treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / tools / perf / util / auxtrace.c
blobeb087e7df6f4bc1c98398a9e98b12dfd64761f0e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/synthetic-events.h"
37 #include "thread_map.h"
38 #include "asm/bug.h"
39 #include "auxtrace.h"
41 #include <linux/hash.h>
43 #include "event.h"
44 #include "record.h"
45 #include "session.h"
46 #include "debug.h"
47 #include <subcmd/parse-options.h>
49 #include "cs-etm.h"
50 #include "intel-pt.h"
51 #include "intel-bts.h"
52 #include "arm-spe.h"
53 #include "s390-cpumsf.h"
54 #include "util/mmap.h"
56 #include <linux/ctype.h>
57 #include <linux/kernel.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
61 static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel)
63 struct perf_pmu *pmu = NULL;
65 while ((pmu = perf_pmu__scan(pmu)) != NULL) {
66 if (pmu->type == evsel->core.attr.type)
67 break;
70 return pmu;
73 static bool perf_evsel__is_aux_event(struct evsel *evsel)
75 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
77 return pmu && pmu->auxtrace;
81 * Make a group from 'leader' to 'last', requiring that the events were not
82 * already grouped to a different leader.
84 static int perf_evlist__regroup(struct evlist *evlist,
85 struct evsel *leader,
86 struct evsel *last)
88 struct evsel *evsel;
89 bool grp;
91 if (!perf_evsel__is_group_leader(leader))
92 return -EINVAL;
94 grp = false;
95 evlist__for_each_entry(evlist, evsel) {
96 if (grp) {
97 if (!(evsel->leader == leader ||
98 (evsel->leader == evsel &&
99 evsel->core.nr_members <= 1)))
100 return -EINVAL;
101 } else if (evsel == leader) {
102 grp = true;
104 if (evsel == last)
105 break;
108 grp = false;
109 evlist__for_each_entry(evlist, evsel) {
110 if (grp) {
111 if (evsel->leader != leader) {
112 evsel->leader = leader;
113 if (leader->core.nr_members < 1)
114 leader->core.nr_members = 1;
115 leader->core.nr_members += 1;
117 } else if (evsel == leader) {
118 grp = true;
120 if (evsel == last)
121 break;
124 return 0;
127 static bool auxtrace__dont_decode(struct perf_session *session)
129 return !session->itrace_synth_opts ||
130 session->itrace_synth_opts->dont_decode;
133 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
134 struct auxtrace_mmap_params *mp,
135 void *userpg, int fd)
137 struct perf_event_mmap_page *pc = userpg;
139 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
141 mm->userpg = userpg;
142 mm->mask = mp->mask;
143 mm->len = mp->len;
144 mm->prev = 0;
145 mm->idx = mp->idx;
146 mm->tid = mp->tid;
147 mm->cpu = mp->cpu;
149 if (!mp->len) {
150 mm->base = NULL;
151 return 0;
154 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
155 pr_err("Cannot use AUX area tracing mmaps\n");
156 return -1;
157 #endif
159 pc->aux_offset = mp->offset;
160 pc->aux_size = mp->len;
162 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
163 if (mm->base == MAP_FAILED) {
164 pr_debug2("failed to mmap AUX area\n");
165 mm->base = NULL;
166 return -1;
169 return 0;
172 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
174 if (mm->base) {
175 munmap(mm->base, mm->len);
176 mm->base = NULL;
180 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
181 off_t auxtrace_offset,
182 unsigned int auxtrace_pages,
183 bool auxtrace_overwrite)
185 if (auxtrace_pages) {
186 mp->offset = auxtrace_offset;
187 mp->len = auxtrace_pages * (size_t)page_size;
188 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
189 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
190 pr_debug2("AUX area mmap length %zu\n", mp->len);
191 } else {
192 mp->len = 0;
196 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
197 struct evlist *evlist, int idx,
198 bool per_cpu)
200 mp->idx = idx;
202 if (per_cpu) {
203 mp->cpu = evlist->core.cpus->map[idx];
204 if (evlist->core.threads)
205 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
206 else
207 mp->tid = -1;
208 } else {
209 mp->cpu = -1;
210 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
214 #define AUXTRACE_INIT_NR_QUEUES 32
216 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
218 struct auxtrace_queue *queue_array;
219 unsigned int max_nr_queues, i;
221 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
222 if (nr_queues > max_nr_queues)
223 return NULL;
225 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
226 if (!queue_array)
227 return NULL;
229 for (i = 0; i < nr_queues; i++) {
230 INIT_LIST_HEAD(&queue_array[i].head);
231 queue_array[i].priv = NULL;
234 return queue_array;
237 int auxtrace_queues__init(struct auxtrace_queues *queues)
239 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
240 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
241 if (!queues->queue_array)
242 return -ENOMEM;
243 return 0;
246 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
247 unsigned int new_nr_queues)
249 unsigned int nr_queues = queues->nr_queues;
250 struct auxtrace_queue *queue_array;
251 unsigned int i;
253 if (!nr_queues)
254 nr_queues = AUXTRACE_INIT_NR_QUEUES;
256 while (nr_queues && nr_queues < new_nr_queues)
257 nr_queues <<= 1;
259 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
260 return -EINVAL;
262 queue_array = auxtrace_alloc_queue_array(nr_queues);
263 if (!queue_array)
264 return -ENOMEM;
266 for (i = 0; i < queues->nr_queues; i++) {
267 list_splice_tail(&queues->queue_array[i].head,
268 &queue_array[i].head);
269 queue_array[i].tid = queues->queue_array[i].tid;
270 queue_array[i].cpu = queues->queue_array[i].cpu;
271 queue_array[i].set = queues->queue_array[i].set;
272 queue_array[i].priv = queues->queue_array[i].priv;
275 queues->nr_queues = nr_queues;
276 queues->queue_array = queue_array;
278 return 0;
281 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
283 int fd = perf_data__fd(session->data);
284 void *p;
285 ssize_t ret;
287 if (size > SSIZE_MAX)
288 return NULL;
290 p = malloc(size);
291 if (!p)
292 return NULL;
294 ret = readn(fd, p, size);
295 if (ret != (ssize_t)size) {
296 free(p);
297 return NULL;
300 return p;
303 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
304 unsigned int idx,
305 struct auxtrace_buffer *buffer)
307 struct auxtrace_queue *queue;
308 int err;
310 if (idx >= queues->nr_queues) {
311 err = auxtrace_queues__grow(queues, idx + 1);
312 if (err)
313 return err;
316 queue = &queues->queue_array[idx];
318 if (!queue->set) {
319 queue->set = true;
320 queue->tid = buffer->tid;
321 queue->cpu = buffer->cpu;
322 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
323 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
324 queue->cpu, queue->tid, buffer->cpu, buffer->tid);
325 return -EINVAL;
328 buffer->buffer_nr = queues->next_buffer_nr++;
330 list_add_tail(&buffer->list, &queue->head);
332 queues->new_data = true;
333 queues->populated = true;
335 return 0;
338 /* Limit buffers to 32MiB on 32-bit */
339 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
341 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
342 unsigned int idx,
343 struct auxtrace_buffer *buffer)
345 u64 sz = buffer->size;
346 bool consecutive = false;
347 struct auxtrace_buffer *b;
348 int err;
350 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
351 b = memdup(buffer, sizeof(struct auxtrace_buffer));
352 if (!b)
353 return -ENOMEM;
354 b->size = BUFFER_LIMIT_FOR_32_BIT;
355 b->consecutive = consecutive;
356 err = auxtrace_queues__queue_buffer(queues, idx, b);
357 if (err) {
358 auxtrace_buffer__free(b);
359 return err;
361 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
362 sz -= BUFFER_LIMIT_FOR_32_BIT;
363 consecutive = true;
366 buffer->size = sz;
367 buffer->consecutive = consecutive;
369 return 0;
372 static bool filter_cpu(struct perf_session *session, int cpu)
374 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
376 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
379 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
380 struct perf_session *session,
381 unsigned int idx,
382 struct auxtrace_buffer *buffer,
383 struct auxtrace_buffer **buffer_ptr)
385 int err = -ENOMEM;
387 if (filter_cpu(session, buffer->cpu))
388 return 0;
390 buffer = memdup(buffer, sizeof(*buffer));
391 if (!buffer)
392 return -ENOMEM;
394 if (session->one_mmap) {
395 buffer->data = buffer->data_offset - session->one_mmap_offset +
396 session->one_mmap_addr;
397 } else if (perf_data__is_pipe(session->data)) {
398 buffer->data = auxtrace_copy_data(buffer->size, session);
399 if (!buffer->data)
400 goto out_free;
401 buffer->data_needs_freeing = true;
402 } else if (BITS_PER_LONG == 32 &&
403 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
404 err = auxtrace_queues__split_buffer(queues, idx, buffer);
405 if (err)
406 goto out_free;
409 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
410 if (err)
411 goto out_free;
413 /* FIXME: Doesn't work for split buffer */
414 if (buffer_ptr)
415 *buffer_ptr = buffer;
417 return 0;
419 out_free:
420 auxtrace_buffer__free(buffer);
421 return err;
424 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
425 struct perf_session *session,
426 union perf_event *event, off_t data_offset,
427 struct auxtrace_buffer **buffer_ptr)
429 struct auxtrace_buffer buffer = {
430 .pid = -1,
431 .tid = event->auxtrace.tid,
432 .cpu = event->auxtrace.cpu,
433 .data_offset = data_offset,
434 .offset = event->auxtrace.offset,
435 .reference = event->auxtrace.reference,
436 .size = event->auxtrace.size,
438 unsigned int idx = event->auxtrace.idx;
440 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
441 buffer_ptr);
444 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
445 struct perf_session *session,
446 off_t file_offset, size_t sz)
448 union perf_event *event;
449 int err;
450 char buf[PERF_SAMPLE_MAX_SIZE];
452 err = perf_session__peek_event(session, file_offset, buf,
453 PERF_SAMPLE_MAX_SIZE, &event, NULL);
454 if (err)
455 return err;
457 if (event->header.type == PERF_RECORD_AUXTRACE) {
458 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
459 event->header.size != sz) {
460 err = -EINVAL;
461 goto out;
463 file_offset += event->header.size;
464 err = auxtrace_queues__add_event(queues, session, event,
465 file_offset, NULL);
467 out:
468 return err;
471 void auxtrace_queues__free(struct auxtrace_queues *queues)
473 unsigned int i;
475 for (i = 0; i < queues->nr_queues; i++) {
476 while (!list_empty(&queues->queue_array[i].head)) {
477 struct auxtrace_buffer *buffer;
479 buffer = list_entry(queues->queue_array[i].head.next,
480 struct auxtrace_buffer, list);
481 list_del_init(&buffer->list);
482 auxtrace_buffer__free(buffer);
486 zfree(&queues->queue_array);
487 queues->nr_queues = 0;
490 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
491 unsigned int pos, unsigned int queue_nr,
492 u64 ordinal)
494 unsigned int parent;
496 while (pos) {
497 parent = (pos - 1) >> 1;
498 if (heap_array[parent].ordinal <= ordinal)
499 break;
500 heap_array[pos] = heap_array[parent];
501 pos = parent;
503 heap_array[pos].queue_nr = queue_nr;
504 heap_array[pos].ordinal = ordinal;
507 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
508 u64 ordinal)
510 struct auxtrace_heap_item *heap_array;
512 if (queue_nr >= heap->heap_sz) {
513 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
515 while (heap_sz <= queue_nr)
516 heap_sz <<= 1;
517 heap_array = realloc(heap->heap_array,
518 heap_sz * sizeof(struct auxtrace_heap_item));
519 if (!heap_array)
520 return -ENOMEM;
521 heap->heap_array = heap_array;
522 heap->heap_sz = heap_sz;
525 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
527 return 0;
530 void auxtrace_heap__free(struct auxtrace_heap *heap)
532 zfree(&heap->heap_array);
533 heap->heap_cnt = 0;
534 heap->heap_sz = 0;
537 void auxtrace_heap__pop(struct auxtrace_heap *heap)
539 unsigned int pos, last, heap_cnt = heap->heap_cnt;
540 struct auxtrace_heap_item *heap_array;
542 if (!heap_cnt)
543 return;
545 heap->heap_cnt -= 1;
547 heap_array = heap->heap_array;
549 pos = 0;
550 while (1) {
551 unsigned int left, right;
553 left = (pos << 1) + 1;
554 if (left >= heap_cnt)
555 break;
556 right = left + 1;
557 if (right >= heap_cnt) {
558 heap_array[pos] = heap_array[left];
559 return;
561 if (heap_array[left].ordinal < heap_array[right].ordinal) {
562 heap_array[pos] = heap_array[left];
563 pos = left;
564 } else {
565 heap_array[pos] = heap_array[right];
566 pos = right;
570 last = heap_cnt - 1;
571 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
572 heap_array[last].ordinal);
575 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
576 struct evlist *evlist)
578 if (itr)
579 return itr->info_priv_size(itr, evlist);
580 return 0;
583 static int auxtrace_not_supported(void)
585 pr_err("AUX area tracing is not supported on this architecture\n");
586 return -EINVAL;
589 int auxtrace_record__info_fill(struct auxtrace_record *itr,
590 struct perf_session *session,
591 struct perf_record_auxtrace_info *auxtrace_info,
592 size_t priv_size)
594 if (itr)
595 return itr->info_fill(itr, session, auxtrace_info, priv_size);
596 return auxtrace_not_supported();
599 void auxtrace_record__free(struct auxtrace_record *itr)
601 if (itr)
602 itr->free(itr);
605 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
607 if (itr && itr->snapshot_start)
608 return itr->snapshot_start(itr);
609 return 0;
612 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
614 if (!on_exit && itr && itr->snapshot_finish)
615 return itr->snapshot_finish(itr);
616 return 0;
619 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
620 struct auxtrace_mmap *mm,
621 unsigned char *data, u64 *head, u64 *old)
623 if (itr && itr->find_snapshot)
624 return itr->find_snapshot(itr, idx, mm, data, head, old);
625 return 0;
628 int auxtrace_record__options(struct auxtrace_record *itr,
629 struct evlist *evlist,
630 struct record_opts *opts)
632 if (itr)
633 return itr->recording_options(itr, evlist, opts);
634 return 0;
637 u64 auxtrace_record__reference(struct auxtrace_record *itr)
639 if (itr)
640 return itr->reference(itr);
641 return 0;
644 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
645 struct record_opts *opts, const char *str)
647 if (!str)
648 return 0;
650 /* PMU-agnostic options */
651 switch (*str) {
652 case 'e':
653 opts->auxtrace_snapshot_on_exit = true;
654 str++;
655 break;
656 default:
657 break;
660 if (itr)
661 return itr->parse_snapshot_options(itr, opts, str);
663 pr_err("No AUX area tracing to snapshot\n");
664 return -EINVAL;
668 * Event record size is 16-bit which results in a maximum size of about 64KiB.
669 * Allow about 4KiB for the rest of the sample record, to give a maximum
670 * AUX area sample size of 60KiB.
672 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
674 /* Arbitrary default size if no other default provided */
675 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
677 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
678 struct record_opts *opts)
680 struct evsel *evsel;
681 bool has_aux_leader = false;
682 u32 sz;
684 evlist__for_each_entry(evlist, evsel) {
685 sz = evsel->core.attr.aux_sample_size;
686 if (perf_evsel__is_group_leader(evsel)) {
687 has_aux_leader = perf_evsel__is_aux_event(evsel);
688 if (sz) {
689 if (has_aux_leader)
690 pr_err("Cannot add AUX area sampling to an AUX area event\n");
691 else
692 pr_err("Cannot add AUX area sampling to a group leader\n");
693 return -EINVAL;
696 if (sz > MAX_AUX_SAMPLE_SIZE) {
697 pr_err("AUX area sample size %u too big, max. %d\n",
698 sz, MAX_AUX_SAMPLE_SIZE);
699 return -EINVAL;
701 if (sz) {
702 if (!has_aux_leader) {
703 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
704 return -EINVAL;
706 perf_evsel__set_sample_bit(evsel, AUX);
707 opts->auxtrace_sample_mode = true;
708 } else {
709 perf_evsel__reset_sample_bit(evsel, AUX);
713 if (!opts->auxtrace_sample_mode) {
714 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
715 return -EINVAL;
718 if (!perf_can_aux_sample()) {
719 pr_err("AUX area sampling is not supported by kernel\n");
720 return -EINVAL;
723 return 0;
726 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
727 struct evlist *evlist,
728 struct record_opts *opts, const char *str)
730 struct perf_evsel_config_term *term;
731 struct evsel *aux_evsel;
732 bool has_aux_sample_size = false;
733 bool has_aux_leader = false;
734 struct evsel *evsel;
735 char *endptr;
736 unsigned long sz;
738 if (!str)
739 goto no_opt;
741 if (!itr) {
742 pr_err("No AUX area event to sample\n");
743 return -EINVAL;
746 sz = strtoul(str, &endptr, 0);
747 if (*endptr || sz > UINT_MAX) {
748 pr_err("Bad AUX area sampling option: '%s'\n", str);
749 return -EINVAL;
752 if (!sz)
753 sz = itr->default_aux_sample_size;
755 if (!sz)
756 sz = DEFAULT_AUX_SAMPLE_SIZE;
758 /* Set aux_sample_size based on --aux-sample option */
759 evlist__for_each_entry(evlist, evsel) {
760 if (perf_evsel__is_group_leader(evsel)) {
761 has_aux_leader = perf_evsel__is_aux_event(evsel);
762 } else if (has_aux_leader) {
763 evsel->core.attr.aux_sample_size = sz;
766 no_opt:
767 aux_evsel = NULL;
768 /* Override with aux_sample_size from config term */
769 evlist__for_each_entry(evlist, evsel) {
770 if (perf_evsel__is_aux_event(evsel))
771 aux_evsel = evsel;
772 term = perf_evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
773 if (term) {
774 has_aux_sample_size = true;
775 evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
776 /* If possible, group with the AUX event */
777 if (aux_evsel && evsel->core.attr.aux_sample_size)
778 perf_evlist__regroup(evlist, aux_evsel, evsel);
782 if (!str && !has_aux_sample_size)
783 return 0;
785 if (!itr) {
786 pr_err("No AUX area event to sample\n");
787 return -EINVAL;
790 return auxtrace_validate_aux_sample_size(evlist, opts);
793 struct auxtrace_record *__weak
794 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
796 *err = 0;
797 return NULL;
800 static int auxtrace_index__alloc(struct list_head *head)
802 struct auxtrace_index *auxtrace_index;
804 auxtrace_index = malloc(sizeof(struct auxtrace_index));
805 if (!auxtrace_index)
806 return -ENOMEM;
808 auxtrace_index->nr = 0;
809 INIT_LIST_HEAD(&auxtrace_index->list);
811 list_add_tail(&auxtrace_index->list, head);
813 return 0;
816 void auxtrace_index__free(struct list_head *head)
818 struct auxtrace_index *auxtrace_index, *n;
820 list_for_each_entry_safe(auxtrace_index, n, head, list) {
821 list_del_init(&auxtrace_index->list);
822 free(auxtrace_index);
826 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
828 struct auxtrace_index *auxtrace_index;
829 int err;
831 if (list_empty(head)) {
832 err = auxtrace_index__alloc(head);
833 if (err)
834 return NULL;
837 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
839 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
840 err = auxtrace_index__alloc(head);
841 if (err)
842 return NULL;
843 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
844 list);
847 return auxtrace_index;
850 int auxtrace_index__auxtrace_event(struct list_head *head,
851 union perf_event *event, off_t file_offset)
853 struct auxtrace_index *auxtrace_index;
854 size_t nr;
856 auxtrace_index = auxtrace_index__last(head);
857 if (!auxtrace_index)
858 return -ENOMEM;
860 nr = auxtrace_index->nr;
861 auxtrace_index->entries[nr].file_offset = file_offset;
862 auxtrace_index->entries[nr].sz = event->header.size;
863 auxtrace_index->nr += 1;
865 return 0;
868 static int auxtrace_index__do_write(int fd,
869 struct auxtrace_index *auxtrace_index)
871 struct auxtrace_index_entry ent;
872 size_t i;
874 for (i = 0; i < auxtrace_index->nr; i++) {
875 ent.file_offset = auxtrace_index->entries[i].file_offset;
876 ent.sz = auxtrace_index->entries[i].sz;
877 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
878 return -errno;
880 return 0;
883 int auxtrace_index__write(int fd, struct list_head *head)
885 struct auxtrace_index *auxtrace_index;
886 u64 total = 0;
887 int err;
889 list_for_each_entry(auxtrace_index, head, list)
890 total += auxtrace_index->nr;
892 if (writen(fd, &total, sizeof(total)) != sizeof(total))
893 return -errno;
895 list_for_each_entry(auxtrace_index, head, list) {
896 err = auxtrace_index__do_write(fd, auxtrace_index);
897 if (err)
898 return err;
901 return 0;
904 static int auxtrace_index__process_entry(int fd, struct list_head *head,
905 bool needs_swap)
907 struct auxtrace_index *auxtrace_index;
908 struct auxtrace_index_entry ent;
909 size_t nr;
911 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
912 return -1;
914 auxtrace_index = auxtrace_index__last(head);
915 if (!auxtrace_index)
916 return -1;
918 nr = auxtrace_index->nr;
919 if (needs_swap) {
920 auxtrace_index->entries[nr].file_offset =
921 bswap_64(ent.file_offset);
922 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
923 } else {
924 auxtrace_index->entries[nr].file_offset = ent.file_offset;
925 auxtrace_index->entries[nr].sz = ent.sz;
928 auxtrace_index->nr = nr + 1;
930 return 0;
933 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
934 bool needs_swap)
936 struct list_head *head = &session->auxtrace_index;
937 u64 nr;
939 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
940 return -1;
942 if (needs_swap)
943 nr = bswap_64(nr);
945 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
946 return -1;
948 while (nr--) {
949 int err;
951 err = auxtrace_index__process_entry(fd, head, needs_swap);
952 if (err)
953 return -1;
956 return 0;
959 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
960 struct perf_session *session,
961 struct auxtrace_index_entry *ent)
963 return auxtrace_queues__add_indexed_event(queues, session,
964 ent->file_offset, ent->sz);
967 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
968 struct perf_session *session)
970 struct auxtrace_index *auxtrace_index;
971 struct auxtrace_index_entry *ent;
972 size_t i;
973 int err;
975 if (auxtrace__dont_decode(session))
976 return 0;
978 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
979 for (i = 0; i < auxtrace_index->nr; i++) {
980 ent = &auxtrace_index->entries[i];
981 err = auxtrace_queues__process_index_entry(queues,
982 session,
983 ent);
984 if (err)
985 return err;
988 return 0;
991 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
992 struct auxtrace_buffer *buffer)
994 if (buffer) {
995 if (list_is_last(&buffer->list, &queue->head))
996 return NULL;
997 return list_entry(buffer->list.next, struct auxtrace_buffer,
998 list);
999 } else {
1000 if (list_empty(&queue->head))
1001 return NULL;
1002 return list_entry(queue->head.next, struct auxtrace_buffer,
1003 list);
1007 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1008 struct perf_sample *sample,
1009 struct perf_session *session)
1011 struct perf_sample_id *sid;
1012 unsigned int idx;
1013 u64 id;
1015 id = sample->id;
1016 if (!id)
1017 return NULL;
1019 sid = perf_evlist__id2sid(session->evlist, id);
1020 if (!sid)
1021 return NULL;
1023 idx = sid->idx;
1025 if (idx >= queues->nr_queues)
1026 return NULL;
1028 return &queues->queue_array[idx];
1031 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1032 struct perf_session *session,
1033 struct perf_sample *sample, u64 data_offset,
1034 u64 reference)
1036 struct auxtrace_buffer buffer = {
1037 .pid = -1,
1038 .data_offset = data_offset,
1039 .reference = reference,
1040 .size = sample->aux_sample.size,
1042 struct perf_sample_id *sid;
1043 u64 id = sample->id;
1044 unsigned int idx;
1046 if (!id)
1047 return -EINVAL;
1049 sid = perf_evlist__id2sid(session->evlist, id);
1050 if (!sid)
1051 return -ENOENT;
1053 idx = sid->idx;
1054 buffer.tid = sid->tid;
1055 buffer.cpu = sid->cpu;
1057 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1060 struct queue_data {
1061 bool samples;
1062 bool events;
1065 static int auxtrace_queue_data_cb(struct perf_session *session,
1066 union perf_event *event, u64 offset,
1067 void *data)
1069 struct queue_data *qd = data;
1070 struct perf_sample sample;
1071 int err;
1073 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1074 if (event->header.size < sizeof(struct perf_record_auxtrace))
1075 return -EINVAL;
1076 offset += event->header.size;
1077 return session->auxtrace->queue_data(session, NULL, event,
1078 offset);
1081 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1082 return 0;
1084 err = perf_evlist__parse_sample(session->evlist, event, &sample);
1085 if (err)
1086 return err;
1088 if (!sample.aux_sample.size)
1089 return 0;
1091 offset += sample.aux_sample.data - (void *)event;
1093 return session->auxtrace->queue_data(session, &sample, NULL, offset);
1096 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1098 struct queue_data qd = {
1099 .samples = samples,
1100 .events = events,
1103 if (auxtrace__dont_decode(session))
1104 return 0;
1106 if (!session->auxtrace || !session->auxtrace->queue_data)
1107 return -EINVAL;
1109 return perf_session__peek_events(session, session->header.data_offset,
1110 session->header.data_size,
1111 auxtrace_queue_data_cb, &qd);
1114 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1116 size_t adj = buffer->data_offset & (page_size - 1);
1117 size_t size = buffer->size + adj;
1118 off_t file_offset = buffer->data_offset - adj;
1119 void *addr;
1121 if (buffer->data)
1122 return buffer->data;
1124 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1125 if (addr == MAP_FAILED)
1126 return NULL;
1128 buffer->mmap_addr = addr;
1129 buffer->mmap_size = size;
1131 buffer->data = addr + adj;
1133 return buffer->data;
1136 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1138 if (!buffer->data || !buffer->mmap_addr)
1139 return;
1140 munmap(buffer->mmap_addr, buffer->mmap_size);
1141 buffer->mmap_addr = NULL;
1142 buffer->mmap_size = 0;
1143 buffer->data = NULL;
1144 buffer->use_data = NULL;
1147 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1149 auxtrace_buffer__put_data(buffer);
1150 if (buffer->data_needs_freeing) {
1151 buffer->data_needs_freeing = false;
1152 zfree(&buffer->data);
1153 buffer->use_data = NULL;
1154 buffer->size = 0;
1158 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1160 auxtrace_buffer__drop_data(buffer);
1161 free(buffer);
1164 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1165 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1166 const char *msg, u64 timestamp)
1168 size_t size;
1170 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1172 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1173 auxtrace_error->type = type;
1174 auxtrace_error->code = code;
1175 auxtrace_error->cpu = cpu;
1176 auxtrace_error->pid = pid;
1177 auxtrace_error->tid = tid;
1178 auxtrace_error->fmt = 1;
1179 auxtrace_error->ip = ip;
1180 auxtrace_error->time = timestamp;
1181 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1183 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1184 strlen(auxtrace_error->msg) + 1;
1185 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1188 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1189 struct perf_tool *tool,
1190 struct perf_session *session,
1191 perf_event__handler_t process)
1193 union perf_event *ev;
1194 size_t priv_size;
1195 int err;
1197 pr_debug2("Synthesizing auxtrace information\n");
1198 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1199 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1200 if (!ev)
1201 return -ENOMEM;
1203 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1204 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1205 priv_size;
1206 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1207 priv_size);
1208 if (err)
1209 goto out_free;
1211 err = process(tool, ev, NULL, NULL);
1212 out_free:
1213 free(ev);
1214 return err;
1217 int perf_event__process_auxtrace_info(struct perf_session *session,
1218 union perf_event *event)
1220 enum auxtrace_type type = event->auxtrace_info.type;
1222 if (dump_trace)
1223 fprintf(stdout, " type: %u\n", type);
1225 switch (type) {
1226 case PERF_AUXTRACE_INTEL_PT:
1227 return intel_pt_process_auxtrace_info(event, session);
1228 case PERF_AUXTRACE_INTEL_BTS:
1229 return intel_bts_process_auxtrace_info(event, session);
1230 case PERF_AUXTRACE_ARM_SPE:
1231 return arm_spe_process_auxtrace_info(event, session);
1232 case PERF_AUXTRACE_CS_ETM:
1233 return cs_etm__process_auxtrace_info(event, session);
1234 case PERF_AUXTRACE_S390_CPUMSF:
1235 return s390_cpumsf_process_auxtrace_info(event, session);
1236 case PERF_AUXTRACE_UNKNOWN:
1237 default:
1238 return -EINVAL;
1242 s64 perf_event__process_auxtrace(struct perf_session *session,
1243 union perf_event *event)
1245 s64 err;
1247 if (dump_trace)
1248 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
1249 event->auxtrace.size, event->auxtrace.offset,
1250 event->auxtrace.reference, event->auxtrace.idx,
1251 event->auxtrace.tid, event->auxtrace.cpu);
1253 if (auxtrace__dont_decode(session))
1254 return event->auxtrace.size;
1256 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1257 return -EINVAL;
1259 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1260 if (err < 0)
1261 return err;
1263 return event->auxtrace.size;
1266 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
1267 #define PERF_ITRACE_DEFAULT_PERIOD 100000
1268 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
1269 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
1270 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
1271 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
1273 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1274 bool no_sample)
1276 synth_opts->branches = true;
1277 synth_opts->transactions = true;
1278 synth_opts->ptwrites = true;
1279 synth_opts->pwr_events = true;
1280 synth_opts->other_events = true;
1281 synth_opts->errors = true;
1282 if (no_sample) {
1283 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1284 synth_opts->period = 1;
1285 synth_opts->calls = true;
1286 } else {
1287 synth_opts->instructions = true;
1288 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1289 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1291 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1292 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1293 synth_opts->initial_skip = 0;
1297 * Please check tools/perf/Documentation/perf-script.txt for information
1298 * about the options parsed here, which is introduced after this cset,
1299 * when support in 'perf script' for these options is introduced.
1301 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1302 int unset)
1304 struct itrace_synth_opts *synth_opts = opt->value;
1305 const char *p;
1306 char *endptr;
1307 bool period_type_set = false;
1308 bool period_set = false;
1310 synth_opts->set = true;
1312 if (unset) {
1313 synth_opts->dont_decode = true;
1314 return 0;
1317 if (!str) {
1318 itrace_synth_opts__set_default(synth_opts,
1319 synth_opts->default_no_sample);
1320 return 0;
1323 for (p = str; *p;) {
1324 switch (*p++) {
1325 case 'i':
1326 synth_opts->instructions = true;
1327 while (*p == ' ' || *p == ',')
1328 p += 1;
1329 if (isdigit(*p)) {
1330 synth_opts->period = strtoull(p, &endptr, 10);
1331 period_set = true;
1332 p = endptr;
1333 while (*p == ' ' || *p == ',')
1334 p += 1;
1335 switch (*p++) {
1336 case 'i':
1337 synth_opts->period_type =
1338 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1339 period_type_set = true;
1340 break;
1341 case 't':
1342 synth_opts->period_type =
1343 PERF_ITRACE_PERIOD_TICKS;
1344 period_type_set = true;
1345 break;
1346 case 'm':
1347 synth_opts->period *= 1000;
1348 /* Fall through */
1349 case 'u':
1350 synth_opts->period *= 1000;
1351 /* Fall through */
1352 case 'n':
1353 if (*p++ != 's')
1354 goto out_err;
1355 synth_opts->period_type =
1356 PERF_ITRACE_PERIOD_NANOSECS;
1357 period_type_set = true;
1358 break;
1359 case '\0':
1360 goto out;
1361 default:
1362 goto out_err;
1365 break;
1366 case 'b':
1367 synth_opts->branches = true;
1368 break;
1369 case 'x':
1370 synth_opts->transactions = true;
1371 break;
1372 case 'w':
1373 synth_opts->ptwrites = true;
1374 break;
1375 case 'p':
1376 synth_opts->pwr_events = true;
1377 break;
1378 case 'o':
1379 synth_opts->other_events = true;
1380 break;
1381 case 'e':
1382 synth_opts->errors = true;
1383 break;
1384 case 'd':
1385 synth_opts->log = true;
1386 break;
1387 case 'c':
1388 synth_opts->branches = true;
1389 synth_opts->calls = true;
1390 break;
1391 case 'r':
1392 synth_opts->branches = true;
1393 synth_opts->returns = true;
1394 break;
1395 case 'g':
1396 synth_opts->callchain = true;
1397 synth_opts->callchain_sz =
1398 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1399 while (*p == ' ' || *p == ',')
1400 p += 1;
1401 if (isdigit(*p)) {
1402 unsigned int val;
1404 val = strtoul(p, &endptr, 10);
1405 p = endptr;
1406 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1407 goto out_err;
1408 synth_opts->callchain_sz = val;
1410 break;
1411 case 'l':
1412 synth_opts->last_branch = true;
1413 synth_opts->last_branch_sz =
1414 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1415 while (*p == ' ' || *p == ',')
1416 p += 1;
1417 if (isdigit(*p)) {
1418 unsigned int val;
1420 val = strtoul(p, &endptr, 10);
1421 p = endptr;
1422 if (!val ||
1423 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1424 goto out_err;
1425 synth_opts->last_branch_sz = val;
1427 break;
1428 case 's':
1429 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1430 if (p == endptr)
1431 goto out_err;
1432 p = endptr;
1433 break;
1434 case ' ':
1435 case ',':
1436 break;
1437 default:
1438 goto out_err;
1441 out:
1442 if (synth_opts->instructions) {
1443 if (!period_type_set)
1444 synth_opts->period_type =
1445 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1446 if (!period_set)
1447 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1450 return 0;
1452 out_err:
1453 pr_err("Bad Instruction Tracing options '%s'\n", str);
1454 return -EINVAL;
1457 static const char * const auxtrace_error_type_name[] = {
1458 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1461 static const char *auxtrace_error_name(int type)
1463 const char *error_type_name = NULL;
1465 if (type < PERF_AUXTRACE_ERROR_MAX)
1466 error_type_name = auxtrace_error_type_name[type];
1467 if (!error_type_name)
1468 error_type_name = "unknown AUX";
1469 return error_type_name;
1472 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1474 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1475 unsigned long long nsecs = e->time;
1476 const char *msg = e->msg;
1477 int ret;
1479 ret = fprintf(fp, " %s error type %u",
1480 auxtrace_error_name(e->type), e->type);
1482 if (e->fmt && nsecs) {
1483 unsigned long secs = nsecs / NSEC_PER_SEC;
1485 nsecs -= secs * NSEC_PER_SEC;
1486 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1487 } else {
1488 ret += fprintf(fp, " time 0");
1491 if (!e->fmt)
1492 msg = (const char *)&e->time;
1494 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1495 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1496 return ret;
1499 void perf_session__auxtrace_error_inc(struct perf_session *session,
1500 union perf_event *event)
1502 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1504 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1505 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1508 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1510 int i;
1512 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1513 if (!stats->nr_auxtrace_errors[i])
1514 continue;
1515 ui__warning("%u %s errors\n",
1516 stats->nr_auxtrace_errors[i],
1517 auxtrace_error_name(i));
1521 int perf_event__process_auxtrace_error(struct perf_session *session,
1522 union perf_event *event)
1524 if (auxtrace__dont_decode(session))
1525 return 0;
1527 perf_event__fprintf_auxtrace_error(event, stdout);
1528 return 0;
1531 static int __auxtrace_mmap__read(struct mmap *map,
1532 struct auxtrace_record *itr,
1533 struct perf_tool *tool, process_auxtrace_t fn,
1534 bool snapshot, size_t snapshot_size)
1536 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1537 u64 head, old = mm->prev, offset, ref;
1538 unsigned char *data = mm->base;
1539 size_t size, head_off, old_off, len1, len2, padding;
1540 union perf_event ev;
1541 void *data1, *data2;
1543 if (snapshot) {
1544 head = auxtrace_mmap__read_snapshot_head(mm);
1545 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1546 &head, &old))
1547 return -1;
1548 } else {
1549 head = auxtrace_mmap__read_head(mm);
1552 if (old == head)
1553 return 0;
1555 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1556 mm->idx, old, head, head - old);
1558 if (mm->mask) {
1559 head_off = head & mm->mask;
1560 old_off = old & mm->mask;
1561 } else {
1562 head_off = head % mm->len;
1563 old_off = old % mm->len;
1566 if (head_off > old_off)
1567 size = head_off - old_off;
1568 else
1569 size = mm->len - (old_off - head_off);
1571 if (snapshot && size > snapshot_size)
1572 size = snapshot_size;
1574 ref = auxtrace_record__reference(itr);
1576 if (head > old || size <= head || mm->mask) {
1577 offset = head - size;
1578 } else {
1580 * When the buffer size is not a power of 2, 'head' wraps at the
1581 * highest multiple of the buffer size, so we have to subtract
1582 * the remainder here.
1584 u64 rem = (0ULL - mm->len) % mm->len;
1586 offset = head - size - rem;
1589 if (size > head_off) {
1590 len1 = size - head_off;
1591 data1 = &data[mm->len - len1];
1592 len2 = head_off;
1593 data2 = &data[0];
1594 } else {
1595 len1 = size;
1596 data1 = &data[head_off - len1];
1597 len2 = 0;
1598 data2 = NULL;
1601 if (itr->alignment) {
1602 unsigned int unwanted = len1 % itr->alignment;
1604 len1 -= unwanted;
1605 size -= unwanted;
1608 /* padding must be written by fn() e.g. record__process_auxtrace() */
1609 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1610 if (padding)
1611 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1613 memset(&ev, 0, sizeof(ev));
1614 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1615 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1616 ev.auxtrace.size = size + padding;
1617 ev.auxtrace.offset = offset;
1618 ev.auxtrace.reference = ref;
1619 ev.auxtrace.idx = mm->idx;
1620 ev.auxtrace.tid = mm->tid;
1621 ev.auxtrace.cpu = mm->cpu;
1623 if (fn(tool, map, &ev, data1, len1, data2, len2))
1624 return -1;
1626 mm->prev = head;
1628 if (!snapshot) {
1629 auxtrace_mmap__write_tail(mm, head);
1630 if (itr->read_finish) {
1631 int err;
1633 err = itr->read_finish(itr, mm->idx);
1634 if (err < 0)
1635 return err;
1639 return 1;
1642 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1643 struct perf_tool *tool, process_auxtrace_t fn)
1645 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1648 int auxtrace_mmap__read_snapshot(struct mmap *map,
1649 struct auxtrace_record *itr,
1650 struct perf_tool *tool, process_auxtrace_t fn,
1651 size_t snapshot_size)
1653 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1657 * struct auxtrace_cache - hash table to implement a cache
1658 * @hashtable: the hashtable
1659 * @sz: hashtable size (number of hlists)
1660 * @entry_size: size of an entry
1661 * @limit: limit the number of entries to this maximum, when reached the cache
1662 * is dropped and caching begins again with an empty cache
1663 * @cnt: current number of entries
1664 * @bits: hashtable size (@sz = 2^@bits)
1666 struct auxtrace_cache {
1667 struct hlist_head *hashtable;
1668 size_t sz;
1669 size_t entry_size;
1670 size_t limit;
1671 size_t cnt;
1672 unsigned int bits;
1675 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1676 unsigned int limit_percent)
1678 struct auxtrace_cache *c;
1679 struct hlist_head *ht;
1680 size_t sz, i;
1682 c = zalloc(sizeof(struct auxtrace_cache));
1683 if (!c)
1684 return NULL;
1686 sz = 1UL << bits;
1688 ht = calloc(sz, sizeof(struct hlist_head));
1689 if (!ht)
1690 goto out_free;
1692 for (i = 0; i < sz; i++)
1693 INIT_HLIST_HEAD(&ht[i]);
1695 c->hashtable = ht;
1696 c->sz = sz;
1697 c->entry_size = entry_size;
1698 c->limit = (c->sz * limit_percent) / 100;
1699 c->bits = bits;
1701 return c;
1703 out_free:
1704 free(c);
1705 return NULL;
1708 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1710 struct auxtrace_cache_entry *entry;
1711 struct hlist_node *tmp;
1712 size_t i;
1714 if (!c)
1715 return;
1717 for (i = 0; i < c->sz; i++) {
1718 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1719 hlist_del(&entry->hash);
1720 auxtrace_cache__free_entry(c, entry);
1724 c->cnt = 0;
1727 void auxtrace_cache__free(struct auxtrace_cache *c)
1729 if (!c)
1730 return;
1732 auxtrace_cache__drop(c);
1733 zfree(&c->hashtable);
1734 free(c);
1737 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1739 return malloc(c->entry_size);
1742 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1743 void *entry)
1745 free(entry);
1748 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1749 struct auxtrace_cache_entry *entry)
1751 if (c->limit && ++c->cnt > c->limit)
1752 auxtrace_cache__drop(c);
1754 entry->key = key;
1755 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1757 return 0;
1760 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1761 u32 key)
1763 struct auxtrace_cache_entry *entry;
1764 struct hlist_head *hlist;
1765 struct hlist_node *n;
1767 if (!c)
1768 return NULL;
1770 hlist = &c->hashtable[hash_32(key, c->bits)];
1771 hlist_for_each_entry_safe(entry, n, hlist, hash) {
1772 if (entry->key == key) {
1773 hlist_del(&entry->hash);
1774 return entry;
1778 return NULL;
1781 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1783 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1785 auxtrace_cache__free_entry(c, entry);
1788 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1790 struct auxtrace_cache_entry *entry;
1791 struct hlist_head *hlist;
1793 if (!c)
1794 return NULL;
1796 hlist = &c->hashtable[hash_32(key, c->bits)];
1797 hlist_for_each_entry(entry, hlist, hash) {
1798 if (entry->key == key)
1799 return entry;
1802 return NULL;
1805 static void addr_filter__free_str(struct addr_filter *filt)
1807 zfree(&filt->str);
1808 filt->action = NULL;
1809 filt->sym_from = NULL;
1810 filt->sym_to = NULL;
1811 filt->filename = NULL;
1814 static struct addr_filter *addr_filter__new(void)
1816 struct addr_filter *filt = zalloc(sizeof(*filt));
1818 if (filt)
1819 INIT_LIST_HEAD(&filt->list);
1821 return filt;
1824 static void addr_filter__free(struct addr_filter *filt)
1826 if (filt)
1827 addr_filter__free_str(filt);
1828 free(filt);
1831 static void addr_filters__add(struct addr_filters *filts,
1832 struct addr_filter *filt)
1834 list_add_tail(&filt->list, &filts->head);
1835 filts->cnt += 1;
1838 static void addr_filters__del(struct addr_filters *filts,
1839 struct addr_filter *filt)
1841 list_del_init(&filt->list);
1842 filts->cnt -= 1;
1845 void addr_filters__init(struct addr_filters *filts)
1847 INIT_LIST_HEAD(&filts->head);
1848 filts->cnt = 0;
1851 void addr_filters__exit(struct addr_filters *filts)
1853 struct addr_filter *filt, *n;
1855 list_for_each_entry_safe(filt, n, &filts->head, list) {
1856 addr_filters__del(filts, filt);
1857 addr_filter__free(filt);
1861 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1862 const char *str_delim)
1864 *inp += strspn(*inp, " ");
1866 if (isdigit(**inp)) {
1867 char *endptr;
1869 if (!num)
1870 return -EINVAL;
1871 errno = 0;
1872 *num = strtoull(*inp, &endptr, 0);
1873 if (errno)
1874 return -errno;
1875 if (endptr == *inp)
1876 return -EINVAL;
1877 *inp = endptr;
1878 } else {
1879 size_t n;
1881 if (!str)
1882 return -EINVAL;
1883 *inp += strspn(*inp, " ");
1884 *str = *inp;
1885 n = strcspn(*inp, str_delim);
1886 if (!n)
1887 return -EINVAL;
1888 *inp += n;
1889 if (**inp) {
1890 **inp = '\0';
1891 *inp += 1;
1894 return 0;
1897 static int parse_action(struct addr_filter *filt)
1899 if (!strcmp(filt->action, "filter")) {
1900 filt->start = true;
1901 filt->range = true;
1902 } else if (!strcmp(filt->action, "start")) {
1903 filt->start = true;
1904 } else if (!strcmp(filt->action, "stop")) {
1905 filt->start = false;
1906 } else if (!strcmp(filt->action, "tracestop")) {
1907 filt->start = false;
1908 filt->range = true;
1909 filt->action += 5; /* Change 'tracestop' to 'stop' */
1910 } else {
1911 return -EINVAL;
1913 return 0;
1916 static int parse_sym_idx(char **inp, int *idx)
1918 *idx = -1;
1920 *inp += strspn(*inp, " ");
1922 if (**inp != '#')
1923 return 0;
1925 *inp += 1;
1927 if (**inp == 'g' || **inp == 'G') {
1928 *inp += 1;
1929 *idx = 0;
1930 } else {
1931 unsigned long num;
1932 char *endptr;
1934 errno = 0;
1935 num = strtoul(*inp, &endptr, 0);
1936 if (errno)
1937 return -errno;
1938 if (endptr == *inp || num > INT_MAX)
1939 return -EINVAL;
1940 *inp = endptr;
1941 *idx = num;
1944 return 0;
1947 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1949 int err = parse_num_or_str(inp, num, str, " ");
1951 if (!err && *str)
1952 err = parse_sym_idx(inp, idx);
1954 return err;
1957 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1959 char *fstr;
1960 int err;
1962 filt->str = fstr = strdup(*filter_inp);
1963 if (!fstr)
1964 return -ENOMEM;
1966 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1967 if (err)
1968 goto out_err;
1970 err = parse_action(filt);
1971 if (err)
1972 goto out_err;
1974 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1975 &filt->sym_from_idx);
1976 if (err)
1977 goto out_err;
1979 fstr += strspn(fstr, " ");
1981 if (*fstr == '/') {
1982 fstr += 1;
1983 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1984 &filt->sym_to_idx);
1985 if (err)
1986 goto out_err;
1987 filt->range = true;
1990 fstr += strspn(fstr, " ");
1992 if (*fstr == '@') {
1993 fstr += 1;
1994 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1995 if (err)
1996 goto out_err;
1999 fstr += strspn(fstr, " ,");
2001 *filter_inp += fstr - filt->str;
2003 return 0;
2005 out_err:
2006 addr_filter__free_str(filt);
2008 return err;
2011 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2012 const char *filter)
2014 struct addr_filter *filt;
2015 const char *fstr = filter;
2016 int err;
2018 while (*fstr) {
2019 filt = addr_filter__new();
2020 err = parse_one_filter(filt, &fstr);
2021 if (err) {
2022 addr_filter__free(filt);
2023 addr_filters__exit(filts);
2024 return err;
2026 addr_filters__add(filts, filt);
2029 return 0;
2032 struct sym_args {
2033 const char *name;
2034 u64 start;
2035 u64 size;
2036 int idx;
2037 int cnt;
2038 bool started;
2039 bool global;
2040 bool selected;
2041 bool duplicate;
2042 bool near;
2045 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2047 /* A function with the same name, and global or the n'th found or any */
2048 return kallsyms__is_function(type) &&
2049 !strcmp(name, args->name) &&
2050 ((args->global && isupper(type)) ||
2051 (args->selected && ++(args->cnt) == args->idx) ||
2052 (!args->global && !args->selected));
2055 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2057 struct sym_args *args = arg;
2059 if (args->started) {
2060 if (!args->size)
2061 args->size = start - args->start;
2062 if (args->selected) {
2063 if (args->size)
2064 return 1;
2065 } else if (kern_sym_match(args, name, type)) {
2066 args->duplicate = true;
2067 return 1;
2069 } else if (kern_sym_match(args, name, type)) {
2070 args->started = true;
2071 args->start = start;
2074 return 0;
2077 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2079 struct sym_args *args = arg;
2081 if (kern_sym_match(args, name, type)) {
2082 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2083 ++args->cnt, start, type, name);
2084 args->near = true;
2085 } else if (args->near) {
2086 args->near = false;
2087 pr_err("\t\twhich is near\t\t%s\n", name);
2090 return 0;
2093 static int sym_not_found_error(const char *sym_name, int idx)
2095 if (idx > 0) {
2096 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2097 idx, sym_name);
2098 } else if (!idx) {
2099 pr_err("Global symbol '%s' not found.\n", sym_name);
2100 } else {
2101 pr_err("Symbol '%s' not found.\n", sym_name);
2103 pr_err("Note that symbols must be functions.\n");
2105 return -EINVAL;
2108 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2110 struct sym_args args = {
2111 .name = sym_name,
2112 .idx = idx,
2113 .global = !idx,
2114 .selected = idx > 0,
2116 int err;
2118 *start = 0;
2119 *size = 0;
2121 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2122 if (err < 0) {
2123 pr_err("Failed to parse /proc/kallsyms\n");
2124 return err;
2127 if (args.duplicate) {
2128 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2129 args.cnt = 0;
2130 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2131 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2132 sym_name);
2133 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2134 return -EINVAL;
2137 if (!args.started) {
2138 pr_err("Kernel symbol lookup: ");
2139 return sym_not_found_error(sym_name, idx);
2142 *start = args.start;
2143 *size = args.size;
2145 return 0;
2148 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2149 char type, u64 start)
2151 struct sym_args *args = arg;
2153 if (!kallsyms__is_function(type))
2154 return 0;
2156 if (!args->started) {
2157 args->started = true;
2158 args->start = start;
2160 /* Don't know exactly where the kernel ends, so we add a page */
2161 args->size = round_up(start, page_size) + page_size - args->start;
2163 return 0;
2166 static int addr_filter__entire_kernel(struct addr_filter *filt)
2168 struct sym_args args = { .started = false };
2169 int err;
2171 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2172 if (err < 0 || !args.started) {
2173 pr_err("Failed to parse /proc/kallsyms\n");
2174 return err;
2177 filt->addr = args.start;
2178 filt->size = args.size;
2180 return 0;
2183 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2185 if (start + size >= filt->addr)
2186 return 0;
2188 if (filt->sym_from) {
2189 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2190 filt->sym_to, start, filt->sym_from, filt->addr);
2191 } else {
2192 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2193 filt->sym_to, start, filt->addr);
2196 return -EINVAL;
2199 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2201 bool no_size = false;
2202 u64 start, size;
2203 int err;
2205 if (symbol_conf.kptr_restrict) {
2206 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2207 return -EINVAL;
2210 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2211 return addr_filter__entire_kernel(filt);
2213 if (filt->sym_from) {
2214 err = find_kern_sym(filt->sym_from, &start, &size,
2215 filt->sym_from_idx);
2216 if (err)
2217 return err;
2218 filt->addr = start;
2219 if (filt->range && !filt->size && !filt->sym_to) {
2220 filt->size = size;
2221 no_size = !size;
2225 if (filt->sym_to) {
2226 err = find_kern_sym(filt->sym_to, &start, &size,
2227 filt->sym_to_idx);
2228 if (err)
2229 return err;
2231 err = check_end_after_start(filt, start, size);
2232 if (err)
2233 return err;
2234 filt->size = start + size - filt->addr;
2235 no_size = !size;
2238 /* The very last symbol in kallsyms does not imply a particular size */
2239 if (no_size) {
2240 pr_err("Cannot determine size of symbol '%s'\n",
2241 filt->sym_to ? filt->sym_to : filt->sym_from);
2242 return -EINVAL;
2245 return 0;
2248 static struct dso *load_dso(const char *name)
2250 struct map *map;
2251 struct dso *dso;
2253 map = dso__new_map(name);
2254 if (!map)
2255 return NULL;
2257 if (map__load(map) < 0)
2258 pr_err("File '%s' not found or has no symbols.\n", name);
2260 dso = dso__get(map->dso);
2262 map__put(map);
2264 return dso;
2267 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2268 int idx)
2270 /* Same name, and global or the n'th found or any */
2271 return !arch__compare_symbol_names(name, sym->name) &&
2272 ((!idx && sym->binding == STB_GLOBAL) ||
2273 (idx > 0 && ++*cnt == idx) ||
2274 idx < 0);
2277 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2279 struct symbol *sym;
2280 bool near = false;
2281 int cnt = 0;
2283 pr_err("Multiple symbols with name '%s'\n", sym_name);
2285 sym = dso__first_symbol(dso);
2286 while (sym) {
2287 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2288 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2289 ++cnt, sym->start,
2290 sym->binding == STB_GLOBAL ? 'g' :
2291 sym->binding == STB_LOCAL ? 'l' : 'w',
2292 sym->name);
2293 near = true;
2294 } else if (near) {
2295 near = false;
2296 pr_err("\t\twhich is near\t\t%s\n", sym->name);
2298 sym = dso__next_symbol(sym);
2301 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2302 sym_name);
2303 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2306 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2307 u64 *size, int idx)
2309 struct symbol *sym;
2310 int cnt = 0;
2312 *start = 0;
2313 *size = 0;
2315 sym = dso__first_symbol(dso);
2316 while (sym) {
2317 if (*start) {
2318 if (!*size)
2319 *size = sym->start - *start;
2320 if (idx > 0) {
2321 if (*size)
2322 return 1;
2323 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2324 print_duplicate_syms(dso, sym_name);
2325 return -EINVAL;
2327 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2328 *start = sym->start;
2329 *size = sym->end - sym->start;
2331 sym = dso__next_symbol(sym);
2334 if (!*start)
2335 return sym_not_found_error(sym_name, idx);
2337 return 0;
2340 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2342 if (dso__data_file_size(dso, NULL)) {
2343 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2344 filt->filename);
2345 return -EINVAL;
2348 filt->addr = 0;
2349 filt->size = dso->data.file_size;
2351 return 0;
2354 static int addr_filter__resolve_syms(struct addr_filter *filt)
2356 u64 start, size;
2357 struct dso *dso;
2358 int err = 0;
2360 if (!filt->sym_from && !filt->sym_to)
2361 return 0;
2363 if (!filt->filename)
2364 return addr_filter__resolve_kernel_syms(filt);
2366 dso = load_dso(filt->filename);
2367 if (!dso) {
2368 pr_err("Failed to load symbols from: %s\n", filt->filename);
2369 return -EINVAL;
2372 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2373 err = addr_filter__entire_dso(filt, dso);
2374 goto put_dso;
2377 if (filt->sym_from) {
2378 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2379 filt->sym_from_idx);
2380 if (err)
2381 goto put_dso;
2382 filt->addr = start;
2383 if (filt->range && !filt->size && !filt->sym_to)
2384 filt->size = size;
2387 if (filt->sym_to) {
2388 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2389 filt->sym_to_idx);
2390 if (err)
2391 goto put_dso;
2393 err = check_end_after_start(filt, start, size);
2394 if (err)
2395 return err;
2397 filt->size = start + size - filt->addr;
2400 put_dso:
2401 dso__put(dso);
2403 return err;
2406 static char *addr_filter__to_str(struct addr_filter *filt)
2408 char filename_buf[PATH_MAX];
2409 const char *at = "";
2410 const char *fn = "";
2411 char *filter;
2412 int err;
2414 if (filt->filename) {
2415 at = "@";
2416 fn = realpath(filt->filename, filename_buf);
2417 if (!fn)
2418 return NULL;
2421 if (filt->range) {
2422 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2423 filt->action, filt->addr, filt->size, at, fn);
2424 } else {
2425 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2426 filt->action, filt->addr, at, fn);
2429 return err < 0 ? NULL : filter;
2432 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2433 int max_nr)
2435 struct addr_filters filts;
2436 struct addr_filter *filt;
2437 int err;
2439 addr_filters__init(&filts);
2441 err = addr_filters__parse_bare_filter(&filts, filter);
2442 if (err)
2443 goto out_exit;
2445 if (filts.cnt > max_nr) {
2446 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2447 filts.cnt, max_nr);
2448 err = -EINVAL;
2449 goto out_exit;
2452 list_for_each_entry(filt, &filts.head, list) {
2453 char *new_filter;
2455 err = addr_filter__resolve_syms(filt);
2456 if (err)
2457 goto out_exit;
2459 new_filter = addr_filter__to_str(filt);
2460 if (!new_filter) {
2461 err = -ENOMEM;
2462 goto out_exit;
2465 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2466 err = -ENOMEM;
2467 goto out_exit;
2471 out_exit:
2472 addr_filters__exit(&filts);
2474 if (err) {
2475 pr_err("Failed to parse address filter: '%s'\n", filter);
2476 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2477 pr_err("Where multiple filters are separated by space or comma.\n");
2480 return err;
2483 static int perf_evsel__nr_addr_filter(struct evsel *evsel)
2485 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2486 int nr_addr_filters = 0;
2488 if (!pmu)
2489 return 0;
2491 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2493 return nr_addr_filters;
2496 int auxtrace_parse_filters(struct evlist *evlist)
2498 struct evsel *evsel;
2499 char *filter;
2500 int err, max_nr;
2502 evlist__for_each_entry(evlist, evsel) {
2503 filter = evsel->filter;
2504 max_nr = perf_evsel__nr_addr_filter(evsel);
2505 if (!filter || !max_nr)
2506 continue;
2507 evsel->filter = NULL;
2508 err = parse_addr_filter(evsel, filter, max_nr);
2509 free(filter);
2510 if (err)
2511 return err;
2512 pr_debug("Address filter: %s\n", evsel->filter);
2515 return 0;
2518 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2519 struct perf_sample *sample, struct perf_tool *tool)
2521 if (!session->auxtrace)
2522 return 0;
2524 return session->auxtrace->process_event(session, event, sample, tool);
2527 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2528 struct perf_sample *sample)
2530 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2531 auxtrace__dont_decode(session))
2532 return;
2534 session->auxtrace->dump_auxtrace_sample(session, sample);
2537 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2539 if (!session->auxtrace)
2540 return 0;
2542 return session->auxtrace->flush_events(session, tool);
2545 void auxtrace__free_events(struct perf_session *session)
2547 if (!session->auxtrace)
2548 return;
2550 return session->auxtrace->free_events(session);
2553 void auxtrace__free(struct perf_session *session)
2555 if (!session->auxtrace)
2556 return;
2558 return session->auxtrace->free(session);