1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * x86 instruction analysis
5 * Copyright (C) IBM Corporation, 2002, 2004, 2009
9 #include <linux/string.h>
13 #include "../include/asm/inat.h"
14 #include "../include/asm/insn.h"
16 #include "../include/asm/emulate_prefix.h"
18 /* Verify next sizeof(t) bytes can be on the same instruction */
19 #define validate_next(t, insn, n) \
20 ((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
22 #define __get_next(t, insn) \
23 ({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
25 #define __peek_nbyte_next(t, insn, n) \
26 ({ t r = *(t*)((insn)->next_byte + n); r; })
28 #define get_next(t, insn) \
29 ({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
31 #define peek_nbyte_next(t, insn, n) \
32 ({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
34 #define peek_next(t, insn) peek_nbyte_next(t, insn, 0)
37 * insn_init() - initialize struct insn
38 * @insn: &struct insn to be initialized
39 * @kaddr: address (in kernel memory) of instruction (or copy thereof)
40 * @x86_64: !0 for 64-bit kernel or 64-bit app
42 void insn_init(struct insn
*insn
, const void *kaddr
, int buf_len
, int x86_64
)
45 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
46 * even if the input buffer is long enough to hold them.
48 if (buf_len
> MAX_INSN_SIZE
)
49 buf_len
= MAX_INSN_SIZE
;
51 memset(insn
, 0, sizeof(*insn
));
53 insn
->end_kaddr
= kaddr
+ buf_len
;
54 insn
->next_byte
= kaddr
;
55 insn
->x86_64
= x86_64
? 1 : 0;
63 static const insn_byte_t xen_prefix
[] = { __XEN_EMULATE_PREFIX
};
64 static const insn_byte_t kvm_prefix
[] = { __KVM_EMULATE_PREFIX
};
66 static int __insn_get_emulate_prefix(struct insn
*insn
,
67 const insn_byte_t
*prefix
, size_t len
)
71 for (i
= 0; i
< len
; i
++) {
72 if (peek_nbyte_next(insn_byte_t
, insn
, i
) != prefix
[i
])
76 insn
->emulate_prefix_size
= len
;
77 insn
->next_byte
+= len
;
85 static void insn_get_emulate_prefix(struct insn
*insn
)
87 if (__insn_get_emulate_prefix(insn
, xen_prefix
, sizeof(xen_prefix
)))
90 __insn_get_emulate_prefix(insn
, kvm_prefix
, sizeof(kvm_prefix
));
94 * insn_get_prefixes - scan x86 instruction prefix bytes
95 * @insn: &struct insn containing instruction
97 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
98 * to point to the (first) opcode. No effect if @insn->prefixes.got
101 void insn_get_prefixes(struct insn
*insn
)
103 struct insn_field
*prefixes
= &insn
->prefixes
;
111 insn_get_emulate_prefix(insn
);
115 b
= peek_next(insn_byte_t
, insn
);
116 attr
= inat_get_opcode_attribute(b
);
117 while (inat_is_legacy_prefix(attr
)) {
118 /* Skip if same prefix */
119 for (i
= 0; i
< nb
; i
++)
120 if (prefixes
->bytes
[i
] == b
)
123 /* Invalid instruction */
125 prefixes
->bytes
[nb
++] = b
;
126 if (inat_is_address_size_prefix(attr
)) {
127 /* address size switches 2/4 or 4/8 */
129 insn
->addr_bytes
^= 12;
131 insn
->addr_bytes
^= 6;
132 } else if (inat_is_operand_size_prefix(attr
)) {
133 /* oprand size switches 2/4 */
134 insn
->opnd_bytes
^= 6;
140 b
= peek_next(insn_byte_t
, insn
);
141 attr
= inat_get_opcode_attribute(b
);
143 /* Set the last prefix */
144 if (lb
&& lb
!= insn
->prefixes
.bytes
[3]) {
145 if (unlikely(insn
->prefixes
.bytes
[3])) {
146 /* Swap the last prefix */
147 b
= insn
->prefixes
.bytes
[3];
148 for (i
= 0; i
< nb
; i
++)
149 if (prefixes
->bytes
[i
] == lb
)
150 prefixes
->bytes
[i
] = b
;
152 insn
->prefixes
.bytes
[3] = lb
;
155 /* Decode REX prefix */
157 b
= peek_next(insn_byte_t
, insn
);
158 attr
= inat_get_opcode_attribute(b
);
159 if (inat_is_rex_prefix(attr
)) {
160 insn
->rex_prefix
.value
= b
;
161 insn
->rex_prefix
.nbytes
= 1;
164 /* REX.W overrides opnd_size */
165 insn
->opnd_bytes
= 8;
168 insn
->rex_prefix
.got
= 1;
170 /* Decode VEX prefix */
171 b
= peek_next(insn_byte_t
, insn
);
172 attr
= inat_get_opcode_attribute(b
);
173 if (inat_is_vex_prefix(attr
)) {
174 insn_byte_t b2
= peek_nbyte_next(insn_byte_t
, insn
, 1);
177 * In 32-bits mode, if the [7:6] bits (mod bits of
178 * ModRM) on the second byte are not 11b, it is
179 * LDS or LES or BOUND.
181 if (X86_MODRM_MOD(b2
) != 3)
184 insn
->vex_prefix
.bytes
[0] = b
;
185 insn
->vex_prefix
.bytes
[1] = b2
;
186 if (inat_is_evex_prefix(attr
)) {
187 b2
= peek_nbyte_next(insn_byte_t
, insn
, 2);
188 insn
->vex_prefix
.bytes
[2] = b2
;
189 b2
= peek_nbyte_next(insn_byte_t
, insn
, 3);
190 insn
->vex_prefix
.bytes
[3] = b2
;
191 insn
->vex_prefix
.nbytes
= 4;
192 insn
->next_byte
+= 4;
193 if (insn
->x86_64
&& X86_VEX_W(b2
))
194 /* VEX.W overrides opnd_size */
195 insn
->opnd_bytes
= 8;
196 } else if (inat_is_vex3_prefix(attr
)) {
197 b2
= peek_nbyte_next(insn_byte_t
, insn
, 2);
198 insn
->vex_prefix
.bytes
[2] = b2
;
199 insn
->vex_prefix
.nbytes
= 3;
200 insn
->next_byte
+= 3;
201 if (insn
->x86_64
&& X86_VEX_W(b2
))
202 /* VEX.W overrides opnd_size */
203 insn
->opnd_bytes
= 8;
206 * For VEX2, fake VEX3-like byte#2.
207 * Makes it easier to decode vex.W, vex.vvvv,
208 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
210 insn
->vex_prefix
.bytes
[2] = b2
& 0x7f;
211 insn
->vex_prefix
.nbytes
= 2;
212 insn
->next_byte
+= 2;
216 insn
->vex_prefix
.got
= 1;
225 * insn_get_opcode - collect opcode(s)
226 * @insn: &struct insn containing instruction
228 * Populates @insn->opcode, updates @insn->next_byte to point past the
229 * opcode byte(s), and set @insn->attr (except for groups).
230 * If necessary, first collects any preceding (prefix) bytes.
231 * Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got
234 void insn_get_opcode(struct insn
*insn
)
236 struct insn_field
*opcode
= &insn
->opcode
;
241 if (!insn
->prefixes
.got
)
242 insn_get_prefixes(insn
);
244 /* Get first opcode */
245 op
= get_next(insn_byte_t
, insn
);
246 opcode
->bytes
[0] = op
;
249 /* Check if there is VEX prefix or not */
250 if (insn_is_avx(insn
)) {
252 m
= insn_vex_m_bits(insn
);
253 p
= insn_vex_p_bits(insn
);
254 insn
->attr
= inat_get_avx_attribute(op
, m
, p
);
255 if ((inat_must_evex(insn
->attr
) && !insn_is_evex(insn
)) ||
256 (!inat_accept_vex(insn
->attr
) &&
257 !inat_is_group(insn
->attr
)))
258 insn
->attr
= 0; /* This instruction is bad */
259 goto end
; /* VEX has only 1 byte for opcode */
262 insn
->attr
= inat_get_opcode_attribute(op
);
263 while (inat_is_escape(insn
->attr
)) {
264 /* Get escaped opcode */
265 op
= get_next(insn_byte_t
, insn
);
266 opcode
->bytes
[opcode
->nbytes
++] = op
;
267 pfx_id
= insn_last_prefix_id(insn
);
268 insn
->attr
= inat_get_escape_attribute(op
, pfx_id
, insn
->attr
);
270 if (inat_must_vex(insn
->attr
))
271 insn
->attr
= 0; /* This instruction is bad */
280 * insn_get_modrm - collect ModRM byte, if any
281 * @insn: &struct insn containing instruction
283 * Populates @insn->modrm and updates @insn->next_byte to point past the
284 * ModRM byte, if any. If necessary, first collects the preceding bytes
285 * (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1.
287 void insn_get_modrm(struct insn
*insn
)
289 struct insn_field
*modrm
= &insn
->modrm
;
290 insn_byte_t pfx_id
, mod
;
293 if (!insn
->opcode
.got
)
294 insn_get_opcode(insn
);
296 if (inat_has_modrm(insn
->attr
)) {
297 mod
= get_next(insn_byte_t
, insn
);
300 if (inat_is_group(insn
->attr
)) {
301 pfx_id
= insn_last_prefix_id(insn
);
302 insn
->attr
= inat_get_group_attribute(mod
, pfx_id
,
304 if (insn_is_avx(insn
) && !inat_accept_vex(insn
->attr
))
305 insn
->attr
= 0; /* This is bad */
309 if (insn
->x86_64
&& inat_is_force64(insn
->attr
))
310 insn
->opnd_bytes
= 8;
319 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
320 * @insn: &struct insn containing instruction
322 * If necessary, first collects the instruction up to and including the
323 * ModRM byte. No effect if @insn->x86_64 is 0.
325 int insn_rip_relative(struct insn
*insn
)
327 struct insn_field
*modrm
= &insn
->modrm
;
332 insn_get_modrm(insn
);
334 * For rip-relative instructions, the mod field (top 2 bits)
335 * is zero and the r/m field (bottom 3 bits) is 0x5.
337 return (modrm
->nbytes
&& (modrm
->value
& 0xc7) == 0x5);
341 * insn_get_sib() - Get the SIB byte of instruction
342 * @insn: &struct insn containing instruction
344 * If necessary, first collects the instruction up to and including the
347 void insn_get_sib(struct insn
*insn
)
353 if (!insn
->modrm
.got
)
354 insn_get_modrm(insn
);
355 if (insn
->modrm
.nbytes
) {
356 modrm
= (insn_byte_t
)insn
->modrm
.value
;
357 if (insn
->addr_bytes
!= 2 &&
358 X86_MODRM_MOD(modrm
) != 3 && X86_MODRM_RM(modrm
) == 4) {
359 insn
->sib
.value
= get_next(insn_byte_t
, insn
);
360 insn
->sib
.nbytes
= 1;
371 * insn_get_displacement() - Get the displacement of instruction
372 * @insn: &struct insn containing instruction
374 * If necessary, first collects the instruction up to and including the
376 * Displacement value is sign-expanded.
378 void insn_get_displacement(struct insn
*insn
)
380 insn_byte_t mod
, rm
, base
;
382 if (insn
->displacement
.got
)
386 if (insn
->modrm
.nbytes
) {
388 * Interpreting the modrm byte:
389 * mod = 00 - no displacement fields (exceptions below)
390 * mod = 01 - 1-byte displacement field
391 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
392 * address size = 2 (0x67 prefix in 32-bit mode)
393 * mod = 11 - no memory operand
395 * If address size = 2...
396 * mod = 00, r/m = 110 - displacement field is 2 bytes
398 * If address size != 2...
399 * mod != 11, r/m = 100 - SIB byte exists
400 * mod = 00, SIB base = 101 - displacement field is 4 bytes
401 * mod = 00, r/m = 101 - rip-relative addressing, displacement
404 mod
= X86_MODRM_MOD(insn
->modrm
.value
);
405 rm
= X86_MODRM_RM(insn
->modrm
.value
);
406 base
= X86_SIB_BASE(insn
->sib
.value
);
410 insn
->displacement
.value
= get_next(signed char, insn
);
411 insn
->displacement
.nbytes
= 1;
412 } else if (insn
->addr_bytes
== 2) {
413 if ((mod
== 0 && rm
== 6) || mod
== 2) {
414 insn
->displacement
.value
=
415 get_next(short, insn
);
416 insn
->displacement
.nbytes
= 2;
419 if ((mod
== 0 && rm
== 5) || mod
== 2 ||
420 (mod
== 0 && base
== 5)) {
421 insn
->displacement
.value
= get_next(int, insn
);
422 insn
->displacement
.nbytes
= 4;
427 insn
->displacement
.got
= 1;
433 /* Decode moffset16/32/64. Return 0 if failed */
434 static int __get_moffset(struct insn
*insn
)
436 switch (insn
->addr_bytes
) {
438 insn
->moffset1
.value
= get_next(short, insn
);
439 insn
->moffset1
.nbytes
= 2;
442 insn
->moffset1
.value
= get_next(int, insn
);
443 insn
->moffset1
.nbytes
= 4;
446 insn
->moffset1
.value
= get_next(int, insn
);
447 insn
->moffset1
.nbytes
= 4;
448 insn
->moffset2
.value
= get_next(int, insn
);
449 insn
->moffset2
.nbytes
= 4;
451 default: /* opnd_bytes must be modified manually */
454 insn
->moffset1
.got
= insn
->moffset2
.got
= 1;
462 /* Decode imm v32(Iz). Return 0 if failed */
463 static int __get_immv32(struct insn
*insn
)
465 switch (insn
->opnd_bytes
) {
467 insn
->immediate
.value
= get_next(short, insn
);
468 insn
->immediate
.nbytes
= 2;
472 insn
->immediate
.value
= get_next(int, insn
);
473 insn
->immediate
.nbytes
= 4;
475 default: /* opnd_bytes must be modified manually */
485 /* Decode imm v64(Iv/Ov), Return 0 if failed */
486 static int __get_immv(struct insn
*insn
)
488 switch (insn
->opnd_bytes
) {
490 insn
->immediate1
.value
= get_next(short, insn
);
491 insn
->immediate1
.nbytes
= 2;
494 insn
->immediate1
.value
= get_next(int, insn
);
495 insn
->immediate1
.nbytes
= 4;
498 insn
->immediate1
.value
= get_next(int, insn
);
499 insn
->immediate1
.nbytes
= 4;
500 insn
->immediate2
.value
= get_next(int, insn
);
501 insn
->immediate2
.nbytes
= 4;
503 default: /* opnd_bytes must be modified manually */
506 insn
->immediate1
.got
= insn
->immediate2
.got
= 1;
513 /* Decode ptr16:16/32(Ap) */
514 static int __get_immptr(struct insn
*insn
)
516 switch (insn
->opnd_bytes
) {
518 insn
->immediate1
.value
= get_next(short, insn
);
519 insn
->immediate1
.nbytes
= 2;
522 insn
->immediate1
.value
= get_next(int, insn
);
523 insn
->immediate1
.nbytes
= 4;
526 /* ptr16:64 is not exist (no segment) */
528 default: /* opnd_bytes must be modified manually */
531 insn
->immediate2
.value
= get_next(unsigned short, insn
);
532 insn
->immediate2
.nbytes
= 2;
533 insn
->immediate1
.got
= insn
->immediate2
.got
= 1;
541 * insn_get_immediate() - Get the immediates of instruction
542 * @insn: &struct insn containing instruction
544 * If necessary, first collects the instruction up to and including the
545 * displacement bytes.
546 * Basically, most of immediates are sign-expanded. Unsigned-value can be
547 * get by bit masking with ((1 << (nbytes * 8)) - 1)
549 void insn_get_immediate(struct insn
*insn
)
551 if (insn
->immediate
.got
)
553 if (!insn
->displacement
.got
)
554 insn_get_displacement(insn
);
556 if (inat_has_moffset(insn
->attr
)) {
557 if (!__get_moffset(insn
))
562 if (!inat_has_immediate(insn
->attr
))
566 switch (inat_immediate_size(insn
->attr
)) {
568 insn
->immediate
.value
= get_next(signed char, insn
);
569 insn
->immediate
.nbytes
= 1;
572 insn
->immediate
.value
= get_next(short, insn
);
573 insn
->immediate
.nbytes
= 2;
576 insn
->immediate
.value
= get_next(int, insn
);
577 insn
->immediate
.nbytes
= 4;
580 insn
->immediate1
.value
= get_next(int, insn
);
581 insn
->immediate1
.nbytes
= 4;
582 insn
->immediate2
.value
= get_next(int, insn
);
583 insn
->immediate2
.nbytes
= 4;
586 if (!__get_immptr(insn
))
589 case INAT_IMM_VWORD32
:
590 if (!__get_immv32(insn
))
594 if (!__get_immv(insn
))
598 /* Here, insn must have an immediate, but failed */
601 if (inat_has_second_immediate(insn
->attr
)) {
602 insn
->immediate2
.value
= get_next(signed char, insn
);
603 insn
->immediate2
.nbytes
= 1;
606 insn
->immediate
.got
= 1;
613 * insn_get_length() - Get the length of instruction
614 * @insn: &struct insn containing instruction
616 * If necessary, first collects the instruction up to and including the
619 void insn_get_length(struct insn
*insn
)
623 if (!insn
->immediate
.got
)
624 insn_get_immediate(insn
);
625 insn
->length
= (unsigned char)((unsigned long)insn
->next_byte
626 - (unsigned long)insn
->kaddr
);