overlay a shareable mapping on the backing device or inode
963 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
964 * romfs/cramfs */
965 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
966 if (flags & MAP_SHARED)
967 vm_flags |= VM_SHARED;
970 /* refuse to let anyone share private mappings with this process if
971 * it's being traced - otherwise breakpoints set in it may interfere
972 * with another untraced process
974 if ((flags & MAP_PRIVATE) && current->ptrace)
975 vm_flags &= ~VM_MAYSHARE;
977 return vm_flags;
981 * set up a shared mapping on a file (the driver or filesystem provides and
982 * pins the storage)
984 static int do_mmap_shared_file(struct vm_area_struct *vma)
986 int ret;
988 ret = call_mmap(vma->vm_file, vma);
989 if (ret == 0) {
990 vma->vm_region->vm_top = vma->vm_region->vm_end;
991 return 0;
993 if (ret != -ENOSYS)
994 return ret;
996 /* getting -ENOSYS indicates that direct mmap isn't possible (as
997 * opposed to tried but failed) so we can only give a suitable error as
998 * it's not possible to make a private copy if MAP_SHARED was given */
999 return -ENODEV;
1003 * set up a private mapping or an anonymous shared mapping
1005 static int do_mmap_private(struct vm_area_struct *vma,
1006 struct vm_region *region,
1007 unsigned long len,
1008 unsigned long capabilities)
1010 unsigned long total, point;
1011 void *base;
1012 int ret, order;
1014 /* invoke the file's mapping function so that it can keep track of
1015 * shared mappings on devices or memory
1016 * - VM_MAYSHARE will be set if it may attempt to share
1018 if (capabilities & NOMMU_MAP_DIRECT) {
1019 ret = call_mmap(vma->vm_file, vma);
1020 if (ret == 0) {
1021 /* shouldn't return success if we're not sharing */
1022 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1023 vma->vm_region->vm_top = vma->vm_region->vm_end;
1024 return 0;
1026 if (ret != -ENOSYS)
1027 return ret;
1029 /* getting an ENOSYS error indicates that direct mmap isn't
1030 * possible (as opposed to tried but failed) so we'll try to
1031 * make a private copy of the data and map that instead */
1035 /* allocate some memory to hold the mapping
1036 * - note that this may not return a page-aligned address if the object
1037 * we're allocating is smaller than a page
1039 order = get_order(len);
1040 total = 1 << order;
1041 point = len >> PAGE_SHIFT;
1043 /* we don't want to allocate a power-of-2 sized page set */
1044 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1045 total = point;
1047 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1048 if (!base)
1049 goto enomem;
1051 atomic_long_add(total, &mmap_pages_allocated);
1053 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1054 region->vm_start = (unsigned long) base;
1055 region->vm_end = region->vm_start + len;
1056 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1058 vma->vm_start = region->vm_start;
1059 vma->vm_end = region->vm_start + len;
1061 if (vma->vm_file) {
1062 /* read the contents of a file into the copy */
1063 loff_t fpos;
1065 fpos = vma->vm_pgoff;
1066 fpos <<= PAGE_SHIFT;
1068 ret = kernel_read(vma->vm_file, base, len, &fpos);
1069 if (ret < 0)
1070 goto error_free;
1072 /* clear the last little bit */
1073 if (ret < len)
1074 memset(base + ret, 0, len - ret);
1076 } else {
1077 vma_set_anonymous(vma);
1080 return 0;
1082 error_free:
1083 free_page_series(region->vm_start, region->vm_top);
1084 region->vm_start = vma->vm_start = 0;
1085 region->vm_end = vma->vm_end = 0;
1086 region->vm_top = 0;
1087 return ret;
1089 enomem:
1090 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1091 len, current->pid, current->comm);
1092 show_free_areas(0, NULL);
1093 return -ENOMEM;
1097 * handle mapping creation for uClinux
1099 unsigned long do_mmap(struct file *file,
1100 unsigned long addr,
1101 unsigned long len,
1102 unsigned long prot,
1103 unsigned long flags,
1104 vm_flags_t vm_flags,
1105 unsigned long pgoff,
1106 unsigned long *populate,
1107 struct list_head *uf)
1109 struct vm_area_struct *vma;
1110 struct vm_region *region;
1111 struct rb_node *rb;
1112 unsigned long capabilities, result;
1113 int ret;
1115 *populate = 0;
1117 /* decide whether we should attempt the mapping, and if so what sort of
1118 * mapping */
1119 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1120 &capabilities);
1121 if (ret < 0)
1122 return ret;
1124 /* we ignore the address hint */
1125 addr = 0;
1126 len = PAGE_ALIGN(len);
1128 /* we've determined that we can make the mapping, now translate what we
1129 * now know into VMA flags */
1130 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1132 /* we're going to need to record the mapping */
1133 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1134 if (!region)
1135 goto error_getting_region;
1137 vma = vm_area_alloc(current->mm);
1138 if (!vma)
1139 goto error_getting_vma;
1141 region->vm_usage = 1;
1142 region->vm_flags = vm_flags;
1143 region->vm_pgoff = pgoff;
1145 vma->vm_flags = vm_flags;
1146 vma->vm_pgoff = pgoff;
1148 if (file) {
1149 region->vm_file = get_file(file);
1150 vma->vm_file = get_file(file);
1153 down_write(&nommu_region_sem);
1155 /* if we want to share, we need to check for regions created by other
1156 * mmap() calls that overlap with our proposed mapping
1157 * - we can only share with a superset match on most regular files
1158 * - shared mappings on character devices and memory backed files are
1159 * permitted to overlap inexactly as far as we are concerned for in
1160 * these cases, sharing is handled in the driver or filesystem rather
1161 * than here
1163 if (vm_flags & VM_MAYSHARE) {
1164 struct vm_region *pregion;
1165 unsigned long pglen, rpglen, pgend, rpgend, start;
1167 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1168 pgend = pgoff + pglen;
1170 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1171 pregion = rb_entry(rb, struct vm_region, vm_rb);
1173 if (!(pregion->vm_flags & VM_MAYSHARE))
1174 continue;
1176 /* search for overlapping mappings on the same file */
1177 if (file_inode(pregion->vm_file) !=
1178 file_inode(file))
1179 continue;
1181 if (pregion->vm_pgoff >= pgend)
1182 continue;
1184 rpglen = pregion->vm_end - pregion->vm_start;
1185 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1186 rpgend = pregion->vm_pgoff + rpglen;
1187 if (pgoff >= rpgend)
1188 continue;
1190 /* handle inexactly overlapping matches between
1191 * mappings */
1192 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1193 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1194 /* new mapping is not a subset of the region */
1195 if (!(capabilities & NOMMU_MAP_DIRECT))
1196 goto sharing_violation;
1197 continue;
1200 /* we've found a region we can share */
1201 pregion->vm_usage++;
1202 vma->vm_region = pregion;
1203 start = pregion->vm_start;
1204 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1205 vma->vm_start = start;
1206 vma->vm_end = start + len;
1208 if (pregion->vm_flags & VM_MAPPED_COPY)
1209 vma->vm_flags |= VM_MAPPED_COPY;
1210 else {
1211 ret = do_mmap_shared_file(vma);
1212 if (ret < 0) {
1213 vma->vm_region = NULL;
1214 vma->vm_start = 0;
1215 vma->vm_end = 0;
1216 pregion->vm_usage--;
1217 pregion = NULL;
1218 goto error_just_free;
1221 fput(region->vm_file);
1222 kmem_cache_free(vm_region_jar, region);
1223 region = pregion;
1224 result = start;
1225 goto share;
1228 /* obtain the address at which to make a shared mapping
1229 * - this is the hook for quasi-memory character devices to
1230 * tell us the location of a shared mapping
1232 if (capabilities & NOMMU_MAP_DIRECT) {
1233 addr = file->f_op->get_unmapped_area(file, addr, len,
1234 pgoff, flags);
1235 if (IS_ERR_VALUE(addr)) {
1236 ret = addr;
1237 if (ret != -ENOSYS)
1238 goto error_just_free;
1240 /* the driver refused to tell us where to site
1241 * the mapping so we'll have to attempt to copy
1242 * it */
1243 ret = -ENODEV;
1244 if (!(capabilities & NOMMU_MAP_COPY))
1245 goto error_just_free;
1247 capabilities &= ~NOMMU_MAP_DIRECT;
1248 } else {
1249 vma->vm_start = region->vm_start = addr;
1250 vma->vm_end = region->vm_end = addr + len;
1255 vma->vm_region = region;
1257 /* set up the mapping
1258 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1260 if (file && vma->vm_flags & VM_SHARED)
1261 ret = do_mmap_shared_file(vma);
1262 else
1263 ret = do_mmap_private(vma, region, len, capabilities);
1264 if (ret < 0)
1265 goto error_just_free;
1266 add_nommu_region(region);
1268 /* clear anonymous mappings that don't ask for uninitialized data */
1269 if (!vma->vm_file &&
1270 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1271 !(flags & MAP_UNINITIALIZED)))
1272 memset((void *)region->vm_start, 0,
1273 region->vm_end - region->vm_start);
1275 /* okay... we have a mapping; now we have to register it */
1276 result = vma->vm_start;
1278 current->mm->total_vm += len >> PAGE_SHIFT;
1280 share:
1281 add_vma_to_mm(current->mm, vma);
1283 /* we flush the region from the icache only when the first executable
1284 * mapping of it is made */
1285 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1286 flush_icache_range(region->vm_start, region->vm_end);
1287 region->vm_icache_flushed = true;
1290 up_write(&nommu_region_sem);
1292 return result;
1294 error_just_free:
1295 up_write(&nommu_region_sem);
1296 error:
1297 if (region->vm_file)
1298 fput(region->vm_file);
1299 kmem_cache_free(vm_region_jar, region);
1300 if (vma->vm_file)
1301 fput(vma->vm_file);
1302 vm_area_free(vma);
1303 return ret;
1305 sharing_violation:
1306 up_write(&nommu_region_sem);
1307 pr_warn("Attempt to share mismatched mappings\n");
1308 ret = -EINVAL;
1309 goto error;
1311 error_getting_vma:
1312 kmem_cache_free(vm_region_jar, region);
1313 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1314 len, current->pid);
1315 show_free_areas(0, NULL);
1316 return -ENOMEM;
1318 error_getting_region:
1319 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1320 len, current->pid);
1321 show_free_areas(0, NULL);
1322 return -ENOMEM;
1325 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1326 unsigned long prot, unsigned long flags,
1327 unsigned long fd, unsigned long pgoff)
1329 struct file *file = NULL;
1330 unsigned long retval = -EBADF;
1332 audit_mmap_fd(fd, flags);
1333 if (!(flags & MAP_ANONYMOUS)) {
1334 file = fget(fd);
1335 if (!file)
1336 goto out;
1339 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1341 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1343 if (file)
1344 fput(file);
1345 out:
1346 return retval;
1349 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1350 unsigned long, prot, unsigned long, flags,
1351 unsigned long, fd, unsigned long, pgoff)
1353 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1356 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1357 struct mmap_arg_struct {
1358 unsigned long addr;
1359 unsigned long len;
1360 unsigned long prot;
1361 unsigned long flags;
1362 unsigned long fd;
1363 unsigned long offset;
1366 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1368 struct mmap_arg_struct a;
1370 if (copy_from_user(&a, arg, sizeof(a)))
1371 return -EFAULT;
1372 if (offset_in_page(a.offset))
1373 return -EINVAL;
1375 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1376 a.offset >> PAGE_SHIFT);
1378 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1381 * split a vma into two pieces at address 'addr', a new vma is allocated either
1382 * for the first part or the tail.
1384 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1385 unsigned long addr, int new_below)
1387 struct vm_area_struct *new;
1388 struct vm_region *region;
1389 unsigned long npages;
1391 /* we're only permitted to split anonymous regions (these should have
1392 * only a single usage on the region) */
1393 if (vma->vm_file)
1394 return -ENOMEM;
1396 if (mm->map_count >= sysctl_max_map_count)
1397 return -ENOMEM;
1399 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1400 if (!region)
1401 return -ENOMEM;
1403 new = vm_area_dup(vma);
1404 if (!new) {
1405 kmem_cache_free(vm_region_jar, region);
1406 return -ENOMEM;
1409 /* most fields are the same, copy all, and then fixup */
1410 *region = *vma->vm_region;
1411 new->vm_region = region;
1413 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1415 if (new_below) {
1416 region->vm_top = region->vm_end = new->vm_end = addr;
1417 } else {
1418 region->vm_start = new->vm_start = addr;
1419 region->vm_pgoff = new->vm_pgoff += npages;
1422 if (new->vm_ops && new->vm_ops->open)
1423 new->vm_ops->open(new);
1425 delete_vma_from_mm(vma);
1426 down_write(&nommu_region_sem);
1427 delete_nommu_region(vma->vm_region);
1428 if (new_below) {
1429 vma->vm_region->vm_start = vma->vm_start = addr;
1430 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1431 } else {
1432 vma->vm_region->vm_end = vma->vm_end = addr;
1433 vma->vm_region->vm_top = addr;
1435 add_nommu_region(vma->vm_region);
1436 add_nommu_region(new->vm_region);
1437 up_write(&nommu_region_sem);
1438 add_vma_to_mm(mm, vma);
1439 add_vma_to_mm(mm, new);
1440 return 0;
1444 * shrink a VMA by removing the specified chunk from either the beginning or
1445 * the end
1447 static int shrink_vma(struct mm_struct *mm,
1448 struct vm_area_struct *vma,
1449 unsigned long from, unsigned long to)
1451 struct vm_region *region;
1453 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1454 * and list */
1455 delete_vma_from_mm(vma);
1456 if (from > vma->vm_start)
1457 vma->vm_end = from;
1458 else
1459 vma->vm_start = to;
1460 add_vma_to_mm(mm, vma);
1462 /* cut the backing region down to size */
1463 region = vma->vm_region;
1464 BUG_ON(region->vm_usage != 1);
1466 down_write(&nommu_region_sem);
1467 delete_nommu_region(region);
1468 if (from > region->vm_start) {
1469 to = region->vm_top;
1470 region->vm_top = region->vm_end = from;
1471 } else {
1472 region->vm_start = to;
1474 add_nommu_region(region);
1475 up_write(&nommu_region_sem);
1477 free_page_series(from, to);
1478 return 0;
1482 * release a mapping
1483 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1484 * VMA, though it need not cover the whole VMA
1486 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1488 struct vm_area_struct *vma;
1489 unsigned long end;
1490 int ret;
1492 len = PAGE_ALIGN(len);
1493 if (len == 0)
1494 return -EINVAL;
1496 end = start + len;
1498 /* find the first potentially overlapping VMA */
1499 vma = find_vma(mm, start);
1500 if (!vma) {
1501 static int limit;
1502 if (limit < 5) {
1503 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1504 current->pid, current->comm,
1505 start, start + len - 1);
1506 limit++;
1508 return -EINVAL;
1511 /* we're allowed to split an anonymous VMA but not a file-backed one */
1512 if (vma->vm_file) {
1513 do {
1514 if (start > vma->vm_start)
1515 return -EINVAL;
1516 if (end == vma->vm_end)
1517 goto erase_whole_vma;
1518 vma = vma->vm_next;
1519 } while (vma);
1520 return -EINVAL;
1521 } else {
1522 /* the chunk must be a subset of the VMA found */
1523 if (start == vma->vm_start && end == vma->vm_end)
1524 goto erase_whole_vma;
1525 if (start < vma->vm_start || end > vma->vm_end)
1526 return -EINVAL;
1527 if (offset_in_page(start))
1528 return -EINVAL;
1529 if (end != vma->vm_end && offset_in_page(end))
1530 return -EINVAL;
1531 if (start != vma->vm_start && end != vma->vm_end) {
1532 ret = split_vma(mm, vma, start, 1);
1533 if (ret < 0)
1534 return ret;
1536 return shrink_vma(mm, vma, start, end);
1539 erase_whole_vma:
1540 delete_vma_from_mm(vma);
1541 delete_vma(mm, vma);
1542 return 0;
1544 EXPORT_SYMBOL(do_munmap);
1546 int vm_munmap(unsigned long addr, size_t len)
1548 struct mm_struct *mm = current->mm;
1549 int ret;
1551 down_write(&mm->mmap_sem);
1552 ret = do_munmap(mm, addr, len, NULL);
1553 up_write(&mm->mmap_sem);
1554 return ret;
1556 EXPORT_SYMBOL(vm_munmap);
1558 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1560 return vm_munmap(addr, len);
1564 * release all the mappings made in a process's VM space
1566 void exit_mmap(struct mm_struct *mm)
1568 struct vm_area_struct *vma;
1570 if (!mm)
1571 return;
1573 mm->total_vm = 0;
1575 while ((vma = mm->mmap)) {
1576 mm->mmap = vma->vm_next;
1577 delete_vma_from_mm(vma);
1578 delete_vma(mm, vma);
1579 cond_resched();
1583 int vm_brk(unsigned long addr, unsigned long len)
1585 return -ENOMEM;
1589 * expand (or shrink) an existing mapping, potentially moving it at the same
1590 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1592 * under NOMMU conditions, we only permit changing a mapping's size, and only
1593 * as long as it stays within the region allocated by do_mmap_private() and the
1594 * block is not shareable
1596 * MREMAP_FIXED is not supported under NOMMU conditions
1598 static unsigned long do_mremap(unsigned long addr,
1599 unsigned long old_len, unsigned long new_len,
1600 unsigned long flags, unsigned long new_addr)
1602 struct vm_area_struct *vma;
1604 /* insanity checks first */
1605 old_len = PAGE_ALIGN(old_len);
1606 new_len = PAGE_ALIGN(new_len);
1607 if (old_len == 0 || new_len == 0)
1608 return (unsigned long) -EINVAL;
1610 if (offset_in_page(addr))
1611 return -EINVAL;
1613 if (flags & MREMAP_FIXED && new_addr != addr)
1614 return (unsigned long) -EINVAL;
1616 vma = find_vma_exact(current->mm, addr, old_len);
1617 if (!vma)
1618 return (unsigned long) -EINVAL;
1620 if (vma->vm_end != vma->vm_start + old_len)
1621 return (unsigned long) -EFAULT;
1623 if (vma->vm_flags & VM_MAYSHARE)
1624 return (unsigned long) -EPERM;
1626 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1627 return (unsigned long) -ENOMEM;
1629 /* all checks complete - do it */
1630 vma->vm_end = vma->vm_start + new_len;
1631 return vma->vm_start;
1634 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1635 unsigned long, new_len, unsigned long, flags,
1636 unsigned long, new_addr)
1638 unsigned long ret;
1640 down_write(&current->mm->mmap_sem);
1641 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1642 up_write(&current->mm->mmap_sem);
1643 return ret;
1646 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1647 unsigned int foll_flags)
1649 return NULL;
1652 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1653 unsigned long pfn, unsigned long size, pgprot_t prot)
1655 if (addr != (pfn << PAGE_SHIFT))
1656 return -EINVAL;
1658 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1659 return 0;
1661 EXPORT_SYMBOL(remap_pfn_range);
1663 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1665 unsigned long pfn = start >> PAGE_SHIFT;
1666 unsigned long vm_len = vma->vm_end - vma->vm_start;
1668 pfn += vma->vm_pgoff;
1669 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1671 EXPORT_SYMBOL(vm_iomap_memory);
1673 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1674 unsigned long pgoff)
1676 unsigned int size = vma->vm_end - vma->vm_start;
1678 if (!(vma->vm_flags & VM_USERMAP))
1679 return -EINVAL;
1681 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1682 vma->vm_end = vma->vm_start + size;
1684 return 0;
1686 EXPORT_SYMBOL(remap_vmalloc_range);
1688 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1689 unsigned long len, unsigned long pgoff, unsigned long flags)
1691 return -ENOMEM;
1694 vm_fault_t filemap_fault(struct vm_fault *vmf)
1696 BUG();
1697 return 0;
1699 EXPORT_SYMBOL(filemap_fault);
1701 void filemap_map_pages(struct vm_fault *vmf,
1702 pgoff_t start_pgoff, pgoff_t end_pgoff)
1704 BUG();
1706 EXPORT_SYMBOL(filemap_map_pages);
1708 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1709 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1711 struct vm_area_struct *vma;
1712 int write = gup_flags & FOLL_WRITE;
1714 if (down_read_killable(&mm->mmap_sem))
1715 return 0;
1717 /* the access must start within one of the target process's mappings */
1718 vma = find_vma(mm, addr);
1719 if (vma) {
1720 /* don't overrun this mapping */
1721 if (addr + len >= vma->vm_end)
1722 len = vma->vm_end - addr;
1724 /* only read or write mappings where it is permitted */
1725 if (write && vma->vm_flags & VM_MAYWRITE)
1726 copy_to_user_page(vma, NULL, addr,
1727 (void *) addr, buf, len);
1728 else if (!write && vma->vm_flags & VM_MAYREAD)
1729 copy_from_user_page(vma, NULL, addr,
1730 buf, (void *) addr, len);
1731 else
1732 len = 0;
1733 } else {
1734 len = 0;
1737 up_read(&mm->mmap_sem);
1739 return len;
1743 * access_remote_vm - access another process' address space
1744 * @mm: the mm_struct of the target address space
1745 * @addr: start address to access
1746 * @buf: source or destination buffer
1747 * @len: number of bytes to transfer
1748 * @gup_flags: flags modifying lookup behaviour
1750 * The caller must hold a reference on @mm.
1752 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1753 void *buf, int len, unsigned int gup_flags)
1755 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1759 * Access another process' address space.
1760 * - source/target buffer must be kernel space
1762 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1763 unsigned int gup_flags)
1765 struct mm_struct *mm;
1767 if (addr + len < addr)
1768 return 0;
1770 mm = get_task_mm(tsk);
1771 if (!mm)
1772 return 0;
1774 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1776 mmput(mm);
1777 return len;
1779 EXPORT_SYMBOL_GPL(access_process_vm);
1782 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1783 * @inode: The inode to check
1784 * @size: The current filesize of the inode
1785 * @newsize: The proposed filesize of the inode
1787 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1788 * make sure that that any outstanding VMAs aren't broken and then shrink the
1789 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1790 * automatically grant mappings that are too large.
1792 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1793 size_t newsize)
1795 struct vm_area_struct *vma;
1796 struct vm_region *region;
1797 pgoff_t low, high;
1798 size_t r_size, r_top;
1800 low = newsize >> PAGE_SHIFT;
1801 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1803 down_write(&nommu_region_sem);
1804 i_mmap_lock_read(inode->i_mapping);
1806 /* search for VMAs that fall within the dead zone */
1807 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1808 /* found one - only interested if it's shared out of the page
1809 * cache */
1810 if (vma->vm_flags & VM_SHARED) {
1811 i_mmap_unlock_read(inode->i_mapping);
1812 up_write(&nommu_region_sem);
1813 return -ETXTBSY; /* not quite true, but near enough */
1817 /* reduce any regions that overlap the dead zone - if in existence,
1818 * these will be pointed to by VMAs that don't overlap the dead zone
1820 * we don't check for any regions that start beyond the EOF as there
1821 * shouldn't be any
1823 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1824 if (!(vma->vm_flags & VM_SHARED))
1825 continue;
1827 region = vma->vm_region;
1828 r_size = region->vm_top - region->vm_start;
1829 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1831 if (r_top > newsize) {
1832 region->vm_top -= r_top - newsize;
1833 if (region->vm_end > region->vm_top)
1834 region->vm_end = region->vm_top;
1838 i_mmap_unlock_read(inode->i_mapping);
1839 up_write(&nommu_region_sem);
1840 return 0;
1844 * Initialise sysctl_user_reserve_kbytes.
1846 * This is intended to prevent a user from starting a single memory hogging
1847 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1848 * mode.
1850 * The default value is min(3% of free memory, 128MB)
1851 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1853 static int __meminit init_user_reserve(void)
1855 unsigned long free_kbytes;
1857 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1859 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1860 return 0;
1862 subsys_initcall(init_user_reserve);
1865 * Initialise sysctl_admin_reserve_kbytes.
1867 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1868 * to log in and kill a memory hogging process.
1870 * Systems with more than 256MB will reserve 8MB, enough to recover
1871 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1872 * only reserve 3% of free pages by default.
1874 static int __meminit init_admin_reserve(void)
1876 unsigned long free_kbytes;
1878 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1880 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1881 return 0;
1883 subsys_initcall(init_admin_reserve);