1 // SPDX-License-Identifier: GPL-2.0
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
9 /* For the CLR_() macros */
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
28 #include <sys/resource.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
41 # define RUSAGE_THREAD 1
45 * Regular printout to the terminal, supressed if -q is specified:
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
57 cpu_set_t bind_cpumask
;
63 unsigned int loops_done
;
69 pthread_mutex_t
*process_lock
;
72 /* Parameters set by options: */
75 /* Startup synchronization: */
76 bool serialize_startup
;
82 /* Working set sizes: */
83 const char *mb_global_str
;
84 const char *mb_proc_str
;
85 const char *mb_proc_locked_str
;
86 const char *mb_thread_str
;
90 double mb_proc_locked
;
93 /* Access patterns to the working set: */
97 bool data_zero_memset
;
103 /* Working set initialization: */
115 long bytes_process_locked
;
121 bool show_convergence
;
122 bool measure_convergence
;
128 /* Affinity options -C and -N: */
134 /* Global, read-writable area, accessible to all processes and threads: */
139 pthread_mutex_t startup_mutex
;
140 int nr_tasks_started
;
142 pthread_mutex_t startup_done_mutex
;
144 pthread_mutex_t start_work_mutex
;
145 int nr_tasks_working
;
147 pthread_mutex_t stop_work_mutex
;
150 struct thread_data
*threads
;
152 /* Convergence latency measurement: */
161 static struct global_info
*g
= NULL
;
163 static int parse_cpus_opt(const struct option
*opt
, const char *arg
, int unset
);
164 static int parse_nodes_opt(const struct option
*opt
, const char *arg
, int unset
);
168 static const struct option options
[] = {
169 OPT_INTEGER('p', "nr_proc" , &p0
.nr_proc
, "number of processes"),
170 OPT_INTEGER('t', "nr_threads" , &p0
.nr_threads
, "number of threads per process"),
172 OPT_STRING('G', "mb_global" , &p0
.mb_global_str
, "MB", "global memory (MBs)"),
173 OPT_STRING('P', "mb_proc" , &p0
.mb_proc_str
, "MB", "process memory (MBs)"),
174 OPT_STRING('L', "mb_proc_locked", &p0
.mb_proc_locked_str
,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
175 OPT_STRING('T', "mb_thread" , &p0
.mb_thread_str
, "MB", "thread memory (MBs)"),
177 OPT_UINTEGER('l', "nr_loops" , &p0
.nr_loops
, "max number of loops to run (default: unlimited)"),
178 OPT_UINTEGER('s', "nr_secs" , &p0
.nr_secs
, "max number of seconds to run (default: 5 secs)"),
179 OPT_UINTEGER('u', "usleep" , &p0
.sleep_usecs
, "usecs to sleep per loop iteration"),
181 OPT_BOOLEAN('R', "data_reads" , &p0
.data_reads
, "access the data via reads (can be mixed with -W)"),
182 OPT_BOOLEAN('W', "data_writes" , &p0
.data_writes
, "access the data via writes (can be mixed with -R)"),
183 OPT_BOOLEAN('B', "data_backwards", &p0
.data_backwards
, "access the data backwards as well"),
184 OPT_BOOLEAN('Z', "data_zero_memset", &p0
.data_zero_memset
,"access the data via glibc bzero only"),
185 OPT_BOOLEAN('r', "data_rand_walk", &p0
.data_rand_walk
, "access the data with random (32bit LFSR) walk"),
188 OPT_BOOLEAN('z', "init_zero" , &p0
.init_zero
, "bzero the initial allocations"),
189 OPT_BOOLEAN('I', "init_random" , &p0
.init_random
, "randomize the contents of the initial allocations"),
190 OPT_BOOLEAN('0', "init_cpu0" , &p0
.init_cpu0
, "do the initial allocations on CPU#0"),
191 OPT_INTEGER('x', "perturb_secs", &p0
.perturb_secs
, "perturb thread 0/0 every X secs, to test convergence stability"),
193 OPT_INCR ('d', "show_details" , &p0
.show_details
, "Show details"),
194 OPT_INCR ('a', "all" , &p0
.run_all
, "Run all tests in the suite"),
195 OPT_INTEGER('H', "thp" , &p0
.thp
, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
196 OPT_BOOLEAN('c', "show_convergence", &p0
.show_convergence
, "show convergence details, "
197 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
198 OPT_BOOLEAN('m', "measure_convergence", &p0
.measure_convergence
, "measure convergence latency"),
199 OPT_BOOLEAN('q', "quiet" , &p0
.show_quiet
, "quiet mode"),
200 OPT_BOOLEAN('S', "serialize-startup", &p0
.serialize_startup
,"serialize thread startup"),
202 /* Special option string parsing callbacks: */
203 OPT_CALLBACK('C', "cpus", NULL
, "cpu[,cpu2,...cpuN]",
204 "bind the first N tasks to these specific cpus (the rest is unbound)",
206 OPT_CALLBACK('M', "memnodes", NULL
, "node[,node2,...nodeN]",
207 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
212 static const char * const bench_numa_usage
[] = {
213 "perf bench numa <options>",
217 static const char * const numa_usage
[] = {
218 "perf bench numa mem [<options>]",
223 * To get number of numa nodes present.
225 static int nr_numa_nodes(void)
229 for (i
= 0; i
< g
->p
.nr_nodes
; i
++) {
230 if (numa_bitmask_isbitset(numa_nodes_ptr
, i
))
238 * To check if given numa node is present.
240 static int is_node_present(int node
)
242 return numa_bitmask_isbitset(numa_nodes_ptr
, node
);
246 * To check given numa node has cpus.
248 static bool node_has_cpus(int node
)
250 struct bitmask
*cpu
= numa_allocate_cpumask();
253 if (cpu
&& !numa_node_to_cpus(node
, cpu
)) {
254 for (i
= 0; i
< cpu
->size
; i
++) {
255 if (numa_bitmask_isbitset(cpu
, i
))
260 return false; /* lets fall back to nocpus safely */
263 static cpu_set_t
bind_to_cpu(int target_cpu
)
265 cpu_set_t orig_mask
, mask
;
268 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
273 if (target_cpu
== -1) {
276 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
279 BUG_ON(target_cpu
< 0 || target_cpu
>= g
->p
.nr_cpus
);
280 CPU_SET(target_cpu
, &mask
);
283 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
289 static cpu_set_t
bind_to_node(int target_node
)
291 int cpus_per_node
= g
->p
.nr_cpus
/ nr_numa_nodes();
292 cpu_set_t orig_mask
, mask
;
296 BUG_ON(cpus_per_node
* nr_numa_nodes() != g
->p
.nr_cpus
);
297 BUG_ON(!cpus_per_node
);
299 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
304 if (target_node
== NUMA_NO_NODE
) {
305 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
308 int cpu_start
= (target_node
+ 0) * cpus_per_node
;
309 int cpu_stop
= (target_node
+ 1) * cpus_per_node
;
311 BUG_ON(cpu_stop
> g
->p
.nr_cpus
);
313 for (cpu
= cpu_start
; cpu
< cpu_stop
; cpu
++)
317 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
323 static void bind_to_cpumask(cpu_set_t mask
)
327 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
331 static void mempol_restore(void)
335 ret
= set_mempolicy(MPOL_DEFAULT
, NULL
, g
->p
.nr_nodes
-1);
340 static void bind_to_memnode(int node
)
342 unsigned long nodemask
;
345 if (node
== NUMA_NO_NODE
)
348 BUG_ON(g
->p
.nr_nodes
> (int)sizeof(nodemask
)*8);
349 nodemask
= 1L << node
;
351 ret
= set_mempolicy(MPOL_BIND
, &nodemask
, sizeof(nodemask
)*8);
352 dprintf("binding to node %d, mask: %016lx => %d\n", node
, nodemask
, ret
);
357 #define HPSIZE (2*1024*1024)
359 #define set_taskname(fmt...) \
363 snprintf(name, 20, fmt); \
364 prctl(PR_SET_NAME, name); \
367 static u8
*alloc_data(ssize_t bytes0
, int map_flags
,
368 int init_zero
, int init_cpu0
, int thp
, int init_random
)
378 /* Allocate and initialize all memory on CPU#0: */
380 int node
= numa_node_of_cpu(0);
382 orig_mask
= bind_to_node(node
);
383 bind_to_memnode(node
);
386 bytes
= bytes0
+ HPSIZE
;
388 buf
= (void *)mmap(0, bytes
, PROT_READ
|PROT_WRITE
, MAP_ANON
|map_flags
, -1, 0);
389 BUG_ON(buf
== (void *)-1);
391 if (map_flags
== MAP_PRIVATE
) {
393 ret
= madvise(buf
, bytes
, MADV_HUGEPAGE
);
394 if (ret
&& !g
->print_once
) {
396 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
400 ret
= madvise(buf
, bytes
, MADV_NOHUGEPAGE
);
401 if (ret
&& !g
->print_once
) {
403 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
411 /* Initialize random contents, different in each word: */
413 u64
*wbuf
= (void *)buf
;
417 for (i
= 0; i
< bytes
/8; i
++)
422 /* Align to 2MB boundary: */
423 buf
= (void *)(((unsigned long)buf
+ HPSIZE
-1) & ~(HPSIZE
-1));
425 /* Restore affinity: */
427 bind_to_cpumask(orig_mask
);
434 static void free_data(void *data
, ssize_t bytes
)
441 ret
= munmap(data
, bytes
);
446 * Create a shared memory buffer that can be shared between processes, zeroed:
448 static void * zalloc_shared_data(ssize_t bytes
)
450 return alloc_data(bytes
, MAP_SHARED
, 1, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
454 * Create a shared memory buffer that can be shared between processes:
456 static void * setup_shared_data(ssize_t bytes
)
458 return alloc_data(bytes
, MAP_SHARED
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
462 * Allocate process-local memory - this will either be shared between
463 * threads of this process, or only be accessed by this thread:
465 static void * setup_private_data(ssize_t bytes
)
467 return alloc_data(bytes
, MAP_PRIVATE
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
471 * Return a process-shared (global) mutex:
473 static void init_global_mutex(pthread_mutex_t
*mutex
)
475 pthread_mutexattr_t attr
;
477 pthread_mutexattr_init(&attr
);
478 pthread_mutexattr_setpshared(&attr
, PTHREAD_PROCESS_SHARED
);
479 pthread_mutex_init(mutex
, &attr
);
482 static int parse_cpu_list(const char *arg
)
484 p0
.cpu_list_str
= strdup(arg
);
486 dprintf("got CPU list: {%s}\n", p0
.cpu_list_str
);
491 static int parse_setup_cpu_list(void)
493 struct thread_data
*td
;
497 if (!g
->p
.cpu_list_str
)
500 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
502 str0
= str
= strdup(g
->p
.cpu_list_str
);
507 tprintf("# binding tasks to CPUs:\n");
511 int bind_cpu
, bind_cpu_0
, bind_cpu_1
;
512 char *tok
, *tok_end
, *tok_step
, *tok_len
, *tok_mul
;
517 tok
= strsep(&str
, ",");
521 tok_end
= strstr(tok
, "-");
523 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
525 /* Single CPU specified: */
526 bind_cpu_0
= bind_cpu_1
= atol(tok
);
528 /* CPU range specified (for example: "5-11"): */
529 bind_cpu_0
= atol(tok
);
530 bind_cpu_1
= atol(tok_end
+ 1);
534 tok_step
= strstr(tok
, "#");
536 step
= atol(tok_step
+ 1);
537 BUG_ON(step
<= 0 || step
>= g
->p
.nr_cpus
);
542 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
543 * where the _4 means the next 4 CPUs are allowed.
546 tok_len
= strstr(tok
, "_");
548 bind_len
= atol(tok_len
+ 1);
549 BUG_ON(bind_len
<= 0 || bind_len
> g
->p
.nr_cpus
);
552 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
554 tok_mul
= strstr(tok
, "x");
556 mul
= atol(tok_mul
+ 1);
560 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0
, bind_len
, bind_cpu_1
, step
, mul
);
562 if (bind_cpu_0
>= g
->p
.nr_cpus
|| bind_cpu_1
>= g
->p
.nr_cpus
) {
563 printf("\nTest not applicable, system has only %d CPUs.\n", g
->p
.nr_cpus
);
567 BUG_ON(bind_cpu_0
< 0 || bind_cpu_1
< 0);
568 BUG_ON(bind_cpu_0
> bind_cpu_1
);
570 for (bind_cpu
= bind_cpu_0
; bind_cpu
<= bind_cpu_1
; bind_cpu
+= step
) {
573 for (i
= 0; i
< mul
; i
++) {
576 if (t
>= g
->p
.nr_tasks
) {
577 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu
);
585 tprintf("%2d/%d", bind_cpu
, bind_len
);
587 tprintf("%2d", bind_cpu
);
590 CPU_ZERO(&td
->bind_cpumask
);
591 for (cpu
= bind_cpu
; cpu
< bind_cpu
+bind_len
; cpu
++) {
592 BUG_ON(cpu
< 0 || cpu
>= g
->p
.nr_cpus
);
593 CPU_SET(cpu
, &td
->bind_cpumask
);
603 if (t
< g
->p
.nr_tasks
)
604 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
610 static int parse_cpus_opt(const struct option
*opt __maybe_unused
,
611 const char *arg
, int unset __maybe_unused
)
616 return parse_cpu_list(arg
);
619 static int parse_node_list(const char *arg
)
621 p0
.node_list_str
= strdup(arg
);
623 dprintf("got NODE list: {%s}\n", p0
.node_list_str
);
628 static int parse_setup_node_list(void)
630 struct thread_data
*td
;
634 if (!g
->p
.node_list_str
)
637 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
639 str0
= str
= strdup(g
->p
.node_list_str
);
644 tprintf("# binding tasks to NODEs:\n");
648 int bind_node
, bind_node_0
, bind_node_1
;
649 char *tok
, *tok_end
, *tok_step
, *tok_mul
;
653 tok
= strsep(&str
, ",");
657 tok_end
= strstr(tok
, "-");
659 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
661 /* Single NODE specified: */
662 bind_node_0
= bind_node_1
= atol(tok
);
664 /* NODE range specified (for example: "5-11"): */
665 bind_node_0
= atol(tok
);
666 bind_node_1
= atol(tok_end
+ 1);
670 tok_step
= strstr(tok
, "#");
672 step
= atol(tok_step
+ 1);
673 BUG_ON(step
<= 0 || step
>= g
->p
.nr_nodes
);
676 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
678 tok_mul
= strstr(tok
, "x");
680 mul
= atol(tok_mul
+ 1);
684 dprintf("NODEs: %d-%d #%d\n", bind_node_0
, bind_node_1
, step
);
686 if (bind_node_0
>= g
->p
.nr_nodes
|| bind_node_1
>= g
->p
.nr_nodes
) {
687 printf("\nTest not applicable, system has only %d nodes.\n", g
->p
.nr_nodes
);
691 BUG_ON(bind_node_0
< 0 || bind_node_1
< 0);
692 BUG_ON(bind_node_0
> bind_node_1
);
694 for (bind_node
= bind_node_0
; bind_node
<= bind_node_1
; bind_node
+= step
) {
697 for (i
= 0; i
< mul
; i
++) {
698 if (t
>= g
->p
.nr_tasks
|| !node_has_cpus(bind_node
)) {
699 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node
);
705 tprintf(" %2d", bind_node
);
707 tprintf(",%2d", bind_node
);
709 td
->bind_node
= bind_node
;
718 if (t
< g
->p
.nr_tasks
)
719 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
725 static int parse_nodes_opt(const struct option
*opt __maybe_unused
,
726 const char *arg
, int unset __maybe_unused
)
731 return parse_node_list(arg
);
736 #define BIT(x) (1ul << x)
738 static inline uint32_t lfsr_32(uint32_t lfsr
)
740 const uint32_t taps
= BIT(1) | BIT(5) | BIT(6) | BIT(31);
741 return (lfsr
>>1) ^ ((0x0u
- (lfsr
& 0x1u
)) & taps
);
745 * Make sure there's real data dependency to RAM (when read
746 * accesses are enabled), so the compiler, the CPU and the
747 * kernel (KSM, zero page, etc.) cannot optimize away RAM
750 static inline u64
access_data(u64
*data
, u64 val
)
754 if (g
->p
.data_writes
)
760 * The worker process does two types of work, a forwards going
761 * loop and a backwards going loop.
763 * We do this so that on multiprocessor systems we do not create
764 * a 'train' of processing, with highly synchronized processes,
765 * skewing the whole benchmark.
767 static u64
do_work(u8
*__data
, long bytes
, int nr
, int nr_max
, int loop
, u64 val
)
769 long words
= bytes
/sizeof(u64
);
770 u64
*data
= (void *)__data
;
771 long chunk_0
, chunk_1
;
776 BUG_ON(!data
&& words
);
777 BUG_ON(data
&& !words
);
782 /* Very simple memset() work variant: */
783 if (g
->p
.data_zero_memset
&& !g
->p
.data_rand_walk
) {
788 /* Spread out by PID/TID nr and by loop nr: */
789 chunk_0
= words
/nr_max
;
790 chunk_1
= words
/g
->p
.nr_loops
;
791 off
= nr
*chunk_0
+ loop
*chunk_1
;
796 if (g
->p
.data_rand_walk
) {
797 u32 lfsr
= nr
+ loop
+ val
;
800 for (i
= 0; i
< words
/1024; i
++) {
803 lfsr
= lfsr_32(lfsr
);
805 start
= lfsr
% words
;
806 end
= min(start
+ 1024, words
-1);
808 if (g
->p
.data_zero_memset
) {
809 bzero(data
+ start
, (end
-start
) * sizeof(u64
));
811 for (j
= start
; j
< end
; j
++)
812 val
= access_data(data
+ j
, val
);
815 } else if (!g
->p
.data_backwards
|| (nr
+ loop
) & 1) {
821 /* Process data forwards: */
823 if (unlikely(d
>= d1
))
825 if (unlikely(d
== d0
))
828 val
= access_data(d
, val
);
833 /* Process data backwards: */
839 /* Process data forwards: */
841 if (unlikely(d
< data
))
843 if (unlikely(d
== d0
))
846 val
= access_data(d
, val
);
855 static void update_curr_cpu(int task_nr
, unsigned long bytes_worked
)
859 cpu
= sched_getcpu();
861 g
->threads
[task_nr
].curr_cpu
= cpu
;
862 prctl(0, bytes_worked
);
865 #define MAX_NR_NODES 64
868 * Count the number of nodes a process's threads
871 * A count of 1 means that the process is compressed
872 * to a single node. A count of g->p.nr_nodes means it's
873 * spread out on the whole system.
875 static int count_process_nodes(int process_nr
)
877 char node_present
[MAX_NR_NODES
] = { 0, };
881 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
882 struct thread_data
*td
;
886 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
887 td
= g
->threads
+ task_nr
;
889 node
= numa_node_of_cpu(td
->curr_cpu
);
890 if (node
< 0) /* curr_cpu was likely still -1 */
893 node_present
[node
] = 1;
898 for (n
= 0; n
< MAX_NR_NODES
; n
++)
899 nodes
+= node_present
[n
];
905 * Count the number of distinct process-threads a node contains.
907 * A count of 1 means that the node contains only a single
908 * process. If all nodes on the system contain at most one
909 * process then we are well-converged.
911 static int count_node_processes(int node
)
916 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
917 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
918 struct thread_data
*td
;
922 task_nr
= p
*g
->p
.nr_threads
+ t
;
923 td
= g
->threads
+ task_nr
;
925 n
= numa_node_of_cpu(td
->curr_cpu
);
936 static void calc_convergence_compression(int *strong
)
938 unsigned int nodes_min
, nodes_max
;
944 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
945 unsigned int nodes
= count_process_nodes(p
);
952 nodes_min
= min(nodes
, nodes_min
);
953 nodes_max
= max(nodes
, nodes_max
);
956 /* Strong convergence: all threads compress on a single node: */
957 if (nodes_min
== 1 && nodes_max
== 1) {
961 tprintf(" {%d-%d}", nodes_min
, nodes_max
);
965 static void calc_convergence(double runtime_ns_max
, double *convergence
)
967 unsigned int loops_done_min
, loops_done_max
;
969 int nodes
[MAX_NR_NODES
];
980 if (!g
->p
.show_convergence
&& !g
->p
.measure_convergence
)
983 for (node
= 0; node
< g
->p
.nr_nodes
; node
++)
989 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
990 struct thread_data
*td
= g
->threads
+ t
;
991 unsigned int loops_done
;
995 /* Not all threads have written it yet: */
999 node
= numa_node_of_cpu(cpu
);
1003 loops_done
= td
->loops_done
;
1004 loops_done_min
= min(loops_done
, loops_done_min
);
1005 loops_done_max
= max(loops_done
, loops_done_max
);
1009 nr_min
= g
->p
.nr_tasks
;
1012 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
1013 if (!is_node_present(node
))
1016 nr_min
= min(nr
, nr_min
);
1017 nr_max
= max(nr
, nr_max
);
1020 BUG_ON(nr_min
> nr_max
);
1022 BUG_ON(sum
> g
->p
.nr_tasks
);
1024 if (0 && (sum
< g
->p
.nr_tasks
))
1028 * Count the number of distinct process groups present
1029 * on nodes - when we are converged this will decrease
1034 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
1037 if (!is_node_present(node
))
1039 processes
= count_node_processes(node
);
1041 tprintf(" %2d/%-2d", nr
, processes
);
1043 process_groups
+= processes
;
1046 distance
= nr_max
- nr_min
;
1048 tprintf(" [%2d/%-2d]", distance
, process_groups
);
1050 tprintf(" l:%3d-%-3d (%3d)",
1051 loops_done_min
, loops_done_max
, loops_done_max
-loops_done_min
);
1053 if (loops_done_min
&& loops_done_max
) {
1054 double skew
= 1.0 - (double)loops_done_min
/loops_done_max
;
1056 tprintf(" [%4.1f%%]", skew
* 100.0);
1059 calc_convergence_compression(&strong
);
1061 if (strong
&& process_groups
== g
->p
.nr_proc
) {
1062 if (!*convergence
) {
1063 *convergence
= runtime_ns_max
;
1064 tprintf(" (%6.1fs converged)\n", *convergence
/ NSEC_PER_SEC
);
1065 if (g
->p
.measure_convergence
) {
1066 g
->all_converged
= true;
1067 g
->stop_work
= true;
1072 tprintf(" (%6.1fs de-converged)", runtime_ns_max
/ NSEC_PER_SEC
);
1079 static void show_summary(double runtime_ns_max
, int l
, double *convergence
)
1081 tprintf("\r # %5.1f%% [%.1f mins]",
1082 (double)(l
+1)/g
->p
.nr_loops
*100.0, runtime_ns_max
/ NSEC_PER_SEC
/ 60.0);
1084 calc_convergence(runtime_ns_max
, convergence
);
1086 if (g
->p
.show_details
>= 0)
1090 static void *worker_thread(void *__tdata
)
1092 struct thread_data
*td
= __tdata
;
1093 struct timeval start0
, start
, stop
, diff
;
1094 int process_nr
= td
->process_nr
;
1095 int thread_nr
= td
->thread_nr
;
1096 unsigned long last_perturbance
;
1097 int task_nr
= td
->task_nr
;
1098 int details
= g
->p
.show_details
;
1099 int first_task
, last_task
;
1100 double convergence
= 0;
1102 double runtime_ns_max
;
1106 u64 bytes_done
, secs
;
1109 struct rusage rusage
;
1111 bind_to_cpumask(td
->bind_cpumask
);
1112 bind_to_memnode(td
->bind_node
);
1114 set_taskname("thread %d/%d", process_nr
, thread_nr
);
1116 global_data
= g
->data
;
1117 process_data
= td
->process_data
;
1118 thread_data
= setup_private_data(g
->p
.bytes_thread
);
1123 if (process_nr
== g
->p
.nr_proc
-1 && thread_nr
== g
->p
.nr_threads
-1)
1127 if (process_nr
== 0 && thread_nr
== 0)
1131 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1132 process_nr
, thread_nr
, global_data
, process_data
, thread_data
);
1135 if (g
->p
.serialize_startup
) {
1136 pthread_mutex_lock(&g
->startup_mutex
);
1137 g
->nr_tasks_started
++;
1138 pthread_mutex_unlock(&g
->startup_mutex
);
1140 /* Here we will wait for the main process to start us all at once: */
1141 pthread_mutex_lock(&g
->start_work_mutex
);
1142 g
->nr_tasks_working
++;
1144 /* Last one wake the main process: */
1145 if (g
->nr_tasks_working
== g
->p
.nr_tasks
)
1146 pthread_mutex_unlock(&g
->startup_done_mutex
);
1148 pthread_mutex_unlock(&g
->start_work_mutex
);
1151 gettimeofday(&start0
, NULL
);
1153 start
= stop
= start0
;
1154 last_perturbance
= start
.tv_sec
;
1156 for (l
= 0; l
< g
->p
.nr_loops
; l
++) {
1162 val
+= do_work(global_data
, g
->p
.bytes_global
, process_nr
, g
->p
.nr_proc
, l
, val
);
1163 val
+= do_work(process_data
, g
->p
.bytes_process
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1164 val
+= do_work(thread_data
, g
->p
.bytes_thread
, 0, 1, l
, val
);
1166 if (g
->p
.sleep_usecs
) {
1167 pthread_mutex_lock(td
->process_lock
);
1168 usleep(g
->p
.sleep_usecs
);
1169 pthread_mutex_unlock(td
->process_lock
);
1172 * Amount of work to be done under a process-global lock:
1174 if (g
->p
.bytes_process_locked
) {
1175 pthread_mutex_lock(td
->process_lock
);
1176 val
+= do_work(process_data
, g
->p
.bytes_process_locked
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1177 pthread_mutex_unlock(td
->process_lock
);
1180 work_done
= g
->p
.bytes_global
+ g
->p
.bytes_process
+
1181 g
->p
.bytes_process_locked
+ g
->p
.bytes_thread
;
1183 update_curr_cpu(task_nr
, work_done
);
1184 bytes_done
+= work_done
;
1186 if (details
< 0 && !g
->p
.perturb_secs
&& !g
->p
.measure_convergence
&& !g
->p
.nr_secs
)
1191 gettimeofday(&stop
, NULL
);
1193 /* Check whether our max runtime timed out: */
1195 timersub(&stop
, &start0
, &diff
);
1196 if ((u32
)diff
.tv_sec
>= g
->p
.nr_secs
) {
1197 g
->stop_work
= true;
1202 /* Update the summary at most once per second: */
1203 if (start
.tv_sec
== stop
.tv_sec
)
1207 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1208 * by migrating to CPU#0:
1210 if (first_task
&& g
->p
.perturb_secs
&& (int)(stop
.tv_sec
- last_perturbance
) >= g
->p
.perturb_secs
) {
1211 cpu_set_t orig_mask
;
1215 last_perturbance
= stop
.tv_sec
;
1218 * Depending on where we are running, move into
1219 * the other half of the system, to create some
1222 this_cpu
= g
->threads
[task_nr
].curr_cpu
;
1223 if (this_cpu
< g
->p
.nr_cpus
/2)
1224 target_cpu
= g
->p
.nr_cpus
-1;
1228 orig_mask
= bind_to_cpu(target_cpu
);
1230 /* Here we are running on the target CPU already */
1232 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu
);
1234 bind_to_cpumask(orig_mask
);
1238 timersub(&stop
, &start
, &diff
);
1239 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1240 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1243 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64
"]\n",
1244 process_nr
, thread_nr
, runtime_ns_max
/ bytes_done
, val
);
1251 timersub(&stop
, &start0
, &diff
);
1252 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1253 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1255 show_summary(runtime_ns_max
, l
, &convergence
);
1258 gettimeofday(&stop
, NULL
);
1259 timersub(&stop
, &start0
, &diff
);
1260 td
->runtime_ns
= diff
.tv_sec
* NSEC_PER_SEC
;
1261 td
->runtime_ns
+= diff
.tv_usec
* NSEC_PER_USEC
;
1262 secs
= td
->runtime_ns
/ NSEC_PER_SEC
;
1263 td
->speed_gbs
= secs
? bytes_done
/ secs
/ 1e9
: 0;
1265 getrusage(RUSAGE_THREAD
, &rusage
);
1266 td
->system_time_ns
= rusage
.ru_stime
.tv_sec
* NSEC_PER_SEC
;
1267 td
->system_time_ns
+= rusage
.ru_stime
.tv_usec
* NSEC_PER_USEC
;
1268 td
->user_time_ns
= rusage
.ru_utime
.tv_sec
* NSEC_PER_SEC
;
1269 td
->user_time_ns
+= rusage
.ru_utime
.tv_usec
* NSEC_PER_USEC
;
1271 free_data(thread_data
, g
->p
.bytes_thread
);
1273 pthread_mutex_lock(&g
->stop_work_mutex
);
1274 g
->bytes_done
+= bytes_done
;
1275 pthread_mutex_unlock(&g
->stop_work_mutex
);
1281 * A worker process starts a couple of threads:
1283 static void worker_process(int process_nr
)
1285 pthread_mutex_t process_lock
;
1286 struct thread_data
*td
;
1287 pthread_t
*pthreads
;
1293 pthread_mutex_init(&process_lock
, NULL
);
1294 set_taskname("process %d", process_nr
);
1297 * Pick up the memory policy and the CPU binding of our first thread,
1298 * so that we initialize memory accordingly:
1300 task_nr
= process_nr
*g
->p
.nr_threads
;
1301 td
= g
->threads
+ task_nr
;
1303 bind_to_memnode(td
->bind_node
);
1304 bind_to_cpumask(td
->bind_cpumask
);
1306 pthreads
= zalloc(g
->p
.nr_threads
* sizeof(pthread_t
));
1307 process_data
= setup_private_data(g
->p
.bytes_process
);
1309 if (g
->p
.show_details
>= 3) {
1310 printf(" # process %2d global mem: %p, process mem: %p\n",
1311 process_nr
, g
->data
, process_data
);
1314 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1315 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
1316 td
= g
->threads
+ task_nr
;
1318 td
->process_data
= process_data
;
1319 td
->process_nr
= process_nr
;
1321 td
->task_nr
= task_nr
;
1324 td
->process_lock
= &process_lock
;
1326 ret
= pthread_create(pthreads
+ t
, NULL
, worker_thread
, td
);
1330 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1331 ret
= pthread_join(pthreads
[t
], NULL
);
1335 free_data(process_data
, g
->p
.bytes_process
);
1339 static void print_summary(void)
1341 if (g
->p
.show_details
< 0)
1345 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1346 g
->p
.nr_tasks
, g
->p
.nr_tasks
== 1 ? "task" : "tasks", nr_numa_nodes(), g
->p
.nr_cpus
);
1347 printf(" # %5dx %5ldMB global shared mem operations\n",
1348 g
->p
.nr_loops
, g
->p
.bytes_global
/1024/1024);
1349 printf(" # %5dx %5ldMB process shared mem operations\n",
1350 g
->p
.nr_loops
, g
->p
.bytes_process
/1024/1024);
1351 printf(" # %5dx %5ldMB thread local mem operations\n",
1352 g
->p
.nr_loops
, g
->p
.bytes_thread
/1024/1024);
1356 printf("\n ###\n"); fflush(stdout
);
1359 static void init_thread_data(void)
1361 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1364 g
->threads
= zalloc_shared_data(size
);
1366 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1367 struct thread_data
*td
= g
->threads
+ t
;
1370 /* Allow all nodes by default: */
1371 td
->bind_node
= NUMA_NO_NODE
;
1373 /* Allow all CPUs by default: */
1374 CPU_ZERO(&td
->bind_cpumask
);
1375 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
1376 CPU_SET(cpu
, &td
->bind_cpumask
);
1380 static void deinit_thread_data(void)
1382 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1384 free_data(g
->threads
, size
);
1387 static int init(void)
1389 g
= (void *)alloc_data(sizeof(*g
), MAP_SHARED
, 1, 0, 0 /* THP */, 0);
1391 /* Copy over options: */
1394 g
->p
.nr_cpus
= numa_num_configured_cpus();
1396 g
->p
.nr_nodes
= numa_max_node() + 1;
1398 /* char array in count_process_nodes(): */
1399 BUG_ON(g
->p
.nr_nodes
> MAX_NR_NODES
|| g
->p
.nr_nodes
< 0);
1401 if (g
->p
.show_quiet
&& !g
->p
.show_details
)
1402 g
->p
.show_details
= -1;
1404 /* Some memory should be specified: */
1405 if (!g
->p
.mb_global_str
&& !g
->p
.mb_proc_str
&& !g
->p
.mb_thread_str
)
1408 if (g
->p
.mb_global_str
) {
1409 g
->p
.mb_global
= atof(g
->p
.mb_global_str
);
1410 BUG_ON(g
->p
.mb_global
< 0);
1413 if (g
->p
.mb_proc_str
) {
1414 g
->p
.mb_proc
= atof(g
->p
.mb_proc_str
);
1415 BUG_ON(g
->p
.mb_proc
< 0);
1418 if (g
->p
.mb_proc_locked_str
) {
1419 g
->p
.mb_proc_locked
= atof(g
->p
.mb_proc_locked_str
);
1420 BUG_ON(g
->p
.mb_proc_locked
< 0);
1421 BUG_ON(g
->p
.mb_proc_locked
> g
->p
.mb_proc
);
1424 if (g
->p
.mb_thread_str
) {
1425 g
->p
.mb_thread
= atof(g
->p
.mb_thread_str
);
1426 BUG_ON(g
->p
.mb_thread
< 0);
1429 BUG_ON(g
->p
.nr_threads
<= 0);
1430 BUG_ON(g
->p
.nr_proc
<= 0);
1432 g
->p
.nr_tasks
= g
->p
.nr_proc
*g
->p
.nr_threads
;
1434 g
->p
.bytes_global
= g
->p
.mb_global
*1024L*1024L;
1435 g
->p
.bytes_process
= g
->p
.mb_proc
*1024L*1024L;
1436 g
->p
.bytes_process_locked
= g
->p
.mb_proc_locked
*1024L*1024L;
1437 g
->p
.bytes_thread
= g
->p
.mb_thread
*1024L*1024L;
1439 g
->data
= setup_shared_data(g
->p
.bytes_global
);
1441 /* Startup serialization: */
1442 init_global_mutex(&g
->start_work_mutex
);
1443 init_global_mutex(&g
->startup_mutex
);
1444 init_global_mutex(&g
->startup_done_mutex
);
1445 init_global_mutex(&g
->stop_work_mutex
);
1450 if (parse_setup_cpu_list() || parse_setup_node_list())
1459 static void deinit(void)
1461 free_data(g
->data
, g
->p
.bytes_global
);
1464 deinit_thread_data();
1466 free_data(g
, sizeof(*g
));
1471 * Print a short or long result, depending on the verbosity setting:
1473 static void print_res(const char *name
, double val
,
1474 const char *txt_unit
, const char *txt_short
, const char *txt_long
)
1479 if (!g
->p
.show_quiet
)
1480 printf(" %-30s %15.3f, %-15s %s\n", name
, val
, txt_unit
, txt_short
);
1482 printf(" %14.3f %s\n", val
, txt_long
);
1485 static int __bench_numa(const char *name
)
1487 struct timeval start
, stop
, diff
;
1488 u64 runtime_ns_min
, runtime_ns_sum
;
1489 pid_t
*pids
, pid
, wpid
;
1490 double delta_runtime
;
1492 double runtime_sec_max
;
1493 double runtime_sec_min
;
1501 pids
= zalloc(g
->p
.nr_proc
* sizeof(*pids
));
1504 /* All threads try to acquire it, this way we can wait for them to start up: */
1505 pthread_mutex_lock(&g
->start_work_mutex
);
1507 if (g
->p
.serialize_startup
) {
1509 tprintf(" # Startup synchronization: ..."); fflush(stdout
);
1512 gettimeofday(&start
, NULL
);
1514 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1516 dprintf(" # process %2d: PID %d\n", i
, pid
);
1520 /* Child process: */
1528 /* Wait for all the threads to start up: */
1529 while (g
->nr_tasks_started
!= g
->p
.nr_tasks
)
1530 usleep(USEC_PER_MSEC
);
1532 BUG_ON(g
->nr_tasks_started
!= g
->p
.nr_tasks
);
1534 if (g
->p
.serialize_startup
) {
1537 pthread_mutex_lock(&g
->startup_done_mutex
);
1539 /* This will start all threads: */
1540 pthread_mutex_unlock(&g
->start_work_mutex
);
1542 /* This mutex is locked - the last started thread will wake us: */
1543 pthread_mutex_lock(&g
->startup_done_mutex
);
1545 gettimeofday(&stop
, NULL
);
1547 timersub(&stop
, &start
, &diff
);
1549 startup_sec
= diff
.tv_sec
* NSEC_PER_SEC
;
1550 startup_sec
+= diff
.tv_usec
* NSEC_PER_USEC
;
1551 startup_sec
/= NSEC_PER_SEC
;
1553 tprintf(" threads initialized in %.6f seconds.\n", startup_sec
);
1557 pthread_mutex_unlock(&g
->startup_done_mutex
);
1559 gettimeofday(&start
, NULL
);
1562 /* Parent process: */
1565 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1566 wpid
= waitpid(pids
[i
], &wait_stat
, 0);
1568 BUG_ON(!WIFEXITED(wait_stat
));
1573 runtime_ns_min
= -1LL;
1575 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1576 u64 thread_runtime_ns
= g
->threads
[t
].runtime_ns
;
1578 runtime_ns_sum
+= thread_runtime_ns
;
1579 runtime_ns_min
= min(thread_runtime_ns
, runtime_ns_min
);
1582 gettimeofday(&stop
, NULL
);
1583 timersub(&stop
, &start
, &diff
);
1585 BUG_ON(bench_format
!= BENCH_FORMAT_DEFAULT
);
1587 tprintf("\n ###\n");
1590 runtime_sec_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1591 runtime_sec_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1592 runtime_sec_max
/= NSEC_PER_SEC
;
1594 runtime_sec_min
= runtime_ns_min
/ NSEC_PER_SEC
;
1596 bytes
= g
->bytes_done
;
1597 runtime_avg
= (double)runtime_ns_sum
/ g
->p
.nr_tasks
/ NSEC_PER_SEC
;
1599 if (g
->p
.measure_convergence
) {
1600 print_res(name
, runtime_sec_max
,
1601 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1604 print_res(name
, runtime_sec_max
,
1605 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1607 print_res(name
, runtime_sec_min
,
1608 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1610 print_res(name
, runtime_avg
,
1611 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1613 delta_runtime
= (runtime_sec_max
- runtime_sec_min
)/2.0;
1614 print_res(name
, delta_runtime
/ runtime_sec_max
* 100.0,
1615 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1617 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
,
1618 "GB,", "data/thread", "GB data processed, per thread");
1620 print_res(name
, bytes
/ 1e9
,
1621 "GB,", "data-total", "GB data processed, total");
1623 print_res(name
, runtime_sec_max
* NSEC_PER_SEC
/ (bytes
/ g
->p
.nr_tasks
),
1624 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1626 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
/ runtime_sec_max
,
1627 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1629 print_res(name
, bytes
/ runtime_sec_max
/ 1e9
,
1630 "GB/sec,", "total-speed", "GB/sec total speed");
1632 if (g
->p
.show_details
>= 2) {
1633 char tname
[14 + 2 * 10 + 1];
1634 struct thread_data
*td
;
1635 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1636 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1637 memset(tname
, 0, sizeof(tname
));
1638 td
= g
->threads
+ p
*g
->p
.nr_threads
+ t
;
1639 snprintf(tname
, sizeof(tname
), "process%d:thread%d", p
, t
);
1640 print_res(tname
, td
->speed_gbs
,
1641 "GB/sec", "thread-speed", "GB/sec/thread speed");
1642 print_res(tname
, td
->system_time_ns
/ NSEC_PER_SEC
,
1643 "secs", "thread-system-time", "system CPU time/thread");
1644 print_res(tname
, td
->user_time_ns
/ NSEC_PER_SEC
,
1645 "secs", "thread-user-time", "user CPU time/thread");
1659 static int command_size(const char **argv
)
1668 BUG_ON(size
>= MAX_ARGS
);
1673 static void init_params(struct params
*p
, const char *name
, int argc
, const char **argv
)
1677 printf("\n # Running %s \"perf bench numa", name
);
1679 for (i
= 0; i
< argc
; i
++)
1680 printf(" %s", argv
[i
]);
1684 memset(p
, 0, sizeof(*p
));
1686 /* Initialize nonzero defaults: */
1688 p
->serialize_startup
= 1;
1689 p
->data_reads
= true;
1690 p
->data_writes
= true;
1691 p
->data_backwards
= true;
1692 p
->data_rand_walk
= true;
1694 p
->init_random
= true;
1695 p
->mb_global_str
= "1";
1699 p
->run_all
= argc
== 1;
1702 static int run_bench_numa(const char *name
, const char **argv
)
1704 int argc
= command_size(argv
);
1706 init_params(&p0
, name
, argc
, argv
);
1707 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1711 if (__bench_numa(name
))
1720 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1721 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1723 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1724 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1726 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1727 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1730 * The built-in test-suite executed by "perf bench numa -a".
1732 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1734 static const char *tests
[][MAX_ARGS
] = {
1735 /* Basic single-stream NUMA bandwidth measurements: */
1736 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1737 "-C" , "0", "-M", "0", OPT_BW_RAM
},
1738 { "RAM-bw-local-NOTHP,",
1739 "mem", "-p", "1", "-t", "1", "-P", "1024",
1740 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP
},
1741 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1742 "-C" , "0", "-M", "1", OPT_BW_RAM
},
1744 /* 2-stream NUMA bandwidth measurements: */
1745 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1746 "-C", "0,2", "-M", "0x2", OPT_BW_RAM
},
1747 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1748 "-C", "0,2", "-M", "1x2", OPT_BW_RAM
},
1750 /* Cross-stream NUMA bandwidth measurement: */
1751 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1752 "-C", "0,8", "-M", "1,0", OPT_BW_RAM
},
1754 /* Convergence latency measurements: */
1755 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV
},
1756 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV
},
1757 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV
},
1758 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1759 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1760 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV
},
1761 { " 4x4-convergence-NOTHP,",
1762 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1763 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV
},
1764 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV
},
1765 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV
},
1766 { " 8x4-convergence-NOTHP,",
1767 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1768 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV
},
1769 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV
},
1770 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV
},
1771 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV
},
1772 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV
},
1774 /* Various NUMA process/thread layout bandwidth measurements: */
1775 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW
},
1776 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW
},
1777 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW
},
1778 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW
},
1779 { " 8x1-bw-process-NOTHP,",
1780 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP
},
1781 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW
},
1783 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW
},
1784 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW
},
1785 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW
},
1786 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW
},
1788 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW
},
1789 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW
},
1790 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW
},
1791 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW
},
1792 { " 4x8-bw-thread-NOTHP,",
1793 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP
},
1794 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW
},
1795 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW
},
1797 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW
},
1798 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW
},
1800 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW
},
1801 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP
},
1802 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW
},
1803 { "numa01-bw-thread-NOTHP,",
1804 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP
},
1807 static int bench_all(void)
1809 int nr
= ARRAY_SIZE(tests
);
1813 ret
= system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1816 for (i
= 0; i
< nr
; i
++) {
1817 run_bench_numa(tests
[i
][0], tests
[i
] + 1);
1825 int bench_numa(int argc
, const char **argv
)
1827 init_params(&p0
, "main,", argc
, argv
);
1828 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1835 if (__bench_numa(NULL
))
1841 usage_with_options(numa_usage
, options
);