treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / tools / perf / util / env.c
blob6242a9215df7ee325265646dd9ce71acbc0c73b8
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "bpf-event.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <bpf/libbpf.h>
12 #include <stdlib.h>
13 #include <string.h>
15 struct perf_env perf_env;
17 void perf_env__insert_bpf_prog_info(struct perf_env *env,
18 struct bpf_prog_info_node *info_node)
20 __u32 prog_id = info_node->info_linear->info.id;
21 struct bpf_prog_info_node *node;
22 struct rb_node *parent = NULL;
23 struct rb_node **p;
25 down_write(&env->bpf_progs.lock);
26 p = &env->bpf_progs.infos.rb_node;
28 while (*p != NULL) {
29 parent = *p;
30 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
31 if (prog_id < node->info_linear->info.id) {
32 p = &(*p)->rb_left;
33 } else if (prog_id > node->info_linear->info.id) {
34 p = &(*p)->rb_right;
35 } else {
36 pr_debug("duplicated bpf prog info %u\n", prog_id);
37 goto out;
41 rb_link_node(&info_node->rb_node, parent, p);
42 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
43 env->bpf_progs.infos_cnt++;
44 out:
45 up_write(&env->bpf_progs.lock);
48 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
49 __u32 prog_id)
51 struct bpf_prog_info_node *node = NULL;
52 struct rb_node *n;
54 down_read(&env->bpf_progs.lock);
55 n = env->bpf_progs.infos.rb_node;
57 while (n) {
58 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
59 if (prog_id < node->info_linear->info.id)
60 n = n->rb_left;
61 else if (prog_id > node->info_linear->info.id)
62 n = n->rb_right;
63 else
64 goto out;
66 node = NULL;
68 out:
69 up_read(&env->bpf_progs.lock);
70 return node;
73 void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
75 struct rb_node *parent = NULL;
76 __u32 btf_id = btf_node->id;
77 struct btf_node *node;
78 struct rb_node **p;
80 down_write(&env->bpf_progs.lock);
81 p = &env->bpf_progs.btfs.rb_node;
83 while (*p != NULL) {
84 parent = *p;
85 node = rb_entry(parent, struct btf_node, rb_node);
86 if (btf_id < node->id) {
87 p = &(*p)->rb_left;
88 } else if (btf_id > node->id) {
89 p = &(*p)->rb_right;
90 } else {
91 pr_debug("duplicated btf %u\n", btf_id);
92 goto out;
96 rb_link_node(&btf_node->rb_node, parent, p);
97 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
98 env->bpf_progs.btfs_cnt++;
99 out:
100 up_write(&env->bpf_progs.lock);
103 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
105 struct btf_node *node = NULL;
106 struct rb_node *n;
108 down_read(&env->bpf_progs.lock);
109 n = env->bpf_progs.btfs.rb_node;
111 while (n) {
112 node = rb_entry(n, struct btf_node, rb_node);
113 if (btf_id < node->id)
114 n = n->rb_left;
115 else if (btf_id > node->id)
116 n = n->rb_right;
117 else
118 goto out;
120 node = NULL;
122 out:
123 up_read(&env->bpf_progs.lock);
124 return node;
127 /* purge data in bpf_progs.infos tree */
128 static void perf_env__purge_bpf(struct perf_env *env)
130 struct rb_root *root;
131 struct rb_node *next;
133 down_write(&env->bpf_progs.lock);
135 root = &env->bpf_progs.infos;
136 next = rb_first(root);
138 while (next) {
139 struct bpf_prog_info_node *node;
141 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
142 next = rb_next(&node->rb_node);
143 rb_erase(&node->rb_node, root);
144 free(node);
147 env->bpf_progs.infos_cnt = 0;
149 root = &env->bpf_progs.btfs;
150 next = rb_first(root);
152 while (next) {
153 struct btf_node *node;
155 node = rb_entry(next, struct btf_node, rb_node);
156 next = rb_next(&node->rb_node);
157 rb_erase(&node->rb_node, root);
158 free(node);
161 env->bpf_progs.btfs_cnt = 0;
163 up_write(&env->bpf_progs.lock);
166 void perf_env__exit(struct perf_env *env)
168 int i;
170 perf_env__purge_bpf(env);
171 zfree(&env->hostname);
172 zfree(&env->os_release);
173 zfree(&env->version);
174 zfree(&env->arch);
175 zfree(&env->cpu_desc);
176 zfree(&env->cpuid);
177 zfree(&env->cmdline);
178 zfree(&env->cmdline_argv);
179 zfree(&env->sibling_cores);
180 zfree(&env->sibling_threads);
181 zfree(&env->pmu_mappings);
182 zfree(&env->cpu);
183 zfree(&env->numa_map);
185 for (i = 0; i < env->nr_numa_nodes; i++)
186 perf_cpu_map__put(env->numa_nodes[i].map);
187 zfree(&env->numa_nodes);
189 for (i = 0; i < env->caches_cnt; i++)
190 cpu_cache_level__free(&env->caches[i]);
191 zfree(&env->caches);
193 for (i = 0; i < env->nr_memory_nodes; i++)
194 zfree(&env->memory_nodes[i].set);
195 zfree(&env->memory_nodes);
198 void perf_env__init(struct perf_env *env)
200 env->bpf_progs.infos = RB_ROOT;
201 env->bpf_progs.btfs = RB_ROOT;
202 init_rwsem(&env->bpf_progs.lock);
205 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
207 int i;
209 /* do not include NULL termination */
210 env->cmdline_argv = calloc(argc, sizeof(char *));
211 if (env->cmdline_argv == NULL)
212 goto out_enomem;
215 * Must copy argv contents because it gets moved around during option
216 * parsing:
218 for (i = 0; i < argc ; i++) {
219 env->cmdline_argv[i] = argv[i];
220 if (env->cmdline_argv[i] == NULL)
221 goto out_free;
224 env->nr_cmdline = argc;
226 return 0;
227 out_free:
228 zfree(&env->cmdline_argv);
229 out_enomem:
230 return -ENOMEM;
233 int perf_env__read_cpu_topology_map(struct perf_env *env)
235 int cpu, nr_cpus;
237 if (env->cpu != NULL)
238 return 0;
240 if (env->nr_cpus_avail == 0)
241 env->nr_cpus_avail = cpu__max_present_cpu();
243 nr_cpus = env->nr_cpus_avail;
244 if (nr_cpus == -1)
245 return -EINVAL;
247 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
248 if (env->cpu == NULL)
249 return -ENOMEM;
251 for (cpu = 0; cpu < nr_cpus; ++cpu) {
252 env->cpu[cpu].core_id = cpu_map__get_core_id(cpu);
253 env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu);
254 env->cpu[cpu].die_id = cpu_map__get_die_id(cpu);
257 env->nr_cpus_avail = nr_cpus;
258 return 0;
261 int perf_env__read_cpuid(struct perf_env *env)
263 char cpuid[128];
264 int err = get_cpuid(cpuid, sizeof(cpuid));
266 if (err)
267 return err;
269 free(env->cpuid);
270 env->cpuid = strdup(cpuid);
271 if (env->cpuid == NULL)
272 return ENOMEM;
273 return 0;
276 static int perf_env__read_arch(struct perf_env *env)
278 struct utsname uts;
280 if (env->arch)
281 return 0;
283 if (!uname(&uts))
284 env->arch = strdup(uts.machine);
286 return env->arch ? 0 : -ENOMEM;
289 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
291 if (env->nr_cpus_avail == 0)
292 env->nr_cpus_avail = cpu__max_present_cpu();
294 return env->nr_cpus_avail ? 0 : -ENOENT;
297 const char *perf_env__raw_arch(struct perf_env *env)
299 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
302 int perf_env__nr_cpus_avail(struct perf_env *env)
304 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
307 void cpu_cache_level__free(struct cpu_cache_level *cache)
309 zfree(&cache->type);
310 zfree(&cache->map);
311 zfree(&cache->size);
315 * Return architecture name in a normalized form.
316 * The conversion logic comes from the Makefile.
318 static const char *normalize_arch(char *arch)
320 if (!strcmp(arch, "x86_64"))
321 return "x86";
322 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
323 return "x86";
324 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
325 return "sparc";
326 if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64"))
327 return "arm64";
328 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
329 return "arm";
330 if (!strncmp(arch, "s390", 4))
331 return "s390";
332 if (!strncmp(arch, "parisc", 6))
333 return "parisc";
334 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
335 return "powerpc";
336 if (!strncmp(arch, "mips", 4))
337 return "mips";
338 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
339 return "sh";
341 return arch;
344 const char *perf_env__arch(struct perf_env *env)
346 struct utsname uts;
347 char *arch_name;
349 if (!env || !env->arch) { /* Assume local operation */
350 if (uname(&uts) < 0)
351 return NULL;
352 arch_name = uts.machine;
353 } else
354 arch_name = env->arch;
356 return normalize_arch(arch_name);
360 int perf_env__numa_node(struct perf_env *env, int cpu)
362 if (!env->nr_numa_map) {
363 struct numa_node *nn;
364 int i, nr = 0;
366 for (i = 0; i < env->nr_numa_nodes; i++) {
367 nn = &env->numa_nodes[i];
368 nr = max(nr, perf_cpu_map__max(nn->map));
371 nr++;
374 * We initialize the numa_map array to prepare
375 * it for missing cpus, which return node -1
377 env->numa_map = malloc(nr * sizeof(int));
378 if (!env->numa_map)
379 return -1;
381 for (i = 0; i < nr; i++)
382 env->numa_map[i] = -1;
384 env->nr_numa_map = nr;
386 for (i = 0; i < env->nr_numa_nodes; i++) {
387 int tmp, j;
389 nn = &env->numa_nodes[i];
390 perf_cpu_map__for_each_cpu(j, tmp, nn->map)
391 env->numa_map[j] = i;
395 return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;