1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
126 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
128 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
129 p
+= s
->red_left_pad
;
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s
);
144 * Issues still to be resolved:
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 * - Variable sizing of the per node arrays
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 #define MIN_PARTIAL 5
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
166 * sort the partial list by the number of objects in use.
168 #define MAX_PARTIAL 10
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_STORE_USER)
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 #define OO_MASK ((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192 /* Internal SLUB flags */
194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199 * Tracking user of a slab.
201 #define TRACK_ADDRS_COUNT 16
203 unsigned long addr
; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
207 int cpu
; /* Was running on cpu */
208 int pid
; /* Pid context */
209 unsigned long when
; /* When did the operation occur */
212 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
215 static int sysfs_slab_add(struct kmem_cache
*);
216 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
218 static void sysfs_slab_remove(struct kmem_cache
*s
);
220 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
227 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
229 #ifdef CONFIG_SLUB_STATS
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
234 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
247 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
248 unsigned long ptr_addr
)
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
261 return (void *)((unsigned long)ptr
^ s
->random
^
262 (unsigned long)kasan_reset_tag((void *)ptr_addr
));
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache
*s
,
272 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
273 (unsigned long)ptr_addr
);
276 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
278 return freelist_dereference(s
, object
+ s
->offset
);
281 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
283 prefetch(object
+ s
->offset
);
286 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
288 unsigned long freepointer_addr
;
291 if (!debug_pagealloc_enabled_static())
292 return get_freepointer(s
, object
);
294 freepointer_addr
= (unsigned long)object
+ s
->offset
;
295 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
296 return freelist_ptr(s
, p
, freepointer_addr
);
299 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
301 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
307 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
319 return (kasan_reset_tag(p
) - addr
) / s
->size
;
322 static inline unsigned int order_objects(unsigned int order
, unsigned int size
)
324 return ((unsigned int)PAGE_SIZE
<< order
) / size
;
327 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
330 struct kmem_cache_order_objects x
= {
331 (order
<< OO_SHIFT
) + order_objects(order
, size
)
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
339 return x
.x
>> OO_SHIFT
;
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
344 return x
.x
& OO_MASK
;
348 * Per slab locking using the pagelock
350 static __always_inline
void slab_lock(struct page
*page
)
352 VM_BUG_ON_PAGE(PageTail(page
), page
);
353 bit_spin_lock(PG_locked
, &page
->flags
);
356 static __always_inline
void slab_unlock(struct page
*page
)
358 VM_BUG_ON_PAGE(PageTail(page
), page
);
359 __bit_spin_unlock(PG_locked
, &page
->flags
);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
364 void *freelist_old
, unsigned long counters_old
,
365 void *freelist_new
, unsigned long counters_new
,
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s
->flags
& __CMPXCHG_DOUBLE
) {
372 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
373 freelist_old
, counters_old
,
374 freelist_new
, counters_new
))
380 if (page
->freelist
== freelist_old
&&
381 page
->counters
== counters_old
) {
382 page
->freelist
= freelist_new
;
383 page
->counters
= counters_new
;
391 stat(s
, CMPXCHG_DOUBLE_FAIL
);
393 #ifdef SLUB_DEBUG_CMPXCHG
394 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
400 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
401 void *freelist_old
, unsigned long counters_old
,
402 void *freelist_new
, unsigned long counters_new
,
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 if (s
->flags
& __CMPXCHG_DOUBLE
) {
408 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
409 freelist_old
, counters_old
,
410 freelist_new
, counters_new
))
417 local_irq_save(flags
);
419 if (page
->freelist
== freelist_old
&&
420 page
->counters
== counters_old
) {
421 page
->freelist
= freelist_new
;
422 page
->counters
= counters_new
;
424 local_irq_restore(flags
);
428 local_irq_restore(flags
);
432 stat(s
, CMPXCHG_DOUBLE_FAIL
);
434 #ifdef SLUB_DEBUG_CMPXCHG
435 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map
[BITS_TO_LONGS(MAX_OBJS_PER_PAGE
)];
443 static DEFINE_SPINLOCK(object_map_lock
);
446 * Determine a map of object in use on a page.
448 * Node listlock must be held to guarantee that the page does
449 * not vanish from under us.
451 static unsigned long *get_map(struct kmem_cache
*s
, struct page
*page
)
454 void *addr
= page_address(page
);
456 VM_BUG_ON(!irqs_disabled());
458 spin_lock(&object_map_lock
);
460 bitmap_zero(object_map
, page
->objects
);
462 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
463 set_bit(slab_index(p
, s
, addr
), object_map
);
468 static void put_map(unsigned long *map
)
470 VM_BUG_ON(map
!= object_map
);
471 lockdep_assert_held(&object_map_lock
);
473 spin_unlock(&object_map_lock
);
476 static inline unsigned int size_from_object(struct kmem_cache
*s
)
478 if (s
->flags
& SLAB_RED_ZONE
)
479 return s
->size
- s
->red_left_pad
;
484 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
486 if (s
->flags
& SLAB_RED_ZONE
)
487 p
-= s
->red_left_pad
;
495 #if defined(CONFIG_SLUB_DEBUG_ON)
496 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
498 static slab_flags_t slub_debug
;
501 static char *slub_debug_slabs
;
502 static int disable_higher_order_debug
;
505 * slub is about to manipulate internal object metadata. This memory lies
506 * outside the range of the allocated object, so accessing it would normally
507 * be reported by kasan as a bounds error. metadata_access_enable() is used
508 * to tell kasan that these accesses are OK.
510 static inline void metadata_access_enable(void)
512 kasan_disable_current();
515 static inline void metadata_access_disable(void)
517 kasan_enable_current();
524 /* Verify that a pointer has an address that is valid within a slab page */
525 static inline int check_valid_pointer(struct kmem_cache
*s
,
526 struct page
*page
, void *object
)
533 base
= page_address(page
);
534 object
= kasan_reset_tag(object
);
535 object
= restore_red_left(s
, object
);
536 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
537 (object
- base
) % s
->size
) {
544 static void print_section(char *level
, char *text
, u8
*addr
,
547 metadata_access_enable();
548 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
550 metadata_access_disable();
553 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
554 enum track_item alloc
)
559 p
= object
+ s
->offset
+ sizeof(void *);
561 p
= object
+ s
->inuse
;
566 static void set_track(struct kmem_cache
*s
, void *object
,
567 enum track_item alloc
, unsigned long addr
)
569 struct track
*p
= get_track(s
, object
, alloc
);
572 #ifdef CONFIG_STACKTRACE
573 unsigned int nr_entries
;
575 metadata_access_enable();
576 nr_entries
= stack_trace_save(p
->addrs
, TRACK_ADDRS_COUNT
, 3);
577 metadata_access_disable();
579 if (nr_entries
< TRACK_ADDRS_COUNT
)
580 p
->addrs
[nr_entries
] = 0;
583 p
->cpu
= smp_processor_id();
584 p
->pid
= current
->pid
;
587 memset(p
, 0, sizeof(struct track
));
591 static void init_tracking(struct kmem_cache
*s
, void *object
)
593 if (!(s
->flags
& SLAB_STORE_USER
))
596 set_track(s
, object
, TRACK_FREE
, 0UL);
597 set_track(s
, object
, TRACK_ALLOC
, 0UL);
600 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
607 #ifdef CONFIG_STACKTRACE
610 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
612 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
619 static void print_tracking(struct kmem_cache
*s
, void *object
)
621 unsigned long pr_time
= jiffies
;
622 if (!(s
->flags
& SLAB_STORE_USER
))
625 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
626 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
629 static void print_page_info(struct page
*page
)
631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
636 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
638 struct va_format vaf
;
644 pr_err("=============================================================================\n");
645 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
646 pr_err("-----------------------------------------------------------------------------\n\n");
648 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
652 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
654 struct va_format vaf
;
660 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
664 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
666 unsigned int off
; /* Offset of last byte */
667 u8
*addr
= page_address(page
);
669 print_tracking(s
, p
);
671 print_page_info(page
);
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p
, p
- addr
, get_freepointer(s
, p
));
676 if (s
->flags
& SLAB_RED_ZONE
)
677 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
679 else if (p
> addr
+ 16)
680 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
682 print_section(KERN_ERR
, "Object ", p
,
683 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
684 if (s
->flags
& SLAB_RED_ZONE
)
685 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
686 s
->inuse
- s
->object_size
);
689 off
= s
->offset
+ sizeof(void *);
693 if (s
->flags
& SLAB_STORE_USER
)
694 off
+= 2 * sizeof(struct track
);
696 off
+= kasan_metadata_size(s
);
698 if (off
!= size_from_object(s
))
699 /* Beginning of the filler is the free pointer */
700 print_section(KERN_ERR
, "Padding ", p
+ off
,
701 size_from_object(s
) - off
);
706 void object_err(struct kmem_cache
*s
, struct page
*page
,
707 u8
*object
, char *reason
)
709 slab_bug(s
, "%s", reason
);
710 print_trailer(s
, page
, object
);
713 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
714 const char *fmt
, ...)
720 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
722 slab_bug(s
, "%s", buf
);
723 print_page_info(page
);
727 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
731 if (s
->flags
& SLAB_RED_ZONE
)
732 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
734 if (s
->flags
& __OBJECT_POISON
) {
735 memset(p
, POISON_FREE
, s
->object_size
- 1);
736 p
[s
->object_size
- 1] = POISON_END
;
739 if (s
->flags
& SLAB_RED_ZONE
)
740 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
743 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
744 void *from
, void *to
)
746 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
747 memset(from
, data
, to
- from
);
750 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
751 u8
*object
, char *what
,
752 u8
*start
, unsigned int value
, unsigned int bytes
)
756 u8
*addr
= page_address(page
);
758 metadata_access_enable();
759 fault
= memchr_inv(start
, value
, bytes
);
760 metadata_access_disable();
765 while (end
> fault
&& end
[-1] == value
)
768 slab_bug(s
, "%s overwritten", what
);
769 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
770 fault
, end
- 1, fault
- addr
,
772 print_trailer(s
, page
, object
);
774 restore_bytes(s
, what
, value
, fault
, end
);
782 * Bytes of the object to be managed.
783 * If the freepointer may overlay the object then the free
784 * pointer is the first word of the object.
786 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
789 * object + s->object_size
790 * Padding to reach word boundary. This is also used for Redzoning.
791 * Padding is extended by another word if Redzoning is enabled and
792 * object_size == inuse.
794 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
795 * 0xcc (RED_ACTIVE) for objects in use.
798 * Meta data starts here.
800 * A. Free pointer (if we cannot overwrite object on free)
801 * B. Tracking data for SLAB_STORE_USER
802 * C. Padding to reach required alignment boundary or at mininum
803 * one word if debugging is on to be able to detect writes
804 * before the word boundary.
806 * Padding is done using 0x5a (POISON_INUSE)
809 * Nothing is used beyond s->size.
811 * If slabcaches are merged then the object_size and inuse boundaries are mostly
812 * ignored. And therefore no slab options that rely on these boundaries
813 * may be used with merged slabcaches.
816 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
818 unsigned long off
= s
->inuse
; /* The end of info */
821 /* Freepointer is placed after the object. */
822 off
+= sizeof(void *);
824 if (s
->flags
& SLAB_STORE_USER
)
825 /* We also have user information there */
826 off
+= 2 * sizeof(struct track
);
828 off
+= kasan_metadata_size(s
);
830 if (size_from_object(s
) == off
)
833 return check_bytes_and_report(s
, page
, p
, "Object padding",
834 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
837 /* Check the pad bytes at the end of a slab page */
838 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
847 if (!(s
->flags
& SLAB_POISON
))
850 start
= page_address(page
);
851 length
= page_size(page
);
852 end
= start
+ length
;
853 remainder
= length
% s
->size
;
857 pad
= end
- remainder
;
858 metadata_access_enable();
859 fault
= memchr_inv(pad
, POISON_INUSE
, remainder
);
860 metadata_access_disable();
863 while (end
> fault
&& end
[-1] == POISON_INUSE
)
866 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p @offset=%tu",
867 fault
, end
- 1, fault
- start
);
868 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
870 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
874 static int check_object(struct kmem_cache
*s
, struct page
*page
,
875 void *object
, u8 val
)
878 u8
*endobject
= object
+ s
->object_size
;
880 if (s
->flags
& SLAB_RED_ZONE
) {
881 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
882 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
885 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
886 endobject
, val
, s
->inuse
- s
->object_size
))
889 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
890 check_bytes_and_report(s
, page
, p
, "Alignment padding",
891 endobject
, POISON_INUSE
,
892 s
->inuse
- s
->object_size
);
896 if (s
->flags
& SLAB_POISON
) {
897 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
898 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
899 POISON_FREE
, s
->object_size
- 1) ||
900 !check_bytes_and_report(s
, page
, p
, "Poison",
901 p
+ s
->object_size
- 1, POISON_END
, 1)))
904 * check_pad_bytes cleans up on its own.
906 check_pad_bytes(s
, page
, p
);
909 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
911 * Object and freepointer overlap. Cannot check
912 * freepointer while object is allocated.
916 /* Check free pointer validity */
917 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
918 object_err(s
, page
, p
, "Freepointer corrupt");
920 * No choice but to zap it and thus lose the remainder
921 * of the free objects in this slab. May cause
922 * another error because the object count is now wrong.
924 set_freepointer(s
, p
, NULL
);
930 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
934 VM_BUG_ON(!irqs_disabled());
936 if (!PageSlab(page
)) {
937 slab_err(s
, page
, "Not a valid slab page");
941 maxobj
= order_objects(compound_order(page
), s
->size
);
942 if (page
->objects
> maxobj
) {
943 slab_err(s
, page
, "objects %u > max %u",
944 page
->objects
, maxobj
);
947 if (page
->inuse
> page
->objects
) {
948 slab_err(s
, page
, "inuse %u > max %u",
949 page
->inuse
, page
->objects
);
952 /* Slab_pad_check fixes things up after itself */
953 slab_pad_check(s
, page
);
958 * Determine if a certain object on a page is on the freelist. Must hold the
959 * slab lock to guarantee that the chains are in a consistent state.
961 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
969 while (fp
&& nr
<= page
->objects
) {
972 if (!check_valid_pointer(s
, page
, fp
)) {
974 object_err(s
, page
, object
,
975 "Freechain corrupt");
976 set_freepointer(s
, object
, NULL
);
978 slab_err(s
, page
, "Freepointer corrupt");
979 page
->freelist
= NULL
;
980 page
->inuse
= page
->objects
;
981 slab_fix(s
, "Freelist cleared");
987 fp
= get_freepointer(s
, object
);
991 max_objects
= order_objects(compound_order(page
), s
->size
);
992 if (max_objects
> MAX_OBJS_PER_PAGE
)
993 max_objects
= MAX_OBJS_PER_PAGE
;
995 if (page
->objects
!= max_objects
) {
996 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
997 page
->objects
, max_objects
);
998 page
->objects
= max_objects
;
999 slab_fix(s
, "Number of objects adjusted.");
1001 if (page
->inuse
!= page
->objects
- nr
) {
1002 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
1003 page
->inuse
, page
->objects
- nr
);
1004 page
->inuse
= page
->objects
- nr
;
1005 slab_fix(s
, "Object count adjusted.");
1007 return search
== NULL
;
1010 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1013 if (s
->flags
& SLAB_TRACE
) {
1014 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1016 alloc
? "alloc" : "free",
1017 object
, page
->inuse
,
1021 print_section(KERN_INFO
, "Object ", (void *)object
,
1029 * Tracking of fully allocated slabs for debugging purposes.
1031 static void add_full(struct kmem_cache
*s
,
1032 struct kmem_cache_node
*n
, struct page
*page
)
1034 if (!(s
->flags
& SLAB_STORE_USER
))
1037 lockdep_assert_held(&n
->list_lock
);
1038 list_add(&page
->slab_list
, &n
->full
);
1041 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1043 if (!(s
->flags
& SLAB_STORE_USER
))
1046 lockdep_assert_held(&n
->list_lock
);
1047 list_del(&page
->slab_list
);
1050 /* Tracking of the number of slabs for debugging purposes */
1051 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1053 struct kmem_cache_node
*n
= get_node(s
, node
);
1055 return atomic_long_read(&n
->nr_slabs
);
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1060 return atomic_long_read(&n
->nr_slabs
);
1063 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1065 struct kmem_cache_node
*n
= get_node(s
, node
);
1068 * May be called early in order to allocate a slab for the
1069 * kmem_cache_node structure. Solve the chicken-egg
1070 * dilemma by deferring the increment of the count during
1071 * bootstrap (see early_kmem_cache_node_alloc).
1074 atomic_long_inc(&n
->nr_slabs
);
1075 atomic_long_add(objects
, &n
->total_objects
);
1078 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1080 struct kmem_cache_node
*n
= get_node(s
, node
);
1082 atomic_long_dec(&n
->nr_slabs
);
1083 atomic_long_sub(objects
, &n
->total_objects
);
1086 /* Object debug checks for alloc/free paths */
1087 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1090 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1093 init_object(s
, object
, SLUB_RED_INACTIVE
);
1094 init_tracking(s
, object
);
1098 void setup_page_debug(struct kmem_cache
*s
, struct page
*page
, void *addr
)
1100 if (!(s
->flags
& SLAB_POISON
))
1103 metadata_access_enable();
1104 memset(addr
, POISON_INUSE
, page_size(page
));
1105 metadata_access_disable();
1108 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1109 struct page
*page
, void *object
)
1111 if (!check_slab(s
, page
))
1114 if (!check_valid_pointer(s
, page
, object
)) {
1115 object_err(s
, page
, object
, "Freelist Pointer check fails");
1119 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1125 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1127 void *object
, unsigned long addr
)
1129 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1130 if (!alloc_consistency_checks(s
, page
, object
))
1134 /* Success perform special debug activities for allocs */
1135 if (s
->flags
& SLAB_STORE_USER
)
1136 set_track(s
, object
, TRACK_ALLOC
, addr
);
1137 trace(s
, page
, object
, 1);
1138 init_object(s
, object
, SLUB_RED_ACTIVE
);
1142 if (PageSlab(page
)) {
1144 * If this is a slab page then lets do the best we can
1145 * to avoid issues in the future. Marking all objects
1146 * as used avoids touching the remaining objects.
1148 slab_fix(s
, "Marking all objects used");
1149 page
->inuse
= page
->objects
;
1150 page
->freelist
= NULL
;
1155 static inline int free_consistency_checks(struct kmem_cache
*s
,
1156 struct page
*page
, void *object
, unsigned long addr
)
1158 if (!check_valid_pointer(s
, page
, object
)) {
1159 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1163 if (on_freelist(s
, page
, object
)) {
1164 object_err(s
, page
, object
, "Object already free");
1168 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1171 if (unlikely(s
!= page
->slab_cache
)) {
1172 if (!PageSlab(page
)) {
1173 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1175 } else if (!page
->slab_cache
) {
1176 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1180 object_err(s
, page
, object
,
1181 "page slab pointer corrupt.");
1187 /* Supports checking bulk free of a constructed freelist */
1188 static noinline
int free_debug_processing(
1189 struct kmem_cache
*s
, struct page
*page
,
1190 void *head
, void *tail
, int bulk_cnt
,
1193 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1194 void *object
= head
;
1196 unsigned long uninitialized_var(flags
);
1199 spin_lock_irqsave(&n
->list_lock
, flags
);
1202 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1203 if (!check_slab(s
, page
))
1210 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1211 if (!free_consistency_checks(s
, page
, object
, addr
))
1215 if (s
->flags
& SLAB_STORE_USER
)
1216 set_track(s
, object
, TRACK_FREE
, addr
);
1217 trace(s
, page
, object
, 0);
1218 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1219 init_object(s
, object
, SLUB_RED_INACTIVE
);
1221 /* Reached end of constructed freelist yet? */
1222 if (object
!= tail
) {
1223 object
= get_freepointer(s
, object
);
1229 if (cnt
!= bulk_cnt
)
1230 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1234 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1236 slab_fix(s
, "Object at 0x%p not freed", object
);
1240 static int __init
setup_slub_debug(char *str
)
1242 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1243 if (*str
++ != '=' || !*str
)
1245 * No options specified. Switch on full debugging.
1251 * No options but restriction on slabs. This means full
1252 * debugging for slabs matching a pattern.
1259 * Switch off all debugging measures.
1264 * Determine which debug features should be switched on
1266 for (; *str
&& *str
!= ','; str
++) {
1267 switch (tolower(*str
)) {
1269 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1272 slub_debug
|= SLAB_RED_ZONE
;
1275 slub_debug
|= SLAB_POISON
;
1278 slub_debug
|= SLAB_STORE_USER
;
1281 slub_debug
|= SLAB_TRACE
;
1284 slub_debug
|= SLAB_FAILSLAB
;
1288 * Avoid enabling debugging on caches if its minimum
1289 * order would increase as a result.
1291 disable_higher_order_debug
= 1;
1294 pr_err("slub_debug option '%c' unknown. skipped\n",
1301 slub_debug_slabs
= str
+ 1;
1303 if ((static_branch_unlikely(&init_on_alloc
) ||
1304 static_branch_unlikely(&init_on_free
)) &&
1305 (slub_debug
& SLAB_POISON
))
1306 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1310 __setup("slub_debug", setup_slub_debug
);
1313 * kmem_cache_flags - apply debugging options to the cache
1314 * @object_size: the size of an object without meta data
1315 * @flags: flags to set
1316 * @name: name of the cache
1317 * @ctor: constructor function
1319 * Debug option(s) are applied to @flags. In addition to the debug
1320 * option(s), if a slab name (or multiple) is specified i.e.
1321 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1322 * then only the select slabs will receive the debug option(s).
1324 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1325 slab_flags_t flags
, const char *name
,
1326 void (*ctor
)(void *))
1331 /* If slub_debug = 0, it folds into the if conditional. */
1332 if (!slub_debug_slabs
)
1333 return flags
| slub_debug
;
1336 iter
= slub_debug_slabs
;
1341 end
= strchrnul(iter
, ',');
1343 glob
= strnchr(iter
, end
- iter
, '*');
1345 cmplen
= glob
- iter
;
1347 cmplen
= max_t(size_t, len
, (end
- iter
));
1349 if (!strncmp(name
, iter
, cmplen
)) {
1350 flags
|= slub_debug
;
1361 #else /* !CONFIG_SLUB_DEBUG */
1362 static inline void setup_object_debug(struct kmem_cache
*s
,
1363 struct page
*page
, void *object
) {}
1365 void setup_page_debug(struct kmem_cache
*s
, struct page
*page
, void *addr
) {}
1367 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1368 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1370 static inline int free_debug_processing(
1371 struct kmem_cache
*s
, struct page
*page
,
1372 void *head
, void *tail
, int bulk_cnt
,
1373 unsigned long addr
) { return 0; }
1375 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1377 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1378 void *object
, u8 val
) { return 1; }
1379 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1380 struct page
*page
) {}
1381 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1382 struct page
*page
) {}
1383 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1384 slab_flags_t flags
, const char *name
,
1385 void (*ctor
)(void *))
1389 #define slub_debug 0
1391 #define disable_higher_order_debug 0
1393 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1395 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1397 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1399 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1402 #endif /* CONFIG_SLUB_DEBUG */
1405 * Hooks for other subsystems that check memory allocations. In a typical
1406 * production configuration these hooks all should produce no code at all.
1408 static inline void *kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1410 ptr
= kasan_kmalloc_large(ptr
, size
, flags
);
1411 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1412 kmemleak_alloc(ptr
, size
, 1, flags
);
1416 static __always_inline
void kfree_hook(void *x
)
1419 kasan_kfree_large(x
, _RET_IP_
);
1422 static __always_inline
bool slab_free_hook(struct kmem_cache
*s
, void *x
)
1424 kmemleak_free_recursive(x
, s
->flags
);
1427 * Trouble is that we may no longer disable interrupts in the fast path
1428 * So in order to make the debug calls that expect irqs to be
1429 * disabled we need to disable interrupts temporarily.
1431 #ifdef CONFIG_LOCKDEP
1433 unsigned long flags
;
1435 local_irq_save(flags
);
1436 debug_check_no_locks_freed(x
, s
->object_size
);
1437 local_irq_restore(flags
);
1440 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1441 debug_check_no_obj_freed(x
, s
->object_size
);
1443 /* KASAN might put x into memory quarantine, delaying its reuse */
1444 return kasan_slab_free(s
, x
, _RET_IP_
);
1447 static inline bool slab_free_freelist_hook(struct kmem_cache
*s
,
1448 void **head
, void **tail
)
1453 void *old_tail
= *tail
? *tail
: *head
;
1456 /* Head and tail of the reconstructed freelist */
1462 next
= get_freepointer(s
, object
);
1464 if (slab_want_init_on_free(s
)) {
1466 * Clear the object and the metadata, but don't touch
1469 memset(object
, 0, s
->object_size
);
1470 rsize
= (s
->flags
& SLAB_RED_ZONE
) ? s
->red_left_pad
1472 memset((char *)object
+ s
->inuse
, 0,
1473 s
->size
- s
->inuse
- rsize
);
1476 /* If object's reuse doesn't have to be delayed */
1477 if (!slab_free_hook(s
, object
)) {
1478 /* Move object to the new freelist */
1479 set_freepointer(s
, object
, *head
);
1484 } while (object
!= old_tail
);
1489 return *head
!= NULL
;
1492 static void *setup_object(struct kmem_cache
*s
, struct page
*page
,
1495 setup_object_debug(s
, page
, object
);
1496 object
= kasan_init_slab_obj(s
, object
);
1497 if (unlikely(s
->ctor
)) {
1498 kasan_unpoison_object_data(s
, object
);
1500 kasan_poison_object_data(s
, object
);
1506 * Slab allocation and freeing
1508 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1509 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1512 unsigned int order
= oo_order(oo
);
1514 if (node
== NUMA_NO_NODE
)
1515 page
= alloc_pages(flags
, order
);
1517 page
= __alloc_pages_node(node
, flags
, order
);
1519 if (page
&& charge_slab_page(page
, flags
, order
, s
)) {
1520 __free_pages(page
, order
);
1527 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1528 /* Pre-initialize the random sequence cache */
1529 static int init_cache_random_seq(struct kmem_cache
*s
)
1531 unsigned int count
= oo_objects(s
->oo
);
1534 /* Bailout if already initialised */
1538 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1540 pr_err("SLUB: Unable to initialize free list for %s\n",
1545 /* Transform to an offset on the set of pages */
1546 if (s
->random_seq
) {
1549 for (i
= 0; i
< count
; i
++)
1550 s
->random_seq
[i
] *= s
->size
;
1555 /* Initialize each random sequence freelist per cache */
1556 static void __init
init_freelist_randomization(void)
1558 struct kmem_cache
*s
;
1560 mutex_lock(&slab_mutex
);
1562 list_for_each_entry(s
, &slab_caches
, list
)
1563 init_cache_random_seq(s
);
1565 mutex_unlock(&slab_mutex
);
1568 /* Get the next entry on the pre-computed freelist randomized */
1569 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1570 unsigned long *pos
, void *start
,
1571 unsigned long page_limit
,
1572 unsigned long freelist_count
)
1577 * If the target page allocation failed, the number of objects on the
1578 * page might be smaller than the usual size defined by the cache.
1581 idx
= s
->random_seq
[*pos
];
1583 if (*pos
>= freelist_count
)
1585 } while (unlikely(idx
>= page_limit
));
1587 return (char *)start
+ idx
;
1590 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1591 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1596 unsigned long idx
, pos
, page_limit
, freelist_count
;
1598 if (page
->objects
< 2 || !s
->random_seq
)
1601 freelist_count
= oo_objects(s
->oo
);
1602 pos
= get_random_int() % freelist_count
;
1604 page_limit
= page
->objects
* s
->size
;
1605 start
= fixup_red_left(s
, page_address(page
));
1607 /* First entry is used as the base of the freelist */
1608 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1610 cur
= setup_object(s
, page
, cur
);
1611 page
->freelist
= cur
;
1613 for (idx
= 1; idx
< page
->objects
; idx
++) {
1614 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1616 next
= setup_object(s
, page
, next
);
1617 set_freepointer(s
, cur
, next
);
1620 set_freepointer(s
, cur
, NULL
);
1625 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1629 static inline void init_freelist_randomization(void) { }
1630 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1634 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1636 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1639 struct kmem_cache_order_objects oo
= s
->oo
;
1641 void *start
, *p
, *next
;
1645 flags
&= gfp_allowed_mask
;
1647 if (gfpflags_allow_blocking(flags
))
1650 flags
|= s
->allocflags
;
1653 * Let the initial higher-order allocation fail under memory pressure
1654 * so we fall-back to the minimum order allocation.
1656 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1657 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1658 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1660 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1661 if (unlikely(!page
)) {
1665 * Allocation may have failed due to fragmentation.
1666 * Try a lower order alloc if possible
1668 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1669 if (unlikely(!page
))
1671 stat(s
, ORDER_FALLBACK
);
1674 page
->objects
= oo_objects(oo
);
1676 page
->slab_cache
= s
;
1677 __SetPageSlab(page
);
1678 if (page_is_pfmemalloc(page
))
1679 SetPageSlabPfmemalloc(page
);
1681 kasan_poison_slab(page
);
1683 start
= page_address(page
);
1685 setup_page_debug(s
, page
, start
);
1687 shuffle
= shuffle_freelist(s
, page
);
1690 start
= fixup_red_left(s
, start
);
1691 start
= setup_object(s
, page
, start
);
1692 page
->freelist
= start
;
1693 for (idx
= 0, p
= start
; idx
< page
->objects
- 1; idx
++) {
1695 next
= setup_object(s
, page
, next
);
1696 set_freepointer(s
, p
, next
);
1699 set_freepointer(s
, p
, NULL
);
1702 page
->inuse
= page
->objects
;
1706 if (gfpflags_allow_blocking(flags
))
1707 local_irq_disable();
1711 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1716 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1718 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1719 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1720 flags
&= ~GFP_SLAB_BUG_MASK
;
1721 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1722 invalid_mask
, &invalid_mask
, flags
, &flags
);
1726 return allocate_slab(s
,
1727 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1730 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1732 int order
= compound_order(page
);
1733 int pages
= 1 << order
;
1735 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1738 slab_pad_check(s
, page
);
1739 for_each_object(p
, s
, page_address(page
),
1741 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1744 __ClearPageSlabPfmemalloc(page
);
1745 __ClearPageSlab(page
);
1747 page
->mapping
= NULL
;
1748 if (current
->reclaim_state
)
1749 current
->reclaim_state
->reclaimed_slab
+= pages
;
1750 uncharge_slab_page(page
, order
, s
);
1751 __free_pages(page
, order
);
1754 static void rcu_free_slab(struct rcu_head
*h
)
1756 struct page
*page
= container_of(h
, struct page
, rcu_head
);
1758 __free_slab(page
->slab_cache
, page
);
1761 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1763 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1764 call_rcu(&page
->rcu_head
, rcu_free_slab
);
1766 __free_slab(s
, page
);
1769 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1771 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1776 * Management of partially allocated slabs.
1779 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1782 if (tail
== DEACTIVATE_TO_TAIL
)
1783 list_add_tail(&page
->slab_list
, &n
->partial
);
1785 list_add(&page
->slab_list
, &n
->partial
);
1788 static inline void add_partial(struct kmem_cache_node
*n
,
1789 struct page
*page
, int tail
)
1791 lockdep_assert_held(&n
->list_lock
);
1792 __add_partial(n
, page
, tail
);
1795 static inline void remove_partial(struct kmem_cache_node
*n
,
1798 lockdep_assert_held(&n
->list_lock
);
1799 list_del(&page
->slab_list
);
1804 * Remove slab from the partial list, freeze it and
1805 * return the pointer to the freelist.
1807 * Returns a list of objects or NULL if it fails.
1809 static inline void *acquire_slab(struct kmem_cache
*s
,
1810 struct kmem_cache_node
*n
, struct page
*page
,
1811 int mode
, int *objects
)
1814 unsigned long counters
;
1817 lockdep_assert_held(&n
->list_lock
);
1820 * Zap the freelist and set the frozen bit.
1821 * The old freelist is the list of objects for the
1822 * per cpu allocation list.
1824 freelist
= page
->freelist
;
1825 counters
= page
->counters
;
1826 new.counters
= counters
;
1827 *objects
= new.objects
- new.inuse
;
1829 new.inuse
= page
->objects
;
1830 new.freelist
= NULL
;
1832 new.freelist
= freelist
;
1835 VM_BUG_ON(new.frozen
);
1838 if (!__cmpxchg_double_slab(s
, page
,
1840 new.freelist
, new.counters
,
1844 remove_partial(n
, page
);
1849 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1850 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1853 * Try to allocate a partial slab from a specific node.
1855 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1856 struct kmem_cache_cpu
*c
, gfp_t flags
)
1858 struct page
*page
, *page2
;
1859 void *object
= NULL
;
1860 unsigned int available
= 0;
1864 * Racy check. If we mistakenly see no partial slabs then we
1865 * just allocate an empty slab. If we mistakenly try to get a
1866 * partial slab and there is none available then get_partials()
1869 if (!n
|| !n
->nr_partial
)
1872 spin_lock(&n
->list_lock
);
1873 list_for_each_entry_safe(page
, page2
, &n
->partial
, slab_list
) {
1876 if (!pfmemalloc_match(page
, flags
))
1879 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1883 available
+= objects
;
1886 stat(s
, ALLOC_FROM_PARTIAL
);
1889 put_cpu_partial(s
, page
, 0);
1890 stat(s
, CPU_PARTIAL_NODE
);
1892 if (!kmem_cache_has_cpu_partial(s
)
1893 || available
> slub_cpu_partial(s
) / 2)
1897 spin_unlock(&n
->list_lock
);
1902 * Get a page from somewhere. Search in increasing NUMA distances.
1904 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1905 struct kmem_cache_cpu
*c
)
1908 struct zonelist
*zonelist
;
1911 enum zone_type high_zoneidx
= gfp_zone(flags
);
1913 unsigned int cpuset_mems_cookie
;
1916 * The defrag ratio allows a configuration of the tradeoffs between
1917 * inter node defragmentation and node local allocations. A lower
1918 * defrag_ratio increases the tendency to do local allocations
1919 * instead of attempting to obtain partial slabs from other nodes.
1921 * If the defrag_ratio is set to 0 then kmalloc() always
1922 * returns node local objects. If the ratio is higher then kmalloc()
1923 * may return off node objects because partial slabs are obtained
1924 * from other nodes and filled up.
1926 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1927 * (which makes defrag_ratio = 1000) then every (well almost)
1928 * allocation will first attempt to defrag slab caches on other nodes.
1929 * This means scanning over all nodes to look for partial slabs which
1930 * may be expensive if we do it every time we are trying to find a slab
1931 * with available objects.
1933 if (!s
->remote_node_defrag_ratio
||
1934 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1938 cpuset_mems_cookie
= read_mems_allowed_begin();
1939 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1940 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1941 struct kmem_cache_node
*n
;
1943 n
= get_node(s
, zone_to_nid(zone
));
1945 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1946 n
->nr_partial
> s
->min_partial
) {
1947 object
= get_partial_node(s
, n
, c
, flags
);
1950 * Don't check read_mems_allowed_retry()
1951 * here - if mems_allowed was updated in
1952 * parallel, that was a harmless race
1953 * between allocation and the cpuset
1960 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1961 #endif /* CONFIG_NUMA */
1966 * Get a partial page, lock it and return it.
1968 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1969 struct kmem_cache_cpu
*c
)
1972 int searchnode
= node
;
1974 if (node
== NUMA_NO_NODE
)
1975 searchnode
= numa_mem_id();
1976 else if (!node_present_pages(node
))
1977 searchnode
= node_to_mem_node(node
);
1979 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1980 if (object
|| node
!= NUMA_NO_NODE
)
1983 return get_any_partial(s
, flags
, c
);
1986 #ifdef CONFIG_PREEMPTION
1988 * Calculate the next globally unique transaction for disambiguiation
1989 * during cmpxchg. The transactions start with the cpu number and are then
1990 * incremented by CONFIG_NR_CPUS.
1992 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1995 * No preemption supported therefore also no need to check for
2001 static inline unsigned long next_tid(unsigned long tid
)
2003 return tid
+ TID_STEP
;
2006 #ifdef SLUB_DEBUG_CMPXCHG
2007 static inline unsigned int tid_to_cpu(unsigned long tid
)
2009 return tid
% TID_STEP
;
2012 static inline unsigned long tid_to_event(unsigned long tid
)
2014 return tid
/ TID_STEP
;
2018 static inline unsigned int init_tid(int cpu
)
2023 static inline void note_cmpxchg_failure(const char *n
,
2024 const struct kmem_cache
*s
, unsigned long tid
)
2026 #ifdef SLUB_DEBUG_CMPXCHG
2027 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
2029 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
2031 #ifdef CONFIG_PREEMPTION
2032 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
2033 pr_warn("due to cpu change %d -> %d\n",
2034 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
2037 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
2038 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2039 tid_to_event(tid
), tid_to_event(actual_tid
));
2041 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2042 actual_tid
, tid
, next_tid(tid
));
2044 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
2047 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2051 for_each_possible_cpu(cpu
)
2052 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2056 * Remove the cpu slab
2058 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2059 void *freelist
, struct kmem_cache_cpu
*c
)
2061 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2062 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2064 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2066 int tail
= DEACTIVATE_TO_HEAD
;
2070 if (page
->freelist
) {
2071 stat(s
, DEACTIVATE_REMOTE_FREES
);
2072 tail
= DEACTIVATE_TO_TAIL
;
2076 * Stage one: Free all available per cpu objects back
2077 * to the page freelist while it is still frozen. Leave the
2080 * There is no need to take the list->lock because the page
2083 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2085 unsigned long counters
;
2088 prior
= page
->freelist
;
2089 counters
= page
->counters
;
2090 set_freepointer(s
, freelist
, prior
);
2091 new.counters
= counters
;
2093 VM_BUG_ON(!new.frozen
);
2095 } while (!__cmpxchg_double_slab(s
, page
,
2097 freelist
, new.counters
,
2098 "drain percpu freelist"));
2100 freelist
= nextfree
;
2104 * Stage two: Ensure that the page is unfrozen while the
2105 * list presence reflects the actual number of objects
2108 * We setup the list membership and then perform a cmpxchg
2109 * with the count. If there is a mismatch then the page
2110 * is not unfrozen but the page is on the wrong list.
2112 * Then we restart the process which may have to remove
2113 * the page from the list that we just put it on again
2114 * because the number of objects in the slab may have
2119 old
.freelist
= page
->freelist
;
2120 old
.counters
= page
->counters
;
2121 VM_BUG_ON(!old
.frozen
);
2123 /* Determine target state of the slab */
2124 new.counters
= old
.counters
;
2127 set_freepointer(s
, freelist
, old
.freelist
);
2128 new.freelist
= freelist
;
2130 new.freelist
= old
.freelist
;
2134 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2136 else if (new.freelist
) {
2141 * Taking the spinlock removes the possibility
2142 * that acquire_slab() will see a slab page that
2145 spin_lock(&n
->list_lock
);
2149 if (kmem_cache_debug(s
) && !lock
) {
2152 * This also ensures that the scanning of full
2153 * slabs from diagnostic functions will not see
2156 spin_lock(&n
->list_lock
);
2162 remove_partial(n
, page
);
2163 else if (l
== M_FULL
)
2164 remove_full(s
, n
, page
);
2167 add_partial(n
, page
, tail
);
2168 else if (m
== M_FULL
)
2169 add_full(s
, n
, page
);
2173 if (!__cmpxchg_double_slab(s
, page
,
2174 old
.freelist
, old
.counters
,
2175 new.freelist
, new.counters
,
2180 spin_unlock(&n
->list_lock
);
2184 else if (m
== M_FULL
)
2185 stat(s
, DEACTIVATE_FULL
);
2186 else if (m
== M_FREE
) {
2187 stat(s
, DEACTIVATE_EMPTY
);
2188 discard_slab(s
, page
);
2197 * Unfreeze all the cpu partial slabs.
2199 * This function must be called with interrupts disabled
2200 * for the cpu using c (or some other guarantee must be there
2201 * to guarantee no concurrent accesses).
2203 static void unfreeze_partials(struct kmem_cache
*s
,
2204 struct kmem_cache_cpu
*c
)
2206 #ifdef CONFIG_SLUB_CPU_PARTIAL
2207 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2208 struct page
*page
, *discard_page
= NULL
;
2210 while ((page
= c
->partial
)) {
2214 c
->partial
= page
->next
;
2216 n2
= get_node(s
, page_to_nid(page
));
2219 spin_unlock(&n
->list_lock
);
2222 spin_lock(&n
->list_lock
);
2227 old
.freelist
= page
->freelist
;
2228 old
.counters
= page
->counters
;
2229 VM_BUG_ON(!old
.frozen
);
2231 new.counters
= old
.counters
;
2232 new.freelist
= old
.freelist
;
2236 } while (!__cmpxchg_double_slab(s
, page
,
2237 old
.freelist
, old
.counters
,
2238 new.freelist
, new.counters
,
2239 "unfreezing slab"));
2241 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2242 page
->next
= discard_page
;
2243 discard_page
= page
;
2245 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2246 stat(s
, FREE_ADD_PARTIAL
);
2251 spin_unlock(&n
->list_lock
);
2253 while (discard_page
) {
2254 page
= discard_page
;
2255 discard_page
= discard_page
->next
;
2257 stat(s
, DEACTIVATE_EMPTY
);
2258 discard_slab(s
, page
);
2261 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2265 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2266 * partial page slot if available.
2268 * If we did not find a slot then simply move all the partials to the
2269 * per node partial list.
2271 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2273 #ifdef CONFIG_SLUB_CPU_PARTIAL
2274 struct page
*oldpage
;
2282 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2285 pobjects
= oldpage
->pobjects
;
2286 pages
= oldpage
->pages
;
2287 if (drain
&& pobjects
> s
->cpu_partial
) {
2288 unsigned long flags
;
2290 * partial array is full. Move the existing
2291 * set to the per node partial list.
2293 local_irq_save(flags
);
2294 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2295 local_irq_restore(flags
);
2299 stat(s
, CPU_PARTIAL_DRAIN
);
2304 pobjects
+= page
->objects
- page
->inuse
;
2306 page
->pages
= pages
;
2307 page
->pobjects
= pobjects
;
2308 page
->next
= oldpage
;
2310 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2312 if (unlikely(!s
->cpu_partial
)) {
2313 unsigned long flags
;
2315 local_irq_save(flags
);
2316 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2317 local_irq_restore(flags
);
2320 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2323 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2325 stat(s
, CPUSLAB_FLUSH
);
2326 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2328 c
->tid
= next_tid(c
->tid
);
2334 * Called from IPI handler with interrupts disabled.
2336 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2338 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2343 unfreeze_partials(s
, c
);
2346 static void flush_cpu_slab(void *d
)
2348 struct kmem_cache
*s
= d
;
2350 __flush_cpu_slab(s
, smp_processor_id());
2353 static bool has_cpu_slab(int cpu
, void *info
)
2355 struct kmem_cache
*s
= info
;
2356 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2358 return c
->page
|| slub_percpu_partial(c
);
2361 static void flush_all(struct kmem_cache
*s
)
2363 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1);
2367 * Use the cpu notifier to insure that the cpu slabs are flushed when
2370 static int slub_cpu_dead(unsigned int cpu
)
2372 struct kmem_cache
*s
;
2373 unsigned long flags
;
2375 mutex_lock(&slab_mutex
);
2376 list_for_each_entry(s
, &slab_caches
, list
) {
2377 local_irq_save(flags
);
2378 __flush_cpu_slab(s
, cpu
);
2379 local_irq_restore(flags
);
2381 mutex_unlock(&slab_mutex
);
2386 * Check if the objects in a per cpu structure fit numa
2387 * locality expectations.
2389 static inline int node_match(struct page
*page
, int node
)
2392 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2398 #ifdef CONFIG_SLUB_DEBUG
2399 static int count_free(struct page
*page
)
2401 return page
->objects
- page
->inuse
;
2404 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2406 return atomic_long_read(&n
->total_objects
);
2408 #endif /* CONFIG_SLUB_DEBUG */
2410 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2411 static unsigned long count_partial(struct kmem_cache_node
*n
,
2412 int (*get_count
)(struct page
*))
2414 unsigned long flags
;
2415 unsigned long x
= 0;
2418 spin_lock_irqsave(&n
->list_lock
, flags
);
2419 list_for_each_entry(page
, &n
->partial
, slab_list
)
2420 x
+= get_count(page
);
2421 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2424 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2426 static noinline
void
2427 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2429 #ifdef CONFIG_SLUB_DEBUG
2430 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2431 DEFAULT_RATELIMIT_BURST
);
2433 struct kmem_cache_node
*n
;
2435 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2438 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2439 nid
, gfpflags
, &gfpflags
);
2440 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2441 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2444 if (oo_order(s
->min
) > get_order(s
->object_size
))
2445 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2448 for_each_kmem_cache_node(s
, node
, n
) {
2449 unsigned long nr_slabs
;
2450 unsigned long nr_objs
;
2451 unsigned long nr_free
;
2453 nr_free
= count_partial(n
, count_free
);
2454 nr_slabs
= node_nr_slabs(n
);
2455 nr_objs
= node_nr_objs(n
);
2457 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2458 node
, nr_slabs
, nr_objs
, nr_free
);
2463 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2464 int node
, struct kmem_cache_cpu
**pc
)
2467 struct kmem_cache_cpu
*c
= *pc
;
2470 WARN_ON_ONCE(s
->ctor
&& (flags
& __GFP_ZERO
));
2472 freelist
= get_partial(s
, flags
, node
, c
);
2477 page
= new_slab(s
, flags
, node
);
2479 c
= raw_cpu_ptr(s
->cpu_slab
);
2484 * No other reference to the page yet so we can
2485 * muck around with it freely without cmpxchg
2487 freelist
= page
->freelist
;
2488 page
->freelist
= NULL
;
2490 stat(s
, ALLOC_SLAB
);
2498 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2500 if (unlikely(PageSlabPfmemalloc(page
)))
2501 return gfp_pfmemalloc_allowed(gfpflags
);
2507 * Check the page->freelist of a page and either transfer the freelist to the
2508 * per cpu freelist or deactivate the page.
2510 * The page is still frozen if the return value is not NULL.
2512 * If this function returns NULL then the page has been unfrozen.
2514 * This function must be called with interrupt disabled.
2516 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2519 unsigned long counters
;
2523 freelist
= page
->freelist
;
2524 counters
= page
->counters
;
2526 new.counters
= counters
;
2527 VM_BUG_ON(!new.frozen
);
2529 new.inuse
= page
->objects
;
2530 new.frozen
= freelist
!= NULL
;
2532 } while (!__cmpxchg_double_slab(s
, page
,
2541 * Slow path. The lockless freelist is empty or we need to perform
2544 * Processing is still very fast if new objects have been freed to the
2545 * regular freelist. In that case we simply take over the regular freelist
2546 * as the lockless freelist and zap the regular freelist.
2548 * If that is not working then we fall back to the partial lists. We take the
2549 * first element of the freelist as the object to allocate now and move the
2550 * rest of the freelist to the lockless freelist.
2552 * And if we were unable to get a new slab from the partial slab lists then
2553 * we need to allocate a new slab. This is the slowest path since it involves
2554 * a call to the page allocator and the setup of a new slab.
2556 * Version of __slab_alloc to use when we know that interrupts are
2557 * already disabled (which is the case for bulk allocation).
2559 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2560 unsigned long addr
, struct kmem_cache_cpu
*c
)
2570 if (unlikely(!node_match(page
, node
))) {
2571 int searchnode
= node
;
2573 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2574 searchnode
= node_to_mem_node(node
);
2576 if (unlikely(!node_match(page
, searchnode
))) {
2577 stat(s
, ALLOC_NODE_MISMATCH
);
2578 deactivate_slab(s
, page
, c
->freelist
, c
);
2584 * By rights, we should be searching for a slab page that was
2585 * PFMEMALLOC but right now, we are losing the pfmemalloc
2586 * information when the page leaves the per-cpu allocator
2588 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2589 deactivate_slab(s
, page
, c
->freelist
, c
);
2593 /* must check again c->freelist in case of cpu migration or IRQ */
2594 freelist
= c
->freelist
;
2598 freelist
= get_freelist(s
, page
);
2602 stat(s
, DEACTIVATE_BYPASS
);
2606 stat(s
, ALLOC_REFILL
);
2610 * freelist is pointing to the list of objects to be used.
2611 * page is pointing to the page from which the objects are obtained.
2612 * That page must be frozen for per cpu allocations to work.
2614 VM_BUG_ON(!c
->page
->frozen
);
2615 c
->freelist
= get_freepointer(s
, freelist
);
2616 c
->tid
= next_tid(c
->tid
);
2621 if (slub_percpu_partial(c
)) {
2622 page
= c
->page
= slub_percpu_partial(c
);
2623 slub_set_percpu_partial(c
, page
);
2624 stat(s
, CPU_PARTIAL_ALLOC
);
2628 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2630 if (unlikely(!freelist
)) {
2631 slab_out_of_memory(s
, gfpflags
, node
);
2636 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2639 /* Only entered in the debug case */
2640 if (kmem_cache_debug(s
) &&
2641 !alloc_debug_processing(s
, page
, freelist
, addr
))
2642 goto new_slab
; /* Slab failed checks. Next slab needed */
2644 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2649 * Another one that disabled interrupt and compensates for possible
2650 * cpu changes by refetching the per cpu area pointer.
2652 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2653 unsigned long addr
, struct kmem_cache_cpu
*c
)
2656 unsigned long flags
;
2658 local_irq_save(flags
);
2659 #ifdef CONFIG_PREEMPTION
2661 * We may have been preempted and rescheduled on a different
2662 * cpu before disabling interrupts. Need to reload cpu area
2665 c
= this_cpu_ptr(s
->cpu_slab
);
2668 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2669 local_irq_restore(flags
);
2674 * If the object has been wiped upon free, make sure it's fully initialized by
2675 * zeroing out freelist pointer.
2677 static __always_inline
void maybe_wipe_obj_freeptr(struct kmem_cache
*s
,
2680 if (unlikely(slab_want_init_on_free(s
)) && obj
)
2681 memset((void *)((char *)obj
+ s
->offset
), 0, sizeof(void *));
2685 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2686 * have the fastpath folded into their functions. So no function call
2687 * overhead for requests that can be satisfied on the fastpath.
2689 * The fastpath works by first checking if the lockless freelist can be used.
2690 * If not then __slab_alloc is called for slow processing.
2692 * Otherwise we can simply pick the next object from the lockless free list.
2694 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2695 gfp_t gfpflags
, int node
, unsigned long addr
)
2698 struct kmem_cache_cpu
*c
;
2702 s
= slab_pre_alloc_hook(s
, gfpflags
);
2707 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2708 * enabled. We may switch back and forth between cpus while
2709 * reading from one cpu area. That does not matter as long
2710 * as we end up on the original cpu again when doing the cmpxchg.
2712 * We should guarantee that tid and kmem_cache are retrieved on
2713 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2714 * to check if it is matched or not.
2717 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2718 c
= raw_cpu_ptr(s
->cpu_slab
);
2719 } while (IS_ENABLED(CONFIG_PREEMPTION
) &&
2720 unlikely(tid
!= READ_ONCE(c
->tid
)));
2723 * Irqless object alloc/free algorithm used here depends on sequence
2724 * of fetching cpu_slab's data. tid should be fetched before anything
2725 * on c to guarantee that object and page associated with previous tid
2726 * won't be used with current tid. If we fetch tid first, object and
2727 * page could be one associated with next tid and our alloc/free
2728 * request will be failed. In this case, we will retry. So, no problem.
2733 * The transaction ids are globally unique per cpu and per operation on
2734 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2735 * occurs on the right processor and that there was no operation on the
2736 * linked list in between.
2739 object
= c
->freelist
;
2741 if (unlikely(!object
|| !node_match(page
, node
))) {
2742 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2743 stat(s
, ALLOC_SLOWPATH
);
2745 void *next_object
= get_freepointer_safe(s
, object
);
2748 * The cmpxchg will only match if there was no additional
2749 * operation and if we are on the right processor.
2751 * The cmpxchg does the following atomically (without lock
2753 * 1. Relocate first pointer to the current per cpu area.
2754 * 2. Verify that tid and freelist have not been changed
2755 * 3. If they were not changed replace tid and freelist
2757 * Since this is without lock semantics the protection is only
2758 * against code executing on this cpu *not* from access by
2761 if (unlikely(!this_cpu_cmpxchg_double(
2762 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2764 next_object
, next_tid(tid
)))) {
2766 note_cmpxchg_failure("slab_alloc", s
, tid
);
2769 prefetch_freepointer(s
, next_object
);
2770 stat(s
, ALLOC_FASTPATH
);
2773 maybe_wipe_obj_freeptr(s
, object
);
2775 if (unlikely(slab_want_init_on_alloc(gfpflags
, s
)) && object
)
2776 memset(object
, 0, s
->object_size
);
2778 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2783 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2784 gfp_t gfpflags
, unsigned long addr
)
2786 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2789 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2791 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2793 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2798 EXPORT_SYMBOL(kmem_cache_alloc
);
2800 #ifdef CONFIG_TRACING
2801 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2803 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2804 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2805 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2808 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2812 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2814 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2816 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2817 s
->object_size
, s
->size
, gfpflags
, node
);
2821 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2823 #ifdef CONFIG_TRACING
2824 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2826 int node
, size_t size
)
2828 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2830 trace_kmalloc_node(_RET_IP_
, ret
,
2831 size
, s
->size
, gfpflags
, node
);
2833 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2836 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2838 #endif /* CONFIG_NUMA */
2841 * Slow path handling. This may still be called frequently since objects
2842 * have a longer lifetime than the cpu slabs in most processing loads.
2844 * So we still attempt to reduce cache line usage. Just take the slab
2845 * lock and free the item. If there is no additional partial page
2846 * handling required then we can return immediately.
2848 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2849 void *head
, void *tail
, int cnt
,
2856 unsigned long counters
;
2857 struct kmem_cache_node
*n
= NULL
;
2858 unsigned long uninitialized_var(flags
);
2860 stat(s
, FREE_SLOWPATH
);
2862 if (kmem_cache_debug(s
) &&
2863 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2868 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2871 prior
= page
->freelist
;
2872 counters
= page
->counters
;
2873 set_freepointer(s
, tail
, prior
);
2874 new.counters
= counters
;
2875 was_frozen
= new.frozen
;
2877 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2879 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2882 * Slab was on no list before and will be
2884 * We can defer the list move and instead
2889 } else { /* Needs to be taken off a list */
2891 n
= get_node(s
, page_to_nid(page
));
2893 * Speculatively acquire the list_lock.
2894 * If the cmpxchg does not succeed then we may
2895 * drop the list_lock without any processing.
2897 * Otherwise the list_lock will synchronize with
2898 * other processors updating the list of slabs.
2900 spin_lock_irqsave(&n
->list_lock
, flags
);
2905 } while (!cmpxchg_double_slab(s
, page
,
2913 * If we just froze the page then put it onto the
2914 * per cpu partial list.
2916 if (new.frozen
&& !was_frozen
) {
2917 put_cpu_partial(s
, page
, 1);
2918 stat(s
, CPU_PARTIAL_FREE
);
2921 * The list lock was not taken therefore no list
2922 * activity can be necessary.
2925 stat(s
, FREE_FROZEN
);
2929 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2933 * Objects left in the slab. If it was not on the partial list before
2936 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2937 remove_full(s
, n
, page
);
2938 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2939 stat(s
, FREE_ADD_PARTIAL
);
2941 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2947 * Slab on the partial list.
2949 remove_partial(n
, page
);
2950 stat(s
, FREE_REMOVE_PARTIAL
);
2952 /* Slab must be on the full list */
2953 remove_full(s
, n
, page
);
2956 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2958 discard_slab(s
, page
);
2962 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2963 * can perform fastpath freeing without additional function calls.
2965 * The fastpath is only possible if we are freeing to the current cpu slab
2966 * of this processor. This typically the case if we have just allocated
2969 * If fastpath is not possible then fall back to __slab_free where we deal
2970 * with all sorts of special processing.
2972 * Bulk free of a freelist with several objects (all pointing to the
2973 * same page) possible by specifying head and tail ptr, plus objects
2974 * count (cnt). Bulk free indicated by tail pointer being set.
2976 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2977 struct page
*page
, void *head
, void *tail
,
2978 int cnt
, unsigned long addr
)
2980 void *tail_obj
= tail
? : head
;
2981 struct kmem_cache_cpu
*c
;
2985 * Determine the currently cpus per cpu slab.
2986 * The cpu may change afterward. However that does not matter since
2987 * data is retrieved via this pointer. If we are on the same cpu
2988 * during the cmpxchg then the free will succeed.
2991 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2992 c
= raw_cpu_ptr(s
->cpu_slab
);
2993 } while (IS_ENABLED(CONFIG_PREEMPTION
) &&
2994 unlikely(tid
!= READ_ONCE(c
->tid
)));
2996 /* Same with comment on barrier() in slab_alloc_node() */
2999 if (likely(page
== c
->page
)) {
3000 set_freepointer(s
, tail_obj
, c
->freelist
);
3002 if (unlikely(!this_cpu_cmpxchg_double(
3003 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
3005 head
, next_tid(tid
)))) {
3007 note_cmpxchg_failure("slab_free", s
, tid
);
3010 stat(s
, FREE_FASTPATH
);
3012 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
3016 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
3017 void *head
, void *tail
, int cnt
,
3021 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3022 * to remove objects, whose reuse must be delayed.
3024 if (slab_free_freelist_hook(s
, &head
, &tail
))
3025 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
3028 #ifdef CONFIG_KASAN_GENERIC
3029 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
3031 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
3035 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
3037 s
= cache_from_obj(s
, x
);
3040 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
3041 trace_kmem_cache_free(_RET_IP_
, x
);
3043 EXPORT_SYMBOL(kmem_cache_free
);
3045 struct detached_freelist
{
3050 struct kmem_cache
*s
;
3054 * This function progressively scans the array with free objects (with
3055 * a limited look ahead) and extract objects belonging to the same
3056 * page. It builds a detached freelist directly within the given
3057 * page/objects. This can happen without any need for
3058 * synchronization, because the objects are owned by running process.
3059 * The freelist is build up as a single linked list in the objects.
3060 * The idea is, that this detached freelist can then be bulk
3061 * transferred to the real freelist(s), but only requiring a single
3062 * synchronization primitive. Look ahead in the array is limited due
3063 * to performance reasons.
3066 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3067 void **p
, struct detached_freelist
*df
)
3069 size_t first_skipped_index
= 0;
3074 /* Always re-init detached_freelist */
3079 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3080 } while (!object
&& size
);
3085 page
= virt_to_head_page(object
);
3087 /* Handle kalloc'ed objects */
3088 if (unlikely(!PageSlab(page
))) {
3089 BUG_ON(!PageCompound(page
));
3091 __free_pages(page
, compound_order(page
));
3092 p
[size
] = NULL
; /* mark object processed */
3095 /* Derive kmem_cache from object */
3096 df
->s
= page
->slab_cache
;
3098 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3101 /* Start new detached freelist */
3103 set_freepointer(df
->s
, object
, NULL
);
3105 df
->freelist
= object
;
3106 p
[size
] = NULL
; /* mark object processed */
3112 continue; /* Skip processed objects */
3114 /* df->page is always set at this point */
3115 if (df
->page
== virt_to_head_page(object
)) {
3116 /* Opportunity build freelist */
3117 set_freepointer(df
->s
, object
, df
->freelist
);
3118 df
->freelist
= object
;
3120 p
[size
] = NULL
; /* mark object processed */
3125 /* Limit look ahead search */
3129 if (!first_skipped_index
)
3130 first_skipped_index
= size
+ 1;
3133 return first_skipped_index
;
3136 /* Note that interrupts must be enabled when calling this function. */
3137 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3143 struct detached_freelist df
;
3145 size
= build_detached_freelist(s
, size
, p
, &df
);
3149 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3150 } while (likely(size
));
3152 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3154 /* Note that interrupts must be enabled when calling this function. */
3155 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3158 struct kmem_cache_cpu
*c
;
3161 /* memcg and kmem_cache debug support */
3162 s
= slab_pre_alloc_hook(s
, flags
);
3166 * Drain objects in the per cpu slab, while disabling local
3167 * IRQs, which protects against PREEMPT and interrupts
3168 * handlers invoking normal fastpath.
3170 local_irq_disable();
3171 c
= this_cpu_ptr(s
->cpu_slab
);
3173 for (i
= 0; i
< size
; i
++) {
3174 void *object
= c
->freelist
;
3176 if (unlikely(!object
)) {
3178 * Invoking slow path likely have side-effect
3179 * of re-populating per CPU c->freelist
3181 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3183 if (unlikely(!p
[i
]))
3186 c
= this_cpu_ptr(s
->cpu_slab
);
3187 maybe_wipe_obj_freeptr(s
, p
[i
]);
3189 continue; /* goto for-loop */
3191 c
->freelist
= get_freepointer(s
, object
);
3193 maybe_wipe_obj_freeptr(s
, p
[i
]);
3195 c
->tid
= next_tid(c
->tid
);
3198 /* Clear memory outside IRQ disabled fastpath loop */
3199 if (unlikely(slab_want_init_on_alloc(flags
, s
))) {
3202 for (j
= 0; j
< i
; j
++)
3203 memset(p
[j
], 0, s
->object_size
);
3206 /* memcg and kmem_cache debug support */
3207 slab_post_alloc_hook(s
, flags
, size
, p
);
3211 slab_post_alloc_hook(s
, flags
, i
, p
);
3212 __kmem_cache_free_bulk(s
, i
, p
);
3215 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3219 * Object placement in a slab is made very easy because we always start at
3220 * offset 0. If we tune the size of the object to the alignment then we can
3221 * get the required alignment by putting one properly sized object after
3224 * Notice that the allocation order determines the sizes of the per cpu
3225 * caches. Each processor has always one slab available for allocations.
3226 * Increasing the allocation order reduces the number of times that slabs
3227 * must be moved on and off the partial lists and is therefore a factor in
3232 * Mininum / Maximum order of slab pages. This influences locking overhead
3233 * and slab fragmentation. A higher order reduces the number of partial slabs
3234 * and increases the number of allocations possible without having to
3235 * take the list_lock.
3237 static unsigned int slub_min_order
;
3238 static unsigned int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3239 static unsigned int slub_min_objects
;
3242 * Calculate the order of allocation given an slab object size.
3244 * The order of allocation has significant impact on performance and other
3245 * system components. Generally order 0 allocations should be preferred since
3246 * order 0 does not cause fragmentation in the page allocator. Larger objects
3247 * be problematic to put into order 0 slabs because there may be too much
3248 * unused space left. We go to a higher order if more than 1/16th of the slab
3251 * In order to reach satisfactory performance we must ensure that a minimum
3252 * number of objects is in one slab. Otherwise we may generate too much
3253 * activity on the partial lists which requires taking the list_lock. This is
3254 * less a concern for large slabs though which are rarely used.
3256 * slub_max_order specifies the order where we begin to stop considering the
3257 * number of objects in a slab as critical. If we reach slub_max_order then
3258 * we try to keep the page order as low as possible. So we accept more waste
3259 * of space in favor of a small page order.
3261 * Higher order allocations also allow the placement of more objects in a
3262 * slab and thereby reduce object handling overhead. If the user has
3263 * requested a higher mininum order then we start with that one instead of
3264 * the smallest order which will fit the object.
3266 static inline unsigned int slab_order(unsigned int size
,
3267 unsigned int min_objects
, unsigned int max_order
,
3268 unsigned int fract_leftover
)
3270 unsigned int min_order
= slub_min_order
;
3273 if (order_objects(min_order
, size
) > MAX_OBJS_PER_PAGE
)
3274 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3276 for (order
= max(min_order
, (unsigned int)get_order(min_objects
* size
));
3277 order
<= max_order
; order
++) {
3279 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
3282 rem
= slab_size
% size
;
3284 if (rem
<= slab_size
/ fract_leftover
)
3291 static inline int calculate_order(unsigned int size
)
3294 unsigned int min_objects
;
3295 unsigned int max_objects
;
3298 * Attempt to find best configuration for a slab. This
3299 * works by first attempting to generate a layout with
3300 * the best configuration and backing off gradually.
3302 * First we increase the acceptable waste in a slab. Then
3303 * we reduce the minimum objects required in a slab.
3305 min_objects
= slub_min_objects
;
3307 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3308 max_objects
= order_objects(slub_max_order
, size
);
3309 min_objects
= min(min_objects
, max_objects
);
3311 while (min_objects
> 1) {
3312 unsigned int fraction
;
3315 while (fraction
>= 4) {
3316 order
= slab_order(size
, min_objects
,
3317 slub_max_order
, fraction
);
3318 if (order
<= slub_max_order
)
3326 * We were unable to place multiple objects in a slab. Now
3327 * lets see if we can place a single object there.
3329 order
= slab_order(size
, 1, slub_max_order
, 1);
3330 if (order
<= slub_max_order
)
3334 * Doh this slab cannot be placed using slub_max_order.
3336 order
= slab_order(size
, 1, MAX_ORDER
, 1);
3337 if (order
< MAX_ORDER
)
3343 init_kmem_cache_node(struct kmem_cache_node
*n
)
3346 spin_lock_init(&n
->list_lock
);
3347 INIT_LIST_HEAD(&n
->partial
);
3348 #ifdef CONFIG_SLUB_DEBUG
3349 atomic_long_set(&n
->nr_slabs
, 0);
3350 atomic_long_set(&n
->total_objects
, 0);
3351 INIT_LIST_HEAD(&n
->full
);
3355 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3357 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3358 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3361 * Must align to double word boundary for the double cmpxchg
3362 * instructions to work; see __pcpu_double_call_return_bool().
3364 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3365 2 * sizeof(void *));
3370 init_kmem_cache_cpus(s
);
3375 static struct kmem_cache
*kmem_cache_node
;
3378 * No kmalloc_node yet so do it by hand. We know that this is the first
3379 * slab on the node for this slabcache. There are no concurrent accesses
3382 * Note that this function only works on the kmem_cache_node
3383 * when allocating for the kmem_cache_node. This is used for bootstrapping
3384 * memory on a fresh node that has no slab structures yet.
3386 static void early_kmem_cache_node_alloc(int node
)
3389 struct kmem_cache_node
*n
;
3391 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3393 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3396 if (page_to_nid(page
) != node
) {
3397 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3398 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3403 #ifdef CONFIG_SLUB_DEBUG
3404 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3405 init_tracking(kmem_cache_node
, n
);
3407 n
= kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3409 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3412 kmem_cache_node
->node
[node
] = n
;
3413 init_kmem_cache_node(n
);
3414 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3417 * No locks need to be taken here as it has just been
3418 * initialized and there is no concurrent access.
3420 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3423 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3426 struct kmem_cache_node
*n
;
3428 for_each_kmem_cache_node(s
, node
, n
) {
3429 s
->node
[node
] = NULL
;
3430 kmem_cache_free(kmem_cache_node
, n
);
3434 void __kmem_cache_release(struct kmem_cache
*s
)
3436 cache_random_seq_destroy(s
);
3437 free_percpu(s
->cpu_slab
);
3438 free_kmem_cache_nodes(s
);
3441 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3445 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3446 struct kmem_cache_node
*n
;
3448 if (slab_state
== DOWN
) {
3449 early_kmem_cache_node_alloc(node
);
3452 n
= kmem_cache_alloc_node(kmem_cache_node
,
3456 free_kmem_cache_nodes(s
);
3460 init_kmem_cache_node(n
);
3466 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3468 if (min
< MIN_PARTIAL
)
3470 else if (min
> MAX_PARTIAL
)
3472 s
->min_partial
= min
;
3475 static void set_cpu_partial(struct kmem_cache
*s
)
3477 #ifdef CONFIG_SLUB_CPU_PARTIAL
3479 * cpu_partial determined the maximum number of objects kept in the
3480 * per cpu partial lists of a processor.
3482 * Per cpu partial lists mainly contain slabs that just have one
3483 * object freed. If they are used for allocation then they can be
3484 * filled up again with minimal effort. The slab will never hit the
3485 * per node partial lists and therefore no locking will be required.
3487 * This setting also determines
3489 * A) The number of objects from per cpu partial slabs dumped to the
3490 * per node list when we reach the limit.
3491 * B) The number of objects in cpu partial slabs to extract from the
3492 * per node list when we run out of per cpu objects. We only fetch
3493 * 50% to keep some capacity around for frees.
3495 if (!kmem_cache_has_cpu_partial(s
))
3497 else if (s
->size
>= PAGE_SIZE
)
3499 else if (s
->size
>= 1024)
3501 else if (s
->size
>= 256)
3502 s
->cpu_partial
= 13;
3504 s
->cpu_partial
= 30;
3509 * calculate_sizes() determines the order and the distribution of data within
3512 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3514 slab_flags_t flags
= s
->flags
;
3515 unsigned int size
= s
->object_size
;
3519 * Round up object size to the next word boundary. We can only
3520 * place the free pointer at word boundaries and this determines
3521 * the possible location of the free pointer.
3523 size
= ALIGN(size
, sizeof(void *));
3525 #ifdef CONFIG_SLUB_DEBUG
3527 * Determine if we can poison the object itself. If the user of
3528 * the slab may touch the object after free or before allocation
3529 * then we should never poison the object itself.
3531 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3533 s
->flags
|= __OBJECT_POISON
;
3535 s
->flags
&= ~__OBJECT_POISON
;
3539 * If we are Redzoning then check if there is some space between the
3540 * end of the object and the free pointer. If not then add an
3541 * additional word to have some bytes to store Redzone information.
3543 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3544 size
+= sizeof(void *);
3548 * With that we have determined the number of bytes in actual use
3549 * by the object. This is the potential offset to the free pointer.
3553 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3556 * Relocate free pointer after the object if it is not
3557 * permitted to overwrite the first word of the object on
3560 * This is the case if we do RCU, have a constructor or
3561 * destructor or are poisoning the objects.
3564 size
+= sizeof(void *);
3567 #ifdef CONFIG_SLUB_DEBUG
3568 if (flags
& SLAB_STORE_USER
)
3570 * Need to store information about allocs and frees after
3573 size
+= 2 * sizeof(struct track
);
3576 kasan_cache_create(s
, &size
, &s
->flags
);
3577 #ifdef CONFIG_SLUB_DEBUG
3578 if (flags
& SLAB_RED_ZONE
) {
3580 * Add some empty padding so that we can catch
3581 * overwrites from earlier objects rather than let
3582 * tracking information or the free pointer be
3583 * corrupted if a user writes before the start
3586 size
+= sizeof(void *);
3588 s
->red_left_pad
= sizeof(void *);
3589 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3590 size
+= s
->red_left_pad
;
3595 * SLUB stores one object immediately after another beginning from
3596 * offset 0. In order to align the objects we have to simply size
3597 * each object to conform to the alignment.
3599 size
= ALIGN(size
, s
->align
);
3601 if (forced_order
>= 0)
3602 order
= forced_order
;
3604 order
= calculate_order(size
);
3611 s
->allocflags
|= __GFP_COMP
;
3613 if (s
->flags
& SLAB_CACHE_DMA
)
3614 s
->allocflags
|= GFP_DMA
;
3616 if (s
->flags
& SLAB_CACHE_DMA32
)
3617 s
->allocflags
|= GFP_DMA32
;
3619 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3620 s
->allocflags
|= __GFP_RECLAIMABLE
;
3623 * Determine the number of objects per slab
3625 s
->oo
= oo_make(order
, size
);
3626 s
->min
= oo_make(get_order(size
), size
);
3627 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3630 return !!oo_objects(s
->oo
);
3633 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3635 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3636 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3637 s
->random
= get_random_long();
3640 if (!calculate_sizes(s
, -1))
3642 if (disable_higher_order_debug
) {
3644 * Disable debugging flags that store metadata if the min slab
3647 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3648 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3650 if (!calculate_sizes(s
, -1))
3655 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3656 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3657 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3658 /* Enable fast mode */
3659 s
->flags
|= __CMPXCHG_DOUBLE
;
3663 * The larger the object size is, the more pages we want on the partial
3664 * list to avoid pounding the page allocator excessively.
3666 set_min_partial(s
, ilog2(s
->size
) / 2);
3671 s
->remote_node_defrag_ratio
= 1000;
3674 /* Initialize the pre-computed randomized freelist if slab is up */
3675 if (slab_state
>= UP
) {
3676 if (init_cache_random_seq(s
))
3680 if (!init_kmem_cache_nodes(s
))
3683 if (alloc_kmem_cache_cpus(s
))
3686 free_kmem_cache_nodes(s
);
3691 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3694 #ifdef CONFIG_SLUB_DEBUG
3695 void *addr
= page_address(page
);
3699 slab_err(s
, page
, text
, s
->name
);
3702 map
= get_map(s
, page
);
3703 for_each_object(p
, s
, addr
, page
->objects
) {
3705 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3706 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3707 print_tracking(s
, p
);
3717 * Attempt to free all partial slabs on a node.
3718 * This is called from __kmem_cache_shutdown(). We must take list_lock
3719 * because sysfs file might still access partial list after the shutdowning.
3721 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3724 struct page
*page
, *h
;
3726 BUG_ON(irqs_disabled());
3727 spin_lock_irq(&n
->list_lock
);
3728 list_for_each_entry_safe(page
, h
, &n
->partial
, slab_list
) {
3730 remove_partial(n
, page
);
3731 list_add(&page
->slab_list
, &discard
);
3733 list_slab_objects(s
, page
,
3734 "Objects remaining in %s on __kmem_cache_shutdown()");
3737 spin_unlock_irq(&n
->list_lock
);
3739 list_for_each_entry_safe(page
, h
, &discard
, slab_list
)
3740 discard_slab(s
, page
);
3743 bool __kmem_cache_empty(struct kmem_cache
*s
)
3746 struct kmem_cache_node
*n
;
3748 for_each_kmem_cache_node(s
, node
, n
)
3749 if (n
->nr_partial
|| slabs_node(s
, node
))
3755 * Release all resources used by a slab cache.
3757 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3760 struct kmem_cache_node
*n
;
3763 /* Attempt to free all objects */
3764 for_each_kmem_cache_node(s
, node
, n
) {
3766 if (n
->nr_partial
|| slabs_node(s
, node
))
3769 sysfs_slab_remove(s
);
3773 /********************************************************************
3775 *******************************************************************/
3777 static int __init
setup_slub_min_order(char *str
)
3779 get_option(&str
, (int *)&slub_min_order
);
3784 __setup("slub_min_order=", setup_slub_min_order
);
3786 static int __init
setup_slub_max_order(char *str
)
3788 get_option(&str
, (int *)&slub_max_order
);
3789 slub_max_order
= min(slub_max_order
, (unsigned int)MAX_ORDER
- 1);
3794 __setup("slub_max_order=", setup_slub_max_order
);
3796 static int __init
setup_slub_min_objects(char *str
)
3798 get_option(&str
, (int *)&slub_min_objects
);
3803 __setup("slub_min_objects=", setup_slub_min_objects
);
3805 void *__kmalloc(size_t size
, gfp_t flags
)
3807 struct kmem_cache
*s
;
3810 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3811 return kmalloc_large(size
, flags
);
3813 s
= kmalloc_slab(size
, flags
);
3815 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3818 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3820 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3822 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3826 EXPORT_SYMBOL(__kmalloc
);
3829 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3833 unsigned int order
= get_order(size
);
3835 flags
|= __GFP_COMP
;
3836 page
= alloc_pages_node(node
, flags
, order
);
3838 ptr
= page_address(page
);
3839 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE
,
3843 return kmalloc_large_node_hook(ptr
, size
, flags
);
3846 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3848 struct kmem_cache
*s
;
3851 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3852 ret
= kmalloc_large_node(size
, flags
, node
);
3854 trace_kmalloc_node(_RET_IP_
, ret
,
3855 size
, PAGE_SIZE
<< get_order(size
),
3861 s
= kmalloc_slab(size
, flags
);
3863 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3866 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3868 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3870 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3874 EXPORT_SYMBOL(__kmalloc_node
);
3875 #endif /* CONFIG_NUMA */
3877 #ifdef CONFIG_HARDENED_USERCOPY
3879 * Rejects incorrectly sized objects and objects that are to be copied
3880 * to/from userspace but do not fall entirely within the containing slab
3881 * cache's usercopy region.
3883 * Returns NULL if check passes, otherwise const char * to name of cache
3884 * to indicate an error.
3886 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
3889 struct kmem_cache
*s
;
3890 unsigned int offset
;
3893 ptr
= kasan_reset_tag(ptr
);
3895 /* Find object and usable object size. */
3896 s
= page
->slab_cache
;
3898 /* Reject impossible pointers. */
3899 if (ptr
< page_address(page
))
3900 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
3903 /* Find offset within object. */
3904 offset
= (ptr
- page_address(page
)) % s
->size
;
3906 /* Adjust for redzone and reject if within the redzone. */
3907 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3908 if (offset
< s
->red_left_pad
)
3909 usercopy_abort("SLUB object in left red zone",
3910 s
->name
, to_user
, offset
, n
);
3911 offset
-= s
->red_left_pad
;
3914 /* Allow address range falling entirely within usercopy region. */
3915 if (offset
>= s
->useroffset
&&
3916 offset
- s
->useroffset
<= s
->usersize
&&
3917 n
<= s
->useroffset
- offset
+ s
->usersize
)
3921 * If the copy is still within the allocated object, produce
3922 * a warning instead of rejecting the copy. This is intended
3923 * to be a temporary method to find any missing usercopy
3926 object_size
= slab_ksize(s
);
3927 if (usercopy_fallback
&&
3928 offset
<= object_size
&& n
<= object_size
- offset
) {
3929 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
3933 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
3935 #endif /* CONFIG_HARDENED_USERCOPY */
3937 size_t __ksize(const void *object
)
3941 if (unlikely(object
== ZERO_SIZE_PTR
))
3944 page
= virt_to_head_page(object
);
3946 if (unlikely(!PageSlab(page
))) {
3947 WARN_ON(!PageCompound(page
));
3948 return page_size(page
);
3951 return slab_ksize(page
->slab_cache
);
3953 EXPORT_SYMBOL(__ksize
);
3955 void kfree(const void *x
)
3958 void *object
= (void *)x
;
3960 trace_kfree(_RET_IP_
, x
);
3962 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3965 page
= virt_to_head_page(x
);
3966 if (unlikely(!PageSlab(page
))) {
3967 unsigned int order
= compound_order(page
);
3969 BUG_ON(!PageCompound(page
));
3971 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE
,
3973 __free_pages(page
, order
);
3976 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3978 EXPORT_SYMBOL(kfree
);
3980 #define SHRINK_PROMOTE_MAX 32
3983 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3984 * up most to the head of the partial lists. New allocations will then
3985 * fill those up and thus they can be removed from the partial lists.
3987 * The slabs with the least items are placed last. This results in them
3988 * being allocated from last increasing the chance that the last objects
3989 * are freed in them.
3991 int __kmem_cache_shrink(struct kmem_cache
*s
)
3995 struct kmem_cache_node
*n
;
3998 struct list_head discard
;
3999 struct list_head promote
[SHRINK_PROMOTE_MAX
];
4000 unsigned long flags
;
4004 for_each_kmem_cache_node(s
, node
, n
) {
4005 INIT_LIST_HEAD(&discard
);
4006 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
4007 INIT_LIST_HEAD(promote
+ i
);
4009 spin_lock_irqsave(&n
->list_lock
, flags
);
4012 * Build lists of slabs to discard or promote.
4014 * Note that concurrent frees may occur while we hold the
4015 * list_lock. page->inuse here is the upper limit.
4017 list_for_each_entry_safe(page
, t
, &n
->partial
, slab_list
) {
4018 int free
= page
->objects
- page
->inuse
;
4020 /* Do not reread page->inuse */
4023 /* We do not keep full slabs on the list */
4026 if (free
== page
->objects
) {
4027 list_move(&page
->slab_list
, &discard
);
4029 } else if (free
<= SHRINK_PROMOTE_MAX
)
4030 list_move(&page
->slab_list
, promote
+ free
- 1);
4034 * Promote the slabs filled up most to the head of the
4037 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
4038 list_splice(promote
+ i
, &n
->partial
);
4040 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4042 /* Release empty slabs */
4043 list_for_each_entry_safe(page
, t
, &discard
, slab_list
)
4044 discard_slab(s
, page
);
4046 if (slabs_node(s
, node
))
4054 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache
*s
)
4057 * Called with all the locks held after a sched RCU grace period.
4058 * Even if @s becomes empty after shrinking, we can't know that @s
4059 * doesn't have allocations already in-flight and thus can't
4060 * destroy @s until the associated memcg is released.
4062 * However, let's remove the sysfs files for empty caches here.
4063 * Each cache has a lot of interface files which aren't
4064 * particularly useful for empty draining caches; otherwise, we can
4065 * easily end up with millions of unnecessary sysfs files on
4066 * systems which have a lot of memory and transient cgroups.
4068 if (!__kmem_cache_shrink(s
))
4069 sysfs_slab_remove(s
);
4072 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4075 * Disable empty slabs caching. Used to avoid pinning offline
4076 * memory cgroups by kmem pages that can be freed.
4078 slub_set_cpu_partial(s
, 0);
4081 #endif /* CONFIG_MEMCG */
4083 static int slab_mem_going_offline_callback(void *arg
)
4085 struct kmem_cache
*s
;
4087 mutex_lock(&slab_mutex
);
4088 list_for_each_entry(s
, &slab_caches
, list
)
4089 __kmem_cache_shrink(s
);
4090 mutex_unlock(&slab_mutex
);
4095 static void slab_mem_offline_callback(void *arg
)
4097 struct kmem_cache_node
*n
;
4098 struct kmem_cache
*s
;
4099 struct memory_notify
*marg
= arg
;
4102 offline_node
= marg
->status_change_nid_normal
;
4105 * If the node still has available memory. we need kmem_cache_node
4108 if (offline_node
< 0)
4111 mutex_lock(&slab_mutex
);
4112 list_for_each_entry(s
, &slab_caches
, list
) {
4113 n
= get_node(s
, offline_node
);
4116 * if n->nr_slabs > 0, slabs still exist on the node
4117 * that is going down. We were unable to free them,
4118 * and offline_pages() function shouldn't call this
4119 * callback. So, we must fail.
4121 BUG_ON(slabs_node(s
, offline_node
));
4123 s
->node
[offline_node
] = NULL
;
4124 kmem_cache_free(kmem_cache_node
, n
);
4127 mutex_unlock(&slab_mutex
);
4130 static int slab_mem_going_online_callback(void *arg
)
4132 struct kmem_cache_node
*n
;
4133 struct kmem_cache
*s
;
4134 struct memory_notify
*marg
= arg
;
4135 int nid
= marg
->status_change_nid_normal
;
4139 * If the node's memory is already available, then kmem_cache_node is
4140 * already created. Nothing to do.
4146 * We are bringing a node online. No memory is available yet. We must
4147 * allocate a kmem_cache_node structure in order to bring the node
4150 mutex_lock(&slab_mutex
);
4151 list_for_each_entry(s
, &slab_caches
, list
) {
4153 * XXX: kmem_cache_alloc_node will fallback to other nodes
4154 * since memory is not yet available from the node that
4157 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4162 init_kmem_cache_node(n
);
4166 mutex_unlock(&slab_mutex
);
4170 static int slab_memory_callback(struct notifier_block
*self
,
4171 unsigned long action
, void *arg
)
4176 case MEM_GOING_ONLINE
:
4177 ret
= slab_mem_going_online_callback(arg
);
4179 case MEM_GOING_OFFLINE
:
4180 ret
= slab_mem_going_offline_callback(arg
);
4183 case MEM_CANCEL_ONLINE
:
4184 slab_mem_offline_callback(arg
);
4187 case MEM_CANCEL_OFFLINE
:
4191 ret
= notifier_from_errno(ret
);
4197 static struct notifier_block slab_memory_callback_nb
= {
4198 .notifier_call
= slab_memory_callback
,
4199 .priority
= SLAB_CALLBACK_PRI
,
4202 /********************************************************************
4203 * Basic setup of slabs
4204 *******************************************************************/
4207 * Used for early kmem_cache structures that were allocated using
4208 * the page allocator. Allocate them properly then fix up the pointers
4209 * that may be pointing to the wrong kmem_cache structure.
4212 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4215 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4216 struct kmem_cache_node
*n
;
4218 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4221 * This runs very early, and only the boot processor is supposed to be
4222 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4225 __flush_cpu_slab(s
, smp_processor_id());
4226 for_each_kmem_cache_node(s
, node
, n
) {
4229 list_for_each_entry(p
, &n
->partial
, slab_list
)
4232 #ifdef CONFIG_SLUB_DEBUG
4233 list_for_each_entry(p
, &n
->full
, slab_list
)
4237 slab_init_memcg_params(s
);
4238 list_add(&s
->list
, &slab_caches
);
4239 memcg_link_cache(s
, NULL
);
4243 void __init
kmem_cache_init(void)
4245 static __initdata
struct kmem_cache boot_kmem_cache
,
4246 boot_kmem_cache_node
;
4248 if (debug_guardpage_minorder())
4251 kmem_cache_node
= &boot_kmem_cache_node
;
4252 kmem_cache
= &boot_kmem_cache
;
4254 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4255 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4257 register_hotmemory_notifier(&slab_memory_callback_nb
);
4259 /* Able to allocate the per node structures */
4260 slab_state
= PARTIAL
;
4262 create_boot_cache(kmem_cache
, "kmem_cache",
4263 offsetof(struct kmem_cache
, node
) +
4264 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4265 SLAB_HWCACHE_ALIGN
, 0, 0);
4267 kmem_cache
= bootstrap(&boot_kmem_cache
);
4268 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4270 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4271 setup_kmalloc_cache_index_table();
4272 create_kmalloc_caches(0);
4274 /* Setup random freelists for each cache */
4275 init_freelist_randomization();
4277 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4280 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4282 slub_min_order
, slub_max_order
, slub_min_objects
,
4283 nr_cpu_ids
, nr_node_ids
);
4286 void __init
kmem_cache_init_late(void)
4291 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
4292 slab_flags_t flags
, void (*ctor
)(void *))
4294 struct kmem_cache
*s
, *c
;
4296 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4301 * Adjust the object sizes so that we clear
4302 * the complete object on kzalloc.
4304 s
->object_size
= max(s
->object_size
, size
);
4305 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
4307 for_each_memcg_cache(c
, s
) {
4308 c
->object_size
= s
->object_size
;
4309 c
->inuse
= max(c
->inuse
, ALIGN(size
, sizeof(void *)));
4312 if (sysfs_slab_alias(s
, name
)) {
4321 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4325 err
= kmem_cache_open(s
, flags
);
4329 /* Mutex is not taken during early boot */
4330 if (slab_state
<= UP
)
4333 memcg_propagate_slab_attrs(s
);
4334 err
= sysfs_slab_add(s
);
4336 __kmem_cache_release(s
);
4341 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4343 struct kmem_cache
*s
;
4346 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4347 return kmalloc_large(size
, gfpflags
);
4349 s
= kmalloc_slab(size
, gfpflags
);
4351 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4354 ret
= slab_alloc(s
, gfpflags
, caller
);
4356 /* Honor the call site pointer we received. */
4357 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4363 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4364 int node
, unsigned long caller
)
4366 struct kmem_cache
*s
;
4369 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4370 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4372 trace_kmalloc_node(caller
, ret
,
4373 size
, PAGE_SIZE
<< get_order(size
),
4379 s
= kmalloc_slab(size
, gfpflags
);
4381 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4384 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4386 /* Honor the call site pointer we received. */
4387 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4394 static int count_inuse(struct page
*page
)
4399 static int count_total(struct page
*page
)
4401 return page
->objects
;
4405 #ifdef CONFIG_SLUB_DEBUG
4406 static void validate_slab(struct kmem_cache
*s
, struct page
*page
)
4409 void *addr
= page_address(page
);
4414 if (!check_slab(s
, page
) || !on_freelist(s
, page
, NULL
))
4417 /* Now we know that a valid freelist exists */
4418 map
= get_map(s
, page
);
4419 for_each_object(p
, s
, addr
, page
->objects
) {
4420 u8 val
= test_bit(slab_index(p
, s
, addr
), map
) ?
4421 SLUB_RED_INACTIVE
: SLUB_RED_ACTIVE
;
4423 if (!check_object(s
, page
, p
, val
))
4431 static int validate_slab_node(struct kmem_cache
*s
,
4432 struct kmem_cache_node
*n
)
4434 unsigned long count
= 0;
4436 unsigned long flags
;
4438 spin_lock_irqsave(&n
->list_lock
, flags
);
4440 list_for_each_entry(page
, &n
->partial
, slab_list
) {
4441 validate_slab(s
, page
);
4444 if (count
!= n
->nr_partial
)
4445 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4446 s
->name
, count
, n
->nr_partial
);
4448 if (!(s
->flags
& SLAB_STORE_USER
))
4451 list_for_each_entry(page
, &n
->full
, slab_list
) {
4452 validate_slab(s
, page
);
4455 if (count
!= atomic_long_read(&n
->nr_slabs
))
4456 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4457 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4460 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4464 static long validate_slab_cache(struct kmem_cache
*s
)
4467 unsigned long count
= 0;
4468 struct kmem_cache_node
*n
;
4471 for_each_kmem_cache_node(s
, node
, n
)
4472 count
+= validate_slab_node(s
, n
);
4477 * Generate lists of code addresses where slabcache objects are allocated
4482 unsigned long count
;
4489 DECLARE_BITMAP(cpus
, NR_CPUS
);
4495 unsigned long count
;
4496 struct location
*loc
;
4499 static void free_loc_track(struct loc_track
*t
)
4502 free_pages((unsigned long)t
->loc
,
4503 get_order(sizeof(struct location
) * t
->max
));
4506 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4511 order
= get_order(sizeof(struct location
) * max
);
4513 l
= (void *)__get_free_pages(flags
, order
);
4518 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4526 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4527 const struct track
*track
)
4529 long start
, end
, pos
;
4531 unsigned long caddr
;
4532 unsigned long age
= jiffies
- track
->when
;
4538 pos
= start
+ (end
- start
+ 1) / 2;
4541 * There is nothing at "end". If we end up there
4542 * we need to add something to before end.
4547 caddr
= t
->loc
[pos
].addr
;
4548 if (track
->addr
== caddr
) {
4554 if (age
< l
->min_time
)
4556 if (age
> l
->max_time
)
4559 if (track
->pid
< l
->min_pid
)
4560 l
->min_pid
= track
->pid
;
4561 if (track
->pid
> l
->max_pid
)
4562 l
->max_pid
= track
->pid
;
4564 cpumask_set_cpu(track
->cpu
,
4565 to_cpumask(l
->cpus
));
4567 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4571 if (track
->addr
< caddr
)
4578 * Not found. Insert new tracking element.
4580 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4586 (t
->count
- pos
) * sizeof(struct location
));
4589 l
->addr
= track
->addr
;
4593 l
->min_pid
= track
->pid
;
4594 l
->max_pid
= track
->pid
;
4595 cpumask_clear(to_cpumask(l
->cpus
));
4596 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4597 nodes_clear(l
->nodes
);
4598 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4602 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4603 struct page
*page
, enum track_item alloc
)
4605 void *addr
= page_address(page
);
4609 map
= get_map(s
, page
);
4610 for_each_object(p
, s
, addr
, page
->objects
)
4611 if (!test_bit(slab_index(p
, s
, addr
), map
))
4612 add_location(t
, s
, get_track(s
, p
, alloc
));
4616 static int list_locations(struct kmem_cache
*s
, char *buf
,
4617 enum track_item alloc
)
4621 struct loc_track t
= { 0, 0, NULL
};
4623 struct kmem_cache_node
*n
;
4625 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4627 return sprintf(buf
, "Out of memory\n");
4629 /* Push back cpu slabs */
4632 for_each_kmem_cache_node(s
, node
, n
) {
4633 unsigned long flags
;
4636 if (!atomic_long_read(&n
->nr_slabs
))
4639 spin_lock_irqsave(&n
->list_lock
, flags
);
4640 list_for_each_entry(page
, &n
->partial
, slab_list
)
4641 process_slab(&t
, s
, page
, alloc
);
4642 list_for_each_entry(page
, &n
->full
, slab_list
)
4643 process_slab(&t
, s
, page
, alloc
);
4644 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4647 for (i
= 0; i
< t
.count
; i
++) {
4648 struct location
*l
= &t
.loc
[i
];
4650 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4652 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4655 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4657 len
+= sprintf(buf
+ len
, "<not-available>");
4659 if (l
->sum_time
!= l
->min_time
) {
4660 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4662 (long)div_u64(l
->sum_time
, l
->count
),
4665 len
+= sprintf(buf
+ len
, " age=%ld",
4668 if (l
->min_pid
!= l
->max_pid
)
4669 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4670 l
->min_pid
, l
->max_pid
);
4672 len
+= sprintf(buf
+ len
, " pid=%ld",
4675 if (num_online_cpus() > 1 &&
4676 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4677 len
< PAGE_SIZE
- 60)
4678 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4680 cpumask_pr_args(to_cpumask(l
->cpus
)));
4682 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4683 len
< PAGE_SIZE
- 60)
4684 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4686 nodemask_pr_args(&l
->nodes
));
4688 len
+= sprintf(buf
+ len
, "\n");
4693 len
+= sprintf(buf
, "No data\n");
4696 #endif /* CONFIG_SLUB_DEBUG */
4698 #ifdef SLUB_RESILIENCY_TEST
4699 static void __init
resiliency_test(void)
4702 int type
= KMALLOC_NORMAL
;
4704 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4706 pr_err("SLUB resiliency testing\n");
4707 pr_err("-----------------------\n");
4708 pr_err("A. Corruption after allocation\n");
4710 p
= kzalloc(16, GFP_KERNEL
);
4712 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4715 validate_slab_cache(kmalloc_caches
[type
][4]);
4717 /* Hmmm... The next two are dangerous */
4718 p
= kzalloc(32, GFP_KERNEL
);
4719 p
[32 + sizeof(void *)] = 0x34;
4720 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4722 pr_err("If allocated object is overwritten then not detectable\n\n");
4724 validate_slab_cache(kmalloc_caches
[type
][5]);
4725 p
= kzalloc(64, GFP_KERNEL
);
4726 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4728 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4730 pr_err("If allocated object is overwritten then not detectable\n\n");
4731 validate_slab_cache(kmalloc_caches
[type
][6]);
4733 pr_err("\nB. Corruption after free\n");
4734 p
= kzalloc(128, GFP_KERNEL
);
4737 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4738 validate_slab_cache(kmalloc_caches
[type
][7]);
4740 p
= kzalloc(256, GFP_KERNEL
);
4743 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4744 validate_slab_cache(kmalloc_caches
[type
][8]);
4746 p
= kzalloc(512, GFP_KERNEL
);
4749 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4750 validate_slab_cache(kmalloc_caches
[type
][9]);
4754 static void resiliency_test(void) {};
4756 #endif /* SLUB_RESILIENCY_TEST */
4759 enum slab_stat_type
{
4760 SL_ALL
, /* All slabs */
4761 SL_PARTIAL
, /* Only partially allocated slabs */
4762 SL_CPU
, /* Only slabs used for cpu caches */
4763 SL_OBJECTS
, /* Determine allocated objects not slabs */
4764 SL_TOTAL
/* Determine object capacity not slabs */
4767 #define SO_ALL (1 << SL_ALL)
4768 #define SO_PARTIAL (1 << SL_PARTIAL)
4769 #define SO_CPU (1 << SL_CPU)
4770 #define SO_OBJECTS (1 << SL_OBJECTS)
4771 #define SO_TOTAL (1 << SL_TOTAL)
4774 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4776 static int __init
setup_slub_memcg_sysfs(char *str
)
4780 if (get_option(&str
, &v
) > 0)
4781 memcg_sysfs_enabled
= v
;
4786 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4789 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4790 char *buf
, unsigned long flags
)
4792 unsigned long total
= 0;
4795 unsigned long *nodes
;
4797 nodes
= kcalloc(nr_node_ids
, sizeof(unsigned long), GFP_KERNEL
);
4801 if (flags
& SO_CPU
) {
4804 for_each_possible_cpu(cpu
) {
4805 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4810 page
= READ_ONCE(c
->page
);
4814 node
= page_to_nid(page
);
4815 if (flags
& SO_TOTAL
)
4817 else if (flags
& SO_OBJECTS
)
4825 page
= slub_percpu_partial_read_once(c
);
4827 node
= page_to_nid(page
);
4828 if (flags
& SO_TOTAL
)
4830 else if (flags
& SO_OBJECTS
)
4841 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4842 * already held which will conflict with an existing lock order:
4844 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4846 * We don't really need mem_hotplug_lock (to hold off
4847 * slab_mem_going_offline_callback) here because slab's memory hot
4848 * unplug code doesn't destroy the kmem_cache->node[] data.
4851 #ifdef CONFIG_SLUB_DEBUG
4852 if (flags
& SO_ALL
) {
4853 struct kmem_cache_node
*n
;
4855 for_each_kmem_cache_node(s
, node
, n
) {
4857 if (flags
& SO_TOTAL
)
4858 x
= atomic_long_read(&n
->total_objects
);
4859 else if (flags
& SO_OBJECTS
)
4860 x
= atomic_long_read(&n
->total_objects
) -
4861 count_partial(n
, count_free
);
4863 x
= atomic_long_read(&n
->nr_slabs
);
4870 if (flags
& SO_PARTIAL
) {
4871 struct kmem_cache_node
*n
;
4873 for_each_kmem_cache_node(s
, node
, n
) {
4874 if (flags
& SO_TOTAL
)
4875 x
= count_partial(n
, count_total
);
4876 else if (flags
& SO_OBJECTS
)
4877 x
= count_partial(n
, count_inuse
);
4884 x
= sprintf(buf
, "%lu", total
);
4886 for (node
= 0; node
< nr_node_ids
; node
++)
4888 x
+= sprintf(buf
+ x
, " N%d=%lu",
4892 return x
+ sprintf(buf
+ x
, "\n");
4895 #ifdef CONFIG_SLUB_DEBUG
4896 static int any_slab_objects(struct kmem_cache
*s
)
4899 struct kmem_cache_node
*n
;
4901 for_each_kmem_cache_node(s
, node
, n
)
4902 if (atomic_long_read(&n
->total_objects
))
4909 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4910 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4912 struct slab_attribute
{
4913 struct attribute attr
;
4914 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4915 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4918 #define SLAB_ATTR_RO(_name) \
4919 static struct slab_attribute _name##_attr = \
4920 __ATTR(_name, 0400, _name##_show, NULL)
4922 #define SLAB_ATTR(_name) \
4923 static struct slab_attribute _name##_attr = \
4924 __ATTR(_name, 0600, _name##_show, _name##_store)
4926 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4928 return sprintf(buf
, "%u\n", s
->size
);
4930 SLAB_ATTR_RO(slab_size
);
4932 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4934 return sprintf(buf
, "%u\n", s
->align
);
4936 SLAB_ATTR_RO(align
);
4938 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4940 return sprintf(buf
, "%u\n", s
->object_size
);
4942 SLAB_ATTR_RO(object_size
);
4944 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4946 return sprintf(buf
, "%u\n", oo_objects(s
->oo
));
4948 SLAB_ATTR_RO(objs_per_slab
);
4950 static ssize_t
order_store(struct kmem_cache
*s
,
4951 const char *buf
, size_t length
)
4956 err
= kstrtouint(buf
, 10, &order
);
4960 if (order
> slub_max_order
|| order
< slub_min_order
)
4963 calculate_sizes(s
, order
);
4967 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4969 return sprintf(buf
, "%u\n", oo_order(s
->oo
));
4973 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4975 return sprintf(buf
, "%lu\n", s
->min_partial
);
4978 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4984 err
= kstrtoul(buf
, 10, &min
);
4988 set_min_partial(s
, min
);
4991 SLAB_ATTR(min_partial
);
4993 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4995 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4998 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
5001 unsigned int objects
;
5004 err
= kstrtouint(buf
, 10, &objects
);
5007 if (objects
&& !kmem_cache_has_cpu_partial(s
))
5010 slub_set_cpu_partial(s
, objects
);
5014 SLAB_ATTR(cpu_partial
);
5016 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
5020 return sprintf(buf
, "%pS\n", s
->ctor
);
5024 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
5026 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
5028 SLAB_ATTR_RO(aliases
);
5030 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
5032 return show_slab_objects(s
, buf
, SO_PARTIAL
);
5034 SLAB_ATTR_RO(partial
);
5036 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5038 return show_slab_objects(s
, buf
, SO_CPU
);
5040 SLAB_ATTR_RO(cpu_slabs
);
5042 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5044 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5046 SLAB_ATTR_RO(objects
);
5048 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5050 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5052 SLAB_ATTR_RO(objects_partial
);
5054 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5061 for_each_online_cpu(cpu
) {
5064 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5067 pages
+= page
->pages
;
5068 objects
+= page
->pobjects
;
5072 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5075 for_each_online_cpu(cpu
) {
5078 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5080 if (page
&& len
< PAGE_SIZE
- 20)
5081 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5082 page
->pobjects
, page
->pages
);
5085 return len
+ sprintf(buf
+ len
, "\n");
5087 SLAB_ATTR_RO(slabs_cpu_partial
);
5089 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5091 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5094 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5095 const char *buf
, size_t length
)
5097 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5099 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5102 SLAB_ATTR(reclaim_account
);
5104 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5106 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5108 SLAB_ATTR_RO(hwcache_align
);
5110 #ifdef CONFIG_ZONE_DMA
5111 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5113 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5115 SLAB_ATTR_RO(cache_dma
);
5118 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5120 return sprintf(buf
, "%u\n", s
->usersize
);
5122 SLAB_ATTR_RO(usersize
);
5124 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5126 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5128 SLAB_ATTR_RO(destroy_by_rcu
);
5130 #ifdef CONFIG_SLUB_DEBUG
5131 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5133 return show_slab_objects(s
, buf
, SO_ALL
);
5135 SLAB_ATTR_RO(slabs
);
5137 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5139 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5141 SLAB_ATTR_RO(total_objects
);
5143 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5145 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5148 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5149 const char *buf
, size_t length
)
5151 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5152 if (buf
[0] == '1') {
5153 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5154 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5158 SLAB_ATTR(sanity_checks
);
5160 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5162 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5165 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5169 * Tracing a merged cache is going to give confusing results
5170 * as well as cause other issues like converting a mergeable
5171 * cache into an umergeable one.
5173 if (s
->refcount
> 1)
5176 s
->flags
&= ~SLAB_TRACE
;
5177 if (buf
[0] == '1') {
5178 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5179 s
->flags
|= SLAB_TRACE
;
5185 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5187 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5190 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5191 const char *buf
, size_t length
)
5193 if (any_slab_objects(s
))
5196 s
->flags
&= ~SLAB_RED_ZONE
;
5197 if (buf
[0] == '1') {
5198 s
->flags
|= SLAB_RED_ZONE
;
5200 calculate_sizes(s
, -1);
5203 SLAB_ATTR(red_zone
);
5205 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5207 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5210 static ssize_t
poison_store(struct kmem_cache
*s
,
5211 const char *buf
, size_t length
)
5213 if (any_slab_objects(s
))
5216 s
->flags
&= ~SLAB_POISON
;
5217 if (buf
[0] == '1') {
5218 s
->flags
|= SLAB_POISON
;
5220 calculate_sizes(s
, -1);
5225 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5227 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5230 static ssize_t
store_user_store(struct kmem_cache
*s
,
5231 const char *buf
, size_t length
)
5233 if (any_slab_objects(s
))
5236 s
->flags
&= ~SLAB_STORE_USER
;
5237 if (buf
[0] == '1') {
5238 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5239 s
->flags
|= SLAB_STORE_USER
;
5241 calculate_sizes(s
, -1);
5244 SLAB_ATTR(store_user
);
5246 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5251 static ssize_t
validate_store(struct kmem_cache
*s
,
5252 const char *buf
, size_t length
)
5256 if (buf
[0] == '1') {
5257 ret
= validate_slab_cache(s
);
5263 SLAB_ATTR(validate
);
5265 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5267 if (!(s
->flags
& SLAB_STORE_USER
))
5269 return list_locations(s
, buf
, TRACK_ALLOC
);
5271 SLAB_ATTR_RO(alloc_calls
);
5273 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5275 if (!(s
->flags
& SLAB_STORE_USER
))
5277 return list_locations(s
, buf
, TRACK_FREE
);
5279 SLAB_ATTR_RO(free_calls
);
5280 #endif /* CONFIG_SLUB_DEBUG */
5282 #ifdef CONFIG_FAILSLAB
5283 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5285 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5288 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5291 if (s
->refcount
> 1)
5294 s
->flags
&= ~SLAB_FAILSLAB
;
5296 s
->flags
|= SLAB_FAILSLAB
;
5299 SLAB_ATTR(failslab
);
5302 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5307 static ssize_t
shrink_store(struct kmem_cache
*s
,
5308 const char *buf
, size_t length
)
5311 kmem_cache_shrink_all(s
);
5319 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5321 return sprintf(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
5324 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5325 const char *buf
, size_t length
)
5330 err
= kstrtouint(buf
, 10, &ratio
);
5336 s
->remote_node_defrag_ratio
= ratio
* 10;
5340 SLAB_ATTR(remote_node_defrag_ratio
);
5343 #ifdef CONFIG_SLUB_STATS
5344 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5346 unsigned long sum
= 0;
5349 int *data
= kmalloc_array(nr_cpu_ids
, sizeof(int), GFP_KERNEL
);
5354 for_each_online_cpu(cpu
) {
5355 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5361 len
= sprintf(buf
, "%lu", sum
);
5364 for_each_online_cpu(cpu
) {
5365 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5366 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5370 return len
+ sprintf(buf
+ len
, "\n");
5373 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5377 for_each_online_cpu(cpu
)
5378 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5381 #define STAT_ATTR(si, text) \
5382 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5384 return show_stat(s, buf, si); \
5386 static ssize_t text##_store(struct kmem_cache *s, \
5387 const char *buf, size_t length) \
5389 if (buf[0] != '0') \
5391 clear_stat(s, si); \
5396 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5397 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5398 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5399 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5400 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5401 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5402 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5403 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5404 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5405 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5406 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5407 STAT_ATTR(FREE_SLAB
, free_slab
);
5408 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5409 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5410 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5411 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5412 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5413 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5414 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5415 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5416 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5417 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5418 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5419 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5420 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5421 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5422 #endif /* CONFIG_SLUB_STATS */
5424 static struct attribute
*slab_attrs
[] = {
5425 &slab_size_attr
.attr
,
5426 &object_size_attr
.attr
,
5427 &objs_per_slab_attr
.attr
,
5429 &min_partial_attr
.attr
,
5430 &cpu_partial_attr
.attr
,
5432 &objects_partial_attr
.attr
,
5434 &cpu_slabs_attr
.attr
,
5438 &hwcache_align_attr
.attr
,
5439 &reclaim_account_attr
.attr
,
5440 &destroy_by_rcu_attr
.attr
,
5442 &slabs_cpu_partial_attr
.attr
,
5443 #ifdef CONFIG_SLUB_DEBUG
5444 &total_objects_attr
.attr
,
5446 &sanity_checks_attr
.attr
,
5448 &red_zone_attr
.attr
,
5450 &store_user_attr
.attr
,
5451 &validate_attr
.attr
,
5452 &alloc_calls_attr
.attr
,
5453 &free_calls_attr
.attr
,
5455 #ifdef CONFIG_ZONE_DMA
5456 &cache_dma_attr
.attr
,
5459 &remote_node_defrag_ratio_attr
.attr
,
5461 #ifdef CONFIG_SLUB_STATS
5462 &alloc_fastpath_attr
.attr
,
5463 &alloc_slowpath_attr
.attr
,
5464 &free_fastpath_attr
.attr
,
5465 &free_slowpath_attr
.attr
,
5466 &free_frozen_attr
.attr
,
5467 &free_add_partial_attr
.attr
,
5468 &free_remove_partial_attr
.attr
,
5469 &alloc_from_partial_attr
.attr
,
5470 &alloc_slab_attr
.attr
,
5471 &alloc_refill_attr
.attr
,
5472 &alloc_node_mismatch_attr
.attr
,
5473 &free_slab_attr
.attr
,
5474 &cpuslab_flush_attr
.attr
,
5475 &deactivate_full_attr
.attr
,
5476 &deactivate_empty_attr
.attr
,
5477 &deactivate_to_head_attr
.attr
,
5478 &deactivate_to_tail_attr
.attr
,
5479 &deactivate_remote_frees_attr
.attr
,
5480 &deactivate_bypass_attr
.attr
,
5481 &order_fallback_attr
.attr
,
5482 &cmpxchg_double_fail_attr
.attr
,
5483 &cmpxchg_double_cpu_fail_attr
.attr
,
5484 &cpu_partial_alloc_attr
.attr
,
5485 &cpu_partial_free_attr
.attr
,
5486 &cpu_partial_node_attr
.attr
,
5487 &cpu_partial_drain_attr
.attr
,
5489 #ifdef CONFIG_FAILSLAB
5490 &failslab_attr
.attr
,
5492 &usersize_attr
.attr
,
5497 static const struct attribute_group slab_attr_group
= {
5498 .attrs
= slab_attrs
,
5501 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5502 struct attribute
*attr
,
5505 struct slab_attribute
*attribute
;
5506 struct kmem_cache
*s
;
5509 attribute
= to_slab_attr(attr
);
5512 if (!attribute
->show
)
5515 err
= attribute
->show(s
, buf
);
5520 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5521 struct attribute
*attr
,
5522 const char *buf
, size_t len
)
5524 struct slab_attribute
*attribute
;
5525 struct kmem_cache
*s
;
5528 attribute
= to_slab_attr(attr
);
5531 if (!attribute
->store
)
5534 err
= attribute
->store(s
, buf
, len
);
5536 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5537 struct kmem_cache
*c
;
5539 mutex_lock(&slab_mutex
);
5540 if (s
->max_attr_size
< len
)
5541 s
->max_attr_size
= len
;
5544 * This is a best effort propagation, so this function's return
5545 * value will be determined by the parent cache only. This is
5546 * basically because not all attributes will have a well
5547 * defined semantics for rollbacks - most of the actions will
5548 * have permanent effects.
5550 * Returning the error value of any of the children that fail
5551 * is not 100 % defined, in the sense that users seeing the
5552 * error code won't be able to know anything about the state of
5555 * Only returning the error code for the parent cache at least
5556 * has well defined semantics. The cache being written to
5557 * directly either failed or succeeded, in which case we loop
5558 * through the descendants with best-effort propagation.
5560 for_each_memcg_cache(c
, s
)
5561 attribute
->store(c
, buf
, len
);
5562 mutex_unlock(&slab_mutex
);
5568 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5572 char *buffer
= NULL
;
5573 struct kmem_cache
*root_cache
;
5575 if (is_root_cache(s
))
5578 root_cache
= s
->memcg_params
.root_cache
;
5581 * This mean this cache had no attribute written. Therefore, no point
5582 * in copying default values around
5584 if (!root_cache
->max_attr_size
)
5587 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5590 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5593 if (!attr
|| !attr
->store
|| !attr
->show
)
5597 * It is really bad that we have to allocate here, so we will
5598 * do it only as a fallback. If we actually allocate, though,
5599 * we can just use the allocated buffer until the end.
5601 * Most of the slub attributes will tend to be very small in
5602 * size, but sysfs allows buffers up to a page, so they can
5603 * theoretically happen.
5607 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5610 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5611 if (WARN_ON(!buffer
))
5616 len
= attr
->show(root_cache
, buf
);
5618 attr
->store(s
, buf
, len
);
5622 free_page((unsigned long)buffer
);
5623 #endif /* CONFIG_MEMCG */
5626 static void kmem_cache_release(struct kobject
*k
)
5628 slab_kmem_cache_release(to_slab(k
));
5631 static const struct sysfs_ops slab_sysfs_ops
= {
5632 .show
= slab_attr_show
,
5633 .store
= slab_attr_store
,
5636 static struct kobj_type slab_ktype
= {
5637 .sysfs_ops
= &slab_sysfs_ops
,
5638 .release
= kmem_cache_release
,
5641 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5643 struct kobj_type
*ktype
= get_ktype(kobj
);
5645 if (ktype
== &slab_ktype
)
5650 static const struct kset_uevent_ops slab_uevent_ops
= {
5651 .filter
= uevent_filter
,
5654 static struct kset
*slab_kset
;
5656 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5659 if (!is_root_cache(s
))
5660 return s
->memcg_params
.root_cache
->memcg_kset
;
5665 #define ID_STR_LENGTH 64
5667 /* Create a unique string id for a slab cache:
5669 * Format :[flags-]size
5671 static char *create_unique_id(struct kmem_cache
*s
)
5673 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5680 * First flags affecting slabcache operations. We will only
5681 * get here for aliasable slabs so we do not need to support
5682 * too many flags. The flags here must cover all flags that
5683 * are matched during merging to guarantee that the id is
5686 if (s
->flags
& SLAB_CACHE_DMA
)
5688 if (s
->flags
& SLAB_CACHE_DMA32
)
5690 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5692 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5694 if (s
->flags
& SLAB_ACCOUNT
)
5698 p
+= sprintf(p
, "%07u", s
->size
);
5700 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5704 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5706 struct kmem_cache
*s
=
5707 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5709 if (!s
->kobj
.state_in_sysfs
)
5711 * For a memcg cache, this may be called during
5712 * deactivation and again on shutdown. Remove only once.
5713 * A cache is never shut down before deactivation is
5714 * complete, so no need to worry about synchronization.
5719 kset_unregister(s
->memcg_kset
);
5721 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5723 kobject_put(&s
->kobj
);
5726 static int sysfs_slab_add(struct kmem_cache
*s
)
5730 struct kset
*kset
= cache_kset(s
);
5731 int unmergeable
= slab_unmergeable(s
);
5733 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5736 kobject_init(&s
->kobj
, &slab_ktype
);
5740 if (!unmergeable
&& disable_higher_order_debug
&&
5741 (slub_debug
& DEBUG_METADATA_FLAGS
))
5746 * Slabcache can never be merged so we can use the name proper.
5747 * This is typically the case for debug situations. In that
5748 * case we can catch duplicate names easily.
5750 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5754 * Create a unique name for the slab as a target
5757 name
= create_unique_id(s
);
5760 s
->kobj
.kset
= kset
;
5761 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5765 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5770 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5771 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5772 if (!s
->memcg_kset
) {
5779 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5781 /* Setup first alias */
5782 sysfs_slab_alias(s
, s
->name
);
5789 kobject_del(&s
->kobj
);
5793 static void sysfs_slab_remove(struct kmem_cache
*s
)
5795 if (slab_state
< FULL
)
5797 * Sysfs has not been setup yet so no need to remove the
5802 kobject_get(&s
->kobj
);
5803 schedule_work(&s
->kobj_remove_work
);
5806 void sysfs_slab_unlink(struct kmem_cache
*s
)
5808 if (slab_state
>= FULL
)
5809 kobject_del(&s
->kobj
);
5812 void sysfs_slab_release(struct kmem_cache
*s
)
5814 if (slab_state
>= FULL
)
5815 kobject_put(&s
->kobj
);
5819 * Need to buffer aliases during bootup until sysfs becomes
5820 * available lest we lose that information.
5822 struct saved_alias
{
5823 struct kmem_cache
*s
;
5825 struct saved_alias
*next
;
5828 static struct saved_alias
*alias_list
;
5830 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5832 struct saved_alias
*al
;
5834 if (slab_state
== FULL
) {
5836 * If we have a leftover link then remove it.
5838 sysfs_remove_link(&slab_kset
->kobj
, name
);
5839 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5842 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5848 al
->next
= alias_list
;
5853 static int __init
slab_sysfs_init(void)
5855 struct kmem_cache
*s
;
5858 mutex_lock(&slab_mutex
);
5860 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5862 mutex_unlock(&slab_mutex
);
5863 pr_err("Cannot register slab subsystem.\n");
5869 list_for_each_entry(s
, &slab_caches
, list
) {
5870 err
= sysfs_slab_add(s
);
5872 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5876 while (alias_list
) {
5877 struct saved_alias
*al
= alias_list
;
5879 alias_list
= alias_list
->next
;
5880 err
= sysfs_slab_alias(al
->s
, al
->name
);
5882 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5887 mutex_unlock(&slab_mutex
);
5892 __initcall(slab_sysfs_init
);
5893 #endif /* CONFIG_SYSFS */
5896 * The /proc/slabinfo ABI
5898 #ifdef CONFIG_SLUB_DEBUG
5899 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5901 unsigned long nr_slabs
= 0;
5902 unsigned long nr_objs
= 0;
5903 unsigned long nr_free
= 0;
5905 struct kmem_cache_node
*n
;
5907 for_each_kmem_cache_node(s
, node
, n
) {
5908 nr_slabs
+= node_nr_slabs(n
);
5909 nr_objs
+= node_nr_objs(n
);
5910 nr_free
+= count_partial(n
, count_free
);
5913 sinfo
->active_objs
= nr_objs
- nr_free
;
5914 sinfo
->num_objs
= nr_objs
;
5915 sinfo
->active_slabs
= nr_slabs
;
5916 sinfo
->num_slabs
= nr_slabs
;
5917 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5918 sinfo
->cache_order
= oo_order(s
->oo
);
5921 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5925 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5926 size_t count
, loff_t
*ppos
)
5930 #endif /* CONFIG_SLUB_DEBUG */