treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / sound / soc / soc-ops.c
blob652657dc68093279a337d74737aeaccf30fa3826
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
35 * Callback to provide information about a double enumerated
36 * mixer control.
38 * Returns 0 for success.
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
55 * Callback to get the value of a double enumerated mixer.
57 * Returns 0 for success.
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66 int ret;
68 ret = snd_soc_component_read(component, e->reg, &reg_val);
69 if (ret)
70 return ret;
71 val = (reg_val >> e->shift_l) & e->mask;
72 item = snd_soc_enum_val_to_item(e, val);
73 ucontrol->value.enumerated.item[0] = item;
74 if (e->shift_l != e->shift_r) {
75 val = (reg_val >> e->shift_r) & e->mask;
76 item = snd_soc_enum_val_to_item(e, val);
77 ucontrol->value.enumerated.item[1] = item;
80 return 0;
82 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
84 /**
85 * snd_soc_put_enum_double - enumerated double mixer put callback
86 * @kcontrol: mixer control
87 * @ucontrol: control element information
89 * Callback to set the value of a double enumerated mixer.
91 * Returns 0 for success.
93 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
94 struct snd_ctl_elem_value *ucontrol)
96 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
97 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
98 unsigned int *item = ucontrol->value.enumerated.item;
99 unsigned int val;
100 unsigned int mask;
102 if (item[0] >= e->items)
103 return -EINVAL;
104 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
105 mask = e->mask << e->shift_l;
106 if (e->shift_l != e->shift_r) {
107 if (item[1] >= e->items)
108 return -EINVAL;
109 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
110 mask |= e->mask << e->shift_r;
113 return snd_soc_component_update_bits(component, e->reg, mask, val);
115 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
118 * snd_soc_read_signed - Read a codec register and interpret as signed value
119 * @component: component
120 * @reg: Register to read
121 * @mask: Mask to use after shifting the register value
122 * @shift: Right shift of register value
123 * @sign_bit: Bit that describes if a number is negative or not.
124 * @signed_val: Pointer to where the read value should be stored
126 * This functions reads a codec register. The register value is shifted right
127 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
128 * the given registervalue into a signed integer if sign_bit is non-zero.
130 * Returns 0 on sucess, otherwise an error value
132 static int snd_soc_read_signed(struct snd_soc_component *component,
133 unsigned int reg, unsigned int mask, unsigned int shift,
134 unsigned int sign_bit, int *signed_val)
136 int ret;
137 unsigned int val;
139 ret = snd_soc_component_read(component, reg, &val);
140 if (ret < 0)
141 return ret;
143 val = (val >> shift) & mask;
145 if (!sign_bit) {
146 *signed_val = val;
147 return 0;
150 /* non-negative number */
151 if (!(val & BIT(sign_bit))) {
152 *signed_val = val;
153 return 0;
156 ret = val;
159 * The register most probably does not contain a full-sized int.
160 * Instead we have an arbitrary number of bits in a signed
161 * representation which has to be translated into a full-sized int.
162 * This is done by filling up all bits above the sign-bit.
164 ret |= ~((int)(BIT(sign_bit) - 1));
166 *signed_val = ret;
168 return 0;
172 * snd_soc_info_volsw - single mixer info callback
173 * @kcontrol: mixer control
174 * @uinfo: control element information
176 * Callback to provide information about a single mixer control, or a double
177 * mixer control that spans 2 registers.
179 * Returns 0 for success.
181 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
182 struct snd_ctl_elem_info *uinfo)
184 struct soc_mixer_control *mc =
185 (struct soc_mixer_control *)kcontrol->private_value;
186 int platform_max;
188 if (!mc->platform_max)
189 mc->platform_max = mc->max;
190 platform_max = mc->platform_max;
192 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
193 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194 else
195 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
197 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198 uinfo->value.integer.min = 0;
199 uinfo->value.integer.max = platform_max - mc->min;
200 return 0;
202 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
205 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
206 * @kcontrol: mixer control
207 * @uinfo: control element information
209 * Callback to provide information about a single mixer control, or a double
210 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
211 * have a range that represents both positive and negative values either side
212 * of zero but without a sign bit.
214 * Returns 0 for success.
216 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
217 struct snd_ctl_elem_info *uinfo)
219 struct soc_mixer_control *mc =
220 (struct soc_mixer_control *)kcontrol->private_value;
222 snd_soc_info_volsw(kcontrol, uinfo);
223 /* Max represents the number of levels in an SX control not the
224 * maximum value, so add the minimum value back on
226 uinfo->value.integer.max += mc->min;
228 return 0;
230 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
233 * snd_soc_get_volsw - single mixer get callback
234 * @kcontrol: mixer control
235 * @ucontrol: control element information
237 * Callback to get the value of a single mixer control, or a double mixer
238 * control that spans 2 registers.
240 * Returns 0 for success.
242 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
243 struct snd_ctl_elem_value *ucontrol)
245 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
246 struct soc_mixer_control *mc =
247 (struct soc_mixer_control *)kcontrol->private_value;
248 unsigned int reg = mc->reg;
249 unsigned int reg2 = mc->rreg;
250 unsigned int shift = mc->shift;
251 unsigned int rshift = mc->rshift;
252 int max = mc->max;
253 int min = mc->min;
254 int sign_bit = mc->sign_bit;
255 unsigned int mask = (1 << fls(max)) - 1;
256 unsigned int invert = mc->invert;
257 int val;
258 int ret;
260 if (sign_bit)
261 mask = BIT(sign_bit + 1) - 1;
263 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
264 if (ret)
265 return ret;
267 ucontrol->value.integer.value[0] = val - min;
268 if (invert)
269 ucontrol->value.integer.value[0] =
270 max - ucontrol->value.integer.value[0];
272 if (snd_soc_volsw_is_stereo(mc)) {
273 if (reg == reg2)
274 ret = snd_soc_read_signed(component, reg, mask, rshift,
275 sign_bit, &val);
276 else
277 ret = snd_soc_read_signed(component, reg2, mask, shift,
278 sign_bit, &val);
279 if (ret)
280 return ret;
282 ucontrol->value.integer.value[1] = val - min;
283 if (invert)
284 ucontrol->value.integer.value[1] =
285 max - ucontrol->value.integer.value[1];
288 return 0;
290 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
293 * snd_soc_put_volsw - single mixer put callback
294 * @kcontrol: mixer control
295 * @ucontrol: control element information
297 * Callback to set the value of a single mixer control, or a double mixer
298 * control that spans 2 registers.
300 * Returns 0 for success.
302 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
303 struct snd_ctl_elem_value *ucontrol)
305 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
306 struct soc_mixer_control *mc =
307 (struct soc_mixer_control *)kcontrol->private_value;
308 unsigned int reg = mc->reg;
309 unsigned int reg2 = mc->rreg;
310 unsigned int shift = mc->shift;
311 unsigned int rshift = mc->rshift;
312 int max = mc->max;
313 int min = mc->min;
314 unsigned int sign_bit = mc->sign_bit;
315 unsigned int mask = (1 << fls(max)) - 1;
316 unsigned int invert = mc->invert;
317 int err;
318 bool type_2r = false;
319 unsigned int val2 = 0;
320 unsigned int val, val_mask;
322 if (sign_bit)
323 mask = BIT(sign_bit + 1) - 1;
325 val = ((ucontrol->value.integer.value[0] + min) & mask);
326 if (invert)
327 val = max - val;
328 val_mask = mask << shift;
329 val = val << shift;
330 if (snd_soc_volsw_is_stereo(mc)) {
331 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
332 if (invert)
333 val2 = max - val2;
334 if (reg == reg2) {
335 val_mask |= mask << rshift;
336 val |= val2 << rshift;
337 } else {
338 val2 = val2 << shift;
339 type_2r = true;
342 err = snd_soc_component_update_bits(component, reg, val_mask, val);
343 if (err < 0)
344 return err;
346 if (type_2r)
347 err = snd_soc_component_update_bits(component, reg2, val_mask,
348 val2);
350 return err;
352 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
355 * snd_soc_get_volsw_sx - single mixer get callback
356 * @kcontrol: mixer control
357 * @ucontrol: control element information
359 * Callback to get the value of a single mixer control, or a double mixer
360 * control that spans 2 registers.
362 * Returns 0 for success.
364 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
365 struct snd_ctl_elem_value *ucontrol)
367 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
368 struct soc_mixer_control *mc =
369 (struct soc_mixer_control *)kcontrol->private_value;
370 unsigned int reg = mc->reg;
371 unsigned int reg2 = mc->rreg;
372 unsigned int shift = mc->shift;
373 unsigned int rshift = mc->rshift;
374 int max = mc->max;
375 int min = mc->min;
376 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
377 unsigned int val;
378 int ret;
380 ret = snd_soc_component_read(component, reg, &val);
381 if (ret < 0)
382 return ret;
384 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
386 if (snd_soc_volsw_is_stereo(mc)) {
387 ret = snd_soc_component_read(component, reg2, &val);
388 if (ret < 0)
389 return ret;
391 val = ((val >> rshift) - min) & mask;
392 ucontrol->value.integer.value[1] = val;
395 return 0;
397 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
400 * snd_soc_put_volsw_sx - double mixer set callback
401 * @kcontrol: mixer control
402 * @ucontrol: control element information
404 * Callback to set the value of a double mixer control that spans 2 registers.
406 * Returns 0 for success.
408 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
409 struct snd_ctl_elem_value *ucontrol)
411 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
412 struct soc_mixer_control *mc =
413 (struct soc_mixer_control *)kcontrol->private_value;
415 unsigned int reg = mc->reg;
416 unsigned int reg2 = mc->rreg;
417 unsigned int shift = mc->shift;
418 unsigned int rshift = mc->rshift;
419 int max = mc->max;
420 int min = mc->min;
421 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
422 int err = 0;
423 unsigned int val, val_mask, val2 = 0;
425 val_mask = mask << shift;
426 val = (ucontrol->value.integer.value[0] + min) & mask;
427 val = val << shift;
429 err = snd_soc_component_update_bits(component, reg, val_mask, val);
430 if (err < 0)
431 return err;
433 if (snd_soc_volsw_is_stereo(mc)) {
434 val_mask = mask << rshift;
435 val2 = (ucontrol->value.integer.value[1] + min) & mask;
436 val2 = val2 << rshift;
438 err = snd_soc_component_update_bits(component, reg2, val_mask,
439 val2);
441 return err;
443 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
446 * snd_soc_info_volsw_range - single mixer info callback with range.
447 * @kcontrol: mixer control
448 * @uinfo: control element information
450 * Callback to provide information, within a range, about a single
451 * mixer control.
453 * returns 0 for success.
455 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
456 struct snd_ctl_elem_info *uinfo)
458 struct soc_mixer_control *mc =
459 (struct soc_mixer_control *)kcontrol->private_value;
460 int platform_max;
461 int min = mc->min;
463 if (!mc->platform_max)
464 mc->platform_max = mc->max;
465 platform_max = mc->platform_max;
467 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
468 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
469 uinfo->value.integer.min = 0;
470 uinfo->value.integer.max = platform_max - min;
472 return 0;
474 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
477 * snd_soc_put_volsw_range - single mixer put value callback with range.
478 * @kcontrol: mixer control
479 * @ucontrol: control element information
481 * Callback to set the value, within a range, for a single mixer control.
483 * Returns 0 for success.
485 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
486 struct snd_ctl_elem_value *ucontrol)
488 struct soc_mixer_control *mc =
489 (struct soc_mixer_control *)kcontrol->private_value;
490 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
491 unsigned int reg = mc->reg;
492 unsigned int rreg = mc->rreg;
493 unsigned int shift = mc->shift;
494 int min = mc->min;
495 int max = mc->max;
496 unsigned int mask = (1 << fls(max)) - 1;
497 unsigned int invert = mc->invert;
498 unsigned int val, val_mask;
499 int ret;
501 if (invert)
502 val = (max - ucontrol->value.integer.value[0]) & mask;
503 else
504 val = ((ucontrol->value.integer.value[0] + min) & mask);
505 val_mask = mask << shift;
506 val = val << shift;
508 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
509 if (ret < 0)
510 return ret;
512 if (snd_soc_volsw_is_stereo(mc)) {
513 if (invert)
514 val = (max - ucontrol->value.integer.value[1]) & mask;
515 else
516 val = ((ucontrol->value.integer.value[1] + min) & mask);
517 val_mask = mask << shift;
518 val = val << shift;
520 ret = snd_soc_component_update_bits(component, rreg, val_mask,
521 val);
524 return ret;
526 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
529 * snd_soc_get_volsw_range - single mixer get callback with range
530 * @kcontrol: mixer control
531 * @ucontrol: control element information
533 * Callback to get the value, within a range, of a single mixer control.
535 * Returns 0 for success.
537 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
538 struct snd_ctl_elem_value *ucontrol)
540 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
541 struct soc_mixer_control *mc =
542 (struct soc_mixer_control *)kcontrol->private_value;
543 unsigned int reg = mc->reg;
544 unsigned int rreg = mc->rreg;
545 unsigned int shift = mc->shift;
546 int min = mc->min;
547 int max = mc->max;
548 unsigned int mask = (1 << fls(max)) - 1;
549 unsigned int invert = mc->invert;
550 unsigned int val;
551 int ret;
553 ret = snd_soc_component_read(component, reg, &val);
554 if (ret)
555 return ret;
557 ucontrol->value.integer.value[0] = (val >> shift) & mask;
558 if (invert)
559 ucontrol->value.integer.value[0] =
560 max - ucontrol->value.integer.value[0];
561 else
562 ucontrol->value.integer.value[0] =
563 ucontrol->value.integer.value[0] - min;
565 if (snd_soc_volsw_is_stereo(mc)) {
566 ret = snd_soc_component_read(component, rreg, &val);
567 if (ret)
568 return ret;
570 ucontrol->value.integer.value[1] = (val >> shift) & mask;
571 if (invert)
572 ucontrol->value.integer.value[1] =
573 max - ucontrol->value.integer.value[1];
574 else
575 ucontrol->value.integer.value[1] =
576 ucontrol->value.integer.value[1] - min;
579 return 0;
581 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
584 * snd_soc_limit_volume - Set new limit to an existing volume control.
586 * @card: where to look for the control
587 * @name: Name of the control
588 * @max: new maximum limit
590 * Return 0 for success, else error.
592 int snd_soc_limit_volume(struct snd_soc_card *card,
593 const char *name, int max)
595 struct snd_kcontrol *kctl;
596 struct soc_mixer_control *mc;
597 int ret = -EINVAL;
599 /* Sanity check for name and max */
600 if (unlikely(!name || max <= 0))
601 return -EINVAL;
603 kctl = snd_soc_card_get_kcontrol(card, name);
604 if (kctl) {
605 mc = (struct soc_mixer_control *)kctl->private_value;
606 if (max <= mc->max) {
607 mc->platform_max = max;
608 ret = 0;
611 return ret;
613 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
615 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
616 struct snd_ctl_elem_info *uinfo)
618 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
619 struct soc_bytes *params = (void *)kcontrol->private_value;
621 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
622 uinfo->count = params->num_regs * component->val_bytes;
624 return 0;
626 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
628 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
629 struct snd_ctl_elem_value *ucontrol)
631 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
632 struct soc_bytes *params = (void *)kcontrol->private_value;
633 int ret;
635 if (component->regmap)
636 ret = regmap_raw_read(component->regmap, params->base,
637 ucontrol->value.bytes.data,
638 params->num_regs * component->val_bytes);
639 else
640 ret = -EINVAL;
642 /* Hide any masked bytes to ensure consistent data reporting */
643 if (ret == 0 && params->mask) {
644 switch (component->val_bytes) {
645 case 1:
646 ucontrol->value.bytes.data[0] &= ~params->mask;
647 break;
648 case 2:
649 ((u16 *)(&ucontrol->value.bytes.data))[0]
650 &= cpu_to_be16(~params->mask);
651 break;
652 case 4:
653 ((u32 *)(&ucontrol->value.bytes.data))[0]
654 &= cpu_to_be32(~params->mask);
655 break;
656 default:
657 return -EINVAL;
661 return ret;
663 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
665 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
666 struct snd_ctl_elem_value *ucontrol)
668 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
669 struct soc_bytes *params = (void *)kcontrol->private_value;
670 int ret, len;
671 unsigned int val, mask;
672 void *data;
674 if (!component->regmap || !params->num_regs)
675 return -EINVAL;
677 len = params->num_regs * component->val_bytes;
679 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
680 if (!data)
681 return -ENOMEM;
684 * If we've got a mask then we need to preserve the register
685 * bits. We shouldn't modify the incoming data so take a
686 * copy.
688 if (params->mask) {
689 ret = regmap_read(component->regmap, params->base, &val);
690 if (ret != 0)
691 goto out;
693 val &= params->mask;
695 switch (component->val_bytes) {
696 case 1:
697 ((u8 *)data)[0] &= ~params->mask;
698 ((u8 *)data)[0] |= val;
699 break;
700 case 2:
701 mask = ~params->mask;
702 ret = regmap_parse_val(component->regmap,
703 &mask, &mask);
704 if (ret != 0)
705 goto out;
707 ((u16 *)data)[0] &= mask;
709 ret = regmap_parse_val(component->regmap,
710 &val, &val);
711 if (ret != 0)
712 goto out;
714 ((u16 *)data)[0] |= val;
715 break;
716 case 4:
717 mask = ~params->mask;
718 ret = regmap_parse_val(component->regmap,
719 &mask, &mask);
720 if (ret != 0)
721 goto out;
723 ((u32 *)data)[0] &= mask;
725 ret = regmap_parse_val(component->regmap,
726 &val, &val);
727 if (ret != 0)
728 goto out;
730 ((u32 *)data)[0] |= val;
731 break;
732 default:
733 ret = -EINVAL;
734 goto out;
738 ret = regmap_raw_write(component->regmap, params->base,
739 data, len);
741 out:
742 kfree(data);
744 return ret;
746 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
748 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
749 struct snd_ctl_elem_info *ucontrol)
751 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
753 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
754 ucontrol->count = params->max;
756 return 0;
758 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
760 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
761 unsigned int size, unsigned int __user *tlv)
763 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
764 unsigned int count = size < params->max ? size : params->max;
765 int ret = -ENXIO;
767 switch (op_flag) {
768 case SNDRV_CTL_TLV_OP_READ:
769 if (params->get)
770 ret = params->get(kcontrol, tlv, count);
771 break;
772 case SNDRV_CTL_TLV_OP_WRITE:
773 if (params->put)
774 ret = params->put(kcontrol, tlv, count);
775 break;
777 return ret;
779 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
782 * snd_soc_info_xr_sx - signed multi register info callback
783 * @kcontrol: mreg control
784 * @uinfo: control element information
786 * Callback to provide information of a control that can
787 * span multiple codec registers which together
788 * forms a single signed value in a MSB/LSB manner.
790 * Returns 0 for success.
792 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
793 struct snd_ctl_elem_info *uinfo)
795 struct soc_mreg_control *mc =
796 (struct soc_mreg_control *)kcontrol->private_value;
797 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
798 uinfo->count = 1;
799 uinfo->value.integer.min = mc->min;
800 uinfo->value.integer.max = mc->max;
802 return 0;
804 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
807 * snd_soc_get_xr_sx - signed multi register get callback
808 * @kcontrol: mreg control
809 * @ucontrol: control element information
811 * Callback to get the value of a control that can span
812 * multiple codec registers which together forms a single
813 * signed value in a MSB/LSB manner. The control supports
814 * specifying total no of bits used to allow for bitfields
815 * across the multiple codec registers.
817 * Returns 0 for success.
819 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
820 struct snd_ctl_elem_value *ucontrol)
822 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
823 struct soc_mreg_control *mc =
824 (struct soc_mreg_control *)kcontrol->private_value;
825 unsigned int regbase = mc->regbase;
826 unsigned int regcount = mc->regcount;
827 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
828 unsigned int regwmask = (1<<regwshift)-1;
829 unsigned int invert = mc->invert;
830 unsigned long mask = (1UL<<mc->nbits)-1;
831 long min = mc->min;
832 long max = mc->max;
833 long val = 0;
834 unsigned int regval;
835 unsigned int i;
836 int ret;
838 for (i = 0; i < regcount; i++) {
839 ret = snd_soc_component_read(component, regbase+i, &regval);
840 if (ret)
841 return ret;
842 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
844 val &= mask;
845 if (min < 0 && val > max)
846 val |= ~mask;
847 if (invert)
848 val = max - val;
849 ucontrol->value.integer.value[0] = val;
851 return 0;
853 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
856 * snd_soc_put_xr_sx - signed multi register get callback
857 * @kcontrol: mreg control
858 * @ucontrol: control element information
860 * Callback to set the value of a control that can span
861 * multiple codec registers which together forms a single
862 * signed value in a MSB/LSB manner. The control supports
863 * specifying total no of bits used to allow for bitfields
864 * across the multiple codec registers.
866 * Returns 0 for success.
868 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
869 struct snd_ctl_elem_value *ucontrol)
871 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
872 struct soc_mreg_control *mc =
873 (struct soc_mreg_control *)kcontrol->private_value;
874 unsigned int regbase = mc->regbase;
875 unsigned int regcount = mc->regcount;
876 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
877 unsigned int regwmask = (1<<regwshift)-1;
878 unsigned int invert = mc->invert;
879 unsigned long mask = (1UL<<mc->nbits)-1;
880 long max = mc->max;
881 long val = ucontrol->value.integer.value[0];
882 unsigned int i, regval, regmask;
883 int err;
885 if (invert)
886 val = max - val;
887 val &= mask;
888 for (i = 0; i < regcount; i++) {
889 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
890 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
891 err = snd_soc_component_update_bits(component, regbase+i,
892 regmask, regval);
893 if (err < 0)
894 return err;
897 return 0;
899 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
902 * snd_soc_get_strobe - strobe get callback
903 * @kcontrol: mixer control
904 * @ucontrol: control element information
906 * Callback get the value of a strobe mixer control.
908 * Returns 0 for success.
910 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
911 struct snd_ctl_elem_value *ucontrol)
913 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
914 struct soc_mixer_control *mc =
915 (struct soc_mixer_control *)kcontrol->private_value;
916 unsigned int reg = mc->reg;
917 unsigned int shift = mc->shift;
918 unsigned int mask = 1 << shift;
919 unsigned int invert = mc->invert != 0;
920 unsigned int val;
921 int ret;
923 ret = snd_soc_component_read(component, reg, &val);
924 if (ret)
925 return ret;
927 val &= mask;
929 if (shift != 0 && val != 0)
930 val = val >> shift;
931 ucontrol->value.enumerated.item[0] = val ^ invert;
933 return 0;
935 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
938 * snd_soc_put_strobe - strobe put callback
939 * @kcontrol: mixer control
940 * @ucontrol: control element information
942 * Callback strobe a register bit to high then low (or the inverse)
943 * in one pass of a single mixer enum control.
945 * Returns 1 for success.
947 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
948 struct snd_ctl_elem_value *ucontrol)
950 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
951 struct soc_mixer_control *mc =
952 (struct soc_mixer_control *)kcontrol->private_value;
953 unsigned int reg = mc->reg;
954 unsigned int shift = mc->shift;
955 unsigned int mask = 1 << shift;
956 unsigned int invert = mc->invert != 0;
957 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
958 unsigned int val1 = (strobe ^ invert) ? mask : 0;
959 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
960 int err;
962 err = snd_soc_component_update_bits(component, reg, mask, val1);
963 if (err < 0)
964 return err;
966 return snd_soc_component_update_bits(component, reg, mask, val2);
968 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);