2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
28 enum slab_state slab_state
;
29 LIST_HEAD(slab_caches
);
30 DEFINE_MUTEX(slab_mutex
);
31 struct kmem_cache
*kmem_cache
;
34 * Set of flags that will prevent slab merging
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
40 #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
41 SLAB_CACHE_DMA | SLAB_NOTRACK)
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
47 static int slab_nomerge
;
49 static int __init
setup_slab_nomerge(char *str
)
56 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
59 __setup("slab_nomerge", setup_slab_nomerge
);
62 * Determine the size of a slab object
64 unsigned int kmem_cache_size(struct kmem_cache
*s
)
66 return s
->object_size
;
68 EXPORT_SYMBOL(kmem_cache_size
);
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name
, size_t size
)
73 struct kmem_cache
*s
= NULL
;
75 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
76 size
> KMALLOC_MAX_SIZE
) {
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
81 list_for_each_entry(s
, &slab_caches
, list
) {
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
90 res
= probe_kernel_address(s
->name
, tmp
);
92 pr_err("Slab cache with size %d has lost its name\n",
97 #if !defined(CONFIG_SLUB)
98 if (!strcmp(s
->name
, name
)) {
99 pr_err("%s (%s): Cache name already exists.\n",
108 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
112 static inline int kmem_cache_sanity_check(const char *name
, size_t size
)
118 #ifdef CONFIG_MEMCG_KMEM
119 static int memcg_alloc_cache_params(struct mem_cgroup
*memcg
,
120 struct kmem_cache
*s
, struct kmem_cache
*root_cache
)
124 if (!memcg_kmem_enabled())
128 size
= offsetof(struct memcg_cache_params
, memcg_caches
);
129 size
+= memcg_limited_groups_array_size
* sizeof(void *);
131 size
= sizeof(struct memcg_cache_params
);
133 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
134 if (!s
->memcg_params
)
138 s
->memcg_params
->memcg
= memcg
;
139 s
->memcg_params
->root_cache
= root_cache
;
141 s
->memcg_params
->is_root_cache
= true;
146 static void memcg_free_cache_params(struct kmem_cache
*s
)
148 kfree(s
->memcg_params
);
151 static int memcg_update_cache_params(struct kmem_cache
*s
, int num_memcgs
)
154 struct memcg_cache_params
*new_params
, *cur_params
;
156 BUG_ON(!is_root_cache(s
));
158 size
= offsetof(struct memcg_cache_params
, memcg_caches
);
159 size
+= num_memcgs
* sizeof(void *);
161 new_params
= kzalloc(size
, GFP_KERNEL
);
165 cur_params
= s
->memcg_params
;
166 memcpy(new_params
->memcg_caches
, cur_params
->memcg_caches
,
167 memcg_limited_groups_array_size
* sizeof(void *));
169 new_params
->is_root_cache
= true;
171 rcu_assign_pointer(s
->memcg_params
, new_params
);
173 kfree_rcu(cur_params
, rcu_head
);
178 int memcg_update_all_caches(int num_memcgs
)
180 struct kmem_cache
*s
;
182 mutex_lock(&slab_mutex
);
184 list_for_each_entry(s
, &slab_caches
, list
) {
185 if (!is_root_cache(s
))
188 ret
= memcg_update_cache_params(s
, num_memcgs
);
190 * Instead of freeing the memory, we'll just leave the caches
191 * up to this point in an updated state.
197 memcg_update_array_size(num_memcgs
);
199 mutex_unlock(&slab_mutex
);
203 static inline int memcg_alloc_cache_params(struct mem_cgroup
*memcg
,
204 struct kmem_cache
*s
, struct kmem_cache
*root_cache
)
209 static inline void memcg_free_cache_params(struct kmem_cache
*s
)
212 #endif /* CONFIG_MEMCG_KMEM */
215 * Find a mergeable slab cache
217 int slab_unmergeable(struct kmem_cache
*s
)
219 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
222 if (!is_root_cache(s
))
229 * We may have set a slab to be unmergeable during bootstrap.
237 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
238 unsigned long flags
, const char *name
, void (*ctor
)(void *))
240 struct kmem_cache
*s
;
242 if (slab_nomerge
|| (flags
& SLAB_NEVER_MERGE
))
248 size
= ALIGN(size
, sizeof(void *));
249 align
= calculate_alignment(flags
, align
, size
);
250 size
= ALIGN(size
, align
);
251 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
253 list_for_each_entry(s
, &slab_caches
, list
) {
254 if (slab_unmergeable(s
))
260 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
263 * Check if alignment is compatible.
264 * Courtesy of Adrian Drzewiecki
266 if ((s
->size
& ~(align
- 1)) != s
->size
)
269 if (s
->size
- size
>= sizeof(void *))
278 * Figure out what the alignment of the objects will be given a set of
279 * flags, a user specified alignment and the size of the objects.
281 unsigned long calculate_alignment(unsigned long flags
,
282 unsigned long align
, unsigned long size
)
285 * If the user wants hardware cache aligned objects then follow that
286 * suggestion if the object is sufficiently large.
288 * The hardware cache alignment cannot override the specified
289 * alignment though. If that is greater then use it.
291 if (flags
& SLAB_HWCACHE_ALIGN
) {
292 unsigned long ralign
= cache_line_size();
293 while (size
<= ralign
/ 2)
295 align
= max(align
, ralign
);
298 if (align
< ARCH_SLAB_MINALIGN
)
299 align
= ARCH_SLAB_MINALIGN
;
301 return ALIGN(align
, sizeof(void *));
304 static struct kmem_cache
*
305 do_kmem_cache_create(char *name
, size_t object_size
, size_t size
, size_t align
,
306 unsigned long flags
, void (*ctor
)(void *),
307 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
309 struct kmem_cache
*s
;
313 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
318 s
->object_size
= object_size
;
323 err
= memcg_alloc_cache_params(memcg
, s
, root_cache
);
327 err
= __kmem_cache_create(s
, flags
);
332 list_add(&s
->list
, &slab_caches
);
339 memcg_free_cache_params(s
);
345 * kmem_cache_create - Create a cache.
346 * @name: A string which is used in /proc/slabinfo to identify this cache.
347 * @size: The size of objects to be created in this cache.
348 * @align: The required alignment for the objects.
350 * @ctor: A constructor for the objects.
352 * Returns a ptr to the cache on success, NULL on failure.
353 * Cannot be called within a interrupt, but can be interrupted.
354 * The @ctor is run when new pages are allocated by the cache.
358 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
359 * to catch references to uninitialised memory.
361 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
362 * for buffer overruns.
364 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
365 * cacheline. This can be beneficial if you're counting cycles as closely
369 kmem_cache_create(const char *name
, size_t size
, size_t align
,
370 unsigned long flags
, void (*ctor
)(void *))
372 struct kmem_cache
*s
;
379 mutex_lock(&slab_mutex
);
381 err
= kmem_cache_sanity_check(name
, size
);
383 s
= NULL
; /* suppress uninit var warning */
388 * Some allocators will constraint the set of valid flags to a subset
389 * of all flags. We expect them to define CACHE_CREATE_MASK in this
390 * case, and we'll just provide them with a sanitized version of the
393 flags
&= CACHE_CREATE_MASK
;
395 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
399 cache_name
= kstrdup(name
, GFP_KERNEL
);
405 s
= do_kmem_cache_create(cache_name
, size
, size
,
406 calculate_alignment(flags
, align
, size
),
407 flags
, ctor
, NULL
, NULL
);
414 mutex_unlock(&slab_mutex
);
420 if (flags
& SLAB_PANIC
)
421 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
424 printk(KERN_WARNING
"kmem_cache_create(%s) failed with error %d",
432 EXPORT_SYMBOL(kmem_cache_create
);
434 #ifdef CONFIG_MEMCG_KMEM
436 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
437 * @memcg: The memory cgroup the new cache is for.
438 * @root_cache: The parent of the new cache.
439 * @memcg_name: The name of the memory cgroup (used for naming the new cache).
441 * This function attempts to create a kmem cache that will serve allocation
442 * requests going from @memcg to @root_cache. The new cache inherits properties
445 struct kmem_cache
*memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
446 struct kmem_cache
*root_cache
,
447 const char *memcg_name
)
449 struct kmem_cache
*s
= NULL
;
455 mutex_lock(&slab_mutex
);
457 cache_name
= kasprintf(GFP_KERNEL
, "%s(%d:%s)", root_cache
->name
,
458 memcg_cache_id(memcg
), memcg_name
);
462 s
= do_kmem_cache_create(cache_name
, root_cache
->object_size
,
463 root_cache
->size
, root_cache
->align
,
464 root_cache
->flags
, root_cache
->ctor
,
472 mutex_unlock(&slab_mutex
);
480 static int memcg_cleanup_cache_params(struct kmem_cache
*s
)
484 if (!s
->memcg_params
||
485 !s
->memcg_params
->is_root_cache
)
488 mutex_unlock(&slab_mutex
);
489 rc
= __memcg_cleanup_cache_params(s
);
490 mutex_lock(&slab_mutex
);
495 static int memcg_cleanup_cache_params(struct kmem_cache
*s
)
499 #endif /* CONFIG_MEMCG_KMEM */
501 void slab_kmem_cache_release(struct kmem_cache
*s
)
504 kmem_cache_free(kmem_cache
, s
);
507 void kmem_cache_destroy(struct kmem_cache
*s
)
512 mutex_lock(&slab_mutex
);
518 if (memcg_cleanup_cache_params(s
) != 0)
521 if (__kmem_cache_shutdown(s
) != 0) {
522 printk(KERN_ERR
"kmem_cache_destroy %s: "
523 "Slab cache still has objects\n", s
->name
);
530 mutex_unlock(&slab_mutex
);
531 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
534 memcg_free_cache_params(s
);
535 #ifdef SLAB_SUPPORTS_SYSFS
536 sysfs_slab_remove(s
);
538 slab_kmem_cache_release(s
);
543 mutex_unlock(&slab_mutex
);
548 EXPORT_SYMBOL(kmem_cache_destroy
);
551 * kmem_cache_shrink - Shrink a cache.
552 * @cachep: The cache to shrink.
554 * Releases as many slabs as possible for a cache.
555 * To help debugging, a zero exit status indicates all slabs were released.
557 int kmem_cache_shrink(struct kmem_cache
*cachep
)
563 ret
= __kmem_cache_shrink(cachep
);
568 EXPORT_SYMBOL(kmem_cache_shrink
);
570 int slab_is_available(void)
572 return slab_state
>= UP
;
576 /* Create a cache during boot when no slab services are available yet */
577 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
583 s
->size
= s
->object_size
= size
;
584 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
585 err
= __kmem_cache_create(s
, flags
);
588 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
591 s
->refcount
= -1; /* Exempt from merging for now */
594 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
597 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
600 panic("Out of memory when creating slab %s\n", name
);
602 create_boot_cache(s
, name
, size
, flags
);
603 list_add(&s
->list
, &slab_caches
);
608 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
609 EXPORT_SYMBOL(kmalloc_caches
);
611 #ifdef CONFIG_ZONE_DMA
612 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
613 EXPORT_SYMBOL(kmalloc_dma_caches
);
617 * Conversion table for small slabs sizes / 8 to the index in the
618 * kmalloc array. This is necessary for slabs < 192 since we have non power
619 * of two cache sizes there. The size of larger slabs can be determined using
622 static s8 size_index
[24] = {
649 static inline int size_index_elem(size_t bytes
)
651 return (bytes
- 1) / 8;
655 * Find the kmem_cache structure that serves a given size of
658 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
662 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
663 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
669 return ZERO_SIZE_PTR
;
671 index
= size_index
[size_index_elem(size
)];
673 index
= fls(size
- 1);
675 #ifdef CONFIG_ZONE_DMA
676 if (unlikely((flags
& GFP_DMA
)))
677 return kmalloc_dma_caches
[index
];
680 return kmalloc_caches
[index
];
684 * Create the kmalloc array. Some of the regular kmalloc arrays
685 * may already have been created because they were needed to
686 * enable allocations for slab creation.
688 void __init
create_kmalloc_caches(unsigned long flags
)
693 * Patch up the size_index table if we have strange large alignment
694 * requirements for the kmalloc array. This is only the case for
695 * MIPS it seems. The standard arches will not generate any code here.
697 * Largest permitted alignment is 256 bytes due to the way we
698 * handle the index determination for the smaller caches.
700 * Make sure that nothing crazy happens if someone starts tinkering
701 * around with ARCH_KMALLOC_MINALIGN
703 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
704 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
706 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
707 int elem
= size_index_elem(i
);
709 if (elem
>= ARRAY_SIZE(size_index
))
711 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
714 if (KMALLOC_MIN_SIZE
>= 64) {
716 * The 96 byte size cache is not used if the alignment
719 for (i
= 64 + 8; i
<= 96; i
+= 8)
720 size_index
[size_index_elem(i
)] = 7;
724 if (KMALLOC_MIN_SIZE
>= 128) {
726 * The 192 byte sized cache is not used if the alignment
727 * is 128 byte. Redirect kmalloc to use the 256 byte cache
730 for (i
= 128 + 8; i
<= 192; i
+= 8)
731 size_index
[size_index_elem(i
)] = 8;
733 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
734 if (!kmalloc_caches
[i
]) {
735 kmalloc_caches
[i
] = create_kmalloc_cache(NULL
,
740 * Caches that are not of the two-to-the-power-of size.
741 * These have to be created immediately after the
742 * earlier power of two caches
744 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
745 kmalloc_caches
[1] = create_kmalloc_cache(NULL
, 96, flags
);
747 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
748 kmalloc_caches
[2] = create_kmalloc_cache(NULL
, 192, flags
);
751 /* Kmalloc array is now usable */
754 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
755 struct kmem_cache
*s
= kmalloc_caches
[i
];
759 n
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", kmalloc_size(i
));
766 #ifdef CONFIG_ZONE_DMA
767 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
768 struct kmem_cache
*s
= kmalloc_caches
[i
];
771 int size
= kmalloc_size(i
);
772 char *n
= kasprintf(GFP_NOWAIT
,
773 "dma-kmalloc-%d", size
);
776 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
777 size
, SLAB_CACHE_DMA
| flags
);
782 #endif /* !CONFIG_SLOB */
785 * To avoid unnecessary overhead, we pass through large allocation requests
786 * directly to the page allocator. We use __GFP_COMP, because we will need to
787 * know the allocation order to free the pages properly in kfree.
789 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
795 page
= alloc_kmem_pages(flags
, order
);
796 ret
= page
? page_address(page
) : NULL
;
797 kmemleak_alloc(ret
, size
, 1, flags
);
800 EXPORT_SYMBOL(kmalloc_order
);
802 #ifdef CONFIG_TRACING
803 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
805 void *ret
= kmalloc_order(size
, flags
, order
);
806 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
809 EXPORT_SYMBOL(kmalloc_order_trace
);
812 #ifdef CONFIG_SLABINFO
815 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
817 #define SLABINFO_RIGHTS S_IRUSR
820 void print_slabinfo_header(struct seq_file
*m
)
823 * Output format version, so at least we can change it
824 * without _too_ many complaints.
826 #ifdef CONFIG_DEBUG_SLAB
827 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
829 seq_puts(m
, "slabinfo - version: 2.1\n");
831 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
832 "<objperslab> <pagesperslab>");
833 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
834 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
835 #ifdef CONFIG_DEBUG_SLAB
836 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
837 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
838 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
843 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
847 mutex_lock(&slab_mutex
);
849 print_slabinfo_header(m
);
851 return seq_list_start(&slab_caches
, *pos
);
854 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
856 return seq_list_next(p
, &slab_caches
, pos
);
859 void slab_stop(struct seq_file
*m
, void *p
)
861 mutex_unlock(&slab_mutex
);
865 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
867 struct kmem_cache
*c
;
868 struct slabinfo sinfo
;
871 if (!is_root_cache(s
))
874 for_each_memcg_cache_index(i
) {
875 c
= cache_from_memcg_idx(s
, i
);
879 memset(&sinfo
, 0, sizeof(sinfo
));
880 get_slabinfo(c
, &sinfo
);
882 info
->active_slabs
+= sinfo
.active_slabs
;
883 info
->num_slabs
+= sinfo
.num_slabs
;
884 info
->shared_avail
+= sinfo
.shared_avail
;
885 info
->active_objs
+= sinfo
.active_objs
;
886 info
->num_objs
+= sinfo
.num_objs
;
890 int cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
892 struct slabinfo sinfo
;
894 memset(&sinfo
, 0, sizeof(sinfo
));
895 get_slabinfo(s
, &sinfo
);
897 memcg_accumulate_slabinfo(s
, &sinfo
);
899 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
900 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
901 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
903 seq_printf(m
, " : tunables %4u %4u %4u",
904 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
905 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
906 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
907 slabinfo_show_stats(m
, s
);
912 static int s_show(struct seq_file
*m
, void *p
)
914 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
916 if (!is_root_cache(s
))
918 return cache_show(s
, m
);
922 * slabinfo_op - iterator that generates /proc/slabinfo
932 * + further values on SMP and with statistics enabled
934 static const struct seq_operations slabinfo_op
= {
941 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
943 return seq_open(file
, &slabinfo_op
);
946 static const struct file_operations proc_slabinfo_operations
= {
947 .open
= slabinfo_open
,
949 .write
= slabinfo_write
,
951 .release
= seq_release
,
954 static int __init
slab_proc_init(void)
956 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
957 &proc_slabinfo_operations
);
960 module_init(slab_proc_init
);
961 #endif /* CONFIG_SLABINFO */
963 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
975 ret
= kmalloc_track_caller(new_size
, flags
);
983 * __krealloc - like krealloc() but don't free @p.
984 * @p: object to reallocate memory for.
985 * @new_size: how many bytes of memory are required.
986 * @flags: the type of memory to allocate.
988 * This function is like krealloc() except it never frees the originally
989 * allocated buffer. Use this if you don't want to free the buffer immediately
990 * like, for example, with RCU.
992 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
994 if (unlikely(!new_size
))
995 return ZERO_SIZE_PTR
;
997 return __do_krealloc(p
, new_size
, flags
);
1000 EXPORT_SYMBOL(__krealloc
);
1003 * krealloc - reallocate memory. The contents will remain unchanged.
1004 * @p: object to reallocate memory for.
1005 * @new_size: how many bytes of memory are required.
1006 * @flags: the type of memory to allocate.
1008 * The contents of the object pointed to are preserved up to the
1009 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1010 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1011 * %NULL pointer, the object pointed to is freed.
1013 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1017 if (unlikely(!new_size
)) {
1019 return ZERO_SIZE_PTR
;
1022 ret
= __do_krealloc(p
, new_size
, flags
);
1023 if (ret
&& p
!= ret
)
1028 EXPORT_SYMBOL(krealloc
);
1031 * kzfree - like kfree but zero memory
1032 * @p: object to free memory of
1034 * The memory of the object @p points to is zeroed before freed.
1035 * If @p is %NULL, kzfree() does nothing.
1037 * Note: this function zeroes the whole allocated buffer which can be a good
1038 * deal bigger than the requested buffer size passed to kmalloc(). So be
1039 * careful when using this function in performance sensitive code.
1041 void kzfree(const void *p
)
1044 void *mem
= (void *)p
;
1046 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1052 EXPORT_SYMBOL(kzfree
);
1054 /* Tracepoints definitions. */
1055 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1056 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1057 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1058 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1059 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1060 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);