1 // SPDX-License-Identifier: GPL-2.0-only
3 * builtin-timechart.c - make an svg timechart of system activity
5 * (C) Copyright 2009 Intel Corporation
8 * Arjan van de Ven <arjan@linux.intel.com>
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
28 #include "util/header.h"
29 #include <subcmd/pager.h>
30 #include <subcmd/parse-options.h>
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36 #include "util/data.h"
37 #include "util/debug.h"
38 #include <linux/err.h>
40 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
41 FILE *open_memstream(char **ptr
, size_t *sizeloc
);
44 #define SUPPORT_OLD_POWER_EVENTS 1
45 #define PWR_EVENT_EXIT -1
52 struct perf_tool tool
;
53 struct per_pid
*all_data
;
54 struct power_event
*power_events
;
55 struct wake_event
*wake_events
;
58 u64 min_freq
, /* Lowest CPU frequency seen */
59 max_freq
, /* Highest CPU frequency seen */
61 first_time
, last_time
;
67 /* IO related settings */
80 * Datastructure layout:
81 * We keep an list of "pid"s, matching the kernels notion of a task struct.
82 * Each "pid" entry, has a list of "comm"s.
83 * this is because we want to track different programs different, while
84 * exec will reuse the original pid (by design).
85 * Each comm has a list of samples that will be used to draw
101 struct per_pidcomm
*all
;
102 struct per_pidcomm
*current
;
107 struct per_pidcomm
*next
;
123 struct cpu_sample
*samples
;
124 struct io_sample
*io_samples
;
127 struct sample_wrapper
{
128 struct sample_wrapper
*next
;
131 unsigned char data
[0];
135 #define TYPE_RUNNING 1
136 #define TYPE_WAITING 2
137 #define TYPE_BLOCKED 3
140 struct cpu_sample
*next
;
146 const char *backtrace
;
159 struct io_sample
*next
;
174 struct power_event
*next
;
183 struct wake_event
*next
;
187 const char *backtrace
;
190 struct process_filter
{
193 struct process_filter
*next
;
196 static struct process_filter
*process_filter
;
199 static struct per_pid
*find_create_pid(struct timechart
*tchart
, int pid
)
201 struct per_pid
*cursor
= tchart
->all_data
;
204 if (cursor
->pid
== pid
)
206 cursor
= cursor
->next
;
208 cursor
= zalloc(sizeof(*cursor
));
209 assert(cursor
!= NULL
);
211 cursor
->next
= tchart
->all_data
;
212 tchart
->all_data
= cursor
;
216 static void pid_set_comm(struct timechart
*tchart
, int pid
, char *comm
)
219 struct per_pidcomm
*c
;
220 p
= find_create_pid(tchart
, pid
);
223 if (c
->comm
&& strcmp(c
->comm
, comm
) == 0) {
228 c
->comm
= strdup(comm
);
234 c
= zalloc(sizeof(*c
));
236 c
->comm
= strdup(comm
);
242 static void pid_fork(struct timechart
*tchart
, int pid
, int ppid
, u64 timestamp
)
244 struct per_pid
*p
, *pp
;
245 p
= find_create_pid(tchart
, pid
);
246 pp
= find_create_pid(tchart
, ppid
);
248 if (pp
->current
&& pp
->current
->comm
&& !p
->current
)
249 pid_set_comm(tchart
, pid
, pp
->current
->comm
);
251 p
->start_time
= timestamp
;
252 if (p
->current
&& !p
->current
->start_time
) {
253 p
->current
->start_time
= timestamp
;
254 p
->current
->state_since
= timestamp
;
258 static void pid_exit(struct timechart
*tchart
, int pid
, u64 timestamp
)
261 p
= find_create_pid(tchart
, pid
);
262 p
->end_time
= timestamp
;
264 p
->current
->end_time
= timestamp
;
267 static void pid_put_sample(struct timechart
*tchart
, int pid
, int type
,
268 unsigned int cpu
, u64 start
, u64 end
,
269 const char *backtrace
)
272 struct per_pidcomm
*c
;
273 struct cpu_sample
*sample
;
275 p
= find_create_pid(tchart
, pid
);
278 c
= zalloc(sizeof(*c
));
285 sample
= zalloc(sizeof(*sample
));
286 assert(sample
!= NULL
);
287 sample
->start_time
= start
;
288 sample
->end_time
= end
;
290 sample
->next
= c
->samples
;
292 sample
->backtrace
= backtrace
;
295 if (sample
->type
== TYPE_RUNNING
&& end
> start
&& start
> 0) {
296 c
->total_time
+= (end
-start
);
297 p
->total_time
+= (end
-start
);
300 if (c
->start_time
== 0 || c
->start_time
> start
)
301 c
->start_time
= start
;
302 if (p
->start_time
== 0 || p
->start_time
> start
)
303 p
->start_time
= start
;
306 #define MAX_CPUS 4096
308 static u64 cpus_cstate_start_times
[MAX_CPUS
];
309 static int cpus_cstate_state
[MAX_CPUS
];
310 static u64 cpus_pstate_start_times
[MAX_CPUS
];
311 static u64 cpus_pstate_state
[MAX_CPUS
];
313 static int process_comm_event(struct perf_tool
*tool
,
314 union perf_event
*event
,
315 struct perf_sample
*sample __maybe_unused
,
316 struct machine
*machine __maybe_unused
)
318 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
319 pid_set_comm(tchart
, event
->comm
.tid
, event
->comm
.comm
);
323 static int process_fork_event(struct perf_tool
*tool
,
324 union perf_event
*event
,
325 struct perf_sample
*sample __maybe_unused
,
326 struct machine
*machine __maybe_unused
)
328 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
329 pid_fork(tchart
, event
->fork
.pid
, event
->fork
.ppid
, event
->fork
.time
);
333 static int process_exit_event(struct perf_tool
*tool
,
334 union perf_event
*event
,
335 struct perf_sample
*sample __maybe_unused
,
336 struct machine
*machine __maybe_unused
)
338 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
339 pid_exit(tchart
, event
->fork
.pid
, event
->fork
.time
);
343 #ifdef SUPPORT_OLD_POWER_EVENTS
344 static int use_old_power_events
;
347 static void c_state_start(int cpu
, u64 timestamp
, int state
)
349 cpus_cstate_start_times
[cpu
] = timestamp
;
350 cpus_cstate_state
[cpu
] = state
;
353 static void c_state_end(struct timechart
*tchart
, int cpu
, u64 timestamp
)
355 struct power_event
*pwr
= zalloc(sizeof(*pwr
));
360 pwr
->state
= cpus_cstate_state
[cpu
];
361 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
362 pwr
->end_time
= timestamp
;
365 pwr
->next
= tchart
->power_events
;
367 tchart
->power_events
= pwr
;
370 static void p_state_change(struct timechart
*tchart
, int cpu
, u64 timestamp
, u64 new_freq
)
372 struct power_event
*pwr
;
374 if (new_freq
> 8000000) /* detect invalid data */
377 pwr
= zalloc(sizeof(*pwr
));
381 pwr
->state
= cpus_pstate_state
[cpu
];
382 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
383 pwr
->end_time
= timestamp
;
386 pwr
->next
= tchart
->power_events
;
388 if (!pwr
->start_time
)
389 pwr
->start_time
= tchart
->first_time
;
391 tchart
->power_events
= pwr
;
393 cpus_pstate_state
[cpu
] = new_freq
;
394 cpus_pstate_start_times
[cpu
] = timestamp
;
396 if ((u64
)new_freq
> tchart
->max_freq
)
397 tchart
->max_freq
= new_freq
;
399 if (new_freq
< tchart
->min_freq
|| tchart
->min_freq
== 0)
400 tchart
->min_freq
= new_freq
;
402 if (new_freq
== tchart
->max_freq
- 1000)
403 tchart
->turbo_frequency
= tchart
->max_freq
;
406 static void sched_wakeup(struct timechart
*tchart
, int cpu
, u64 timestamp
,
407 int waker
, int wakee
, u8 flags
, const char *backtrace
)
410 struct wake_event
*we
= zalloc(sizeof(*we
));
415 we
->time
= timestamp
;
417 we
->backtrace
= backtrace
;
419 if ((flags
& TRACE_FLAG_HARDIRQ
) || (flags
& TRACE_FLAG_SOFTIRQ
))
423 we
->next
= tchart
->wake_events
;
424 tchart
->wake_events
= we
;
425 p
= find_create_pid(tchart
, we
->wakee
);
427 if (p
&& p
->current
&& p
->current
->state
== TYPE_NONE
) {
428 p
->current
->state_since
= timestamp
;
429 p
->current
->state
= TYPE_WAITING
;
431 if (p
&& p
->current
&& p
->current
->state
== TYPE_BLOCKED
) {
432 pid_put_sample(tchart
, p
->pid
, p
->current
->state
, cpu
,
433 p
->current
->state_since
, timestamp
, NULL
);
434 p
->current
->state_since
= timestamp
;
435 p
->current
->state
= TYPE_WAITING
;
439 static void sched_switch(struct timechart
*tchart
, int cpu
, u64 timestamp
,
440 int prev_pid
, int next_pid
, u64 prev_state
,
441 const char *backtrace
)
443 struct per_pid
*p
= NULL
, *prev_p
;
445 prev_p
= find_create_pid(tchart
, prev_pid
);
447 p
= find_create_pid(tchart
, next_pid
);
449 if (prev_p
->current
&& prev_p
->current
->state
!= TYPE_NONE
)
450 pid_put_sample(tchart
, prev_pid
, TYPE_RUNNING
, cpu
,
451 prev_p
->current
->state_since
, timestamp
,
453 if (p
&& p
->current
) {
454 if (p
->current
->state
!= TYPE_NONE
)
455 pid_put_sample(tchart
, next_pid
, p
->current
->state
, cpu
,
456 p
->current
->state_since
, timestamp
,
459 p
->current
->state_since
= timestamp
;
460 p
->current
->state
= TYPE_RUNNING
;
463 if (prev_p
->current
) {
464 prev_p
->current
->state
= TYPE_NONE
;
465 prev_p
->current
->state_since
= timestamp
;
467 prev_p
->current
->state
= TYPE_BLOCKED
;
469 prev_p
->current
->state
= TYPE_WAITING
;
473 static const char *cat_backtrace(union perf_event
*event
,
474 struct perf_sample
*sample
,
475 struct machine
*machine
)
477 struct addr_location al
;
481 u8 cpumode
= PERF_RECORD_MISC_USER
;
482 struct addr_location tal
;
483 struct ip_callchain
*chain
= sample
->callchain
;
484 FILE *f
= open_memstream(&p
, &p_len
);
487 perror("open_memstream error");
494 if (machine__resolve(machine
, &al
, sample
) < 0) {
495 fprintf(stderr
, "problem processing %d event, skipping it.\n",
500 for (i
= 0; i
< chain
->nr
; i
++) {
503 if (callchain_param
.order
== ORDER_CALLEE
)
506 ip
= chain
->ips
[chain
->nr
- i
- 1];
508 if (ip
>= PERF_CONTEXT_MAX
) {
510 case PERF_CONTEXT_HV
:
511 cpumode
= PERF_RECORD_MISC_HYPERVISOR
;
513 case PERF_CONTEXT_KERNEL
:
514 cpumode
= PERF_RECORD_MISC_KERNEL
;
516 case PERF_CONTEXT_USER
:
517 cpumode
= PERF_RECORD_MISC_USER
;
520 pr_debug("invalid callchain context: "
521 "%"PRId64
"\n", (s64
) ip
);
524 * It seems the callchain is corrupted.
534 if (thread__find_symbol(al
.thread
, cpumode
, ip
, &tal
))
535 fprintf(f
, "..... %016" PRIx64
" %s\n", ip
, tal
.sym
->name
);
537 fprintf(f
, "..... %016" PRIx64
"\n", ip
);
540 addr_location__put(&al
);
547 typedef int (*tracepoint_handler
)(struct timechart
*tchart
,
549 struct perf_sample
*sample
,
550 const char *backtrace
);
552 static int process_sample_event(struct perf_tool
*tool
,
553 union perf_event
*event
,
554 struct perf_sample
*sample
,
556 struct machine
*machine
)
558 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
560 if (evsel
->core
.attr
.sample_type
& PERF_SAMPLE_TIME
) {
561 if (!tchart
->first_time
|| tchart
->first_time
> sample
->time
)
562 tchart
->first_time
= sample
->time
;
563 if (tchart
->last_time
< sample
->time
)
564 tchart
->last_time
= sample
->time
;
567 if (evsel
->handler
!= NULL
) {
568 tracepoint_handler f
= evsel
->handler
;
569 return f(tchart
, evsel
, sample
,
570 cat_backtrace(event
, sample
, machine
));
577 process_sample_cpu_idle(struct timechart
*tchart __maybe_unused
,
579 struct perf_sample
*sample
,
580 const char *backtrace __maybe_unused
)
582 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
583 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
585 if (state
== (u32
)PWR_EVENT_EXIT
)
586 c_state_end(tchart
, cpu_id
, sample
->time
);
588 c_state_start(cpu_id
, sample
->time
, state
);
593 process_sample_cpu_frequency(struct timechart
*tchart
,
595 struct perf_sample
*sample
,
596 const char *backtrace __maybe_unused
)
598 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
599 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
601 p_state_change(tchart
, cpu_id
, sample
->time
, state
);
606 process_sample_sched_wakeup(struct timechart
*tchart
,
608 struct perf_sample
*sample
,
609 const char *backtrace
)
611 u8 flags
= perf_evsel__intval(evsel
, sample
, "common_flags");
612 int waker
= perf_evsel__intval(evsel
, sample
, "common_pid");
613 int wakee
= perf_evsel__intval(evsel
, sample
, "pid");
615 sched_wakeup(tchart
, sample
->cpu
, sample
->time
, waker
, wakee
, flags
, backtrace
);
620 process_sample_sched_switch(struct timechart
*tchart
,
622 struct perf_sample
*sample
,
623 const char *backtrace
)
625 int prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid");
626 int next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
627 u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
629 sched_switch(tchart
, sample
->cpu
, sample
->time
, prev_pid
, next_pid
,
630 prev_state
, backtrace
);
634 #ifdef SUPPORT_OLD_POWER_EVENTS
636 process_sample_power_start(struct timechart
*tchart __maybe_unused
,
638 struct perf_sample
*sample
,
639 const char *backtrace __maybe_unused
)
641 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
642 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
644 c_state_start(cpu_id
, sample
->time
, value
);
649 process_sample_power_end(struct timechart
*tchart
,
650 struct evsel
*evsel __maybe_unused
,
651 struct perf_sample
*sample
,
652 const char *backtrace __maybe_unused
)
654 c_state_end(tchart
, sample
->cpu
, sample
->time
);
659 process_sample_power_frequency(struct timechart
*tchart
,
661 struct perf_sample
*sample
,
662 const char *backtrace __maybe_unused
)
664 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
665 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
667 p_state_change(tchart
, cpu_id
, sample
->time
, value
);
670 #endif /* SUPPORT_OLD_POWER_EVENTS */
673 * After the last sample we need to wrap up the current C/P state
674 * and close out each CPU for these.
676 static void end_sample_processing(struct timechart
*tchart
)
679 struct power_event
*pwr
;
681 for (cpu
= 0; cpu
<= tchart
->numcpus
; cpu
++) {
684 pwr
= zalloc(sizeof(*pwr
));
688 pwr
->state
= cpus_cstate_state
[cpu
];
689 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
690 pwr
->end_time
= tchart
->last_time
;
693 pwr
->next
= tchart
->power_events
;
695 tchart
->power_events
= pwr
;
699 pwr
= zalloc(sizeof(*pwr
));
703 pwr
->state
= cpus_pstate_state
[cpu
];
704 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
705 pwr
->end_time
= tchart
->last_time
;
708 pwr
->next
= tchart
->power_events
;
710 if (!pwr
->start_time
)
711 pwr
->start_time
= tchart
->first_time
;
713 pwr
->state
= tchart
->min_freq
;
714 tchart
->power_events
= pwr
;
718 static int pid_begin_io_sample(struct timechart
*tchart
, int pid
, int type
,
721 struct per_pid
*p
= find_create_pid(tchart
, pid
);
722 struct per_pidcomm
*c
= p
->current
;
723 struct io_sample
*sample
;
724 struct io_sample
*prev
;
727 c
= zalloc(sizeof(*c
));
735 prev
= c
->io_samples
;
737 if (prev
&& prev
->start_time
&& !prev
->end_time
) {
738 pr_warning("Skip invalid start event: "
739 "previous event already started!\n");
741 /* remove previous event that has been started,
742 * we are not sure we will ever get an end for it */
743 c
->io_samples
= prev
->next
;
748 sample
= zalloc(sizeof(*sample
));
751 sample
->start_time
= start
;
754 sample
->next
= c
->io_samples
;
755 c
->io_samples
= sample
;
757 if (c
->start_time
== 0 || c
->start_time
> start
)
758 c
->start_time
= start
;
763 static int pid_end_io_sample(struct timechart
*tchart
, int pid
, int type
,
766 struct per_pid
*p
= find_create_pid(tchart
, pid
);
767 struct per_pidcomm
*c
= p
->current
;
768 struct io_sample
*sample
, *prev
;
771 pr_warning("Invalid pidcomm!\n");
775 sample
= c
->io_samples
;
777 if (!sample
) /* skip partially captured events */
780 if (sample
->end_time
) {
781 pr_warning("Skip invalid end event: "
782 "previous event already ended!\n");
786 if (sample
->type
!= type
) {
787 pr_warning("Skip invalid end event: invalid event type!\n");
791 sample
->end_time
= end
;
794 /* we want to be able to see small and fast transfers, so make them
795 * at least min_time long, but don't overlap them */
796 if (sample
->end_time
- sample
->start_time
< tchart
->min_time
)
797 sample
->end_time
= sample
->start_time
+ tchart
->min_time
;
798 if (prev
&& sample
->start_time
< prev
->end_time
) {
799 if (prev
->err
) /* try to make errors more visible */
800 sample
->start_time
= prev
->end_time
;
802 prev
->end_time
= sample
->start_time
;
807 } else if (type
== IOTYPE_READ
|| type
== IOTYPE_WRITE
||
808 type
== IOTYPE_TX
|| type
== IOTYPE_RX
) {
810 if ((u64
)ret
> c
->max_bytes
)
813 c
->total_bytes
+= ret
;
814 p
->total_bytes
+= ret
;
818 /* merge two requests to make svg smaller and render-friendly */
820 prev
->type
== sample
->type
&&
821 prev
->err
== sample
->err
&&
822 prev
->fd
== sample
->fd
&&
823 prev
->end_time
+ tchart
->merge_dist
>= sample
->start_time
) {
825 sample
->bytes
+= prev
->bytes
;
826 sample
->merges
+= prev
->merges
+ 1;
828 sample
->start_time
= prev
->start_time
;
829 sample
->next
= prev
->next
;
832 if (!sample
->err
&& sample
->bytes
> c
->max_bytes
)
833 c
->max_bytes
= sample
->bytes
;
842 process_enter_read(struct timechart
*tchart
,
844 struct perf_sample
*sample
)
846 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
847 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
852 process_exit_read(struct timechart
*tchart
,
854 struct perf_sample
*sample
)
856 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
857 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
862 process_enter_write(struct timechart
*tchart
,
864 struct perf_sample
*sample
)
866 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
867 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
872 process_exit_write(struct timechart
*tchart
,
874 struct perf_sample
*sample
)
876 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
877 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
882 process_enter_sync(struct timechart
*tchart
,
884 struct perf_sample
*sample
)
886 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
887 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
892 process_exit_sync(struct timechart
*tchart
,
894 struct perf_sample
*sample
)
896 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
897 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
902 process_enter_tx(struct timechart
*tchart
,
904 struct perf_sample
*sample
)
906 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
907 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
912 process_exit_tx(struct timechart
*tchart
,
914 struct perf_sample
*sample
)
916 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
917 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
922 process_enter_rx(struct timechart
*tchart
,
924 struct perf_sample
*sample
)
926 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
927 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
932 process_exit_rx(struct timechart
*tchart
,
934 struct perf_sample
*sample
)
936 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
937 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
942 process_enter_poll(struct timechart
*tchart
,
944 struct perf_sample
*sample
)
946 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
947 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
952 process_exit_poll(struct timechart
*tchart
,
954 struct perf_sample
*sample
)
956 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
957 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
962 * Sort the pid datastructure
964 static void sort_pids(struct timechart
*tchart
)
966 struct per_pid
*new_list
, *p
, *cursor
, *prev
;
967 /* sort by ppid first, then by pid, lowest to highest */
971 while (tchart
->all_data
) {
972 p
= tchart
->all_data
;
973 tchart
->all_data
= p
->next
;
976 if (new_list
== NULL
) {
984 if (cursor
->ppid
> p
->ppid
||
985 (cursor
->ppid
== p
->ppid
&& cursor
->pid
> p
->pid
)) {
986 /* must insert before */
988 p
->next
= prev
->next
;
1001 cursor
= cursor
->next
;
1006 tchart
->all_data
= new_list
;
1010 static void draw_c_p_states(struct timechart
*tchart
)
1012 struct power_event
*pwr
;
1013 pwr
= tchart
->power_events
;
1016 * two pass drawing so that the P state bars are on top of the C state blocks
1019 if (pwr
->type
== CSTATE
)
1020 svg_cstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1024 pwr
= tchart
->power_events
;
1026 if (pwr
->type
== PSTATE
) {
1028 pwr
->state
= tchart
->min_freq
;
1029 svg_pstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1035 static void draw_wakeups(struct timechart
*tchart
)
1037 struct wake_event
*we
;
1039 struct per_pidcomm
*c
;
1041 we
= tchart
->wake_events
;
1043 int from
= 0, to
= 0;
1044 char *task_from
= NULL
, *task_to
= NULL
;
1046 /* locate the column of the waker and wakee */
1047 p
= tchart
->all_data
;
1049 if (p
->pid
== we
->waker
|| p
->pid
== we
->wakee
) {
1052 if (c
->Y
&& c
->start_time
<= we
->time
&& c
->end_time
>= we
->time
) {
1053 if (p
->pid
== we
->waker
&& !from
) {
1055 task_from
= strdup(c
->comm
);
1057 if (p
->pid
== we
->wakee
&& !to
) {
1059 task_to
= strdup(c
->comm
);
1066 if (p
->pid
== we
->waker
&& !from
) {
1068 task_from
= strdup(c
->comm
);
1070 if (p
->pid
== we
->wakee
&& !to
) {
1072 task_to
= strdup(c
->comm
);
1081 task_from
= malloc(40);
1082 sprintf(task_from
, "[%i]", we
->waker
);
1085 task_to
= malloc(40);
1086 sprintf(task_to
, "[%i]", we
->wakee
);
1089 if (we
->waker
== -1)
1090 svg_interrupt(we
->time
, to
, we
->backtrace
);
1091 else if (from
&& to
&& abs(from
- to
) == 1)
1092 svg_wakeline(we
->time
, from
, to
, we
->backtrace
);
1094 svg_partial_wakeline(we
->time
, from
, task_from
, to
,
1095 task_to
, we
->backtrace
);
1103 static void draw_cpu_usage(struct timechart
*tchart
)
1106 struct per_pidcomm
*c
;
1107 struct cpu_sample
*sample
;
1108 p
= tchart
->all_data
;
1112 sample
= c
->samples
;
1114 if (sample
->type
== TYPE_RUNNING
) {
1115 svg_process(sample
->cpu
,
1123 sample
= sample
->next
;
1131 static void draw_io_bars(struct timechart
*tchart
)
1137 struct per_pidcomm
*c
;
1138 struct io_sample
*sample
;
1141 p
= tchart
->all_data
;
1151 svg_box(Y
, c
->start_time
, c
->end_time
, "process3");
1152 sample
= c
->io_samples
;
1153 for (sample
= c
->io_samples
; sample
; sample
= sample
->next
) {
1154 double h
= (double)sample
->bytes
/ c
->max_bytes
;
1156 if (tchart
->skip_eagain
&&
1157 sample
->err
== -EAGAIN
)
1163 if (sample
->type
== IOTYPE_SYNC
)
1168 sample
->err
? "error" : "sync",
1172 else if (sample
->type
== IOTYPE_POLL
)
1177 sample
->err
? "error" : "poll",
1181 else if (sample
->type
== IOTYPE_READ
)
1186 sample
->err
? "error" : "disk",
1190 else if (sample
->type
== IOTYPE_WRITE
)
1195 sample
->err
? "error" : "disk",
1199 else if (sample
->type
== IOTYPE_RX
)
1204 sample
->err
? "error" : "net",
1208 else if (sample
->type
== IOTYPE_TX
)
1213 sample
->err
? "error" : "net",
1220 bytes
= c
->total_bytes
;
1222 bytes
= bytes
/ 1024;
1226 bytes
= bytes
/ 1024;
1230 bytes
= bytes
/ 1024;
1235 sprintf(comm
, "%s:%i (%3.1f %sbytes)", c
->comm
?: "", p
->pid
, bytes
, suf
);
1236 svg_text(Y
, c
->start_time
, comm
);
1246 static void draw_process_bars(struct timechart
*tchart
)
1249 struct per_pidcomm
*c
;
1250 struct cpu_sample
*sample
;
1253 Y
= 2 * tchart
->numcpus
+ 2;
1255 p
= tchart
->all_data
;
1265 svg_box(Y
, c
->start_time
, c
->end_time
, "process");
1266 sample
= c
->samples
;
1268 if (sample
->type
== TYPE_RUNNING
)
1269 svg_running(Y
, sample
->cpu
,
1273 if (sample
->type
== TYPE_BLOCKED
)
1274 svg_blocked(Y
, sample
->cpu
,
1278 if (sample
->type
== TYPE_WAITING
)
1279 svg_waiting(Y
, sample
->cpu
,
1283 sample
= sample
->next
;
1288 if (c
->total_time
> 5000000000) /* 5 seconds */
1289 sprintf(comm
, "%s:%i (%2.2fs)", c
->comm
, p
->pid
, c
->total_time
/ (double)NSEC_PER_SEC
);
1291 sprintf(comm
, "%s:%i (%3.1fms)", c
->comm
, p
->pid
, c
->total_time
/ (double)NSEC_PER_MSEC
);
1293 svg_text(Y
, c
->start_time
, comm
);
1303 static void add_process_filter(const char *string
)
1305 int pid
= strtoull(string
, NULL
, 10);
1306 struct process_filter
*filt
= malloc(sizeof(*filt
));
1311 filt
->name
= strdup(string
);
1313 filt
->next
= process_filter
;
1315 process_filter
= filt
;
1318 static int passes_filter(struct per_pid
*p
, struct per_pidcomm
*c
)
1320 struct process_filter
*filt
;
1321 if (!process_filter
)
1324 filt
= process_filter
;
1326 if (filt
->pid
&& p
->pid
== filt
->pid
)
1328 if (strcmp(filt
->name
, c
->comm
) == 0)
1335 static int determine_display_tasks_filtered(struct timechart
*tchart
)
1338 struct per_pidcomm
*c
;
1341 p
= tchart
->all_data
;
1344 if (p
->start_time
== 1)
1345 p
->start_time
= tchart
->first_time
;
1347 /* no exit marker, task kept running to the end */
1348 if (p
->end_time
== 0)
1349 p
->end_time
= tchart
->last_time
;
1356 if (c
->start_time
== 1)
1357 c
->start_time
= tchart
->first_time
;
1359 if (passes_filter(p
, c
)) {
1365 if (c
->end_time
== 0)
1366 c
->end_time
= tchart
->last_time
;
1375 static int determine_display_tasks(struct timechart
*tchart
, u64 threshold
)
1378 struct per_pidcomm
*c
;
1381 p
= tchart
->all_data
;
1384 if (p
->start_time
== 1)
1385 p
->start_time
= tchart
->first_time
;
1387 /* no exit marker, task kept running to the end */
1388 if (p
->end_time
== 0)
1389 p
->end_time
= tchart
->last_time
;
1390 if (p
->total_time
>= threshold
)
1398 if (c
->start_time
== 1)
1399 c
->start_time
= tchart
->first_time
;
1401 if (c
->total_time
>= threshold
) {
1406 if (c
->end_time
== 0)
1407 c
->end_time
= tchart
->last_time
;
1416 static int determine_display_io_tasks(struct timechart
*timechart
, u64 threshold
)
1419 struct per_pidcomm
*c
;
1422 p
= timechart
->all_data
;
1424 /* no exit marker, task kept running to the end */
1425 if (p
->end_time
== 0)
1426 p
->end_time
= timechart
->last_time
;
1433 if (c
->total_bytes
>= threshold
) {
1438 if (c
->end_time
== 0)
1439 c
->end_time
= timechart
->last_time
;
1448 #define BYTES_THRESH (1 * 1024 * 1024)
1449 #define TIME_THRESH 10000000
1451 static void write_svg_file(struct timechart
*tchart
, const char *filename
)
1455 int thresh
= tchart
->io_events
? BYTES_THRESH
: TIME_THRESH
;
1457 if (tchart
->power_only
)
1458 tchart
->proc_num
= 0;
1460 /* We'd like to show at least proc_num tasks;
1461 * be less picky if we have fewer */
1464 count
= determine_display_tasks_filtered(tchart
);
1465 else if (tchart
->io_events
)
1466 count
= determine_display_io_tasks(tchart
, thresh
);
1468 count
= determine_display_tasks(tchart
, thresh
);
1470 } while (!process_filter
&& thresh
&& count
< tchart
->proc_num
);
1472 if (!tchart
->proc_num
)
1475 if (tchart
->io_events
) {
1476 open_svg(filename
, 0, count
, tchart
->first_time
, tchart
->last_time
);
1481 draw_io_bars(tchart
);
1483 open_svg(filename
, tchart
->numcpus
, count
, tchart
->first_time
, tchart
->last_time
);
1489 for (i
= 0; i
< tchart
->numcpus
; i
++)
1490 svg_cpu_box(i
, tchart
->max_freq
, tchart
->turbo_frequency
);
1492 draw_cpu_usage(tchart
);
1493 if (tchart
->proc_num
)
1494 draw_process_bars(tchart
);
1495 if (!tchart
->tasks_only
)
1496 draw_c_p_states(tchart
);
1497 if (tchart
->proc_num
)
1498 draw_wakeups(tchart
);
1504 static int process_header(struct perf_file_section
*section __maybe_unused
,
1505 struct perf_header
*ph
,
1507 int fd __maybe_unused
,
1510 struct timechart
*tchart
= data
;
1514 tchart
->numcpus
= ph
->env
.nr_cpus_avail
;
1517 case HEADER_CPU_TOPOLOGY
:
1518 if (!tchart
->topology
)
1521 if (svg_build_topology_map(&ph
->env
))
1522 fprintf(stderr
, "problem building topology\n");
1532 static int __cmd_timechart(struct timechart
*tchart
, const char *output_name
)
1534 const struct evsel_str_handler power_tracepoints
[] = {
1535 { "power:cpu_idle", process_sample_cpu_idle
},
1536 { "power:cpu_frequency", process_sample_cpu_frequency
},
1537 { "sched:sched_wakeup", process_sample_sched_wakeup
},
1538 { "sched:sched_switch", process_sample_sched_switch
},
1539 #ifdef SUPPORT_OLD_POWER_EVENTS
1540 { "power:power_start", process_sample_power_start
},
1541 { "power:power_end", process_sample_power_end
},
1542 { "power:power_frequency", process_sample_power_frequency
},
1545 { "syscalls:sys_enter_read", process_enter_read
},
1546 { "syscalls:sys_enter_pread64", process_enter_read
},
1547 { "syscalls:sys_enter_readv", process_enter_read
},
1548 { "syscalls:sys_enter_preadv", process_enter_read
},
1549 { "syscalls:sys_enter_write", process_enter_write
},
1550 { "syscalls:sys_enter_pwrite64", process_enter_write
},
1551 { "syscalls:sys_enter_writev", process_enter_write
},
1552 { "syscalls:sys_enter_pwritev", process_enter_write
},
1553 { "syscalls:sys_enter_sync", process_enter_sync
},
1554 { "syscalls:sys_enter_sync_file_range", process_enter_sync
},
1555 { "syscalls:sys_enter_fsync", process_enter_sync
},
1556 { "syscalls:sys_enter_msync", process_enter_sync
},
1557 { "syscalls:sys_enter_recvfrom", process_enter_rx
},
1558 { "syscalls:sys_enter_recvmmsg", process_enter_rx
},
1559 { "syscalls:sys_enter_recvmsg", process_enter_rx
},
1560 { "syscalls:sys_enter_sendto", process_enter_tx
},
1561 { "syscalls:sys_enter_sendmsg", process_enter_tx
},
1562 { "syscalls:sys_enter_sendmmsg", process_enter_tx
},
1563 { "syscalls:sys_enter_epoll_pwait", process_enter_poll
},
1564 { "syscalls:sys_enter_epoll_wait", process_enter_poll
},
1565 { "syscalls:sys_enter_poll", process_enter_poll
},
1566 { "syscalls:sys_enter_ppoll", process_enter_poll
},
1567 { "syscalls:sys_enter_pselect6", process_enter_poll
},
1568 { "syscalls:sys_enter_select", process_enter_poll
},
1570 { "syscalls:sys_exit_read", process_exit_read
},
1571 { "syscalls:sys_exit_pread64", process_exit_read
},
1572 { "syscalls:sys_exit_readv", process_exit_read
},
1573 { "syscalls:sys_exit_preadv", process_exit_read
},
1574 { "syscalls:sys_exit_write", process_exit_write
},
1575 { "syscalls:sys_exit_pwrite64", process_exit_write
},
1576 { "syscalls:sys_exit_writev", process_exit_write
},
1577 { "syscalls:sys_exit_pwritev", process_exit_write
},
1578 { "syscalls:sys_exit_sync", process_exit_sync
},
1579 { "syscalls:sys_exit_sync_file_range", process_exit_sync
},
1580 { "syscalls:sys_exit_fsync", process_exit_sync
},
1581 { "syscalls:sys_exit_msync", process_exit_sync
},
1582 { "syscalls:sys_exit_recvfrom", process_exit_rx
},
1583 { "syscalls:sys_exit_recvmmsg", process_exit_rx
},
1584 { "syscalls:sys_exit_recvmsg", process_exit_rx
},
1585 { "syscalls:sys_exit_sendto", process_exit_tx
},
1586 { "syscalls:sys_exit_sendmsg", process_exit_tx
},
1587 { "syscalls:sys_exit_sendmmsg", process_exit_tx
},
1588 { "syscalls:sys_exit_epoll_pwait", process_exit_poll
},
1589 { "syscalls:sys_exit_epoll_wait", process_exit_poll
},
1590 { "syscalls:sys_exit_poll", process_exit_poll
},
1591 { "syscalls:sys_exit_ppoll", process_exit_poll
},
1592 { "syscalls:sys_exit_pselect6", process_exit_poll
},
1593 { "syscalls:sys_exit_select", process_exit_poll
},
1595 struct perf_data data
= {
1597 .mode
= PERF_DATA_MODE_READ
,
1598 .force
= tchart
->force
,
1601 struct perf_session
*session
= perf_session__new(&data
, false,
1605 if (IS_ERR(session
))
1606 return PTR_ERR(session
);
1608 symbol__init(&session
->header
.env
);
1610 (void)perf_header__process_sections(&session
->header
,
1611 perf_data__fd(session
->data
),
1615 if (!perf_session__has_traces(session
, "timechart record"))
1618 if (perf_session__set_tracepoints_handlers(session
,
1619 power_tracepoints
)) {
1620 pr_err("Initializing session tracepoint handlers failed\n");
1624 ret
= perf_session__process_events(session
);
1628 end_sample_processing(tchart
);
1632 write_svg_file(tchart
, output_name
);
1634 pr_info("Written %2.1f seconds of trace to %s.\n",
1635 (tchart
->last_time
- tchart
->first_time
) / (double)NSEC_PER_SEC
, output_name
);
1637 perf_session__delete(session
);
1641 static int timechart__io_record(int argc
, const char **argv
)
1643 unsigned int rec_argc
, i
;
1644 const char **rec_argv
;
1646 char *filter
= NULL
;
1648 const char * const common_args
[] = {
1649 "record", "-a", "-R", "-c", "1",
1651 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1653 const char * const disk_events
[] = {
1654 "syscalls:sys_enter_read",
1655 "syscalls:sys_enter_pread64",
1656 "syscalls:sys_enter_readv",
1657 "syscalls:sys_enter_preadv",
1658 "syscalls:sys_enter_write",
1659 "syscalls:sys_enter_pwrite64",
1660 "syscalls:sys_enter_writev",
1661 "syscalls:sys_enter_pwritev",
1662 "syscalls:sys_enter_sync",
1663 "syscalls:sys_enter_sync_file_range",
1664 "syscalls:sys_enter_fsync",
1665 "syscalls:sys_enter_msync",
1667 "syscalls:sys_exit_read",
1668 "syscalls:sys_exit_pread64",
1669 "syscalls:sys_exit_readv",
1670 "syscalls:sys_exit_preadv",
1671 "syscalls:sys_exit_write",
1672 "syscalls:sys_exit_pwrite64",
1673 "syscalls:sys_exit_writev",
1674 "syscalls:sys_exit_pwritev",
1675 "syscalls:sys_exit_sync",
1676 "syscalls:sys_exit_sync_file_range",
1677 "syscalls:sys_exit_fsync",
1678 "syscalls:sys_exit_msync",
1680 unsigned int disk_events_nr
= ARRAY_SIZE(disk_events
);
1682 const char * const net_events
[] = {
1683 "syscalls:sys_enter_recvfrom",
1684 "syscalls:sys_enter_recvmmsg",
1685 "syscalls:sys_enter_recvmsg",
1686 "syscalls:sys_enter_sendto",
1687 "syscalls:sys_enter_sendmsg",
1688 "syscalls:sys_enter_sendmmsg",
1690 "syscalls:sys_exit_recvfrom",
1691 "syscalls:sys_exit_recvmmsg",
1692 "syscalls:sys_exit_recvmsg",
1693 "syscalls:sys_exit_sendto",
1694 "syscalls:sys_exit_sendmsg",
1695 "syscalls:sys_exit_sendmmsg",
1697 unsigned int net_events_nr
= ARRAY_SIZE(net_events
);
1699 const char * const poll_events
[] = {
1700 "syscalls:sys_enter_epoll_pwait",
1701 "syscalls:sys_enter_epoll_wait",
1702 "syscalls:sys_enter_poll",
1703 "syscalls:sys_enter_ppoll",
1704 "syscalls:sys_enter_pselect6",
1705 "syscalls:sys_enter_select",
1707 "syscalls:sys_exit_epoll_pwait",
1708 "syscalls:sys_exit_epoll_wait",
1709 "syscalls:sys_exit_poll",
1710 "syscalls:sys_exit_ppoll",
1711 "syscalls:sys_exit_pselect6",
1712 "syscalls:sys_exit_select",
1714 unsigned int poll_events_nr
= ARRAY_SIZE(poll_events
);
1716 rec_argc
= common_args_nr
+
1717 disk_events_nr
* 4 +
1719 poll_events_nr
* 4 +
1721 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1723 if (rec_argv
== NULL
)
1726 if (asprintf(&filter
, "common_pid != %d", getpid()) < 0) {
1732 for (i
= 0; i
< common_args_nr
; i
++)
1733 *p
++ = strdup(common_args
[i
]);
1735 for (i
= 0; i
< disk_events_nr
; i
++) {
1736 if (!is_valid_tracepoint(disk_events
[i
])) {
1742 *p
++ = strdup(disk_events
[i
]);
1746 for (i
= 0; i
< net_events_nr
; i
++) {
1747 if (!is_valid_tracepoint(net_events
[i
])) {
1753 *p
++ = strdup(net_events
[i
]);
1757 for (i
= 0; i
< poll_events_nr
; i
++) {
1758 if (!is_valid_tracepoint(poll_events
[i
])) {
1764 *p
++ = strdup(poll_events
[i
]);
1769 for (i
= 0; i
< (unsigned int)argc
; i
++)
1772 return cmd_record(rec_argc
, rec_argv
);
1776 static int timechart__record(struct timechart
*tchart
, int argc
, const char **argv
)
1778 unsigned int rec_argc
, i
, j
;
1779 const char **rec_argv
;
1781 unsigned int record_elems
;
1783 const char * const common_args
[] = {
1784 "record", "-a", "-R", "-c", "1",
1786 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1788 const char * const backtrace_args
[] = {
1791 unsigned int backtrace_args_no
= ARRAY_SIZE(backtrace_args
);
1793 const char * const power_args
[] = {
1794 "-e", "power:cpu_frequency",
1795 "-e", "power:cpu_idle",
1797 unsigned int power_args_nr
= ARRAY_SIZE(power_args
);
1799 const char * const old_power_args
[] = {
1800 #ifdef SUPPORT_OLD_POWER_EVENTS
1801 "-e", "power:power_start",
1802 "-e", "power:power_end",
1803 "-e", "power:power_frequency",
1806 unsigned int old_power_args_nr
= ARRAY_SIZE(old_power_args
);
1808 const char * const tasks_args
[] = {
1809 "-e", "sched:sched_wakeup",
1810 "-e", "sched:sched_switch",
1812 unsigned int tasks_args_nr
= ARRAY_SIZE(tasks_args
);
1814 #ifdef SUPPORT_OLD_POWER_EVENTS
1815 if (!is_valid_tracepoint("power:cpu_idle") &&
1816 is_valid_tracepoint("power:power_start")) {
1817 use_old_power_events
= 1;
1820 old_power_args_nr
= 0;
1824 if (tchart
->power_only
)
1827 if (tchart
->tasks_only
) {
1829 old_power_args_nr
= 0;
1832 if (!tchart
->with_backtrace
)
1833 backtrace_args_no
= 0;
1835 record_elems
= common_args_nr
+ tasks_args_nr
+
1836 power_args_nr
+ old_power_args_nr
+ backtrace_args_no
;
1838 rec_argc
= record_elems
+ argc
;
1839 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1841 if (rec_argv
== NULL
)
1845 for (i
= 0; i
< common_args_nr
; i
++)
1846 *p
++ = strdup(common_args
[i
]);
1848 for (i
= 0; i
< backtrace_args_no
; i
++)
1849 *p
++ = strdup(backtrace_args
[i
]);
1851 for (i
= 0; i
< tasks_args_nr
; i
++)
1852 *p
++ = strdup(tasks_args
[i
]);
1854 for (i
= 0; i
< power_args_nr
; i
++)
1855 *p
++ = strdup(power_args
[i
]);
1857 for (i
= 0; i
< old_power_args_nr
; i
++)
1858 *p
++ = strdup(old_power_args
[i
]);
1860 for (j
= 0; j
< (unsigned int)argc
; j
++)
1863 return cmd_record(rec_argc
, rec_argv
);
1867 parse_process(const struct option
*opt __maybe_unused
, const char *arg
,
1868 int __maybe_unused unset
)
1871 add_process_filter(arg
);
1876 parse_highlight(const struct option
*opt __maybe_unused
, const char *arg
,
1877 int __maybe_unused unset
)
1879 unsigned long duration
= strtoul(arg
, NULL
, 0);
1881 if (svg_highlight
|| svg_highlight_name
)
1885 svg_highlight
= duration
;
1887 svg_highlight_name
= strdup(arg
);
1893 parse_time(const struct option
*opt
, const char *arg
, int __maybe_unused unset
)
1896 u64
*value
= opt
->value
;
1898 if (sscanf(arg
, "%" PRIu64
"%cs", value
, &unit
) > 0) {
1901 *value
*= NSEC_PER_MSEC
;
1904 *value
*= NSEC_PER_USEC
;
1916 int cmd_timechart(int argc
, const char **argv
)
1918 struct timechart tchart
= {
1920 .comm
= process_comm_event
,
1921 .fork
= process_fork_event
,
1922 .exit
= process_exit_event
,
1923 .sample
= process_sample_event
,
1924 .ordered_events
= true,
1927 .min_time
= NSEC_PER_MSEC
,
1930 const char *output_name
= "output.svg";
1931 const struct option timechart_common_options
[] = {
1932 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1933 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
, "output processes data only"),
1936 const struct option timechart_options
[] = {
1937 OPT_STRING('i', "input", &input_name
, "file", "input file name"),
1938 OPT_STRING('o', "output", &output_name
, "file", "output file name"),
1939 OPT_INTEGER('w', "width", &svg_page_width
, "page width"),
1940 OPT_CALLBACK(0, "highlight", NULL
, "duration or task name",
1941 "highlight tasks. Pass duration in ns or process name.",
1943 OPT_CALLBACK('p', "process", NULL
, "process",
1944 "process selector. Pass a pid or process name.",
1946 OPT_CALLBACK(0, "symfs", NULL
, "directory",
1947 "Look for files with symbols relative to this directory",
1948 symbol__config_symfs
),
1949 OPT_INTEGER('n', "proc-num", &tchart
.proc_num
,
1950 "min. number of tasks to print"),
1951 OPT_BOOLEAN('t', "topology", &tchart
.topology
,
1952 "sort CPUs according to topology"),
1953 OPT_BOOLEAN(0, "io-skip-eagain", &tchart
.skip_eagain
,
1954 "skip EAGAIN errors"),
1955 OPT_CALLBACK(0, "io-min-time", &tchart
.min_time
, "time",
1956 "all IO faster than min-time will visually appear longer",
1958 OPT_CALLBACK(0, "io-merge-dist", &tchart
.merge_dist
, "time",
1959 "merge events that are merge-dist us apart",
1961 OPT_BOOLEAN('f', "force", &tchart
.force
, "don't complain, do it"),
1962 OPT_PARENT(timechart_common_options
),
1964 const char * const timechart_subcommands
[] = { "record", NULL
};
1965 const char *timechart_usage
[] = {
1966 "perf timechart [<options>] {record}",
1969 const struct option timechart_record_options
[] = {
1970 OPT_BOOLEAN('I', "io-only", &tchart
.io_only
,
1971 "record only IO data"),
1972 OPT_BOOLEAN('g', "callchain", &tchart
.with_backtrace
, "record callchain"),
1973 OPT_PARENT(timechart_common_options
),
1975 const char * const timechart_record_usage
[] = {
1976 "perf timechart record [<options>]",
1979 argc
= parse_options_subcommand(argc
, argv
, timechart_options
, timechart_subcommands
,
1980 timechart_usage
, PARSE_OPT_STOP_AT_NON_OPTION
);
1982 if (tchart
.power_only
&& tchart
.tasks_only
) {
1983 pr_err("-P and -T options cannot be used at the same time.\n");
1987 if (argc
&& !strncmp(argv
[0], "rec", 3)) {
1988 argc
= parse_options(argc
, argv
, timechart_record_options
,
1989 timechart_record_usage
,
1990 PARSE_OPT_STOP_AT_NON_OPTION
);
1992 if (tchart
.power_only
&& tchart
.tasks_only
) {
1993 pr_err("-P and -T options cannot be used at the same time.\n");
1998 return timechart__io_record(argc
, argv
);
2000 return timechart__record(&tchart
, argc
, argv
);
2002 usage_with_options(timechart_usage
, timechart_options
);
2006 return __cmd_timechart(&tchart
, output_name
);