treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / tools / perf / util / intel-pt.c
blob33cf8928cf059c04a32147662d5258eda2079213
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pt.c: Intel Processor Trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/synthetic-events.h"
37 #include "time-utils.h"
39 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 #include "intel-pt-decoder/intel-pt-log.h"
42 #include "intel-pt-decoder/intel-pt-decoder.h"
43 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
44 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 #define MAX_TIMESTAMP (~0ULL)
48 struct range {
49 u64 start;
50 u64 end;
53 struct intel_pt {
54 struct auxtrace auxtrace;
55 struct auxtrace_queues queues;
56 struct auxtrace_heap heap;
57 u32 auxtrace_type;
58 struct perf_session *session;
59 struct machine *machine;
60 struct evsel *switch_evsel;
61 struct thread *unknown_thread;
62 bool timeless_decoding;
63 bool sampling_mode;
64 bool snapshot_mode;
65 bool per_cpu_mmaps;
66 bool have_tsc;
67 bool data_queued;
68 bool est_tsc;
69 bool sync_switch;
70 bool mispred_all;
71 int have_sched_switch;
72 u32 pmu_type;
73 u64 kernel_start;
74 u64 switch_ip;
75 u64 ptss_ip;
77 struct perf_tsc_conversion tc;
78 bool cap_user_time_zero;
80 struct itrace_synth_opts synth_opts;
82 bool sample_instructions;
83 u64 instructions_sample_type;
84 u64 instructions_id;
86 bool sample_branches;
87 u32 branches_filter;
88 u64 branches_sample_type;
89 u64 branches_id;
91 bool sample_transactions;
92 u64 transactions_sample_type;
93 u64 transactions_id;
95 bool sample_ptwrites;
96 u64 ptwrites_sample_type;
97 u64 ptwrites_id;
99 bool sample_pwr_events;
100 u64 pwr_events_sample_type;
101 u64 mwait_id;
102 u64 pwre_id;
103 u64 exstop_id;
104 u64 pwrx_id;
105 u64 cbr_id;
107 bool sample_pebs;
108 struct evsel *pebs_evsel;
110 u64 tsc_bit;
111 u64 mtc_bit;
112 u64 mtc_freq_bits;
113 u32 tsc_ctc_ratio_n;
114 u32 tsc_ctc_ratio_d;
115 u64 cyc_bit;
116 u64 noretcomp_bit;
117 unsigned max_non_turbo_ratio;
118 unsigned cbr2khz;
120 unsigned long num_events;
122 char *filter;
123 struct addr_filters filts;
125 struct range *time_ranges;
126 unsigned int range_cnt;
129 enum switch_state {
130 INTEL_PT_SS_NOT_TRACING,
131 INTEL_PT_SS_UNKNOWN,
132 INTEL_PT_SS_TRACING,
133 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
134 INTEL_PT_SS_EXPECTING_SWITCH_IP,
137 struct intel_pt_queue {
138 struct intel_pt *pt;
139 unsigned int queue_nr;
140 struct auxtrace_buffer *buffer;
141 struct auxtrace_buffer *old_buffer;
142 void *decoder;
143 const struct intel_pt_state *state;
144 struct ip_callchain *chain;
145 struct branch_stack *last_branch;
146 struct branch_stack *last_branch_rb;
147 size_t last_branch_pos;
148 union perf_event *event_buf;
149 bool on_heap;
150 bool stop;
151 bool step_through_buffers;
152 bool use_buffer_pid_tid;
153 bool sync_switch;
154 pid_t pid, tid;
155 int cpu;
156 int switch_state;
157 pid_t next_tid;
158 struct thread *thread;
159 bool exclude_kernel;
160 bool have_sample;
161 u64 time;
162 u64 timestamp;
163 u64 sel_timestamp;
164 bool sel_start;
165 unsigned int sel_idx;
166 u32 flags;
167 u16 insn_len;
168 u64 last_insn_cnt;
169 u64 ipc_insn_cnt;
170 u64 ipc_cyc_cnt;
171 u64 last_in_insn_cnt;
172 u64 last_in_cyc_cnt;
173 u64 last_br_insn_cnt;
174 u64 last_br_cyc_cnt;
175 unsigned int cbr_seen;
176 char insn[INTEL_PT_INSN_BUF_SZ];
179 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
180 unsigned char *buf, size_t len)
182 struct intel_pt_pkt packet;
183 size_t pos = 0;
184 int ret, pkt_len, i;
185 char desc[INTEL_PT_PKT_DESC_MAX];
186 const char *color = PERF_COLOR_BLUE;
187 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
189 color_fprintf(stdout, color,
190 ". ... Intel Processor Trace data: size %zu bytes\n",
191 len);
193 while (len) {
194 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
195 if (ret > 0)
196 pkt_len = ret;
197 else
198 pkt_len = 1;
199 printf(".");
200 color_fprintf(stdout, color, " %08x: ", pos);
201 for (i = 0; i < pkt_len; i++)
202 color_fprintf(stdout, color, " %02x", buf[i]);
203 for (; i < 16; i++)
204 color_fprintf(stdout, color, " ");
205 if (ret > 0) {
206 ret = intel_pt_pkt_desc(&packet, desc,
207 INTEL_PT_PKT_DESC_MAX);
208 if (ret > 0)
209 color_fprintf(stdout, color, " %s\n", desc);
210 } else {
211 color_fprintf(stdout, color, " Bad packet!\n");
213 pos += pkt_len;
214 buf += pkt_len;
215 len -= pkt_len;
219 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
220 size_t len)
222 printf(".\n");
223 intel_pt_dump(pt, buf, len);
226 static void intel_pt_log_event(union perf_event *event)
228 FILE *f = intel_pt_log_fp();
230 if (!intel_pt_enable_logging || !f)
231 return;
233 perf_event__fprintf(event, f);
236 static void intel_pt_dump_sample(struct perf_session *session,
237 struct perf_sample *sample)
239 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
240 auxtrace);
242 printf("\n");
243 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
246 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
247 struct auxtrace_buffer *b)
249 bool consecutive = false;
250 void *start;
252 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
253 pt->have_tsc, &consecutive);
254 if (!start)
255 return -EINVAL;
256 b->use_size = b->data + b->size - start;
257 b->use_data = start;
258 if (b->use_size && consecutive)
259 b->consecutive = true;
260 return 0;
263 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
264 struct auxtrace_buffer *buffer,
265 struct auxtrace_buffer *old_buffer,
266 struct intel_pt_buffer *b)
268 bool might_overlap;
270 if (!buffer->data) {
271 int fd = perf_data__fd(ptq->pt->session->data);
273 buffer->data = auxtrace_buffer__get_data(buffer, fd);
274 if (!buffer->data)
275 return -ENOMEM;
278 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
279 if (might_overlap && !buffer->consecutive && old_buffer &&
280 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
281 return -ENOMEM;
283 if (buffer->use_data) {
284 b->len = buffer->use_size;
285 b->buf = buffer->use_data;
286 } else {
287 b->len = buffer->size;
288 b->buf = buffer->data;
290 b->ref_timestamp = buffer->reference;
292 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
293 b->consecutive = false;
294 b->trace_nr = buffer->buffer_nr + 1;
295 } else {
296 b->consecutive = true;
299 return 0;
302 /* Do not drop buffers with references - refer intel_pt_get_trace() */
303 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
304 struct auxtrace_buffer *buffer)
306 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
307 return;
309 auxtrace_buffer__drop_data(buffer);
312 /* Must be serialized with respect to intel_pt_get_trace() */
313 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
314 void *cb_data)
316 struct intel_pt_queue *ptq = data;
317 struct auxtrace_buffer *buffer = ptq->buffer;
318 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
319 struct auxtrace_queue *queue;
320 int err = 0;
322 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
324 while (1) {
325 struct intel_pt_buffer b = { .len = 0 };
327 buffer = auxtrace_buffer__next(queue, buffer);
328 if (!buffer)
329 break;
331 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
332 if (err)
333 break;
335 if (b.len) {
336 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
337 old_buffer = buffer;
338 } else {
339 intel_pt_lookahead_drop_buffer(ptq, buffer);
340 continue;
343 err = cb(&b, cb_data);
344 if (err)
345 break;
348 if (buffer != old_buffer)
349 intel_pt_lookahead_drop_buffer(ptq, buffer);
350 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
352 return err;
356 * This function assumes data is processed sequentially only.
357 * Must be serialized with respect to intel_pt_lookahead()
359 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
361 struct intel_pt_queue *ptq = data;
362 struct auxtrace_buffer *buffer = ptq->buffer;
363 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
364 struct auxtrace_queue *queue;
365 int err;
367 if (ptq->stop) {
368 b->len = 0;
369 return 0;
372 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
374 buffer = auxtrace_buffer__next(queue, buffer);
375 if (!buffer) {
376 if (old_buffer)
377 auxtrace_buffer__drop_data(old_buffer);
378 b->len = 0;
379 return 0;
382 ptq->buffer = buffer;
384 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
385 if (err)
386 return err;
388 if (ptq->step_through_buffers)
389 ptq->stop = true;
391 if (b->len) {
392 if (old_buffer)
393 auxtrace_buffer__drop_data(old_buffer);
394 ptq->old_buffer = buffer;
395 } else {
396 auxtrace_buffer__drop_data(buffer);
397 return intel_pt_get_trace(b, data);
400 return 0;
403 struct intel_pt_cache_entry {
404 struct auxtrace_cache_entry entry;
405 u64 insn_cnt;
406 u64 byte_cnt;
407 enum intel_pt_insn_op op;
408 enum intel_pt_insn_branch branch;
409 int length;
410 int32_t rel;
411 char insn[INTEL_PT_INSN_BUF_SZ];
414 static int intel_pt_config_div(const char *var, const char *value, void *data)
416 int *d = data;
417 long val;
419 if (!strcmp(var, "intel-pt.cache-divisor")) {
420 val = strtol(value, NULL, 0);
421 if (val > 0 && val <= INT_MAX)
422 *d = val;
425 return 0;
428 static int intel_pt_cache_divisor(void)
430 static int d;
432 if (d)
433 return d;
435 perf_config(intel_pt_config_div, &d);
437 if (!d)
438 d = 64;
440 return d;
443 static unsigned int intel_pt_cache_size(struct dso *dso,
444 struct machine *machine)
446 off_t size;
448 size = dso__data_size(dso, machine);
449 size /= intel_pt_cache_divisor();
450 if (size < 1000)
451 return 10;
452 if (size > (1 << 21))
453 return 21;
454 return 32 - __builtin_clz(size);
457 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
458 struct machine *machine)
460 struct auxtrace_cache *c;
461 unsigned int bits;
463 if (dso->auxtrace_cache)
464 return dso->auxtrace_cache;
466 bits = intel_pt_cache_size(dso, machine);
468 /* Ignoring cache creation failure */
469 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
471 dso->auxtrace_cache = c;
473 return c;
476 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
477 u64 offset, u64 insn_cnt, u64 byte_cnt,
478 struct intel_pt_insn *intel_pt_insn)
480 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
481 struct intel_pt_cache_entry *e;
482 int err;
484 if (!c)
485 return -ENOMEM;
487 e = auxtrace_cache__alloc_entry(c);
488 if (!e)
489 return -ENOMEM;
491 e->insn_cnt = insn_cnt;
492 e->byte_cnt = byte_cnt;
493 e->op = intel_pt_insn->op;
494 e->branch = intel_pt_insn->branch;
495 e->length = intel_pt_insn->length;
496 e->rel = intel_pt_insn->rel;
497 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
499 err = auxtrace_cache__add(c, offset, &e->entry);
500 if (err)
501 auxtrace_cache__free_entry(c, e);
503 return err;
506 static struct intel_pt_cache_entry *
507 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
509 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
511 if (!c)
512 return NULL;
514 return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
517 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
519 return ip >= pt->kernel_start ?
520 PERF_RECORD_MISC_KERNEL :
521 PERF_RECORD_MISC_USER;
524 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
525 uint64_t *insn_cnt_ptr, uint64_t *ip,
526 uint64_t to_ip, uint64_t max_insn_cnt,
527 void *data)
529 struct intel_pt_queue *ptq = data;
530 struct machine *machine = ptq->pt->machine;
531 struct thread *thread;
532 struct addr_location al;
533 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
534 ssize_t len;
535 int x86_64;
536 u8 cpumode;
537 u64 offset, start_offset, start_ip;
538 u64 insn_cnt = 0;
539 bool one_map = true;
541 intel_pt_insn->length = 0;
543 if (to_ip && *ip == to_ip)
544 goto out_no_cache;
546 cpumode = intel_pt_cpumode(ptq->pt, *ip);
548 thread = ptq->thread;
549 if (!thread) {
550 if (cpumode != PERF_RECORD_MISC_KERNEL)
551 return -EINVAL;
552 thread = ptq->pt->unknown_thread;
555 while (1) {
556 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
557 return -EINVAL;
559 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
560 dso__data_status_seen(al.map->dso,
561 DSO_DATA_STATUS_SEEN_ITRACE))
562 return -ENOENT;
564 offset = al.map->map_ip(al.map, *ip);
566 if (!to_ip && one_map) {
567 struct intel_pt_cache_entry *e;
569 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
570 if (e &&
571 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
572 *insn_cnt_ptr = e->insn_cnt;
573 *ip += e->byte_cnt;
574 intel_pt_insn->op = e->op;
575 intel_pt_insn->branch = e->branch;
576 intel_pt_insn->length = e->length;
577 intel_pt_insn->rel = e->rel;
578 memcpy(intel_pt_insn->buf, e->insn,
579 INTEL_PT_INSN_BUF_SZ);
580 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
581 return 0;
585 start_offset = offset;
586 start_ip = *ip;
588 /* Load maps to ensure dso->is_64_bit has been updated */
589 map__load(al.map);
591 x86_64 = al.map->dso->is_64_bit;
593 while (1) {
594 len = dso__data_read_offset(al.map->dso, machine,
595 offset, buf,
596 INTEL_PT_INSN_BUF_SZ);
597 if (len <= 0)
598 return -EINVAL;
600 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
601 return -EINVAL;
603 intel_pt_log_insn(intel_pt_insn, *ip);
605 insn_cnt += 1;
607 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
608 goto out;
610 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
611 goto out_no_cache;
613 *ip += intel_pt_insn->length;
615 if (to_ip && *ip == to_ip)
616 goto out_no_cache;
618 if (*ip >= al.map->end)
619 break;
621 offset += intel_pt_insn->length;
623 one_map = false;
625 out:
626 *insn_cnt_ptr = insn_cnt;
628 if (!one_map)
629 goto out_no_cache;
632 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
633 * entries.
635 if (to_ip) {
636 struct intel_pt_cache_entry *e;
638 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
639 if (e)
640 return 0;
643 /* Ignore cache errors */
644 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
645 *ip - start_ip, intel_pt_insn);
647 return 0;
649 out_no_cache:
650 *insn_cnt_ptr = insn_cnt;
651 return 0;
654 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
655 uint64_t offset, const char *filename)
657 struct addr_filter *filt;
658 bool have_filter = false;
659 bool hit_tracestop = false;
660 bool hit_filter = false;
662 list_for_each_entry(filt, &pt->filts.head, list) {
663 if (filt->start)
664 have_filter = true;
666 if ((filename && !filt->filename) ||
667 (!filename && filt->filename) ||
668 (filename && strcmp(filename, filt->filename)))
669 continue;
671 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
672 continue;
674 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
675 ip, offset, filename ? filename : "[kernel]",
676 filt->start ? "filter" : "stop",
677 filt->addr, filt->size);
679 if (filt->start)
680 hit_filter = true;
681 else
682 hit_tracestop = true;
685 if (!hit_tracestop && !hit_filter)
686 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
687 ip, offset, filename ? filename : "[kernel]");
689 return hit_tracestop || (have_filter && !hit_filter);
692 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
694 struct intel_pt_queue *ptq = data;
695 struct thread *thread;
696 struct addr_location al;
697 u8 cpumode;
698 u64 offset;
700 if (ip >= ptq->pt->kernel_start)
701 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
703 cpumode = PERF_RECORD_MISC_USER;
705 thread = ptq->thread;
706 if (!thread)
707 return -EINVAL;
709 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
710 return -EINVAL;
712 offset = al.map->map_ip(al.map, ip);
714 return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
715 al.map->dso->long_name);
718 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
720 return __intel_pt_pgd_ip(ip, data) > 0;
723 static bool intel_pt_get_config(struct intel_pt *pt,
724 struct perf_event_attr *attr, u64 *config)
726 if (attr->type == pt->pmu_type) {
727 if (config)
728 *config = attr->config;
729 return true;
732 return false;
735 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
737 struct evsel *evsel;
739 evlist__for_each_entry(pt->session->evlist, evsel) {
740 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
741 !evsel->core.attr.exclude_kernel)
742 return false;
744 return true;
747 static bool intel_pt_return_compression(struct intel_pt *pt)
749 struct evsel *evsel;
750 u64 config;
752 if (!pt->noretcomp_bit)
753 return true;
755 evlist__for_each_entry(pt->session->evlist, evsel) {
756 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
757 (config & pt->noretcomp_bit))
758 return false;
760 return true;
763 static bool intel_pt_branch_enable(struct intel_pt *pt)
765 struct evsel *evsel;
766 u64 config;
768 evlist__for_each_entry(pt->session->evlist, evsel) {
769 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
770 (config & 1) && !(config & 0x2000))
771 return false;
773 return true;
776 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
778 struct evsel *evsel;
779 unsigned int shift;
780 u64 config;
782 if (!pt->mtc_freq_bits)
783 return 0;
785 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
786 config >>= 1;
788 evlist__for_each_entry(pt->session->evlist, evsel) {
789 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
790 return (config & pt->mtc_freq_bits) >> shift;
792 return 0;
795 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
797 struct evsel *evsel;
798 bool timeless_decoding = true;
799 u64 config;
801 if (!pt->tsc_bit || !pt->cap_user_time_zero)
802 return true;
804 evlist__for_each_entry(pt->session->evlist, evsel) {
805 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
806 return true;
807 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
808 if (config & pt->tsc_bit)
809 timeless_decoding = false;
810 else
811 return true;
814 return timeless_decoding;
817 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
819 struct evsel *evsel;
821 evlist__for_each_entry(pt->session->evlist, evsel) {
822 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
823 !evsel->core.attr.exclude_kernel)
824 return true;
826 return false;
829 static bool intel_pt_have_tsc(struct intel_pt *pt)
831 struct evsel *evsel;
832 bool have_tsc = false;
833 u64 config;
835 if (!pt->tsc_bit)
836 return false;
838 evlist__for_each_entry(pt->session->evlist, evsel) {
839 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
840 if (config & pt->tsc_bit)
841 have_tsc = true;
842 else
843 return false;
846 return have_tsc;
849 static bool intel_pt_sampling_mode(struct intel_pt *pt)
851 struct evsel *evsel;
853 evlist__for_each_entry(pt->session->evlist, evsel) {
854 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
855 evsel->core.attr.aux_sample_size)
856 return true;
858 return false;
861 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
863 u64 quot, rem;
865 quot = ns / pt->tc.time_mult;
866 rem = ns % pt->tc.time_mult;
867 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
868 pt->tc.time_mult;
871 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
872 unsigned int queue_nr)
874 struct intel_pt_params params = { .get_trace = 0, };
875 struct perf_env *env = pt->machine->env;
876 struct intel_pt_queue *ptq;
878 ptq = zalloc(sizeof(struct intel_pt_queue));
879 if (!ptq)
880 return NULL;
882 if (pt->synth_opts.callchain) {
883 size_t sz = sizeof(struct ip_callchain);
885 /* Add 1 to callchain_sz for callchain context */
886 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
887 ptq->chain = zalloc(sz);
888 if (!ptq->chain)
889 goto out_free;
892 if (pt->synth_opts.last_branch) {
893 size_t sz = sizeof(struct branch_stack);
895 sz += pt->synth_opts.last_branch_sz *
896 sizeof(struct branch_entry);
897 ptq->last_branch = zalloc(sz);
898 if (!ptq->last_branch)
899 goto out_free;
900 ptq->last_branch_rb = zalloc(sz);
901 if (!ptq->last_branch_rb)
902 goto out_free;
905 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
906 if (!ptq->event_buf)
907 goto out_free;
909 ptq->pt = pt;
910 ptq->queue_nr = queue_nr;
911 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
912 ptq->pid = -1;
913 ptq->tid = -1;
914 ptq->cpu = -1;
915 ptq->next_tid = -1;
917 params.get_trace = intel_pt_get_trace;
918 params.walk_insn = intel_pt_walk_next_insn;
919 params.lookahead = intel_pt_lookahead;
920 params.data = ptq;
921 params.return_compression = intel_pt_return_compression(pt);
922 params.branch_enable = intel_pt_branch_enable(pt);
923 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
924 params.mtc_period = intel_pt_mtc_period(pt);
925 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
926 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
928 if (pt->filts.cnt > 0)
929 params.pgd_ip = intel_pt_pgd_ip;
931 if (pt->synth_opts.instructions) {
932 if (pt->synth_opts.period) {
933 switch (pt->synth_opts.period_type) {
934 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
935 params.period_type =
936 INTEL_PT_PERIOD_INSTRUCTIONS;
937 params.period = pt->synth_opts.period;
938 break;
939 case PERF_ITRACE_PERIOD_TICKS:
940 params.period_type = INTEL_PT_PERIOD_TICKS;
941 params.period = pt->synth_opts.period;
942 break;
943 case PERF_ITRACE_PERIOD_NANOSECS:
944 params.period_type = INTEL_PT_PERIOD_TICKS;
945 params.period = intel_pt_ns_to_ticks(pt,
946 pt->synth_opts.period);
947 break;
948 default:
949 break;
953 if (!params.period) {
954 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
955 params.period = 1;
959 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
960 params.flags |= INTEL_PT_FUP_WITH_NLIP;
962 ptq->decoder = intel_pt_decoder_new(&params);
963 if (!ptq->decoder)
964 goto out_free;
966 return ptq;
968 out_free:
969 zfree(&ptq->event_buf);
970 zfree(&ptq->last_branch);
971 zfree(&ptq->last_branch_rb);
972 zfree(&ptq->chain);
973 free(ptq);
974 return NULL;
977 static void intel_pt_free_queue(void *priv)
979 struct intel_pt_queue *ptq = priv;
981 if (!ptq)
982 return;
983 thread__zput(ptq->thread);
984 intel_pt_decoder_free(ptq->decoder);
985 zfree(&ptq->event_buf);
986 zfree(&ptq->last_branch);
987 zfree(&ptq->last_branch_rb);
988 zfree(&ptq->chain);
989 free(ptq);
992 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
993 struct auxtrace_queue *queue)
995 struct intel_pt_queue *ptq = queue->priv;
997 if (queue->tid == -1 || pt->have_sched_switch) {
998 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
999 thread__zput(ptq->thread);
1002 if (!ptq->thread && ptq->tid != -1)
1003 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1005 if (ptq->thread) {
1006 ptq->pid = ptq->thread->pid_;
1007 if (queue->cpu == -1)
1008 ptq->cpu = ptq->thread->cpu;
1012 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1014 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1015 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1016 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1017 if (ptq->state->to_ip)
1018 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1019 PERF_IP_FLAG_ASYNC |
1020 PERF_IP_FLAG_INTERRUPT;
1021 else
1022 ptq->flags = PERF_IP_FLAG_BRANCH |
1023 PERF_IP_FLAG_TRACE_END;
1024 ptq->insn_len = 0;
1025 } else {
1026 if (ptq->state->from_ip)
1027 ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1028 else
1029 ptq->flags = PERF_IP_FLAG_BRANCH |
1030 PERF_IP_FLAG_TRACE_BEGIN;
1031 if (ptq->state->flags & INTEL_PT_IN_TX)
1032 ptq->flags |= PERF_IP_FLAG_IN_TX;
1033 ptq->insn_len = ptq->state->insn_len;
1034 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1037 if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1038 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1039 if (ptq->state->type & INTEL_PT_TRACE_END)
1040 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1043 static void intel_pt_setup_time_range(struct intel_pt *pt,
1044 struct intel_pt_queue *ptq)
1046 if (!pt->range_cnt)
1047 return;
1049 ptq->sel_timestamp = pt->time_ranges[0].start;
1050 ptq->sel_idx = 0;
1052 if (ptq->sel_timestamp) {
1053 ptq->sel_start = true;
1054 } else {
1055 ptq->sel_timestamp = pt->time_ranges[0].end;
1056 ptq->sel_start = false;
1060 static int intel_pt_setup_queue(struct intel_pt *pt,
1061 struct auxtrace_queue *queue,
1062 unsigned int queue_nr)
1064 struct intel_pt_queue *ptq = queue->priv;
1066 if (list_empty(&queue->head))
1067 return 0;
1069 if (!ptq) {
1070 ptq = intel_pt_alloc_queue(pt, queue_nr);
1071 if (!ptq)
1072 return -ENOMEM;
1073 queue->priv = ptq;
1075 if (queue->cpu != -1)
1076 ptq->cpu = queue->cpu;
1077 ptq->tid = queue->tid;
1079 ptq->cbr_seen = UINT_MAX;
1081 if (pt->sampling_mode && !pt->snapshot_mode &&
1082 pt->timeless_decoding)
1083 ptq->step_through_buffers = true;
1085 ptq->sync_switch = pt->sync_switch;
1087 intel_pt_setup_time_range(pt, ptq);
1090 if (!ptq->on_heap &&
1091 (!ptq->sync_switch ||
1092 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1093 const struct intel_pt_state *state;
1094 int ret;
1096 if (pt->timeless_decoding)
1097 return 0;
1099 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1100 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1101 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1103 if (ptq->sel_start && ptq->sel_timestamp) {
1104 ret = intel_pt_fast_forward(ptq->decoder,
1105 ptq->sel_timestamp);
1106 if (ret)
1107 return ret;
1110 while (1) {
1111 state = intel_pt_decode(ptq->decoder);
1112 if (state->err) {
1113 if (state->err == INTEL_PT_ERR_NODATA) {
1114 intel_pt_log("queue %u has no timestamp\n",
1115 queue_nr);
1116 return 0;
1118 continue;
1120 if (state->timestamp)
1121 break;
1124 ptq->timestamp = state->timestamp;
1125 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1126 queue_nr, ptq->timestamp);
1127 ptq->state = state;
1128 ptq->have_sample = true;
1129 if (ptq->sel_start && ptq->sel_timestamp &&
1130 ptq->timestamp < ptq->sel_timestamp)
1131 ptq->have_sample = false;
1132 intel_pt_sample_flags(ptq);
1133 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1134 if (ret)
1135 return ret;
1136 ptq->on_heap = true;
1139 return 0;
1142 static int intel_pt_setup_queues(struct intel_pt *pt)
1144 unsigned int i;
1145 int ret;
1147 for (i = 0; i < pt->queues.nr_queues; i++) {
1148 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1149 if (ret)
1150 return ret;
1152 return 0;
1155 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1157 struct branch_stack *bs_src = ptq->last_branch_rb;
1158 struct branch_stack *bs_dst = ptq->last_branch;
1159 size_t nr = 0;
1161 bs_dst->nr = bs_src->nr;
1163 if (!bs_src->nr)
1164 return;
1166 nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1167 memcpy(&bs_dst->entries[0],
1168 &bs_src->entries[ptq->last_branch_pos],
1169 sizeof(struct branch_entry) * nr);
1171 if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1172 memcpy(&bs_dst->entries[nr],
1173 &bs_src->entries[0],
1174 sizeof(struct branch_entry) * ptq->last_branch_pos);
1178 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1180 ptq->last_branch_pos = 0;
1181 ptq->last_branch_rb->nr = 0;
1184 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1186 const struct intel_pt_state *state = ptq->state;
1187 struct branch_stack *bs = ptq->last_branch_rb;
1188 struct branch_entry *be;
1190 if (!ptq->last_branch_pos)
1191 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1193 ptq->last_branch_pos -= 1;
1195 be = &bs->entries[ptq->last_branch_pos];
1196 be->from = state->from_ip;
1197 be->to = state->to_ip;
1198 be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1199 be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1200 /* No support for mispredict */
1201 be->flags.mispred = ptq->pt->mispred_all;
1203 if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1204 bs->nr += 1;
1207 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1209 return pt->synth_opts.initial_skip &&
1210 pt->num_events++ < pt->synth_opts.initial_skip;
1214 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1215 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1216 * from this decoder state.
1218 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1220 return pt->synth_opts.initial_skip &&
1221 pt->num_events + 4 < pt->synth_opts.initial_skip;
1224 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1225 union perf_event *event,
1226 struct perf_sample *sample)
1228 event->sample.header.type = PERF_RECORD_SAMPLE;
1229 event->sample.header.size = sizeof(struct perf_event_header);
1231 sample->pid = ptq->pid;
1232 sample->tid = ptq->tid;
1233 sample->cpu = ptq->cpu;
1234 sample->insn_len = ptq->insn_len;
1235 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1238 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1239 struct intel_pt_queue *ptq,
1240 union perf_event *event,
1241 struct perf_sample *sample)
1243 intel_pt_prep_a_sample(ptq, event, sample);
1245 if (!pt->timeless_decoding)
1246 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1248 sample->ip = ptq->state->from_ip;
1249 sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1250 sample->addr = ptq->state->to_ip;
1251 sample->period = 1;
1252 sample->flags = ptq->flags;
1254 event->sample.header.misc = sample->cpumode;
1257 static int intel_pt_inject_event(union perf_event *event,
1258 struct perf_sample *sample, u64 type)
1260 event->header.size = perf_event__sample_event_size(sample, type, 0);
1261 return perf_event__synthesize_sample(event, type, 0, sample);
1264 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1265 union perf_event *event,
1266 struct perf_sample *sample, u64 type)
1268 if (!pt->synth_opts.inject)
1269 return 0;
1271 return intel_pt_inject_event(event, sample, type);
1274 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1275 union perf_event *event,
1276 struct perf_sample *sample, u64 type)
1278 int ret;
1280 ret = intel_pt_opt_inject(pt, event, sample, type);
1281 if (ret)
1282 return ret;
1284 ret = perf_session__deliver_synth_event(pt->session, event, sample);
1285 if (ret)
1286 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1288 return ret;
1291 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1293 struct intel_pt *pt = ptq->pt;
1294 union perf_event *event = ptq->event_buf;
1295 struct perf_sample sample = { .ip = 0, };
1296 struct dummy_branch_stack {
1297 u64 nr;
1298 struct branch_entry entries;
1299 } dummy_bs;
1301 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1302 return 0;
1304 if (intel_pt_skip_event(pt))
1305 return 0;
1307 intel_pt_prep_b_sample(pt, ptq, event, &sample);
1309 sample.id = ptq->pt->branches_id;
1310 sample.stream_id = ptq->pt->branches_id;
1313 * perf report cannot handle events without a branch stack when using
1314 * SORT_MODE__BRANCH so make a dummy one.
1316 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1317 dummy_bs = (struct dummy_branch_stack){
1318 .nr = 1,
1319 .entries = {
1320 .from = sample.ip,
1321 .to = sample.addr,
1324 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1327 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1328 if (sample.cyc_cnt) {
1329 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1330 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1331 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1334 return intel_pt_deliver_synth_b_event(pt, event, &sample,
1335 pt->branches_sample_type);
1338 static void intel_pt_prep_sample(struct intel_pt *pt,
1339 struct intel_pt_queue *ptq,
1340 union perf_event *event,
1341 struct perf_sample *sample)
1343 intel_pt_prep_b_sample(pt, ptq, event, sample);
1345 if (pt->synth_opts.callchain) {
1346 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1347 pt->synth_opts.callchain_sz + 1,
1348 sample->ip, pt->kernel_start);
1349 sample->callchain = ptq->chain;
1352 if (pt->synth_opts.last_branch) {
1353 intel_pt_copy_last_branch_rb(ptq);
1354 sample->branch_stack = ptq->last_branch;
1358 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1359 struct intel_pt_queue *ptq,
1360 union perf_event *event,
1361 struct perf_sample *sample,
1362 u64 type)
1364 int ret;
1366 ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1368 if (pt->synth_opts.last_branch)
1369 intel_pt_reset_last_branch_rb(ptq);
1371 return ret;
1374 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1376 struct intel_pt *pt = ptq->pt;
1377 union perf_event *event = ptq->event_buf;
1378 struct perf_sample sample = { .ip = 0, };
1380 if (intel_pt_skip_event(pt))
1381 return 0;
1383 intel_pt_prep_sample(pt, ptq, event, &sample);
1385 sample.id = ptq->pt->instructions_id;
1386 sample.stream_id = ptq->pt->instructions_id;
1387 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1389 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1390 if (sample.cyc_cnt) {
1391 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1392 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1393 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1396 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1398 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1399 pt->instructions_sample_type);
1402 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1404 struct intel_pt *pt = ptq->pt;
1405 union perf_event *event = ptq->event_buf;
1406 struct perf_sample sample = { .ip = 0, };
1408 if (intel_pt_skip_event(pt))
1409 return 0;
1411 intel_pt_prep_sample(pt, ptq, event, &sample);
1413 sample.id = ptq->pt->transactions_id;
1414 sample.stream_id = ptq->pt->transactions_id;
1416 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1417 pt->transactions_sample_type);
1420 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1421 struct intel_pt_queue *ptq,
1422 union perf_event *event,
1423 struct perf_sample *sample)
1425 intel_pt_prep_sample(pt, ptq, event, sample);
1428 * Zero IP is used to mean "trace start" but that is not the case for
1429 * power or PTWRITE events with no IP, so clear the flags.
1431 if (!sample->ip)
1432 sample->flags = 0;
1435 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1437 struct intel_pt *pt = ptq->pt;
1438 union perf_event *event = ptq->event_buf;
1439 struct perf_sample sample = { .ip = 0, };
1440 struct perf_synth_intel_ptwrite raw;
1442 if (intel_pt_skip_event(pt))
1443 return 0;
1445 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1447 sample.id = ptq->pt->ptwrites_id;
1448 sample.stream_id = ptq->pt->ptwrites_id;
1450 raw.flags = 0;
1451 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1452 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1454 sample.raw_size = perf_synth__raw_size(raw);
1455 sample.raw_data = perf_synth__raw_data(&raw);
1457 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1458 pt->ptwrites_sample_type);
1461 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1463 struct intel_pt *pt = ptq->pt;
1464 union perf_event *event = ptq->event_buf;
1465 struct perf_sample sample = { .ip = 0, };
1466 struct perf_synth_intel_cbr raw;
1467 u32 flags;
1469 if (intel_pt_skip_cbr_event(pt))
1470 return 0;
1472 ptq->cbr_seen = ptq->state->cbr;
1474 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1476 sample.id = ptq->pt->cbr_id;
1477 sample.stream_id = ptq->pt->cbr_id;
1479 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1480 raw.flags = cpu_to_le32(flags);
1481 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1482 raw.reserved3 = 0;
1484 sample.raw_size = perf_synth__raw_size(raw);
1485 sample.raw_data = perf_synth__raw_data(&raw);
1487 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1488 pt->pwr_events_sample_type);
1491 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1493 struct intel_pt *pt = ptq->pt;
1494 union perf_event *event = ptq->event_buf;
1495 struct perf_sample sample = { .ip = 0, };
1496 struct perf_synth_intel_mwait raw;
1498 if (intel_pt_skip_event(pt))
1499 return 0;
1501 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1503 sample.id = ptq->pt->mwait_id;
1504 sample.stream_id = ptq->pt->mwait_id;
1506 raw.reserved = 0;
1507 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1509 sample.raw_size = perf_synth__raw_size(raw);
1510 sample.raw_data = perf_synth__raw_data(&raw);
1512 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1513 pt->pwr_events_sample_type);
1516 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1518 struct intel_pt *pt = ptq->pt;
1519 union perf_event *event = ptq->event_buf;
1520 struct perf_sample sample = { .ip = 0, };
1521 struct perf_synth_intel_pwre raw;
1523 if (intel_pt_skip_event(pt))
1524 return 0;
1526 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1528 sample.id = ptq->pt->pwre_id;
1529 sample.stream_id = ptq->pt->pwre_id;
1531 raw.reserved = 0;
1532 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1534 sample.raw_size = perf_synth__raw_size(raw);
1535 sample.raw_data = perf_synth__raw_data(&raw);
1537 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1538 pt->pwr_events_sample_type);
1541 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1543 struct intel_pt *pt = ptq->pt;
1544 union perf_event *event = ptq->event_buf;
1545 struct perf_sample sample = { .ip = 0, };
1546 struct perf_synth_intel_exstop raw;
1548 if (intel_pt_skip_event(pt))
1549 return 0;
1551 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1553 sample.id = ptq->pt->exstop_id;
1554 sample.stream_id = ptq->pt->exstop_id;
1556 raw.flags = 0;
1557 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1559 sample.raw_size = perf_synth__raw_size(raw);
1560 sample.raw_data = perf_synth__raw_data(&raw);
1562 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1563 pt->pwr_events_sample_type);
1566 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1568 struct intel_pt *pt = ptq->pt;
1569 union perf_event *event = ptq->event_buf;
1570 struct perf_sample sample = { .ip = 0, };
1571 struct perf_synth_intel_pwrx raw;
1573 if (intel_pt_skip_event(pt))
1574 return 0;
1576 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1578 sample.id = ptq->pt->pwrx_id;
1579 sample.stream_id = ptq->pt->pwrx_id;
1581 raw.reserved = 0;
1582 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1584 sample.raw_size = perf_synth__raw_size(raw);
1585 sample.raw_data = perf_synth__raw_data(&raw);
1587 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1588 pt->pwr_events_sample_type);
1592 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1593 * intel_pt_add_gp_regs().
1595 static const int pebs_gp_regs[] = {
1596 [PERF_REG_X86_FLAGS] = 1,
1597 [PERF_REG_X86_IP] = 2,
1598 [PERF_REG_X86_AX] = 3,
1599 [PERF_REG_X86_CX] = 4,
1600 [PERF_REG_X86_DX] = 5,
1601 [PERF_REG_X86_BX] = 6,
1602 [PERF_REG_X86_SP] = 7,
1603 [PERF_REG_X86_BP] = 8,
1604 [PERF_REG_X86_SI] = 9,
1605 [PERF_REG_X86_DI] = 10,
1606 [PERF_REG_X86_R8] = 11,
1607 [PERF_REG_X86_R9] = 12,
1608 [PERF_REG_X86_R10] = 13,
1609 [PERF_REG_X86_R11] = 14,
1610 [PERF_REG_X86_R12] = 15,
1611 [PERF_REG_X86_R13] = 16,
1612 [PERF_REG_X86_R14] = 17,
1613 [PERF_REG_X86_R15] = 18,
1616 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1617 const struct intel_pt_blk_items *items,
1618 u64 regs_mask)
1620 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1621 u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1622 u32 bit;
1623 int i;
1625 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1626 /* Get the PEBS gp_regs array index */
1627 int n = pebs_gp_regs[i] - 1;
1629 if (n < 0)
1630 continue;
1632 * Add only registers that were requested (i.e. 'regs_mask') and
1633 * that were provided (i.e. 'mask'), and update the resulting
1634 * mask (i.e. 'intr_regs->mask') accordingly.
1636 if (mask & 1 << n && regs_mask & bit) {
1637 intr_regs->mask |= bit;
1638 *pos++ = gp_regs[n];
1642 return pos;
1645 #ifndef PERF_REG_X86_XMM0
1646 #define PERF_REG_X86_XMM0 32
1647 #endif
1649 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1650 const struct intel_pt_blk_items *items,
1651 u64 regs_mask)
1653 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1654 const u64 *xmm = items->xmm;
1657 * If there are any XMM registers, then there should be all of them.
1658 * Nevertheless, follow the logic to add only registers that were
1659 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1660 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1662 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1664 for (; mask; mask >>= 1, xmm++) {
1665 if (mask & 1)
1666 *pos++ = *xmm;
1670 #define LBR_INFO_MISPRED (1ULL << 63)
1671 #define LBR_INFO_IN_TX (1ULL << 62)
1672 #define LBR_INFO_ABORT (1ULL << 61)
1673 #define LBR_INFO_CYCLES 0xffff
1675 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1676 static u64 intel_pt_lbr_flags(u64 info)
1678 union {
1679 struct branch_flags flags;
1680 u64 result;
1681 } u = {
1682 .flags = {
1683 .mispred = !!(info & LBR_INFO_MISPRED),
1684 .predicted = !(info & LBR_INFO_MISPRED),
1685 .in_tx = !!(info & LBR_INFO_IN_TX),
1686 .abort = !!(info & LBR_INFO_ABORT),
1687 .cycles = info & LBR_INFO_CYCLES,
1691 return u.result;
1694 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1695 const struct intel_pt_blk_items *items)
1697 u64 *to;
1698 int i;
1700 br_stack->nr = 0;
1702 to = &br_stack->entries[0].from;
1704 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1705 u32 mask = items->mask[i];
1706 const u64 *from = items->val[i];
1708 for (; mask; mask >>= 3, from += 3) {
1709 if ((mask & 7) == 7) {
1710 *to++ = from[0];
1711 *to++ = from[1];
1712 *to++ = intel_pt_lbr_flags(from[2]);
1713 br_stack->nr += 1;
1719 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1720 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1722 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1724 const struct intel_pt_blk_items *items = &ptq->state->items;
1725 struct perf_sample sample = { .ip = 0, };
1726 union perf_event *event = ptq->event_buf;
1727 struct intel_pt *pt = ptq->pt;
1728 struct evsel *evsel = pt->pebs_evsel;
1729 u64 sample_type = evsel->core.attr.sample_type;
1730 u64 id = evsel->core.id[0];
1731 u8 cpumode;
1733 if (intel_pt_skip_event(pt))
1734 return 0;
1736 intel_pt_prep_a_sample(ptq, event, &sample);
1738 sample.id = id;
1739 sample.stream_id = id;
1741 if (!evsel->core.attr.freq)
1742 sample.period = evsel->core.attr.sample_period;
1744 /* No support for non-zero CS base */
1745 if (items->has_ip)
1746 sample.ip = items->ip;
1747 else if (items->has_rip)
1748 sample.ip = items->rip;
1749 else
1750 sample.ip = ptq->state->from_ip;
1752 /* No support for guest mode at this time */
1753 cpumode = sample.ip < ptq->pt->kernel_start ?
1754 PERF_RECORD_MISC_USER :
1755 PERF_RECORD_MISC_KERNEL;
1757 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1759 sample.cpumode = cpumode;
1761 if (sample_type & PERF_SAMPLE_TIME) {
1762 u64 timestamp = 0;
1764 if (items->has_timestamp)
1765 timestamp = items->timestamp;
1766 else if (!pt->timeless_decoding)
1767 timestamp = ptq->timestamp;
1768 if (timestamp)
1769 sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1772 if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1773 pt->synth_opts.callchain) {
1774 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1775 pt->synth_opts.callchain_sz, sample.ip,
1776 pt->kernel_start);
1777 sample.callchain = ptq->chain;
1780 if (sample_type & PERF_SAMPLE_REGS_INTR &&
1781 items->mask[INTEL_PT_GP_REGS_POS]) {
1782 u64 regs[sizeof(sample.intr_regs.mask)];
1783 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1784 u64 *pos;
1786 sample.intr_regs.abi = items->is_32_bit ?
1787 PERF_SAMPLE_REGS_ABI_32 :
1788 PERF_SAMPLE_REGS_ABI_64;
1789 sample.intr_regs.regs = regs;
1791 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1793 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1796 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1797 struct {
1798 struct branch_stack br_stack;
1799 struct branch_entry entries[LBRS_MAX];
1800 } br;
1802 if (items->mask[INTEL_PT_LBR_0_POS] ||
1803 items->mask[INTEL_PT_LBR_1_POS] ||
1804 items->mask[INTEL_PT_LBR_2_POS]) {
1805 intel_pt_add_lbrs(&br.br_stack, items);
1806 sample.branch_stack = &br.br_stack;
1807 } else if (pt->synth_opts.last_branch) {
1808 intel_pt_copy_last_branch_rb(ptq);
1809 sample.branch_stack = ptq->last_branch;
1810 } else {
1811 br.br_stack.nr = 0;
1812 sample.branch_stack = &br.br_stack;
1816 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1817 sample.addr = items->mem_access_address;
1819 if (sample_type & PERF_SAMPLE_WEIGHT) {
1821 * Refer kernel's setup_pebs_adaptive_sample_data() and
1822 * intel_hsw_weight().
1824 if (items->has_mem_access_latency)
1825 sample.weight = items->mem_access_latency;
1826 if (!sample.weight && items->has_tsx_aux_info) {
1827 /* Cycles last block */
1828 sample.weight = (u32)items->tsx_aux_info;
1832 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1833 u64 ax = items->has_rax ? items->rax : 0;
1834 /* Refer kernel's intel_hsw_transaction() */
1835 u64 txn = (u8)(items->tsx_aux_info >> 32);
1837 /* For RTM XABORTs also log the abort code from AX */
1838 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1839 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1840 sample.transaction = txn;
1843 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
1846 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1847 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1849 union perf_event event;
1850 char msg[MAX_AUXTRACE_ERROR_MSG];
1851 int err;
1853 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1855 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1856 code, cpu, pid, tid, ip, msg, timestamp);
1858 err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1859 if (err)
1860 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1861 err);
1863 return err;
1866 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1867 const struct intel_pt_state *state)
1869 struct intel_pt *pt = ptq->pt;
1870 u64 tm = ptq->timestamp;
1872 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1874 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1875 ptq->tid, state->from_ip, tm);
1878 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1880 struct auxtrace_queue *queue;
1881 pid_t tid = ptq->next_tid;
1882 int err;
1884 if (tid == -1)
1885 return 0;
1887 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1889 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1891 queue = &pt->queues.queue_array[ptq->queue_nr];
1892 intel_pt_set_pid_tid_cpu(pt, queue);
1894 ptq->next_tid = -1;
1896 return err;
1899 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1901 struct intel_pt *pt = ptq->pt;
1903 return ip == pt->switch_ip &&
1904 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1905 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1906 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1909 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1910 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1912 static int intel_pt_sample(struct intel_pt_queue *ptq)
1914 const struct intel_pt_state *state = ptq->state;
1915 struct intel_pt *pt = ptq->pt;
1916 int err;
1918 if (!ptq->have_sample)
1919 return 0;
1921 ptq->have_sample = false;
1923 if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1925 * Cycle count and instruction count only go together to create
1926 * a valid IPC ratio when the cycle count changes.
1928 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1929 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1933 * Do PEBS first to allow for the possibility that the PEBS timestamp
1934 * precedes the current timestamp.
1936 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1937 err = intel_pt_synth_pebs_sample(ptq);
1938 if (err)
1939 return err;
1942 if (pt->sample_pwr_events) {
1943 if (ptq->state->cbr != ptq->cbr_seen) {
1944 err = intel_pt_synth_cbr_sample(ptq);
1945 if (err)
1946 return err;
1948 if (state->type & INTEL_PT_PWR_EVT) {
1949 if (state->type & INTEL_PT_MWAIT_OP) {
1950 err = intel_pt_synth_mwait_sample(ptq);
1951 if (err)
1952 return err;
1954 if (state->type & INTEL_PT_PWR_ENTRY) {
1955 err = intel_pt_synth_pwre_sample(ptq);
1956 if (err)
1957 return err;
1959 if (state->type & INTEL_PT_EX_STOP) {
1960 err = intel_pt_synth_exstop_sample(ptq);
1961 if (err)
1962 return err;
1964 if (state->type & INTEL_PT_PWR_EXIT) {
1965 err = intel_pt_synth_pwrx_sample(ptq);
1966 if (err)
1967 return err;
1972 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1973 err = intel_pt_synth_instruction_sample(ptq);
1974 if (err)
1975 return err;
1978 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1979 err = intel_pt_synth_transaction_sample(ptq);
1980 if (err)
1981 return err;
1984 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1985 err = intel_pt_synth_ptwrite_sample(ptq);
1986 if (err)
1987 return err;
1990 if (!(state->type & INTEL_PT_BRANCH))
1991 return 0;
1993 if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1994 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1995 state->to_ip, ptq->insn_len,
1996 state->trace_nr);
1997 else
1998 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2000 if (pt->sample_branches) {
2001 err = intel_pt_synth_branch_sample(ptq);
2002 if (err)
2003 return err;
2006 if (pt->synth_opts.last_branch)
2007 intel_pt_update_last_branch_rb(ptq);
2009 if (!ptq->sync_switch)
2010 return 0;
2012 if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2013 switch (ptq->switch_state) {
2014 case INTEL_PT_SS_NOT_TRACING:
2015 case INTEL_PT_SS_UNKNOWN:
2016 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2017 err = intel_pt_next_tid(pt, ptq);
2018 if (err)
2019 return err;
2020 ptq->switch_state = INTEL_PT_SS_TRACING;
2021 break;
2022 default:
2023 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2024 return 1;
2026 } else if (!state->to_ip) {
2027 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2028 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2029 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2030 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2031 state->to_ip == pt->ptss_ip &&
2032 (ptq->flags & PERF_IP_FLAG_CALL)) {
2033 ptq->switch_state = INTEL_PT_SS_TRACING;
2036 return 0;
2039 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2041 struct machine *machine = pt->machine;
2042 struct map *map;
2043 struct symbol *sym, *start;
2044 u64 ip, switch_ip = 0;
2045 const char *ptss;
2047 if (ptss_ip)
2048 *ptss_ip = 0;
2050 map = machine__kernel_map(machine);
2051 if (!map)
2052 return 0;
2054 if (map__load(map))
2055 return 0;
2057 start = dso__first_symbol(map->dso);
2059 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2060 if (sym->binding == STB_GLOBAL &&
2061 !strcmp(sym->name, "__switch_to")) {
2062 ip = map->unmap_ip(map, sym->start);
2063 if (ip >= map->start && ip < map->end) {
2064 switch_ip = ip;
2065 break;
2070 if (!switch_ip || !ptss_ip)
2071 return 0;
2073 if (pt->have_sched_switch == 1)
2074 ptss = "perf_trace_sched_switch";
2075 else
2076 ptss = "__perf_event_task_sched_out";
2078 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2079 if (!strcmp(sym->name, ptss)) {
2080 ip = map->unmap_ip(map, sym->start);
2081 if (ip >= map->start && ip < map->end) {
2082 *ptss_ip = ip;
2083 break;
2088 return switch_ip;
2091 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2093 unsigned int i;
2095 pt->sync_switch = true;
2097 for (i = 0; i < pt->queues.nr_queues; i++) {
2098 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2099 struct intel_pt_queue *ptq = queue->priv;
2101 if (ptq)
2102 ptq->sync_switch = true;
2107 * To filter against time ranges, it is only necessary to look at the next start
2108 * or end time.
2110 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2112 struct intel_pt *pt = ptq->pt;
2114 if (ptq->sel_start) {
2115 /* Next time is an end time */
2116 ptq->sel_start = false;
2117 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2118 return true;
2119 } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2120 /* Next time is a start time */
2121 ptq->sel_start = true;
2122 ptq->sel_idx += 1;
2123 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2124 return true;
2127 /* No next time */
2128 return false;
2131 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2133 int err;
2135 while (1) {
2136 if (ptq->sel_start) {
2137 if (ptq->timestamp >= ptq->sel_timestamp) {
2138 /* After start time, so consider next time */
2139 intel_pt_next_time(ptq);
2140 if (!ptq->sel_timestamp) {
2141 /* No end time */
2142 return 0;
2144 /* Check against end time */
2145 continue;
2147 /* Before start time, so fast forward */
2148 ptq->have_sample = false;
2149 if (ptq->sel_timestamp > *ff_timestamp) {
2150 if (ptq->sync_switch) {
2151 intel_pt_next_tid(ptq->pt, ptq);
2152 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2154 *ff_timestamp = ptq->sel_timestamp;
2155 err = intel_pt_fast_forward(ptq->decoder,
2156 ptq->sel_timestamp);
2157 if (err)
2158 return err;
2160 return 0;
2161 } else if (ptq->timestamp > ptq->sel_timestamp) {
2162 /* After end time, so consider next time */
2163 if (!intel_pt_next_time(ptq)) {
2164 /* No next time range, so stop decoding */
2165 ptq->have_sample = false;
2166 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2167 return 1;
2169 /* Check against next start time */
2170 continue;
2171 } else {
2172 /* Before end time */
2173 return 0;
2178 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2180 const struct intel_pt_state *state = ptq->state;
2181 struct intel_pt *pt = ptq->pt;
2182 u64 ff_timestamp = 0;
2183 int err;
2185 if (!pt->kernel_start) {
2186 pt->kernel_start = machine__kernel_start(pt->machine);
2187 if (pt->per_cpu_mmaps &&
2188 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2189 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2190 !pt->sampling_mode) {
2191 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2192 if (pt->switch_ip) {
2193 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2194 pt->switch_ip, pt->ptss_ip);
2195 intel_pt_enable_sync_switch(pt);
2200 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2201 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2202 while (1) {
2203 err = intel_pt_sample(ptq);
2204 if (err)
2205 return err;
2207 state = intel_pt_decode(ptq->decoder);
2208 if (state->err) {
2209 if (state->err == INTEL_PT_ERR_NODATA)
2210 return 1;
2211 if (ptq->sync_switch &&
2212 state->from_ip >= pt->kernel_start) {
2213 ptq->sync_switch = false;
2214 intel_pt_next_tid(pt, ptq);
2216 if (pt->synth_opts.errors) {
2217 err = intel_ptq_synth_error(ptq, state);
2218 if (err)
2219 return err;
2221 continue;
2224 ptq->state = state;
2225 ptq->have_sample = true;
2226 intel_pt_sample_flags(ptq);
2228 /* Use estimated TSC upon return to user space */
2229 if (pt->est_tsc &&
2230 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2231 state->to_ip && state->to_ip < pt->kernel_start) {
2232 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2233 state->timestamp, state->est_timestamp);
2234 ptq->timestamp = state->est_timestamp;
2235 /* Use estimated TSC in unknown switch state */
2236 } else if (ptq->sync_switch &&
2237 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2238 intel_pt_is_switch_ip(ptq, state->to_ip) &&
2239 ptq->next_tid == -1) {
2240 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2241 state->timestamp, state->est_timestamp);
2242 ptq->timestamp = state->est_timestamp;
2243 } else if (state->timestamp > ptq->timestamp) {
2244 ptq->timestamp = state->timestamp;
2247 if (ptq->sel_timestamp) {
2248 err = intel_pt_time_filter(ptq, &ff_timestamp);
2249 if (err)
2250 return err;
2253 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2254 *timestamp = ptq->timestamp;
2255 return 0;
2258 return 0;
2261 static inline int intel_pt_update_queues(struct intel_pt *pt)
2263 if (pt->queues.new_data) {
2264 pt->queues.new_data = false;
2265 return intel_pt_setup_queues(pt);
2267 return 0;
2270 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2272 unsigned int queue_nr;
2273 u64 ts;
2274 int ret;
2276 while (1) {
2277 struct auxtrace_queue *queue;
2278 struct intel_pt_queue *ptq;
2280 if (!pt->heap.heap_cnt)
2281 return 0;
2283 if (pt->heap.heap_array[0].ordinal >= timestamp)
2284 return 0;
2286 queue_nr = pt->heap.heap_array[0].queue_nr;
2287 queue = &pt->queues.queue_array[queue_nr];
2288 ptq = queue->priv;
2290 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2291 queue_nr, pt->heap.heap_array[0].ordinal,
2292 timestamp);
2294 auxtrace_heap__pop(&pt->heap);
2296 if (pt->heap.heap_cnt) {
2297 ts = pt->heap.heap_array[0].ordinal + 1;
2298 if (ts > timestamp)
2299 ts = timestamp;
2300 } else {
2301 ts = timestamp;
2304 intel_pt_set_pid_tid_cpu(pt, queue);
2306 ret = intel_pt_run_decoder(ptq, &ts);
2308 if (ret < 0) {
2309 auxtrace_heap__add(&pt->heap, queue_nr, ts);
2310 return ret;
2313 if (!ret) {
2314 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2315 if (ret < 0)
2316 return ret;
2317 } else {
2318 ptq->on_heap = false;
2322 return 0;
2325 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2326 u64 time_)
2328 struct auxtrace_queues *queues = &pt->queues;
2329 unsigned int i;
2330 u64 ts = 0;
2332 for (i = 0; i < queues->nr_queues; i++) {
2333 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2334 struct intel_pt_queue *ptq = queue->priv;
2336 if (ptq && (tid == -1 || ptq->tid == tid)) {
2337 ptq->time = time_;
2338 intel_pt_set_pid_tid_cpu(pt, queue);
2339 intel_pt_run_decoder(ptq, &ts);
2342 return 0;
2345 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2346 struct auxtrace_queue *queue,
2347 struct perf_sample *sample)
2349 struct machine *m = ptq->pt->machine;
2351 ptq->pid = sample->pid;
2352 ptq->tid = sample->tid;
2353 ptq->cpu = queue->cpu;
2355 intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2356 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2358 thread__zput(ptq->thread);
2360 if (ptq->tid == -1)
2361 return;
2363 if (ptq->pid == -1) {
2364 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2365 if (ptq->thread)
2366 ptq->pid = ptq->thread->pid_;
2367 return;
2370 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2373 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2374 struct perf_sample *sample)
2376 struct auxtrace_queue *queue;
2377 struct intel_pt_queue *ptq;
2378 u64 ts = 0;
2380 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2381 if (!queue)
2382 return -EINVAL;
2384 ptq = queue->priv;
2385 if (!ptq)
2386 return 0;
2388 ptq->stop = false;
2389 ptq->time = sample->time;
2390 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2391 intel_pt_run_decoder(ptq, &ts);
2392 return 0;
2395 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2397 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2398 sample->pid, sample->tid, 0, sample->time);
2401 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2403 unsigned i, j;
2405 if (cpu < 0 || !pt->queues.nr_queues)
2406 return NULL;
2408 if ((unsigned)cpu >= pt->queues.nr_queues)
2409 i = pt->queues.nr_queues - 1;
2410 else
2411 i = cpu;
2413 if (pt->queues.queue_array[i].cpu == cpu)
2414 return pt->queues.queue_array[i].priv;
2416 for (j = 0; i > 0; j++) {
2417 if (pt->queues.queue_array[--i].cpu == cpu)
2418 return pt->queues.queue_array[i].priv;
2421 for (; j < pt->queues.nr_queues; j++) {
2422 if (pt->queues.queue_array[j].cpu == cpu)
2423 return pt->queues.queue_array[j].priv;
2426 return NULL;
2429 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2430 u64 timestamp)
2432 struct intel_pt_queue *ptq;
2433 int err;
2435 if (!pt->sync_switch)
2436 return 1;
2438 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2439 if (!ptq || !ptq->sync_switch)
2440 return 1;
2442 switch (ptq->switch_state) {
2443 case INTEL_PT_SS_NOT_TRACING:
2444 break;
2445 case INTEL_PT_SS_UNKNOWN:
2446 case INTEL_PT_SS_TRACING:
2447 ptq->next_tid = tid;
2448 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2449 return 0;
2450 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2451 if (!ptq->on_heap) {
2452 ptq->timestamp = perf_time_to_tsc(timestamp,
2453 &pt->tc);
2454 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2455 ptq->timestamp);
2456 if (err)
2457 return err;
2458 ptq->on_heap = true;
2460 ptq->switch_state = INTEL_PT_SS_TRACING;
2461 break;
2462 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2463 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2464 break;
2465 default:
2466 break;
2469 ptq->next_tid = -1;
2471 return 1;
2474 static int intel_pt_process_switch(struct intel_pt *pt,
2475 struct perf_sample *sample)
2477 struct evsel *evsel;
2478 pid_t tid;
2479 int cpu, ret;
2481 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2482 if (evsel != pt->switch_evsel)
2483 return 0;
2485 tid = perf_evsel__intval(evsel, sample, "next_pid");
2486 cpu = sample->cpu;
2488 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2489 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2490 &pt->tc));
2492 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2493 if (ret <= 0)
2494 return ret;
2496 return machine__set_current_tid(pt->machine, cpu, -1, tid);
2499 static int intel_pt_context_switch_in(struct intel_pt *pt,
2500 struct perf_sample *sample)
2502 pid_t pid = sample->pid;
2503 pid_t tid = sample->tid;
2504 int cpu = sample->cpu;
2506 if (pt->sync_switch) {
2507 struct intel_pt_queue *ptq;
2509 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2510 if (ptq && ptq->sync_switch) {
2511 ptq->next_tid = -1;
2512 switch (ptq->switch_state) {
2513 case INTEL_PT_SS_NOT_TRACING:
2514 case INTEL_PT_SS_UNKNOWN:
2515 case INTEL_PT_SS_TRACING:
2516 break;
2517 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2518 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2519 ptq->switch_state = INTEL_PT_SS_TRACING;
2520 break;
2521 default:
2522 break;
2528 * If the current tid has not been updated yet, ensure it is now that
2529 * a "switch in" event has occurred.
2531 if (machine__get_current_tid(pt->machine, cpu) == tid)
2532 return 0;
2534 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2537 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2538 struct perf_sample *sample)
2540 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2541 pid_t pid, tid;
2542 int cpu, ret;
2544 cpu = sample->cpu;
2546 if (pt->have_sched_switch == 3) {
2547 if (!out)
2548 return intel_pt_context_switch_in(pt, sample);
2549 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2550 pr_err("Expecting CPU-wide context switch event\n");
2551 return -EINVAL;
2553 pid = event->context_switch.next_prev_pid;
2554 tid = event->context_switch.next_prev_tid;
2555 } else {
2556 if (out)
2557 return 0;
2558 pid = sample->pid;
2559 tid = sample->tid;
2562 if (tid == -1) {
2563 pr_err("context_switch event has no tid\n");
2564 return -EINVAL;
2567 intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2568 cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2569 &pt->tc));
2571 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2572 if (ret <= 0)
2573 return ret;
2575 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2578 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2579 union perf_event *event,
2580 struct perf_sample *sample)
2582 if (!pt->per_cpu_mmaps)
2583 return 0;
2585 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2586 sample->cpu, event->itrace_start.pid,
2587 event->itrace_start.tid, sample->time,
2588 perf_time_to_tsc(sample->time, &pt->tc));
2590 return machine__set_current_tid(pt->machine, sample->cpu,
2591 event->itrace_start.pid,
2592 event->itrace_start.tid);
2595 static int intel_pt_process_event(struct perf_session *session,
2596 union perf_event *event,
2597 struct perf_sample *sample,
2598 struct perf_tool *tool)
2600 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2601 auxtrace);
2602 u64 timestamp;
2603 int err = 0;
2605 if (dump_trace)
2606 return 0;
2608 if (!tool->ordered_events) {
2609 pr_err("Intel Processor Trace requires ordered events\n");
2610 return -EINVAL;
2613 if (sample->time && sample->time != (u64)-1)
2614 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2615 else
2616 timestamp = 0;
2618 if (timestamp || pt->timeless_decoding) {
2619 err = intel_pt_update_queues(pt);
2620 if (err)
2621 return err;
2624 if (pt->timeless_decoding) {
2625 if (pt->sampling_mode) {
2626 if (sample->aux_sample.size)
2627 err = intel_pt_process_timeless_sample(pt,
2628 sample);
2629 } else if (event->header.type == PERF_RECORD_EXIT) {
2630 err = intel_pt_process_timeless_queues(pt,
2631 event->fork.tid,
2632 sample->time);
2634 } else if (timestamp) {
2635 err = intel_pt_process_queues(pt, timestamp);
2637 if (err)
2638 return err;
2640 if (event->header.type == PERF_RECORD_AUX &&
2641 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2642 pt->synth_opts.errors) {
2643 err = intel_pt_lost(pt, sample);
2644 if (err)
2645 return err;
2648 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2649 err = intel_pt_process_switch(pt, sample);
2650 else if (event->header.type == PERF_RECORD_ITRACE_START)
2651 err = intel_pt_process_itrace_start(pt, event, sample);
2652 else if (event->header.type == PERF_RECORD_SWITCH ||
2653 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2654 err = intel_pt_context_switch(pt, event, sample);
2656 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2657 event->header.type, sample->cpu, sample->time, timestamp);
2658 intel_pt_log_event(event);
2660 return err;
2663 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2665 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2666 auxtrace);
2667 int ret;
2669 if (dump_trace)
2670 return 0;
2672 if (!tool->ordered_events)
2673 return -EINVAL;
2675 ret = intel_pt_update_queues(pt);
2676 if (ret < 0)
2677 return ret;
2679 if (pt->timeless_decoding)
2680 return intel_pt_process_timeless_queues(pt, -1,
2681 MAX_TIMESTAMP - 1);
2683 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2686 static void intel_pt_free_events(struct perf_session *session)
2688 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2689 auxtrace);
2690 struct auxtrace_queues *queues = &pt->queues;
2691 unsigned int i;
2693 for (i = 0; i < queues->nr_queues; i++) {
2694 intel_pt_free_queue(queues->queue_array[i].priv);
2695 queues->queue_array[i].priv = NULL;
2697 intel_pt_log_disable();
2698 auxtrace_queues__free(queues);
2701 static void intel_pt_free(struct perf_session *session)
2703 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2704 auxtrace);
2706 auxtrace_heap__free(&pt->heap);
2707 intel_pt_free_events(session);
2708 session->auxtrace = NULL;
2709 thread__put(pt->unknown_thread);
2710 addr_filters__exit(&pt->filts);
2711 zfree(&pt->filter);
2712 zfree(&pt->time_ranges);
2713 free(pt);
2716 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2717 union perf_event *event,
2718 struct perf_tool *tool __maybe_unused)
2720 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2721 auxtrace);
2723 if (!pt->data_queued) {
2724 struct auxtrace_buffer *buffer;
2725 off_t data_offset;
2726 int fd = perf_data__fd(session->data);
2727 int err;
2729 if (perf_data__is_pipe(session->data)) {
2730 data_offset = 0;
2731 } else {
2732 data_offset = lseek(fd, 0, SEEK_CUR);
2733 if (data_offset == -1)
2734 return -errno;
2737 err = auxtrace_queues__add_event(&pt->queues, session, event,
2738 data_offset, &buffer);
2739 if (err)
2740 return err;
2742 /* Dump here now we have copied a piped trace out of the pipe */
2743 if (dump_trace) {
2744 if (auxtrace_buffer__get_data(buffer, fd)) {
2745 intel_pt_dump_event(pt, buffer->data,
2746 buffer->size);
2747 auxtrace_buffer__put_data(buffer);
2752 return 0;
2755 static int intel_pt_queue_data(struct perf_session *session,
2756 struct perf_sample *sample,
2757 union perf_event *event, u64 data_offset)
2759 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2760 auxtrace);
2761 u64 timestamp;
2763 if (event) {
2764 return auxtrace_queues__add_event(&pt->queues, session, event,
2765 data_offset, NULL);
2768 if (sample->time && sample->time != (u64)-1)
2769 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2770 else
2771 timestamp = 0;
2773 return auxtrace_queues__add_sample(&pt->queues, session, sample,
2774 data_offset, timestamp);
2777 struct intel_pt_synth {
2778 struct perf_tool dummy_tool;
2779 struct perf_session *session;
2782 static int intel_pt_event_synth(struct perf_tool *tool,
2783 union perf_event *event,
2784 struct perf_sample *sample __maybe_unused,
2785 struct machine *machine __maybe_unused)
2787 struct intel_pt_synth *intel_pt_synth =
2788 container_of(tool, struct intel_pt_synth, dummy_tool);
2790 return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2791 NULL);
2794 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2795 struct perf_event_attr *attr, u64 id)
2797 struct intel_pt_synth intel_pt_synth;
2798 int err;
2800 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2801 name, id, (u64)attr->sample_type);
2803 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2804 intel_pt_synth.session = session;
2806 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2807 &id, intel_pt_event_synth);
2808 if (err)
2809 pr_err("%s: failed to synthesize '%s' event type\n",
2810 __func__, name);
2812 return err;
2815 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2816 const char *name)
2818 struct evsel *evsel;
2820 evlist__for_each_entry(evlist, evsel) {
2821 if (evsel->core.id && evsel->core.id[0] == id) {
2822 if (evsel->name)
2823 zfree(&evsel->name);
2824 evsel->name = strdup(name);
2825 break;
2830 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2831 struct evlist *evlist)
2833 struct evsel *evsel;
2835 evlist__for_each_entry(evlist, evsel) {
2836 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2837 return evsel;
2840 return NULL;
2843 static int intel_pt_synth_events(struct intel_pt *pt,
2844 struct perf_session *session)
2846 struct evlist *evlist = session->evlist;
2847 struct evsel *evsel = intel_pt_evsel(pt, evlist);
2848 struct perf_event_attr attr;
2849 u64 id;
2850 int err;
2852 if (!evsel) {
2853 pr_debug("There are no selected events with Intel Processor Trace data\n");
2854 return 0;
2857 memset(&attr, 0, sizeof(struct perf_event_attr));
2858 attr.size = sizeof(struct perf_event_attr);
2859 attr.type = PERF_TYPE_HARDWARE;
2860 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2861 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2862 PERF_SAMPLE_PERIOD;
2863 if (pt->timeless_decoding)
2864 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2865 else
2866 attr.sample_type |= PERF_SAMPLE_TIME;
2867 if (!pt->per_cpu_mmaps)
2868 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2869 attr.exclude_user = evsel->core.attr.exclude_user;
2870 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2871 attr.exclude_hv = evsel->core.attr.exclude_hv;
2872 attr.exclude_host = evsel->core.attr.exclude_host;
2873 attr.exclude_guest = evsel->core.attr.exclude_guest;
2874 attr.sample_id_all = evsel->core.attr.sample_id_all;
2875 attr.read_format = evsel->core.attr.read_format;
2877 id = evsel->core.id[0] + 1000000000;
2878 if (!id)
2879 id = 1;
2881 if (pt->synth_opts.branches) {
2882 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2883 attr.sample_period = 1;
2884 attr.sample_type |= PERF_SAMPLE_ADDR;
2885 err = intel_pt_synth_event(session, "branches", &attr, id);
2886 if (err)
2887 return err;
2888 pt->sample_branches = true;
2889 pt->branches_sample_type = attr.sample_type;
2890 pt->branches_id = id;
2891 id += 1;
2892 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2895 if (pt->synth_opts.callchain)
2896 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2897 if (pt->synth_opts.last_branch)
2898 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2900 if (pt->synth_opts.instructions) {
2901 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2902 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2903 attr.sample_period =
2904 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2905 else
2906 attr.sample_period = pt->synth_opts.period;
2907 err = intel_pt_synth_event(session, "instructions", &attr, id);
2908 if (err)
2909 return err;
2910 pt->sample_instructions = true;
2911 pt->instructions_sample_type = attr.sample_type;
2912 pt->instructions_id = id;
2913 id += 1;
2916 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2917 attr.sample_period = 1;
2919 if (pt->synth_opts.transactions) {
2920 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2921 err = intel_pt_synth_event(session, "transactions", &attr, id);
2922 if (err)
2923 return err;
2924 pt->sample_transactions = true;
2925 pt->transactions_sample_type = attr.sample_type;
2926 pt->transactions_id = id;
2927 intel_pt_set_event_name(evlist, id, "transactions");
2928 id += 1;
2931 attr.type = PERF_TYPE_SYNTH;
2932 attr.sample_type |= PERF_SAMPLE_RAW;
2934 if (pt->synth_opts.ptwrites) {
2935 attr.config = PERF_SYNTH_INTEL_PTWRITE;
2936 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2937 if (err)
2938 return err;
2939 pt->sample_ptwrites = true;
2940 pt->ptwrites_sample_type = attr.sample_type;
2941 pt->ptwrites_id = id;
2942 intel_pt_set_event_name(evlist, id, "ptwrite");
2943 id += 1;
2946 if (pt->synth_opts.pwr_events) {
2947 pt->sample_pwr_events = true;
2948 pt->pwr_events_sample_type = attr.sample_type;
2950 attr.config = PERF_SYNTH_INTEL_CBR;
2951 err = intel_pt_synth_event(session, "cbr", &attr, id);
2952 if (err)
2953 return err;
2954 pt->cbr_id = id;
2955 intel_pt_set_event_name(evlist, id, "cbr");
2956 id += 1;
2959 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2960 attr.config = PERF_SYNTH_INTEL_MWAIT;
2961 err = intel_pt_synth_event(session, "mwait", &attr, id);
2962 if (err)
2963 return err;
2964 pt->mwait_id = id;
2965 intel_pt_set_event_name(evlist, id, "mwait");
2966 id += 1;
2968 attr.config = PERF_SYNTH_INTEL_PWRE;
2969 err = intel_pt_synth_event(session, "pwre", &attr, id);
2970 if (err)
2971 return err;
2972 pt->pwre_id = id;
2973 intel_pt_set_event_name(evlist, id, "pwre");
2974 id += 1;
2976 attr.config = PERF_SYNTH_INTEL_EXSTOP;
2977 err = intel_pt_synth_event(session, "exstop", &attr, id);
2978 if (err)
2979 return err;
2980 pt->exstop_id = id;
2981 intel_pt_set_event_name(evlist, id, "exstop");
2982 id += 1;
2984 attr.config = PERF_SYNTH_INTEL_PWRX;
2985 err = intel_pt_synth_event(session, "pwrx", &attr, id);
2986 if (err)
2987 return err;
2988 pt->pwrx_id = id;
2989 intel_pt_set_event_name(evlist, id, "pwrx");
2990 id += 1;
2993 return 0;
2996 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
2998 struct evsel *evsel;
3000 if (!pt->synth_opts.other_events)
3001 return;
3003 evlist__for_each_entry(pt->session->evlist, evsel) {
3004 if (evsel->core.attr.aux_output && evsel->core.id) {
3005 pt->sample_pebs = true;
3006 pt->pebs_evsel = evsel;
3007 return;
3012 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3014 struct evsel *evsel;
3016 evlist__for_each_entry_reverse(evlist, evsel) {
3017 const char *name = perf_evsel__name(evsel);
3019 if (!strcmp(name, "sched:sched_switch"))
3020 return evsel;
3023 return NULL;
3026 static bool intel_pt_find_switch(struct evlist *evlist)
3028 struct evsel *evsel;
3030 evlist__for_each_entry(evlist, evsel) {
3031 if (evsel->core.attr.context_switch)
3032 return true;
3035 return false;
3038 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3040 struct intel_pt *pt = data;
3042 if (!strcmp(var, "intel-pt.mispred-all"))
3043 pt->mispred_all = perf_config_bool(var, value);
3045 return 0;
3048 /* Find least TSC which converts to ns or later */
3049 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3051 u64 tsc, tm;
3053 tsc = perf_time_to_tsc(ns, &pt->tc);
3055 while (1) {
3056 tm = tsc_to_perf_time(tsc, &pt->tc);
3057 if (tm < ns)
3058 break;
3059 tsc -= 1;
3062 while (tm < ns)
3063 tm = tsc_to_perf_time(++tsc, &pt->tc);
3065 return tsc;
3068 /* Find greatest TSC which converts to ns or earlier */
3069 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3071 u64 tsc, tm;
3073 tsc = perf_time_to_tsc(ns, &pt->tc);
3075 while (1) {
3076 tm = tsc_to_perf_time(tsc, &pt->tc);
3077 if (tm > ns)
3078 break;
3079 tsc += 1;
3082 while (tm > ns)
3083 tm = tsc_to_perf_time(--tsc, &pt->tc);
3085 return tsc;
3088 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3089 struct itrace_synth_opts *opts)
3091 struct perf_time_interval *p = opts->ptime_range;
3092 int n = opts->range_num;
3093 int i;
3095 if (!n || !p || pt->timeless_decoding)
3096 return 0;
3098 pt->time_ranges = calloc(n, sizeof(struct range));
3099 if (!pt->time_ranges)
3100 return -ENOMEM;
3102 pt->range_cnt = n;
3104 intel_pt_log("%s: %u range(s)\n", __func__, n);
3106 for (i = 0; i < n; i++) {
3107 struct range *r = &pt->time_ranges[i];
3108 u64 ts = p[i].start;
3109 u64 te = p[i].end;
3112 * Take care to ensure the TSC range matches the perf-time range
3113 * when converted back to perf-time.
3115 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3116 r->end = te ? intel_pt_tsc_end(te, pt) : 0;
3118 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3119 i, ts, te);
3120 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3121 i, r->start, r->end);
3124 return 0;
3127 static const char * const intel_pt_info_fmts[] = {
3128 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
3129 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
3130 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
3131 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
3132 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
3133 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
3134 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
3135 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
3136 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
3137 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
3138 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
3139 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
3140 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
3141 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
3142 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
3143 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
3146 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3148 int i;
3150 if (!dump_trace)
3151 return;
3153 for (i = start; i <= finish; i++)
3154 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3157 static void intel_pt_print_info_str(const char *name, const char *str)
3159 if (!dump_trace)
3160 return;
3162 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
3165 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3167 return auxtrace_info->header.size >=
3168 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3171 int intel_pt_process_auxtrace_info(union perf_event *event,
3172 struct perf_session *session)
3174 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3175 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3176 struct intel_pt *pt;
3177 void *info_end;
3178 __u64 *info;
3179 int err;
3181 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3182 min_sz)
3183 return -EINVAL;
3185 pt = zalloc(sizeof(struct intel_pt));
3186 if (!pt)
3187 return -ENOMEM;
3189 addr_filters__init(&pt->filts);
3191 err = perf_config(intel_pt_perf_config, pt);
3192 if (err)
3193 goto err_free;
3195 err = auxtrace_queues__init(&pt->queues);
3196 if (err)
3197 goto err_free;
3199 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3201 pt->session = session;
3202 pt->machine = &session->machines.host; /* No kvm support */
3203 pt->auxtrace_type = auxtrace_info->type;
3204 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3205 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3206 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3207 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3208 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3209 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3210 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3211 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3212 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3213 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3214 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3215 INTEL_PT_PER_CPU_MMAPS);
3217 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3218 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3219 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3220 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3221 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3222 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3223 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3224 INTEL_PT_CYC_BIT);
3227 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3228 pt->max_non_turbo_ratio =
3229 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3230 intel_pt_print_info(&auxtrace_info->priv[0],
3231 INTEL_PT_MAX_NONTURBO_RATIO,
3232 INTEL_PT_MAX_NONTURBO_RATIO);
3235 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3236 info_end = (void *)info + auxtrace_info->header.size;
3238 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3239 size_t len;
3241 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3242 intel_pt_print_info(&auxtrace_info->priv[0],
3243 INTEL_PT_FILTER_STR_LEN,
3244 INTEL_PT_FILTER_STR_LEN);
3245 if (len) {
3246 const char *filter = (const char *)info;
3248 len = roundup(len + 1, 8);
3249 info += len >> 3;
3250 if ((void *)info > info_end) {
3251 pr_err("%s: bad filter string length\n", __func__);
3252 err = -EINVAL;
3253 goto err_free_queues;
3255 pt->filter = memdup(filter, len);
3256 if (!pt->filter) {
3257 err = -ENOMEM;
3258 goto err_free_queues;
3260 if (session->header.needs_swap)
3261 mem_bswap_64(pt->filter, len);
3262 if (pt->filter[len - 1]) {
3263 pr_err("%s: filter string not null terminated\n", __func__);
3264 err = -EINVAL;
3265 goto err_free_queues;
3267 err = addr_filters__parse_bare_filter(&pt->filts,
3268 filter);
3269 if (err)
3270 goto err_free_queues;
3272 intel_pt_print_info_str("Filter string", pt->filter);
3275 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3276 if (pt->timeless_decoding && !pt->tc.time_mult)
3277 pt->tc.time_mult = 1;
3278 pt->have_tsc = intel_pt_have_tsc(pt);
3279 pt->sampling_mode = intel_pt_sampling_mode(pt);
3280 pt->est_tsc = !pt->timeless_decoding;
3282 pt->unknown_thread = thread__new(999999999, 999999999);
3283 if (!pt->unknown_thread) {
3284 err = -ENOMEM;
3285 goto err_free_queues;
3289 * Since this thread will not be kept in any rbtree not in a
3290 * list, initialize its list node so that at thread__put() the
3291 * current thread lifetime assuption is kept and we don't segfault
3292 * at list_del_init().
3294 INIT_LIST_HEAD(&pt->unknown_thread->node);
3296 err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3297 if (err)
3298 goto err_delete_thread;
3299 if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3300 err = -ENOMEM;
3301 goto err_delete_thread;
3304 pt->auxtrace.process_event = intel_pt_process_event;
3305 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3306 pt->auxtrace.queue_data = intel_pt_queue_data;
3307 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3308 pt->auxtrace.flush_events = intel_pt_flush;
3309 pt->auxtrace.free_events = intel_pt_free_events;
3310 pt->auxtrace.free = intel_pt_free;
3311 session->auxtrace = &pt->auxtrace;
3313 if (dump_trace)
3314 return 0;
3316 if (pt->have_sched_switch == 1) {
3317 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3318 if (!pt->switch_evsel) {
3319 pr_err("%s: missing sched_switch event\n", __func__);
3320 err = -EINVAL;
3321 goto err_delete_thread;
3323 } else if (pt->have_sched_switch == 2 &&
3324 !intel_pt_find_switch(session->evlist)) {
3325 pr_err("%s: missing context_switch attribute flag\n", __func__);
3326 err = -EINVAL;
3327 goto err_delete_thread;
3330 if (session->itrace_synth_opts->set) {
3331 pt->synth_opts = *session->itrace_synth_opts;
3332 } else {
3333 itrace_synth_opts__set_default(&pt->synth_opts,
3334 session->itrace_synth_opts->default_no_sample);
3335 if (!session->itrace_synth_opts->default_no_sample &&
3336 !session->itrace_synth_opts->inject) {
3337 pt->synth_opts.branches = false;
3338 pt->synth_opts.callchain = true;
3340 pt->synth_opts.thread_stack =
3341 session->itrace_synth_opts->thread_stack;
3344 if (pt->synth_opts.log)
3345 intel_pt_log_enable();
3347 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3348 if (pt->tc.time_mult) {
3349 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3351 if (!pt->max_non_turbo_ratio)
3352 pt->max_non_turbo_ratio =
3353 (tsc_freq + 50000000) / 100000000;
3354 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3355 intel_pt_log("Maximum non-turbo ratio %u\n",
3356 pt->max_non_turbo_ratio);
3357 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3360 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3361 if (err)
3362 goto err_delete_thread;
3364 if (pt->synth_opts.calls)
3365 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3366 PERF_IP_FLAG_TRACE_END;
3367 if (pt->synth_opts.returns)
3368 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3369 PERF_IP_FLAG_TRACE_BEGIN;
3371 if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
3372 symbol_conf.use_callchain = true;
3373 if (callchain_register_param(&callchain_param) < 0) {
3374 symbol_conf.use_callchain = false;
3375 pt->synth_opts.callchain = false;
3379 err = intel_pt_synth_events(pt, session);
3380 if (err)
3381 goto err_delete_thread;
3383 intel_pt_setup_pebs_events(pt);
3385 if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3386 err = auxtrace_queue_data(session, true, true);
3387 else
3388 err = auxtrace_queues__process_index(&pt->queues, session);
3389 if (err)
3390 goto err_delete_thread;
3392 if (pt->queues.populated)
3393 pt->data_queued = true;
3395 if (pt->timeless_decoding)
3396 pr_debug2("Intel PT decoding without timestamps\n");
3398 return 0;
3400 err_delete_thread:
3401 thread__zput(pt->unknown_thread);
3402 err_free_queues:
3403 intel_pt_log_disable();
3404 auxtrace_queues__free(&pt->queues);
3405 session->auxtrace = NULL;
3406 err_free:
3407 addr_filters__exit(&pt->filts);
3408 zfree(&pt->filter);
3409 zfree(&pt->time_ranges);
3410 free(pt);
3411 return err;